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Abstract Wind energy production is expected to be affected by shifts in1

wind patterns that will accompany climate change. However, many questions2

remain on the magnitude and character of this impact, especially on regional3

scales. In this study, clustering is used to group and analyze large-scale wind4

patterns in California using model simulations from the Variable-Resolution5

Community Earth System Model (VR-CESM). Specifically, simulations have6

been produced that cover historical (1980-2000), mid-century (2030-2050), and7

end-of-century (2080-2100) time periods. Once clustered, observed changes to8

wind patterns can be analyzed in terms of both the change in frequency of those9

clusters and changes to winds within-clusters. Statistically significant capacity10

factors changes have been found at all five wind plant sites. Decomposition of11

the capacity factor changes into frequency changes and within-cluster changes12

enables a better understanding of their drivers. A further examination of the13

synoptic-scale fields associated with each cluster then provides a better under-14

standing of how changes to large-scale meteorological fields are important for15

driving changes in localized wind speeds.16

Keywords Wind energy · Climate change · Variable-resolution climate17

modeling · Clustering18

1 Introduction19

It is expected that wind energy production, as with many other environmentally-20

sourced renewable energy technologies, will be directly impacted by climate21

change. However, the highly localized character of wind fields, driven by a22

strong sensitivity to local topography, makes it difficult to model and project23
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wind fields at the scales needed for stakeholders. Nonetheless, a better under-24

standing of the variability of localized wind fields is essential to future wind25

energy resources planning and could help reduce the risk of selecting future26

wind project locations.27

Even with the known difficulties with modeling wind, some progress has28

been made in better understanding this important resource. Past studies have29

focused on analyzing the climate change impact on localized wind fields, and30

the associated change in wind energy generation potential (Breslow and Sailor,31

2002; Miller and Schlegel, 2006; Pryor and Barthelmie, 2010; Wang et al,32

2018). Karnauskas et al (2018) analyzed simulations from ten climate models,33

and found reductions in wind power over Northern Hemisphere mid-latitudes,34

which can be explained by established features of climate change. Rasmussen35

et al (2011) employed model data from North American Regional Climate36

Change Assessment Program (NARCCAP) to project California wind energy37

change by the mid-century, and detected a decrease of < 2% in resources38

at Altamont Pass. Many studies also showed substantial regional and seasonal39

variations in future wind power change. Wang et al (2018) assessed the climate40

change impact through mid-century on California wind energy resources, and41

found that wind speed (and hence wind energy production) is likely to increase42

in summer, and diminish during fall and winter. Another study by Duffy et al43

(2014) also concluded that available wind energy in California will decrease in44

fall and winter. Yu et al (2015) detected upward trends in wind speeds across45

areas of the US Great Plains and Intermountain West, but downward trends46

in the east and in some parts of California. Pryor and Barthelmie (2011) found47

the the simulated future wind resources in the U.S. remain within the histor-48

ical variability. While a study by Haupt et al (2016) found the future wind49

speed changes vary by up to 10% depending on different regions and seasons.50

However, these past studies have only assessed overall trends of wind patterns51

on seasonal scales, or focused only on one specific type of wind pattern.52

In this study, we present a new approach that leverages an unsupervised53

machine learning algorithm, agglomerative clustering, to group wind patterns54

from unlabeled data into wind clusters. The unlabeled input data for the55

clustering algorithm is produced using the Community Earth System Model56

(CESM), a global climate modeling system that has some demonstrable skill57

with modeling wind (Wang et al, 2018). More details about the model can58

be found in Section 2. The agglomerative clustering algorithm is applied to59

the CESM model output to provide insight into the drivers and variability of60

different wind patterns. Once clusters have been identified, changes in wind61

fields between historical and end-of-century are decomposed into change in the62

cluster frequency and the change within each cluster. The insights gained from63

this decomposition then serve as our starting point for explaining significant64

trends that should be expected in the future. We investigate the cause of65

within-cluster wind speeds change by analyzing synoptic-scale fields associated66

with each cluster. However, we do not investigate the drivers of future change67

to the frequency of clusters, as these changes depend on global meteorological68

patterns that are beyond the scope of this study. Finally, seasonal changes69
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of wind energy are assessed, along with the local impact of observed changes70

from wind clusters. Given appropriate regional climate data, this technique71

has the potential to be adapted to essentially any geographic region.72

This work builds on a previous study by Millstein et al (2018), who used73

clustering to identify the characteristics of ten selected clusters over the his-74

torical time period. Their study then investigated the wind regime changes75

over the period of 1980-2015 in California, and further analyzed the impact76

on local wind energy resources. The present study works to expand the time77

scope of Millstein et al (2018) to the end of the 21st century, and detect any78

significant trends associated with the most relevant wind clusters.79

For the purposes of this study, we have divided California into two sub-80

domains: the Northern California (NC) domain, which includes Shiloh and81

Altamont Pass wind plant sites, and the Southern California (SC) domain,82

which includes Alta, San Gorgonio, and Ocotillo sites (Figure 1)1. These five83

wind plant locations include both wind plant sites currently in service, and84

wind project sites targeted for future development. The current capacities,85

according to the United States Wind Turbine Database (USWTDB)(Hoen86

et al, 2019), at each site is: 1,028 MW at Shiloh, 278 MW at Altamont Pass,87

3,118 MW in the greater Tehachapi area, 663 MW in the San Gorgonio region,88

and 447 MW in the Ocotillo region. The current capacities Due to differences89

in wind patterns that emerge between NC and SC domains, the clustering90

algorithm was applied to the two domains separately.91

The remainder of this paper is as follows: In section 2 we describe the VR-92

CESM model setup and the clustering algorithm used in this study. Results93

are presented in section 3, followed by discussion and conclusions in section 4.94

2 Methods95

This study uses model output from the Community Earth System Model96

(CESM), a widely-used global climate model (Neale et al, 2010; Hurrell et al,97

2013). Three time periods were separately simulated, including historical (1980-98

2000), mid-century (2030-2050), and end-of-century (2080-2100). However, the99

mid-century period that was the focus of Wang et al (2018) is not considered in100

this study, and is only used to provide additional input for the clustering pro-101

cedure. All simulations used the same model setup, enabling us to compare102

across time frames, with differences only in prescribed sea-surface tempera-103

tures and greenhouse-gas forcing. Details on model validation, including com-104

parison with observational stations, reanalysis datasets, and other modeling105

products, can be found in Wang et al (2018).106

1 These wind plants names are representatives of an agglomeration of plants in close
proximity to each other. Based on the calssification from California Energy Commission
(CEC) (https://ww2.energy.ca.gov/maps/renewable/wind.html), Shiloh represents ”Solano
Wind Resource Area”, Altamont represents ”Altamont Wind Resource Area”, Tehachapi
represents ”Tehachapi Wind Resource Area”, San Gorgonio represents ”San Gorgonio Wind
Resource Area”, Ocotillo represents ”East San Diego Wind Resource Area”.
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Southern California

Northern California

Fig. 1 The Northern California (NC) and Southern California (SC) domains with dash line
bounding boxes, along with the five wind plant locations. This figure is a reproduction of
Figure 1 from Millstein et al (2018).

2.1 Description of VR-CESM (global climate model product)107

CESM version 1.5.5 was used for this study with the F-component set (FAMPIC5),108

which prescribes sea-surface temperatures and sea ice but dynamically evolves109

the atmosphere and land surface component models (AMIP protocols) (Gates,110

1992). The atmospheric component model is the Community Atmosphere111

Model, version 5.3 (CAM5) (Neale et al, 2010) with the spectral-element (SE)112

dynamical core Dennis et al (2012) in its variable-resolution (VR) configura-113

tion (Zarzycki et al, 2014b). More details of the CAM5 configuration can be114

found in Neale et al (2010). The land component model used in this study115

is the Community Land Model (CLM) version 4.0 (Oleson et al, 2010). The116

SE dynamical core is employed along with variable resolution grid support.117

CAM5-SE is built with a continuous Galerkin spectral finite-element method118

to solve the hydrostatic atmospheric primitive equations. It has several ben-119

efits compared with the other CAM dynamical cores, including support of120

unstructured grids that eliminates grid singularities at higher latitudes, and121

near perfect multi-processor scalability (Zarzycki et al, 2014b,a; Zarzycki and122

Jablonowski, 2014; Taylor and Fournier, 2010). Physical parameterizations123

in CAM5 include aerosols (Ghan et al, 2012), deep convection (Neale et al,124

2008), macrophysics (Park et al, 2014), microphysics (Morrison and Gettel-125

man, 2008), radiation (Iacono et al, 2008), and shallow convection (Park and126

Bretherton, 2009). Further details regarding CAM5-SE can be found in Neale127

et al (2010). More details on VR-CESM can be found in Rhoades et al (2018b,128

2016), and Huang et al (2016). The VR model grid used for this study, depicted129

in Figure 2, was generated for use in CAM and CLM with the open-source130

software package SQuadGen (Ullrich, 2014; Guba et al, 2014). This grid has a131
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finest horizontal resolution of 0.125◦(∼14km) over the western United States,132

with a quasi-uniform 1◦ mesh over the remainder of the globe. Three sim-133

ulations were conducted on this grid: The historical run covered the period134

from October 1st, 1979 to December 31st, 2000, with the last three months of135

1979 discarded as the spin-up period, for a total of 21-years of three-hourly136

output. This historical time period was chosen to provide an adequate sam-137

pling of the inter-annual variability, as well as coincide with the satellite era138

for model validation with reanalysis datasets. For projections of future wind139

energy change, our mid-century and end-of-century simulations ran with the140

“business as usual” Representative Concentration Pathway 8.5 (RCP8.5) (Tay-141

lor et al, 2012) from October 1st, 2029 to December 31st, 2050, and from142

October 1st, 2079 to December 31st, 2100, respectively. In each case the first143

three months of the simulation were discarded, yielding two additional 21-144

year-long simulations. Analogous simulations with VR-CESM have also been145

conducted by Rhoades et al (2018a) and Huang and Ullrich (2017) for assess-146

ing snowpack and future precipitation, respectively. Greenhouse gas (GHG)147

and aerosol forcings are prescribed based on historical or RCP8.5 concentra-148

tions for each simulation. Historically prescribed SST and sea-ice were derived149

from the Hadley Centre sea ice and SST dataset version 1 (HadISST1) and150

version 2 of the National Oceanic and Atmospheric Administration (NOAA)151

weekly optimum interpolation (OI) SST analysis (Hurrell et al, 2008). Future152

SSTs and sea-ice forcings were derived from a future 1 degree RCP8.5 bias-153

corrected dataset (Small et al, 2014). Both datasets were developed at NCAR.154

The historical and mid-century VR-CESM simulations were previously vali-155

dated and analyzed in Wang et al (2018). Here we expand the time horizon156

through the end of the 21st century, and analyze the potential changes on157

localized wind regimes. We also validated the end-of-century simulation from158

VR-CESM against 33 model projections from CESM LENS (Kay et al, 2015)159

by comparing the 700hPa geopotential height field, and this comparison in-160

dicates the robustness of the projection from VR-CESM (not shown). Note161

that in Wang et al (2018), we found that although the large-scale patterns are162

captured, there is nonetheless a low wind speed bias from VR-CESM which163

leads to an under estimation of capacity factor.164

In order to calibrate the wind speed from VR-CESM, we estimated a bias165

correction factors of 1.3 in Wang et al (2018). This bias-correction factor was166

calculated based on a comparison between VR-CESM and a high-resolution167

regional simulation (referred to as DNV GL in Wang et al (2018)). Linear bias168

correction factors have been applied in past efforts in order to match global169

modeling or reanalysis outputs with operational data, for example, see Staffell170

and Pfenninger (2016) and Olauson et al (2017). The use of a linear factor171

effectively assumes that the dynamics and variability of the atmosphere above172

the boundary layer are captured well by the model, but that the dominant173

errors instead emerge from downscaling of the near surface winds to the sub-174

grid-scale – i.e. from a failure to capture local topographic effects, surface175

friction, or turbulence. Given that VR-CESM appears to capture the process176

drivers and dynamical character of the wind field well (Wang et al, 2018; Huang177
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Fig. 2 The VR-CESM grid used in this study, constructed by first successively refin-
ing a cubed-sphere grid with a 1◦(111km) quasi-uniform resolution to a resolution of
0.125◦(∼14km) over the western USA. This figure is a reproduction of Figure 2 from Wang
et al (2018).

et al, 2016), we believe this is a reasonable assumption. Capacity factors, which178

are analyzed in section 3.3, were therefore calculated from the bias-corrected179

wind speed. We used the capacity factor (CF) to measure the wind energy180

production. CF is a key concept measuring the ratio (%) of energy generated181

by a turbine to the energy that same turbine could have generated had it been182

running at its rated capacity continuously. More details on the calculation of183

CF can be found in supplement material Section 2.184

2.2 Agglomerative clustering185

In the nomenclature of machine learning, the output data from the CESM186

model simulations is referred to as “unlabeled” – namely, there is no prior187

knowledge of the different wind patterns and their associated frequencies. In188

order to develop such a labeling, we apply an unsupervised machine learning189

algorithm to group and distinguish different wind patterns. Specifically, we use190

the agglomerative clustering algorithm with Ward’s method (Ward Jr, 1963)191

to minimize the total within-cluster variance. Under this algorithm, each data192

point is initialized as a single-item cluster. At each iteration of the method,193

smaller nearby clusters are chosen to merge and form larger clusters; the partic-194

ular choice of merged clusters minimizes a global inter-cluster distances metric195

(i.e., Ward’s method minimizes the variance of clusters being merged). This196

“bottom-up” algorithm then iterates to create a dendrogram, which is tree-197

like structure, illustrating the arrangement of clusters. The number of clusters198

used in the subsequent analysis can then be varied by halting the iteration199

procedure at a particular level. Typically this choice is made through inspec-200

tion of the resulting clusters at each iteration, so as to identify the earliest201

point at which there is sufficient distinction between all clusters in the set.202
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This algorithm’s primary advantage over k-means clustering (Hartigan and203

Wong, 1979) is that it does not require the parameter k (how many clusters to204

generate) to be specified beforehand. Since we did not have prior knowledge205

of the number of distinct wind patterns before execution of the clustering al-206

gorithm, agglomerative clustering provided a natural mechanism to tune this207

value.208

In this study, clustering is solely applied to 80m wind vector fields (com-209

posed of horizontal and meridional wind magnitudes). This particular height of210

80m was chosen as it is typical of the hubs of large wind turbines. The cluster-211

ing was accomplished through two steps: first, we reduced the dimensionality212

of the input data using the principal components analysis (PCA); second, we213

applied the agglomerative clustering algorithm to the principal components.214

This approach is similar to the steps taken in Ludwig et al (2004), Conil and215

Hall (2006), Jin et al (2011), Berg et al (2013), and Millstein et al (2018).216

For the first step, principal component analysis (PCA) was applied to 3-217

hourly (eight times daily) 80m wind vector fields to reduce dimensionality. We218

retained the first ten principal components for clustering, as they accounted219

for over 80% of the total variance. Then, each day was categorized into a par-220

ticular cluster based on a set of (8 times daily × 10 pricipal components) 80221

PCA components. For each region (NC and SC), regridded data from all three222

time periods (historical 1980-2000, mid-century 2030-2050, and end-of-century223

2080-2100) was simultaneously provided as input to the clustering algorithm.224

This was to ensure the consistency of clusters across all three time periods.225

Then for the second step, we ran the agglomerative clustering algorithm sepa-226

rately on NC and SC domains since the synoptic-scale wind patterns produce227

distinct localized effects in these regions. The agglomerative clustering is a228

”bottom-up” approach, which begins with each day classified as its own clus-229

ter, then ”similar” days are then merged together into larger groups based230

on minimizing a criterion (Wards method minimizes the variance of the clus-231

ters being merged). To determine how many wind patterns would be needed232

to distinguish wind regimes, we leveraged the dendrogram produced by the233

agglomerative clustering algorithm and determined the point when distinctly234

different wind patterns were merged (Wilks, 2011). After examination of the235

clustering output (wind patterns from each cluster), we concluded that for236

each of NC and SC domains, ten clusters provided a good representation of237

different wind regimes – namely, lesser clusters did not sufficiently distinguish238

various qualitatively different wind patterns, and more clusters produced sev-239

eral instances of cluster pairs with only subtle differences. For example, if we240

were to keep 5 clusters, then the wind patterns did not portray the full range241

of patterns we’ve found from 10 clusters, and the set of 15 clusters contained242

clusters with similar wind patterns. A quantitative assessment using the CH243

index (Caliński and Harabasz, 1974), which measures the overall within-cluster244

variance and the overall between-cluster variance, confirmed the optimality of245

ten clusters in each region. Namely, ten clusters produced a higher CH index246

than the index from either five and fifteen clusters – indicating that the clus-247

ters have larger between-cluster variance, and smaller within-cluster variance.248
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Therefore, we determined for both NC and SC domains, ten clusters would249

work the best in our case. Note that in the remainder of the text the numbers250

associated with each cluster do not bear meaning, and are only for labeling251

purposes. Each cluster is labeled by its domain and cluster number (e.g. NC252

6 is cluster 6 from NC domain).253

2.3 Decomposition of changes in wind clusters254

Climate change can impact wind clusters through two principal avenues: First,
through the modification of the frequency of the wind cluster, and second,
through the modification of the wind patterns within each cluster. The change
in either the total wind field or the wind field of each cluster can be decomposed
into these two contributions as follows. We denote the historical frequency of a
given cluster i as fhi , the end-of-century frequency as fei , the historical average
wind field within the cluster by Uh

i , and the end-of-century wind field within
the cluster by Ue

i . Thus the average historical Uh and end-of-century Ue wind
fields can be written as:

Uh =
∑
i

Uh
i f

h
i , Ue =

∑
i

Ue
i f

e
i . (1)

The average frequency of the cluster fi and average wind field within the
cluster Ui (combining both historical and end-of-century) are then given by

fi =
1

2
(fhi + fei ), Ui =

Uh
i f

h
i + Ue

i f
e
i

fhi + fei
. (2)

Similarly, the change in cluster frequency and change in wind field within
cluster i is defined by ∆fi = fei − fhi and ∆Ui = Ue

i − Uh
i . Denoting the

change in the average wind field by ∆U = Ue−Uh and making an ansatz that
∆U can be decomposed into a term proportional to Ui∆fi, a term proportional
to fi∆Ui, and some nonlinear leftover term then leads to the decomposition:

∆U =
∑
i

Ue
i f

e
i − Uh

i f
h
i (3)

=
∑
i

Ui∆fi︸ ︷︷ ︸
(a)

+ (Ue
i − Uh

i )fi︸ ︷︷ ︸
(b)

−∆f
2
i (Ue

i − Uh
i )

4fi︸ ︷︷ ︸
(c)

. (4)

Here (4a) denotes the change in average wind speed due to the change in255

frequency of cluster i, (4b) denotes the change in average wind speed due to256

the change in the wind field within each cluster i, and (4c) denotes nonlinear257

changes associated with simultaneous changes in frequency and wind field.258

In this wind speed decomposition, U represents the wind speed magnitude259

from VR-CESM, not the wind vector field. Note that such a decomposition is260

independent of our choice of clustering technique, and can be performed for261

any grouping of fields from two periods.262
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3 Results263

Section 3.1 describes the wind patterns associated with each cluster. Section264

3.2 then examines the climatological synoptic-scale fields from clusters with265

significant trends. In section 3.3, we analyze the future projections of wind266

clusters from the end-of-century VR-CESM simulation, and their impact on267

wind energy output.268

Our results mirror those of previous work on this subject (Wang et al,269

2018; Duffy et al, 2014; Miller and Schlegel, 2006) that have found a reduction270

of overland wind speeds in DJF and an increase in wind speeds in JJA. This271

change means that, in general, we see a decrease (increase) in the frequency272

of clusters that have high wind speeds and a decrease (increase) in the wind273

speeds across clusters in DJF (JJA).274

3.1 Trends in cluster frequency275

As described in section 2.2, days from historical and end-of-century time pe-276

riods were grouped into ten clusters per region (NC and SC) based solely on277

wind vector fields (twenty clusters total). A qualitative summary of these clus-278

ters, their dominant seasonality, and end-of-century minus historical frequency279

change (annual and broken down by season) is given in Table 1. By using a280

combined dataset of historical and end-of-century daily wind fields as input281

for the cluster analysis, we would generally expect that changes in cluster fre-282

quency will dominate the total change in the wind field. Namely, since the283

cluster analysis is, in effect, grouping days with similar wind fields, we expect284

that the wind field for days in a particular cluster to be more similar to one285

another than to the wind field of days in another cluster. For each of these286

twenty clusters, Figures S3-S5 show the magnitudes of each of the three terms287

in Equation (4) for the northern California clusters. In general, we observe288

that change in cluster frequency is the dominant contributor to change in289

wind patterns, followed by changes in wind fields within each cluster (except290

in those cases where the change in cluster frequency is small). In each case291

the nonlinear term is not a significant contributor to the overall change. The292

remainder of this section focuses on analysis of select clusters, with additional293

discussion on the large-scale drivers that could influence the wind climatology294

in each case.295

3.2 Synoptic-scale character of prominent clusters296

This section describes the synoptic-scale character of the select clusters from297

Table 1. We focus on analyzing the mean meteorological fields, including the298

700hPa geopotential height, and the wind field at 80m above the ground. The299

700hPa geopotential height field was chosen as it is reflective of the general300

circulation, with wind flow at this level being largely geostrophic but still301
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Table 1 Top: Dominant seasons, historical frequency, end-of-century frequency changes,
and qualitative summary for NC and SC clusters. Bottom: Historical frequency and end-of-
century frequency change broken down by season. Frequency changes indicated in bold are
significant under the two-proportion z-test at the 95% significance level. The seasonal fre-
quency of these clusters is also depicted in Figures S1 and S2. Seasons are March-April-May
(MAM), June-July-August (JJA), September-October-November (SON), and December-
January-February (DJF).

Cluster Dominant Annual Qualitative summary
Seasons fhi ∆fi

NC 1 DJF MAM 13.6% -1.5% Westerly wind
NC 2 DJF 10.2% -1.3% Stronger westerly wind w/ offshore trough
NC 3 DJF SON 11.2% - 3.2% Offshore blocking
NC 4 SON MAM 13.4% - 0.5% Low wind
NC 5 JJA 5.3% + 0.3% Strong northerly wind
NC 6 JJA MAM 12.7% + 2.4% Northwesterly wind (marine air penetration)
NC 7 JJA MAM 12.3% + 0.2% Strong northwesterly (marine air penetration)
NC 8 JJA SON 8.0% + 2.1% Northerly wind (marine air penetration)
NC 9 DJF MAM 9.2% + 0.6% Low southerly wind
NC 10 JJA 4.0% + 0.8% Strongest northwesterly (marine air penetration)
SC 1 MAM DJF 14.1% - 1.1% Strong alongshore wind
SC 2 JJA SON 23.1% - 0.3% Weak onshore flow
SC 3 DJF MAM 12.5% + 0.4% Low wind
SC 4 JJA MAM 15.5% + 2.8% Onshore flow
SC 5 DJF 3.8% - 0.5% Southwesterly wind
SC 6 DJF SON 8.8% - 2.3% Santa Ana winds
SC 7 JJA SON 7.3% + 2.0% Weakened onshore flow
SC 8 DJF MAM 7.2% - 1.7% Westerly wind
SC 9 SON MAM 4.9% + 1.0% Low wind
SC 10 DJF MAM 2.8% - 0.4% Onshore flow

Cluster MAM JJA SON DJF
fhi ∆fi fhi ∆fi fhi ∆fi fhi ∆fi

NC 1 17.5% - 0.9% 1.1% - 0.8% 15.7% - 5.1% 20.5% + 0.8%
NC 2 9.3% - 2.6% 0.1% 0.0% 7.0% -1.1% 24.5% - 1.3%
NC 3 7.1% - 1.7% 1.0% - 0.9% 15.2% - 6.4% 21.7% - 3.9%
NC 4 17.8% + 0.5% 5.8% - 4.0% 20.8% - 0.1% 9.4% + 1.6%
NC 5 2.3% + 1.3% 15.7% - 0.9% 3.0% + 0.7% 0.0% + 0.1%
NC 6 17.5% -0.5% 19.1% + 6.2% 11.7% + 3.8% 2.3% + 0.2%
NC 7 11.7% + 2.4% 27.3% - 3.1% 8.1% + 0.7% 1.8% + 0.8%
NC 8 4.3% + 1.9% 16.8% + 3.3% 10.5% + 3.2% 0.3% + 0.1%
NC 9 10.6% - 1.1% 0.2% - 0.1% 6.7% + 2.1% 19.5% + 1.7%
NC 10 1.9% + 0.7% 12.9% + 0.3% 1.2% + 2.3% 0.0% 0.0%
SC 1 22.7% - 1.4% 2.2% - 0.6% 13.3% - 3.5% 18.4% + 1.0%
SC 2 19.5% + 3.1% 45.9% - 6.4% 21.4% + 2.0% 5.2% 0.0%
SC 3 12.2% - 2.6% 0.2% 0.0% 16.5% - 1.3% 21.4% + 5.5%
SC 4 17.2% + 4.0% 30.8% + 5.3% 12.9% + 1.5% 0.8% + 0.7%
SC 5 2.5% + 0.2% 0.0% 0.0% 1.9% - 0.5% 10.7% - 1.7%
SC 6 4.0% - 1.7% 0.0% + 0.1% 10.4% - 4.4% 21.1% - 3.0%
SC 7 2.8% + 2.1% 18.0% + 1.9% 7.7% + 4.2% 0.5% - 0.2%
SC 8 10.8% - 3.9% 0.2% + 0.2% 4.9% - 0.3% 12.9% - 2.8%
SC 9 5.8% + 0.8% 2.7% - 0.5% 8.8% + 2.8% 2.3% + 1.1%
SC 10 2.4% - 0.5% 0.0% + 0.1% 2.0% - 0.5% 6.8% - 0.5%
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strongly connected with near-surface winds. Because of the terrain-following302

coordinate, the lowest model level in CESM is everywhere below the 80m303

level, and so all wind speeds are interpolated. The interpolation procedure304

is as follows: the CAM5 hybrid coordinates are first converted to pressure305

coordinates; the height of each pressure surface above ground level (AGL) is306

computed by subtracting the surface geopotential height from the geopotential307

height at the model level; two model levels that bound the 80m AGL are used,308

and logarithmic interpolation is applied to obtain the wind speed at 80m309

AGL. Specifically, the interpolation was performed by fitting a log equation310

with the two levels bounding 80m AGL, then interpolating the wind at 80m311

AGL (Justus and Mikhail, 1976). The figures in each subsection show the312

meteorological fields for these clusters. For each figure, the top left plot shows313

the historical mean 700hPa geopotential height; top right shows the historical314

mean 80m wind field (Uh
i ); bottom left shows the change in geopotential height315

within the cluster; bottom middle shows the end-of-century wind speed change316

due to the change in cluster frequency (Ui∆fi)/fi (see section 2.3); and bottom317

right shows the mean end-of-century 80m wind speed minus mean historical318

80m wind field (Ue
i − Uh

i ).319

3.2.1 NC 1 and NC 2: Reduced ventilation from westerly winds320

Clusters NC 1 (westerly wind) and NC 2 (stronger westerly wind) in the NC321

domain are frequent (13.6% and 10.2%) wind patterns that peak in frequency322

during the winter season (20.5% and 24.5% frequency in DJF). They are ac-323

companied by relatively large annual frequency changes (-1.5% and -1.3%),324

with the largest decreases occurring in the spring and fall. Further analysis of325

these patterns is beneficial to explain decreases in wind energy output during326

DJF, described later in the paper (Table 5).327

NC 1 is the most frequent cluster in NC domain (13.6%) (Figure 3), and328

sees a large frequency decrease of 1.5%. The 700hPa geopotential height field329

from Figure 3 is a driver for strong alongshore winds, particularly along the330

coast of central California. The geopotential gradient perpendicular to the331

coast from NC 1 is significantly smaller than NC 2, and so NC 1 is associated332

with weaker onshore winds. Comparing end-of-century to historical, the geopo-333

tential height increase in the Eastern subtropical Pacific produces a weaker,334

westerly wind pattern.335

Among the two, cluster 2 shows higher wind speed in NC domain than336

cluster 1. The synoptic-scale fields for NC 2 are depicted in Figure 4. The337

700hPa geopotential height field shows a trough over the Gulf of Alaska that338

promotes flow directed perpendicular to the coast and hence on-shore ventila-339

tion through the NC domain. As discussed later, NC 2 tends to produce the340

highest wind speeds at the Shiloh and Altamont Pass wind plants among all341

clusters, and so a reduction in the frequency of this pattern will be associated342

with decreasing NC capacity factors in DJF. Comparing end-of-century to his-343

torical within this cluster, two effects appear to be prominent: First there is344

an increase in the geopotential gradient in the mid-Pacific which drives up345
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Fig. 3 Meteorological fields from cluster NC 1. (top left) Historical mean 700hPa geopoten-
tial height; (top right) 80m historical wind field; (bottom left) 700hPa geopotential height
change; (bottom middle) end-of-century minus historical wind speed change due to change
in cluster frequency (Ui∆fi/fi); and (bottom right) end-of-century minus historical wind
speed change within-cluster (Ue

i − Uh
i ).

wind speeds over the open ocean. However, simultaneously increased overland346

temperatures (not shown) appear to be promoting an increase in the overland347

geopotential height (thicker air masses from warmer temperature). This sec-348

ond factor drives a reduction in onshore flow, and consequently we observe349

decreasing wind speeds within this cluster across the NC domain.350

3.2.2 NC 3: Reduced offshore blocking351

Figure 5 depicts the synoptic-scale fields from NC 3, which again peaks in352

the winter season and exhibits a frequency decrease of 3.2% through end-353

of-century. This cluster corresponds to offshore blocking along the California354

coast. In opposition to NC 6 (associated with summertime marine air penetra-355

tion), this cluster exhibits a pronounced ridge over the Eastern Pacific, leading356

to a strong northerly wind flow parallel to the California coastline that is as-357

sociated with the second largest wind speeds at the NC wind plants. Within358

this cluster, the 700hPa geopotential height field exhibits a broad increase in359

end-of-century; however, the change in geopotential height is larger at lower360

latitudes and smaller over the Northern Pacific. This leads to a weakening of361

the northerly flow, in turn causing an overall decrease in offshore and onshore362

wind speeds. Overall, the decrease in frequency and character of this pattern363

drives weaker wind speeds at both Shiloh and Altamont Pass.364
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Fig. 4 As Figure 3 but for NC domain cluster 2.

Note that other studies (i.e., Wang and Schubert (2014)) noted an increased365

trend in blocking over the 20th century, particularly in the Gulf of Alaska,366

which seems contrary to our observations in this section (particularly given367

that NC 3 is representative of this offshore blocking pattern). To assess if this368

trend is present in the VR-CESM data, we counted blocking days at each369

grid point over each DJF season, defined as days where the geopotential at a370

given point exceeded the climatological geopotential for that period plus one371

standard deviation (separately calculated for historical and end-of-century).372

Note that the blocking days were selected outside the clustering framework,373

using only the aforementioned criterion. The results of this analysis are plotted374

in Figure 6, and are inconsistent with an increased blocking frequency.375

3.2.3 NC 6-8 and NC 10: Increased summertime marine air penetration376

(MAP)377

Figure 7 depicts the synoptic-scale fields of cluster 6 in the NC domain, which is378

expected to increase in frequency by 2.4% through end-of-century. The change379

in frequency of this cluster appears to occur in conjunction with a decreas-380

ing frequency of the NC 4 cluster (supplement Figure 6), associated with low381

wind events. NC 6 is indicative of a typical summertime marine air penetra-382

tion (MAP) condition (Wang and Ullrich, 2017; Beaver and Palazoglu, 2006;383

Fosberg and Schroeder, 1966). Clusters NC 7 (supplement Figure 8), NC 8384

(supplement Figure 9), and NC 10 (supplement Figure 11) also show an anal-385

ogous, but stronger synoptic pattern and are depicted in the supplemental386

materials. Notably, the increasing frequency of summertime MAP events from387
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Fig. 5 As Figure 3 but for NC domain cluster 3.

Fig. 6 Total number of days each grid point exceeds the mean plus one standard deviation
of 500hPa geopotential height field for (Left) historical and (Center) end-of-century. (Right)
Difference between end-of-century and historical.

these clusters agrees with the findings of Wang and Ullrich (2017). MAP events388

feature an off-shore trough and geopotential height contour lines perpendic-389

ular to coastline, allowing cool and moist marine air to penetrate inland. It390

is the location of the off-shore trough that is directly responsible for driving391

marine air through the San Francisco Bay Delta.392

Within this cluster and relative to the historical period, the magnitude of393

the 700hPa geopotential height field under the end-of-century increases, as a394

direct consequence of low-level warming (not shown). This low-level warming395

drives a thickening of air layers and thus an increase in the 700hPa geopoten-396

tial height field. However, this increase is less pronounced over the Northern397

Pacific, which drives a weakening of the typically northerly wind pattern that398

traces the coastline in Northern California, and an increase in the on-shore flow399

pattern driven by the general circulation. This in turn leads to an increase in400

wind speeds through the San Francisco Delta region during MAP days (and at401
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Fig. 7 As Figure 3 but for NC domain cluster 6.

Shiloh and Altamont Pass in NC domain). A shift in this particular synoptic-402

scale pattern also drives increased ventilation in the SC domain.403

These changes to frequency and wind pattern suggest the tendency towards404

more MAP days and more intense MAP winds are primary drivers for increased405

summertime wind speeds in the San Francisco Bay region.406

3.2.4 SC 1: More seasonally concentrated strong alongshore wind407

Moving to the SC domain, cluster SC 1 captures days of strong alongshore408

wind off the U.S. west coast (Figure 8) that appear most prominently between409

the fall and spring seasons. The alongshore flow weakens south of the SC410

domain, leading to alongshore convergence that induces transverse inland flow411

of the marine air through the Los Angeles region. This pattern is associated412

with some of the highest historical capacity factors for the Alta wind plant (see413

table 7). Due to the location of Alta wind plant, which sits in the pass between414

in the Tehachapi mountains, the ventilation from the San Joaquin valley to415

the Mojave also contributes to the high capacity factors. It is also a frequent416

pattern, and one that has been projected to decrease in frequency by 1.1%417

annually; however, this change in frequency is primarily because of an increase418

in seasonality – the pattern sees an increase in frequency in DJF but decrease419

in MAM and SON. Within this cluster, the 700hPa geopotential height field420

change shows an inhomogenous pattern that favors overland warming, and421

reduces the alongshore gradient, thus leading to a weakening of the flow. The422

net result of these changes is a reduction in spring and winter wind speeds in423

the SC region.424
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Fig. 8 As Figure 3 but for SC domain cluster 1.

3.2.5 SC 4: Increased summertime marine air penetration425

Spring and summertime marine air penetration is also reflected in the SC426

domain via cluster SC 4, and its increased frequency through end-of-century427

supports our prior observations with cluster NC 6 (marine air penetration).428

As shown in Figure 9, a local trough sits off-shore with a 700hPa geopotential429

contour perpendicular to the shoreline in SC domain, leading to onshore ma-430

rine air. Within-cluster changes to wind speeds are small (and largely mixed)431

over California, but the increased frequency of SC 4 suggests increased ventila-432

tion of the SC domain. The end-of-century change to the 700hPa geopotential433

height surface also produces a small enhancement in wind speeds parallel to434

the shore. Consequently both the increased frequency of SC 4 and slightly435

increased onshore winds within SC 4 leads to increased ventilation of the SC436

domain.437

3.2.6 SC 5: Less frequent wintertime southwesterly wind438

SC 5 represents wintertime southwesterly wind from an offshore trough sitting439

near the U.S. west coast. This cluster brings relatively high wind speeds, but440

is becoming less frequent during the winter season. By the end-of-century,441

the offshore trough intensifies, leading to higher wind speeds over the Pacific.442

Simultaneously, the 700hPa geopotential height anomaly center over the SC443

domain acts to block the onshore wind, leading to wind speeds decreasing over444

almost all areas within California.445
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Fig. 9 As Figure 3 but for SC domain cluster 4.

Fig. 10 As Figure 3 but for SC domain cluster 5.
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Fig. 11 As Figure 3 but for SC domain cluster 6.

3.2.7 SC 6: Less frequent and weaker Santa Ana winds in fall/winter446

The second largest change in cluster frequency for the SC domain occurs in447

cluster 6, which is 2.3% less frequent by end-of-century. The synoptic fields for448

these days is depicted in Figure 11, and corresponds to a typical wind pattern449

from Santa Ana events (Raphael, 2003; Westerling et al, 2004; Li et al, 2016;450

Millstein et al, 2019; Guzman-Morales and Gershunov, 2019). The relatively451

high 700hPa geopotential height field over the western US, along with the452

high center sitting off-shore, leads to the northeasterly wind field throughout453

the SC region. The end-of-century change in 700hPa geopotential height field454

indicates a weakening of the onshore ridge, in turn producing slightly weaker455

winds during Santa Ana events. The decrease in cluster frequency around Fall456

season is also consistant with findings from Miller and Schlegel (2006), where457

decreasing frequency of Santa Ana occurrence was also projected in early Fall458

through the end-of-century.459

3.2.8 SC 7: More frequent and less seasonal weakened onshore flow460

SC cluster 7, which corresponds to weakened onshore flow in the summer461

and fall seasons, also shows a significant increase in frequency by 2.0%. The462

synoptic-scale fields of this cluster are depicted in Figure 12. By the end-of-463

century, the high 700hPa geopotential height anomaly center sitting offshore to464

the California coast acts to increase the northerly flow parallel to the coastline465

in Northern California, and blocks northerly flow in SC domain. This leads to466

a weakening of the offshore flow throughout the SC domain.467
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Fig. 12 As Figure 3 but for SC domain cluster 7.

3.2.9 SC 8: Less frequent westerly wind in winter/spring468

SC cluster 8 represents a steady westerly marine flow directed onshore (Figure469

13), and appears most prominently in the winter season. This cluster is less470

frequent (7.2%) but has been projected to decrease by 1.7% in its frequency471

under end-of-century, with most of the decrease occurring in winter and spring.472

Similar to the previously described clusters, the 700hPa geopotential height473

field in cluster 8 is also increasing, although with a magnitude that is reduced474

over the area centered around the offshore region near Baja California. The475

net result of this change in the geopotential height field is a reduced wind field476

throughout the whole California, and also a reduction in onshore marine flow.477

Consequently the changes in this cluster produce a reduction in wind speeds478

throughout the SC domain.479

3.3 Trends in wind energy production480

In this section, projected changes in wind energy production are considered481

in light of the cluster analysis. Before proceeding, we first assess projected482

changes in wind energy production from model output. Wind fields from VR-483

CESM runs were interpolated to each wind plant location so as to directly484

compute wind energy capacity factor (CF in %) changes between historical485

and end-of-century (details of this calculation can be found in supplement486

material Section 2). Before calculating CF based on the wind fields from VR-487

CESM, a constant bias correction factors of 1.3 (Section 2.1) was applied to488
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Fig. 13 As Figure 3 but for SC domain cluster 8.

the wind fields to reduce the low wind speed bias from VR-CESM. Then CF489

were calculated from the bias-corrected wind fields. Table 2 through 8 are all490

based on the bias-corrected CF values. CFs are commonly defined as actual491

power output divided by the maximum wind power output that can be gener-492

ated through the wind turbine system. The relationship between wind speed493

and CF is nonlinear, and is calculated via different characteristic power curves494

at each wind plant location (see supplement), and do not include electrical495

losses during the power generation process. Table 2 lists overall seasonal and496

annual CF differences at each location without using the clustering method-497

ology. Percentage changes in the lowermost table are calculated with end-of-498

century CF minus historical CF, divided by historical CF, and written as a499

percentage change by multiplying 100. Overall, CFs are observed to increase500

in summer season (JJA), whereas winter (DJF) seasons exhibit a CF decrease.501

Here the overall seasonal trends from end-of-century during JJA and DJF are502

consistent with mid-century trends reported in Wang et al (2018), but with an503

increased magnitude. CF changes based on the original wind fields (without504

bias correction) are given in section 3 in supplement.505

Our goal is to now explain the statistically significant CF changes observed
in Table 2. In each of the following subsections we decompose the CF from
each wind plant into the contribution from each cluster, and further decompose
the change in CF into frequency changes and within-cluster changes following
section 2.3. Namely, we apply

∆CF =
∑
i

CFi∆fi︸ ︷︷ ︸
(a)

+ (CF e
i − CFh

i )fi︸ ︷︷ ︸
(b)

+h.o.t., (5)
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Table 2 Historical seasonal and annual capacity factor (%) (upper table), absolute change
in capacity factors (middle table), and percentage capacity factors changes under end-of-
century comparing to historical (lower table) at each wind plant sites across California.
Absolute changes are calculated with end-of-century CF minus historical CF. Percentage
changes are calculated with end-of-century CF minus historical CF, divided by historical
CF, and multiplied by 100 to write as percentages. Shiloh and Altamont Pass are located
in NC domain, and the other three wind plants are in SC domain. All CF values are based
on bias-corrected wind fields from VR-CESM.

Boldface indicates a percent change above the 95% significance level.

Wind plant MAM JJA SON DJF Annual

Shiloh 33.45 50.41 30.60 27.47 35.53
Altamont Pass 23.84 40.67 19.22 14.11 24.52
Alta 44.43 40.02 34.25 38.75 39.38
San Gorgonio 19.87 23.59 12.70 11.77 17.02
Ocotillo 37.06 39.82 20.67 12.09 27.50

Wind plant MAM JJA SON DJF Annual

Shiloh + 0.98 + 2.44 - 1.65 - 3.68 - 0.46
Altamont Pass + 1.63 + 3.81 + 0.39 - 1.36 + 1.13
Alta - 1.54 + 1.02 - 5.29 - 3.67 - 2.35
San Gorgonio + 0.10 + 1.91 - 1.32 - 2.14 - 0.35
Ocotillo + 1.21 + 3.57 - 1.33 - 0.47 + 0.76

Wind plant MAM JJA SON DJF Annual

Shiloh + 2.92% + 4.84% - 5.39% - 13.39% - 1.29%
Altamont Pass + 6.82% + 9.37% + 2.04% - 9.65% + 4.62%
Alta - 3.46% + 2.54% - 15.44% - 9.47% - 5.98%
San Gorgonio + 0.52% + 8.09% - 10.37% - 18.14% - 2.04%
Ocotillo + 3.27% + 8.97% - 6.42% - 3.89% + 2.77%

where CFh
i and CF e

i are the historical and end-of-century average CF for506

cluster i and CFi = (CFh
i + CF e

i )/2. Here h.o.t. denotes higher-order terms507

that are negligible in the decomposition.508

3.3.1 NC JJA (Shiloh and Altamont Pass)509

Both NC wind plant locations experience a significant increase in JJA CF,510

driven by essentially two factors. First, from Table 1 we see that there is a511

significant reduction in the frequency of low wind days (NC 4 as in supplement512

Figure 6), and an accompanying increase in summertime MAP days (NC 6513

and NC 8 as in supplement Figure 9). Second, there is a significant increase514

in the wind speeds on MAP days (NC 6, 7, and 8), as explained in section515

3.2.3 – in fact, the increase in wind speeds actually compensates for a reduced516

frequency of the NC 7 cluster (supplement Figure 8) of MAP days. Table 3517

identifies the 6 clusters responsible for 98.1% and 98.6% of the historical wind518

energy production for Shiloh and Altamont Pass.519
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Table 3 Historical mean CF in select clusters (CFh
i )(%), historical contribution to total

seasonal CF (CFh
i f

h
i ), end-of-century CF change due to changes in cluster frequency (∆CF

(a)), and within-cluster change in wind speeds (∆CF (b)) for the NC JJA season. Boldface
in the (∆CF (a)) column indicates clusters with significant change in frequency (see Table
1). Boldface in the (∆CF (b)) column indicates a significant within-cluster change in CF at
the 95% significance level obtained from t-statistics. The values in the “Total” row indicate
how much total CF and CF change is attributed to this subset of clusters (compared to
Table 2).

NC JJA (top 6 clusters)

Cluster Wind plant CFh
i CFh

i f
h
i ∆CF (a) ∆CF (b)

4
Shiloh 36.79 2.13 - 1.55 + 0.12
Altamont Pass 26.80 1.55 - 1.16 + 0.14

5
Shiloh 53.71 8.45 - 0.46 - 0.34
Altamont Pass 25.39 3.99 - 0.22 - 0.12

6
Shiloh 52.11 9.95 + 3.25 + 0.31
Altamont Pass 49.27 9.41 + 3.10 + 0.44

7
Shiloh 47.51 12.96 - 1.52 + 0.80
Altamont Pass 52.10 14.21 - 1.70 + 1.32

8
Shiloh 60.09 10.08 + 2.00 + 0.05
Altamont Pass 38.12 6.39 + 1.34 + 0.86

10
Shiloh 45.58 5.87 + 0.15 + 0.32
Altamont Pass 35.14 4.53 + 0.11 + 0.09

Total
Shiloh 49.45 + 1.85 + 1.27
Altamont Pass 40.09 + 1.47 + 2.74

3.3.2 NC SON (Shiloh)520

In accordance with Table 1, there is a decrease in the frequency of NC 1 and 3,521

associated with westerly wind and blocked offshore wind, and a compensating522

increase in the frequency of NC 6, 8, and 9, corresponding to MAP days and523

low southerly wind. As discussed in sections 3.2.1 and 3.2.2 inhomogeneity524

in the changing geopotential field has the further effect of reducing the wind525

speeds within the NC 1 and NC 3 clusters, further driving down CFs. Curi-526

ously, Altamont Pass does not experience a corresponding decrease in total527

CF, as historical CF at this wind plant during NC 1 and NC 3 days are much528

lower than NC 6 and NC 8 (supplement Figure 9) and so the shifting cluster529

frequencies actually drive up average CF. Unlike the summer and winter sea-530

sons, the transitional fall and spring seasons do not feature a prominent subset531

of wind clusters. However, low wind days (NC 4 as in supplement Figure 6)532

are much more likely to occur in the future during these seasons – we thus see533

that Shiloh is projected to see a decrease in CF in the fall. The breakdown of534

the contributions from the six most prominent clusters to Shiloh’s CF is given535

in Table 4, which accounts for 72.8% of the wind energy production for this536

season. However, changes in these six clusters effectively explain the observed537

change in wind speed in this season.538
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Table 4 As Table 3, except for NC SON.

NC SON (top 6 clusters)

Cluster Wind plant CFh
i CFh

i f
h
i ∆CF (a) ∆CF (b)

1
Shiloh 24.66 3.87 - 1.12 - 0.73
Altamont Pass 16.39 2.57 - 0.74 - 0.51

2
Shiloh 38.15 2.67 - 0.39 - 0.35
Altamont Pass 22.07 1.55 - 0.22 - 0.24

3
Shiloh 38.49 5.84 - 2.33 - 0.49
Altamont Pass 13.76 2.09 - 0.78 - 0.36

6
Shiloh 37.67 4.42 + 1.42 - 0.15
Altamont Pass 33.97 3.98 + 1.30 - 0.01

8
Shiloh 43.05 4.53 + 1.33 - 0.32
Altamont Pass 25.53 2.68 + 0.82 + 0.05

9
Shiloh 13.95 0.93 + 0.29 - 0.03
Altamont Pass 7.77 0.52 + 0.16 + 0.04

Total
Shiloh 22.27 - 0.80 - 2.06
Altamont Pass 13.40 + 0.53 -1.12

Table 5 As Table 3, except for NC DJF.

NC DJF (top 5 clusters)

Cluster Wind plant CFh
i CFh

i f
h
i ∆CF (a) ∆CF (b)

1
Shiloh 19.96 4.08 + 0.16 - 0.29
Altamont Pass 12.24 2.50 + 0.10 - 0.07

2
Shiloh 48.93 11.98 - 0.62 - 1.47
Altamont Pass 27.62 6.76 - 0.34 - 1.14

3
Shiloh 27.14 5.90 - 1.05 - 0.05
Altamont Pass 8.54 1.85 - 0.34 + 0.05

4
Shiloh 11.32 1.06 + 0.16 - 0.25
Altamont Pass 4.97 0.47 + 0.08 - 0.02

9
Shiloh 19.07 3.72 + 0.29 - 0.74
Altamont Pass 10.12 1.98 + 0.16 - 0.07

Total
Shiloh 26.74 - 1.06 - 2.80
Altamont Pass 13.56 - 0.34 - 1.24

3.3.3 NC DJF (Shiloh and Altamont Pass)539

Both wind plants experience a significant decline in total CF over this season.540

The observed change can be largely attributed to a decrease in the frequency541

of NC 2 and NC 3 (strong westerly wind and blocked offshore wind), which542

have the highest average CF at Shiloh, and an increase in the frequency of NC543

1, 4, and 9 clusters, which are each associated with lower wind speeds and CF.544

There is further a significant decrease in the wind speeds of cluster NC 2, the545

most frequent wintertime pattern, as described in section 3.2.1 to be attributed546

to higher overland pressures. NC wintertime is associated with 5 clusters that547

describe 97.4% and 96.1% of total seasonal wind energy productions at Shiloh548

and Altamont Pass, respectively.549
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Table 6 As Table 3, except for SC JJA.

SC JJA (top 3 clusters)

Cluster Wind plant CFh
i CFh

i f
h
i ∆CF (a) ∆CF (b)

2
San Gorgonio 19.15 8.78 - 1.33 + 1.34
Ocotillo 33.00 15.13 - 2.26 + 1.89

4
San Gorgonio 32.99 10.16 + 1.73 - 0.19
Ocotillo 56.36 17.36 + 2.99 + 0.16

7
San Gorgonio 19.39 3.48 + 0.37 + 0.01
Ocotillo 29.36 5.27 + 0.58 + 0.40

Total
San Gorgonio 22.42 + 0.77 + 1.15
Ocotillo 37.76 + 1.31 + 2.45

3.3.4 SC JJA (San Gorgonio and Ocotillo)550

These two wind plants experience a pronounced increase in CF over this season551

attributed to two factors. First, a strengthening of the onshore flow (when552

it occurs) that leads to a reclassification of SC 2 days (weak onshore flow)553

(supplement Figure 12) to SC 4 and SC 7(onshore flow) days (Table 1). Second,554

an increase in the overall strength of SC 2 (supplement Figure 12) days when555

they do occur and SC 7 days, generally associated with an increase in onshore556

flow speeds associated with a stronger land/sea temperature gradient. The557

three clusters in Table 6 describe 97.1% and 96.9% of total JJA wind energy558

productions for San Gorgonio and Ocotillo, respectively.559

3.3.5 SC SON (Alta and San Gorgonio)560

Wind speeds are projected to decrease throughout the SC domain in the fall561

season leading to a significant decrease in CF at Alta and San Gorgonio.562

As observed in Table 7 this can be attributed to a widespread drop in wind563

speeds within essentially all clusters. This is accompanied by a significant drop564

in frequency of SC 1 (strong alongshore winds) and SC 6 (Santa Ana winds)565

and accompanying increase in SC 7 (weak onshore wind) and SC 9 (low wind)566

(supplement Figure 14) – whereas SC 1 and SC 6 days correspond to the567

highest and third-highest CFs, SC 7 and SC 9 (supplement Figure 14) are the568

lowest and third lowest producers.569

3.3.6 SC DJF (Alta and San Gorgonio)570

As in the NC region, overland warming across SC leads to a widespread weak-571

ening of the within-cluster winds and a reduction in CF across the board.572

This process further drives an increase in the frequency of SC 3 (low wind)573

(supplement Figure 13), which is associated with one of the lowest CF values,574

at the expense of SC 6 (Santa Ana winds) and SC 8 (westerly winds), which575

have among the highest CF values. There is further a substantial drop in the576

within-cluster wind speeds of SC 5 (southwesterly winds), as explained in sec-577
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Table 7 As Table 3, except for SC SON.

SC SON (top 7 clusters)

Cluster Wind plant CFh
i CFh

i f
h
i ∆CF (a) ∆CF (b)

1
Alta 61.71 8.20 - 2.10 - 0.45
San Gorgonio 15.77 2.10 - 0.56 + 0.03

2
Alta 38.25 8.19 + 0.71 - 1.08
San Gorgonio 11.75 2.51 + 0.23 - 0.11

3
Alta 19.32 3.19 - 0.22 - 0.71
San Gorgonio 4.89 0.81 - 0.06 - 0.15

6
Alta 43.08 4.49 - 1.90 - 0.05
San Gorgonio 18.03 1.88 - 0.74 - 0.22

7
Alta 16.16 1.24 + 0.72 + 0.22
San Gorgonio 7.03 0.54 + 0.32 + 0.12

8
Alta 40.18 1.98 - 0.09 - 0.37
San Gorgonio 16.89 0.83 - 0.04 - 0.14

9
Alta 22.25 1.97 + 0.58 - 0.38
San Gorgonio 7.93 0.70 + 0.19 - 0.26

Total Alta 29.26 - 2.30 - 2.81
San Gorgonio 9.37 - 0.66 - 0.72

Table 8 As Table 3, except for SC DJF.

SC DJF (top 6 clusters)

Cluster Wind plant CFh
i CFh

i f
h
i ∆CF (a) ∆CF (b)

1
Alta 55.26 10.14 + 0.54 + 0.06
San Gorgonio 13.97 2.56 + 0.13 - 0.24

3
Alta 19.31 4.12 + 1.00 - 0.48
San Gorgonio 4.20 0.90 + 0.21 - 0.19

5
Alta 43.82 4.67 - 0.65 - 1.02
San Gorgonio 9.31 0.99 - 0.14 - 0.21

6
Alta 41.27 8.73 - 1.23 - 0.37
San Gorgonio 18.27 3.86 - 0.52 - 0.44

8
Alta 39.31 5.06 - 1.05 - 0.39
San Gorgonio 13.12 1.69 - 0.32 - 0.38

9
Alta 19.46 0.44 + 0.20 -0.09
San Gorgonio 3.48 0.08 + 0.04 + 0.03

Total
Alta 33.16 - 1.19 - 2.29
San Gorgonio 11.22 - 0.60 - 1.43

tion 3.2.6. Table 8 identifies the six clusters responsible for 85.6% and 85.7%578

of wind energy productions at Alta and San Gorgonio, respectively.579

4 Discussion and Summary580

This study utilized the state-of-the-art climate model CESM in its variable-581

resolution configuration to analyze California wind patterns change under the582

future climate. The agglomerative clustering algorithm was applied to the cli-583

mate model output to group different weather patterns into separate clusters584

within the NC and SC domains. We defined ten wind clusters from each do-585

main, and analyzed changes to within-cluster wind speeds and also changes to586
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the frequency of occurrence of each cluster by the end-of-century. Addition-587

ally, we analyzed the synoptic-scale patterns that accompany each cluster. The588

changes to these patterns can then be used to identify some of the causes of589

changes to within-cluster wind speeds. Moreover, some of these synoptic scale590

changes (e.g., changes to the land – sea temperature contrast) are directly591

tied to global warming, which allows us to tie a specific portion of the fore-592

casted future change in wind resources directly to identified climate change593

phenomena.594

Below we list the most important changes we observe to clusters by the595

end-of-century.596

4.1 Northern California597

Westerly winds (NC 1 and NC 2): These two clusters are among the most598

frequent winter season cluster, and have been projected to become less frequent599

with lower within-cluster wind speed. The reduction in within-cluster wind600

speed is associated with the change in geopotential height field over the Pacific,601

and overland warming under the future climate. Both factors contribute to the602

decrease in within-cluster wind speed.603

Offshore blocking (NC 3): This is another wintertime cluster with a projected604

decreasing frequency and weaker within-cluster wind speeds. The latter is re-605

lated to the change in geopotential height pattern, driving a weaker northerly606

flow offshore, thus leading to weaker within-cluster wind speeds.607

Marine air penetration (NC 6-8 and NC 10): These clusters peak in frequen-608

cies during summertime. All have been projected to become more frequent609

with stronger within-cluster wind speeds. The increase in within-cluster wind610

speeds is associated with changes in the geopotential height pattern, which611

leads to a weakening of the offshore northerly wind, and promoting the on-612

shore flow pattern. This increase in wind speeds contributes to the projected613

greater wind power during the summer season.614

4.2 Southern California615

Strong alongshore wind (SC 1): This cluster produced some of the highest616

capacity factors due to its frequent occurrences in all seasons only except617

summer, and its high within-cluster wind speed. It has been projected to618

become less frequent during spring and fall seasons, and more frequent in619

the winter season. For within-cluster wind speeds change, the change in the620

geopotential height field pattern reduces the alongshore gradient, leading to a621

weaker alongshore flow, and a decrease in wind speeds statewide.622
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Marine air penetration (SC 4): This cluster peaks in frequency during sum-623

mertime. It has been projected to become more frequent with slightly increased624

onshore winds. The latter is caused by the increase in the geopotential height625

pattern which drives up wind speeds offshore, creating a better ventilation626

condition.627

Santa Ana winds (SC 6): This is the second most frequent wintertime cluster,628

and has been projected to decrease in frequency with weaker within-cluster629

wind speeds. This reduction of the within-cluster wind speeds during Santa630

Ana events is associated with the weakening of the onshore ridge during end-631

of-century.632

Weakened onshore flow (SC 7): This cluster is the third most frequent sum-633

mertime cluster, with a projected increase in frequency. Under end-of-century,634

the geopotential height anomaly acts to strengthen the northerly wind offshore635

in Northern California, while blocks the offshore flow in Southern California.636

Westerly wind (SC 8): This is a prominent cluster during winter and spring637

seasons, and its frequencies during these two season both decrease under end-638

of-century, along with weaker within-cluster wind speeds. The latter is driven639

by large-scale dynamical changes that cause a weakening of wind speeds across640

California, including suppressed onshore flow in Southern California.641

4.3 Changes in capacity factor642

Along with changes to cluster frequency and within-cluster wind speeds, we643

found statistically significant changes to energy generation (specifically to es-644

timated capacity factor, or CF) at all wind plants.645

There is an increase in the within-cluster wind speeds during JJA driven by646

an increase land/sea temperature contrast and a subsequent tendency towards647

more frequent marine air penetration events for both NC and SC. This increas-648

ing frequency in marine air penetration events is accompanied by a frequency649

decrease from NC 4 (low wind) (supplement Figure 6) and SC 2 (weak on-650

shore flow) (supplement Figure 12). Therefore, beside the within-cluster wind651

speed increase, this frequency shift from low wind cluster to high wind clusters652

further contributes to the capacity factors increase during summertime.653

This pattern is reversed in the winter season, with a smaller land/sea con-654

trast that contributes to a decrease in within-cluster wind speeds in both NC655

and SC. During the winter season, we observe an overland warming, that leads656

to an increase in the geopotential height field, and decrease in wind speeds657

statewide. The 700hPa geopotential height over Northern Pacific decreases in658

winter. This change in the general circulation also contributes to the wind659

speed decrease in winter. There is also a clusters frequency shift from high660

wind speed clusters to low wind speed clusters during winter season for both661
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two domains (a frequency shift from NC 2 and NC 3 to NC 1, NC 4 (supple-662

ment Figure 6) and NC9 in the NC domain, and from SC 6 and SC 8 to SC663

3 (supplement Figure 13) in the SC domain). So both the cluster frequency664

changes, and the within-cluster wind speed changes contribute to the decrease665

in capacity factors during the winter season.666

The overall seasonal CF trends in JJA and DJF from the end-of-century667

were consistent with the trends from the mid-century (Wang et al, 2018),668

though the magnitudes of the changes are larger. Findings from this study are669

also consistent with the increasing frequency of marine air penetration events670

from Wang and Ullrich (2017), decreasing wind speed during fall and winter671

seasons from Duffy et al (2014), and decreasing frequency of Santa Ana winds672

during early fall from Miller and Schlegel (2006).673

Much of the forecasted change to wind resources is linked to changing674

frequency of weather patterns or clusters. The changes to frequency of each675

cluster type is tied to global circulation patterns, and possibly to climate676

modes and other teleconnections. Determining the specific mechanisms that677

cause the shifts to the cluster frequency is therefore out of scope within this678

study, but remains an intriguing target for future work.679

Overall, this study provides a statistical approach to group different wind680

patterns without requiring prior knowledge of various wind types. The synop-681

tic analysis of wind clusters also improves our understanding of the variability682

of California wind resources by the end-of-century. Future work may focus683

on associating the wind speed changes with global teleconnection centers and684

low-frequency patterns, and investigate the causes of change in cluster fre-685

quencies, which consequently would improve the predictability of wind power686

in California. Potential future study can also focus on developing a machine687

learning model for wind energy forecasting based on meteorological fields.688
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