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September 1968

ABSTRACT

The effect of electronic relaxation processes on angular éorrelatibn

and on the angular distribution of radiation from oriented nuclei is investi-

gated. The influence of the environment on the radiocactive nuclei is taken

into account by redﬁcing the density operator for-the‘total'system (nuéleus.

- and surroundings mutually intefacting) to a density operator for the nucleus
“alone. Elimination of the unobserved bath variables is performed with the
'help of Zwanzig's projection operator technique. The Liouville formaiism

1is used throughout. The (initially unspecified) properties of the environ-

ment enter the theory via second-order correiation functions, which are
defined in terms of equilibrium ensemble averages of certain bath operators,_'i
like e.g. the hyperfiné field operator.

~The matrix elements of the nuclear evolution operatbr (vhich is a

fsuperoperator in Liouville space) with respect to a complete orthonormal set

: - t
‘of multipole operators are just the usual perturbation factors Gﬁg, of

PAC theory. The consequent use of the multipole representation yields

'immédiately the finél'formulae needed in the expression for both the angular .

distribution of radiation from oriented nuclel and the angular correlatioh
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function. The general theorylincludes relaxation processes due td magnétic

and quadrupole interactiéns. The'importanf case of purevmagnéticvinteractions
_ié diécﬁssed in more detail. Specializatién to rélaxation caused by randomly
“flubﬁﬁaﬁing fields yields aiformula which'contéins both the Abragam-Pound
result for time-fluctuating qﬁadruéole interaction, and Micha's extension to
randomly time-varying magnetic fields in multidomain ferromagnets. Exact

- high-temperature sdlutioﬁs are presented fof'single crystals in a static
magnetic field and with magnetic-type relaxation processes (axially symmetric
case). For nuclei with spin I = 1, the extension to arbitrary temperatureé hés
been considered. The applicatiéﬁ of the present theory ﬁo the problem of
multipole relaxétioh (which arises e:g. in spin-lattice relaxation méasurements

with NMR/ON technique) is discussed.




=l - ' ‘ o UCRL-18496 -Rev.

I. INTRODUCTION

_The influence of static'extranuclear pertﬁrbations on angular dorrelation

.has béen exhaustively}stﬁdied_during the last twenty years, and a full account
ffofﬁﬁhe'iﬁpbrtanf.resﬁlts has been given in standard review articles.l
Attempts t£0 understand the effects of the fluctuating part of the radioacti&e
nuclei's envirdnment on anéular correlation, or on the angular distribution
of radiaﬁion from oriented huclei, have almost exclusivel& been based on the
classic paper of Abragam and'Poundg_and, to a much smaller extent, on the
-Dillenburg-Mafis théory of réndom statistical interactions’.3 In the Abrgéam,
Poﬁnd treatment.a'time-dependent perturbétion operator representing the
surroundings is added to the'statié part of the nuclear Hamiltonian. Stand-
| ard first-order perturbation theory-is used to account for the additional
1nteraction.

The Dillenburg-Maris theory gains its conceptual simplicity by postulating
the validlty of a certain master equation The tran51tion matrix is left |
' ,physically unspecified and is only restricted by some invariance properties. :
 The disédvaptége of leavingbthé perturbing interaction.mechaniSm unspecifiéd_(
is that the damping constants apbearing in the final angular cdrrelation
- function play merelybthe role of fit parameters. For the interppetation 6f
an experiment, this is a rather unsatisfying situation. V

The pfeéent theory bf relaxation effects oﬁ‘gngular correlation and
on radiation from qriented nuciei is baséd on a model which las been used by
the au’chorl“L to studyvthe influénce of electronic felaxation on MoOssbauer
- spectra. The.main features'of the model are briefly described in Section Ii.

- In contradistihction to Coester's density matrix approach to perturbed
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angular correlaﬁiohs5 (PAC), we will‘not postﬁlate ah instantéﬁeously acting,
time-dependent, Hamiltonian for thelinteraction betwéen'nuciei and environment,
but will instead derive a relaxafion operatoflby reducing the'density,operétor
of the eﬁtire system (nuclei and surrounaings.mutually interacting) to a S
density. operator of the nuclel élone. The more general case, in which thev'
entire particular ion, rather than the nuclear'sﬁin, is felaxing to its
equilibrium state (worked out for Mossbauer reléxation by Afanasev and Kagan6
and Gabriel et E£'7)’ will not be considefed in this péper. 'Spin-lattiée
relaxation in ionic solids most often requires application of the more gen;
eral theory.. The present approach yields a good deécfiption.of spin;lattiqe
relaxation in metals, if the interaction Hamil’conian8 is suitébly chosen.
The general equaﬁion of motion for the nuclear density operator is a
non-Markoffian integro-differential equation, and no explicit, practical‘gse;
ful, solutions (except for over-simplified special examples) are.known.
Throughout the Sections following Section II, we cdnsider only second-order
effects in the interaction between nuclei and‘environment. A further simplifi;
cation is achieved by studying only the long-time beha#ior of the generaliied
master equation. With réspect to the perturbéfion of a nucleus in the interi
mediate state (PAC case), the latter approximation implies that the condition
. < T isjfulfilled. The corrélatioﬁ time, Té » characterizes the

N

behavior of'the electronic correlations entering the relaxation operator.

(In the definition of Hubbard,8 To is temperature-dependent becguse it must 'a §

satisfy the inequality Ty > h/kT ). The second-order approximation is
sufficient only if the smallest of the nuclear spin-latﬁice relaxation'timesv\

"is large compared to To (which is usually true intmetals). Of course, '
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the'potential of the generalized master equation.is only partly exploited;

‘whenever the assumptions mentioned above are used.

From the equation of motion for the nuclear éﬁin systen we get an
operator which describes its time evolution. We will show that the matrix
elements of the evolution operator with respect to Fano's state multipole

. : ' v '
representation9 are exactly the perturbation factors G&E,(t) (we essentially use the

notation of FS, whenever possible). We start with the genefal form of the

perturbed directional correlation function for a nuclear double cascade. It

is given by the trace expression
“w(gl, kys t) = Trio(ky) ok, t)) . o o (1)

The density matrix 9(51’ 0) describes the nuclear System immediately after

the émission of the first radiation in the direction’ El at time t = O.-

The density matfix p(Ee) corresponds to the second transition at a later

time t.  Due to interactions with extranuclear perturbations, p(El, t) is

"in general different from its value at t =.0.: We obtain if by acting on

the initial density matrix p(gl,,o) for the intermediate state with an

. ' A .
evolution operator Q(t) (to be specified in Section II)lO

iy, ) = A8 ol 00 @

~The main problem is to derive, for a given interaction model, an explicit

' ~ o
- expression for the evolution operator { entering

Wy Ky ) = Trle(ip) ACE) ply, 0)) - S (3)



e | . UCRL-18496 -Rev.

'Wévnotice that a similar e?pression can be”writténvdown for the angul-
ar distfibution of orienteq nuclei, taking.intovaccount destruction of the
- initial orientation state by relaxation éffecté;:.ln fhe case (which isAof
very limited practical importanpe) where the-ekciﬁed stgte of a.particular
nucleus is oriented, we.juét have. to substiiute p(El, 0) -~ pi(O) and
omit the index 2 in 5(52); ﬁThe angular distribution of the -y-radiation -

is then giveh by

Wk, +) = Tele(x) Bs) by (0)) - | o ()

It is time-dependent, if there is any ﬁoticeable-;ntera?tion of the nucleus,
oriented in the'excited state at time t = 0, with the sﬁrrouﬁdingsf

The more important case is that in which a ﬁ;radioactive‘parent
nucleus, with a sufficientlyvlong lifetime; is.initially oriented, thus -
. céusing an anisotropy in the subseéuent transitiop(s) starting from the 1
excited state of the daughter nucleus. (ae Grédt et gl.ll discuss, for a -
system without relaxation (6 = i), how the angular diétribution functiqn'(ﬁ)
has to be modified in this experimental situatioﬁ;) If the interaction of
the parent nucleus with the environment is not negligible; we may.agéin ﬁse
Eq. (2); replacing p(El,o)by the density operator p, for the parent 

nucleus with spin IO. The <y-angular distribution is described by
Wk, t) = Trip(k) Pa(t)] 5 : : ' / (5)

where bﬁ(t) corresponds to the state of the system after the B-decay. In
contrast to the PAC case, changes in the ry-anisotropy are caused by

reorlientation effects in the. parent hucleua;_thus the time-dependence of
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e pB(t ) | ie .,mér‘eiy dueto .

W

(®

which replaces (2) Under certain circumstances, the reorientation effects'
lx, are completely descrlbed by 1ntroducing tlme dependent orientatlon parameters,i‘:”"

'rka(t), in the flnal expression for the angular dlstrlbution (see Sectlon VII)
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-AII. FORMAL DESCRIPTION OF EXTRANUCLEAR INTERACTION
One aim of the present paper is to point out the interrelationohip

of quantities used in nuclear magnetic relaxation studles and PAC or NMR/ON

experiments and to describe in either case the influence of the environment e

on the nuclear spin system. It is, therefore, natural to base the calculations
on physically eduivalent models. We apply a procedure which has recenfly
been used to study the 1nfluence of electronic relaxation effects on the-
Mossbauer line shape,u’7 The method exp101ts the eleganu projection operator
vtechnique of ZWanzig,lg firstbused by him in.problems of nonequilibrium
statistical mechanics. The first application to a line shape problem has been
given_by'Fano.13 All aforementioned theories, as well as most of the nuclear
magnetic relaxation theories,lu are based on a‘density matrix approach.
That the latter is directly applicable to our pioblem is clear from Egs.
(2) and (6).

We recall some of the main featuresvof the widely used model: The'
radioactive nuclei (dilutely dissolved in a-host lattice, s0 that their
direct interaction can be ignored)-are considered to'be imbedded in a heat.
jbath responsible for the extranuclear interactions we are interested in. //The
elimination of the unobserved bath variables is accomplished by means of
Zwanzig's formalism, which combines the use of Liouville operators with that
of an appropriate projection operator. The Hamiltonian for one particular

nucleus is the ' sum of three terms

S e M L | o | (7)
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Thé.Haﬁiltonién_for tné nuéleﬁé, Eh, 1nc1u6es the 1nteraqpioﬁ with an
‘ external maéneﬁic field.,“(Altﬁough we havegélso investigaied-the NMR/PAC
and NMB/ON situétions includiné relaxation effects, ﬁe hére restrict ourselves,
’v for the sake‘of simplicity, to thé éase whére.no radi§frequency field ié
applied.) ‘The second}term, HR; is the Hamiltonian for the feservoir. With_ 

respect to the interaction Hamiltonian, HhR’ we only assume that it can be

written as a scalar product of irreducible tensor dperators

N = }::. (-1)¢ Tq(k)(n)‘v_q(k)(R) D (8)

X a2k

+

‘acting on the nuclear system and the bath, respectively. The density operator
for an ensemble of equivalentvnucléi in the resefvoir,, W(n,R), obeys the «

"equation of motion

P2 g =R uen) e (o)

On the right-hand side of (9) we have introduced a special superoperator “H,

the Liouvilie operator associated with the Hamiltonian, 'N,,aﬁa defined b& ;
-the commutator reiation as indicated in (9). The concept Ofvsﬁperoperaﬁérsl
" has been generalized fo include, beéides.the Liouville operaﬁor, any super-
operatdr, g, transforming an ordinary operator,.A, of é given,Hiibert space
into anOﬁher operator ‘B'= ﬁA of the same space. In Qrdér not to obscure
the.main physiéal features of the-paper, weé have collected the mathematical
tools in the appendix. Of Special_interest for our préblem will be tHe'
finite-dimensional unitary vector space,Z{, spanned by the (2I+1) state

f vectors of the nucleus with spin I, and the associate Liouville space,.lf )
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'.of dimensioﬁ‘ (2I+1)2, spannéd by the opérators A of.ZC “+« The fact that
the operators A, B, ;;. of U _(ﬁransforming'a state Veétéri l¥) into
another one, i.e. l¢> = AlY) ) may be considered'eleménts of the Libuvillé
spaée, Jf ,.is indiéated bj édopt&ng the notation '|A). The action of‘a
superoperator R on |A)  yields some |B) = ﬁIA). HThe reader is referred to
the appendix for detaiis} ” ”

The reduction ofv(9) to_an equation of motion for a reduced density
"~ operator, p(n), of the spin system alone is échieved b& Zwanzig's formalism

15

using the special projector
P =pn(R) Trp , A - (20)

where pT(R) is the equilibrium densit& operator for the reservoir. The
operation (10) performed on ‘W(n,R) yields the reduced density operator,

p(n), which is independent of the bath va?iableS" 

P W(n,R) = DT(R)'p(n) . | R S | (il)
Theiirrelevant part (l-P)iW(n,R) in the degéﬁpos;tion

w'.= . (l‘-P)W , N .. ‘v | :_)'(12),

is exactiy eliminated from,(9) by the projector technique. It is very useful

to split the Liouville operator # into

B-T L8 S - (13)
H -8 s (ﬁnR)R (%)
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ﬁn _A>' v)\' A A e S _. | .
R R T Y R - S - (15)
i.e. to combine with Mh the static contribution of the spin-bath interaction,

-given by the ensemble_averége

<i:{Rn)R = lIIrR(ﬁRn QT(R')j . L | : | ' o (16)

N lalll

The Lioﬁville operators N ana H obey the rélationsu

At Ay AN Al ; At : : o ‘ .
P =Hp, PHP=0, PH (2-P) =RH , ae y (17)
~ which have been used to simplify the expressions. With the initial 'condition
‘that at t = O the combined n-R-system is uncorrelated, i.e. (1-P) W=0

for t = 0, we derive the following integro-differential equation for ‘p(n)

a _t A’ - A‘ . - . _ .
) L1 F ae) - | ar i) pleer) O (8)
g . 0 ’ .
The influence of thé heat bath on the nuclei 1s condensed in the relaxation

(super) operator

o) = el e e AR om0 ()

We nofice that the exact equation of motion is non-local in time. As is well;
,knoﬁn from non-equilibrium statistical mechanics the non-Markoffian behavior
of (18) arises from the exact elimination of the tiﬁe-varying ifrélevant

‘part of the density operator W(n,R). Equation (18) shows that it is‘nbt

in general possible to describe the influence of the environment by adding.
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.a time-dependent perturbation to the nuclear Hamiltonian as was assumed é.g.
by Coester.’ For applications to a particular physical problem.it is often
desirable and aiso sufficient to study approximate solutions of a problem;.
. ’ "~ :
We restrict our further calculations to the second-order term in NRn’ i.e.

A

we will replade thg-Libuville oﬁerator in the eprnential-by HR. A rough
criterion for this to be valid has beenvgiven in the introduction. Using.(S)
-We‘can factorize (i9) into nuclear operator parts modulated by correlation |
'funcﬁions'depenaing on the p}opérties of the dissipative lattice syétem. With

(k) o (k) o (k) . -
Vq = Vq - (Vq )R | A - | - (20)

v 58) = exp (1) v{(0) = e (a3 vgk’§0) egpf{-iﬁHRa (21)

we define correlation functions and’their'Fourier»trahsforms by

o9 (v) = %%(fl)q*q’<[v_q(k)(t), v Ty
=%_ dw 3,‘;(';1'(&) gtlat ) | R '(ea)
£ 3T P, ¢ O,

= % | - do :Kiéq'(w) e'?wé .:, ; | ‘_ o '(23)

-l
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' Using (A25) and the identity (a(t) 0(0)) = '(a(o).b(-t))R it can be shown

that the following relations hold

(-T2 () = ( 1) g .<m) | (e

k'q' *
J o
()

Kiéq'(w)* ‘ (.1)a*a'+1 Kﬁ:;qﬂ(gn) = (-1)%+’ Kﬁjﬁq;(m) vé ,_ (25)

The quantities defined in (22) and (23) are not indepéndent of each other but

related by
G2 (0) = tamn (50/2) 7% (o) '<a_:= 1/1<T,a;=1._:)‘=, (26)

- which is analogous to the well-known qnantum-meChanical fluctuation-dissipatidn'

l5.that the fluctuations

theofem, We follow the assumption by Wangsnéss and Bloch
of the magnetic and electric fields (connected with k =1 and k =2

respectively; see Eq. (8)) are uncorrelated and, therefore, restrict ourselves to

éorrélation functions with k = k'.  In addition, we will be interested
 mainly in the axially symmetric case which reéquires q' =.q. The correlation
functions (24) and (25) are real for k - k' and ¢' = -q.

“Introducing (22) and (23) into (19) we find

.‘ﬁ(t) =\ -+ ' ig (t) T ( ) o exp (- it ) T (k)- - (27)
» k=I,2 ¢;q =-k | ’

¢ 052 (5) £ (%) exp (aaeflr) e, () }

. ) A . ; ] . .
where, according to our notation, Tq(k) ‘is the Liouville operator belonging
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R A

IIWTIto the nuclear part of the interaction Hamiltonian (8) and T+ ( )_'ia'the

jff'super-operator defined by the antlcommutator relation AP

R . e lﬂ.. Gl e e
S (k) X-=_[T_(k), X ], , arbitrary X . 00 oo 0 (28) -
L " S A Lo s T

'1:Thevexact formal solution of (18) is easily'fcund by:Laplacé,ﬁransfcrmatlcn N.ffl'

ﬁo_be

A1

o(p) = M) p(6=0) = (T + T (e =0), 0 (29)

" where _b(P)llis thefLaplace:tfanefcfn pf;'p(t).yand‘lgi S

..pt

a5 M(t)

ﬁ(p)

BN @Tq(k."£p+1¢+;ﬂ.,'j1.,?-J (w) ‘ DA

,-“.__+-;<1;31"(@; RS _ e (50)

+
¥

*»3' The form of (29) establishes the connection with the Laplace transforms of

(2) and (6) The evolution operator Q(p) (or 1ts Laplace inverse
(t)) 1s now expllCltly deflned by (29) in termn of the static nuclear’
’ Ny CTe
"Liouv1lle operator ul{‘and the effectlve 1nteraction of the nucle1 with the Ceh

lattice M(p)‘ The relaxation operator (50) is a function of the spectral

‘density of the correlation functions (22) and (23).
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For_times t > Ty the generélized'mastef equétibn‘(lB):can'be approximated by'v
a Markoffian equé£ion of motion. Since wevrestrict ouréeiieslﬁo‘second;order
effects in the spin—béth 1ﬁteraction, we may approximate p(t-T) 1n thé integral-_
N of Eq. (18) by the fbrmal soluti&n,of the unperturbed Liouville equation, |
.p(t—T) = éxp[-iﬁ'T] o(t). Furthermoré, since the correlation fuhctions, and
consequently ﬁ(t); are practically zéro for ﬁ > T., the upper limit of the
remaiﬁing integral in ﬁq, (18) may be pushed to infinity. We will make use of

_ the identity

exp(ixt)‘dt =1 % + 7 8(x) ' B . | (31) :
. . .

and decompose

i}

=
v_+

=1

=25
it

'M(t)'exp(iﬁ't)

In the representation we will use, both- M and M arevreal,-i.e.‘we separate

| (32)

a secbnd-order energy renormalization‘ﬁvfrom,the damping term M. We will give
2 explicit expressioné for ﬁ and M for the special case of an axially symmetric -

environmenf. The approximation leading to the-Markoffian equation of motion ‘

Bt .y A+ = oy '
S = -1 (W W) p(t) -Wp(t) - (18a)
is valid only for t > T, and this requireé Ty > Ta for radioactive nuclei.

'(For impurities in metals, this condition is fulfilled in many cases.) In
the region where T, i1s of the order of magnitude of the mean nuclear lifetime,
T,

N’ results based on the apprbximation (32) have oél& very.limited validity.

To find a reliable solution in thié case we could e.g. first specify the time
behavior of the correlétion functions in (27) and.then look for a solution

‘of the-non-Mérkoffian,eduatipn (18). 1In this paper we will restrict ourselves

. to the aforementioned approach witp,the.;dvénfage'that the noise spectrum of the-

~fluctuating lattice need not be specified at this stage of the theory.
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III. CONNECTION EETWEEN THE EVOEUTION OPERATOR AND THE
PERTURBNPION FACTOR

For definitenessvwe choose'the PAC case to poinﬁ-out-the‘cbnnection
“between our formalism and that reviewed in the.existing-comprehensive'articles
on the subject.1 We interprgt the density 6peratorsvappearing ihr(l) as
_supervectors in the Liouville space and use the definition of scalar product

(A9) to rewrite (1) as
W(k,, Ky ) = <p(1_g>lp(zl_, t)) = (p('gé)|6<t)-|p(kl', o) . (33)

(In the case of a y-transition, p(k ) is Hermitian.) We now use the. expan-
sion of an operator into an orthonormal set of basis operator816 or basis
vsupervectors in Liouville space. For the problem of extranuclear perturbation.
'of the nuclei in a glven state specified by spin I, we choose the normalized
'spherlcal tensor Operators Uq(k) (their propertles are described in (Al7)

to (A20)) as an approprlate set of basis supervectors. U31ng (Al9) tw1ce,

(33) reads

Wk, i t) = Z CORIARICA IO ) (w,{* )1p<kl, o).
kq,k'q’ ( h)
. (34)

The scalar products are defined by (A9). The evolution operator is labeled»
by four indices as 13 characteristic of a superoperator transforming one
ordinary operator into another. The Xk's a&assume all integral values up to

9 is specified

- 21; theimultipole orientation g, as it was named by Fano,
by all integral values between -k and k. The multipole expansion clearly

avoids thevcumberéome intermediate stebS»of the usual calculations performed
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A simple change of rep;esentation (A28) together with the use of (ALT) ylelds
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'within'the.femiliar {|Im)} .representation. -In addition, the transformation

properties of the quantities entering (34) become obvious. From comparison

of (3l4) with (FS. 208), both specialized to the unperturbed case (0 = 1),

we immediately find (in terms of spherlcal harmonics and the coefficients, Ak’

defined by (FS. 99))

10, F) - a1, A00) P2 (35)

~ and thus benefit from the fully worked out theory of unperturbed ahgular,

correlations. Returning to the general case we define oqr'perturbation factors by

Gf;‘ﬁ.(t) (v, (k)la(t)lv (<)) | - (36)

| . J
qu,(t) = Z (u (k)llm.b Imb\(lm Imbm(t)llm Im. )(Im Im IU ,(k ))
e G
.’I-.-' | | I .I k‘ ' .I} X'
= }: (-1)d n_na mbs/(ek+1)(2k'+1)_" ( . ‘,)(I'. . )
m m : mb. Ty 4 ma_ g qf
(mb mblﬂlm m)

The expreséion onvthe right-hand side has exactly the'general form of the

'perturbation factor (FS 209),31 if the evolution operator Q can be represented

in the special form

~

QX =AXA" (X an erbitrary oberator of ﬂér) . y (38)
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A(t) is a unitary.operétor.describiné the evolufion.of the state |Im).
The matrix elements of  § in the | Im) - repfésentétidn are easily calculated
from (38) using (A13) and (Alk4) |
. .'. A . :'. , - : | :

(m, my | 2(6)m m) = {m [AG)|m)(my|A(e)Im)" o (39)
From (36) to (39) we learn thét the G-operator defined in (FS. 266)’1s‘aétualiy
- a sPecial superoperator in a Liouville space. Consequent use of the concepﬁ of
Liouville repfesehtatioh'leaves no uncertainty about the(character of.the
used quantities énd-no arbitfﬁriness in labeling them with respect to a gifen
basis. | | |

We recall that we — in contradisfinctipn to usual treatments — will
méke no use of the standard feprésentaﬁién as in (37) and (39), bﬁt perform
allAcalculationstwithin the state multipole representation. The genéral |
formula for the angular distribuﬁion shows us that this 1s the preférred
framework with repsect to the analysis of antexperiment;' It is also a con-
venient form for deriving the symmetry relétioﬁs and general properties.of

. !
the perturbation matrix Ggg,(t).
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. GENERAL PROPERTIES AND SYMMETRY RELATIONS OF Ggﬁ,
The realiﬁy cdndition
+ -q- - S L o
61, (4)" -( 1)qq qu(t) o | (ko)

implies that the follbwing relations.for'thelreal_and'imaginaryvparts hold

ke qu.(t) = ( -1)%" Re G;{ﬁ.q'(w - - o © (M1a)
qu.(t) - (-)T Mgy 6k a’ (t) . | o " (41b)

The behavior of G&E,

) A A . .
consequently, on those of (ﬂH + M), If we set -A, equal to the rotation

depends, of course,.on the properties of Q and,

. o ~ N
operator D, (38) defines the unitary superoperator 1D associated with the

. rotation.- D in the Qector space X . - In addition to the transformation law -

il

of an operator A, wﬁich'can be rewritten as _A;_= DAD" *BA;' we get for
the transférmed superoperator after the rotation |

R = DRD' . o T (k)
o Tt follows from the requirement (A'IR IB ) = (AIRlB) ‘thaﬁ this‘1s:in faét
the general transformation law of a superoperator under ah arbitrary uﬁitary
transformation O (O O = O O l unltary with respect to the spur metric
(49) of Z ). The matrix elements of D with respect to the multlpole

representation' |Uq( )) are just the rotatioq matricgs
D B o Dipyg B S g Wy (K g ()
(g Iplug 1) = (W i U, D)_—Z (U oy ) By
: . o 3 .

)
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‘It is obvious from (43) and (36) that qu,-'trapsforms under rotation

i

(o, B, 'Y) 9-8.

@ i, &) - Tp M, ENN <), By )

. 9y | ¥
2% | S
(U (k)mu (e )) L o

In the important case that. the physlcal'system is invariant under a certain
AAA ~

transformation o, Eq. (he) is modified to’ R' =8R8 =R. One of the

simplest examples is that'of axial symmetry Qw. The Invariance condition

for rotation about the symmetry axis applied to (hh) leads to the well-known

restriction
6l =8, G (for C ). | | (145)

Qq’
It follows from the ﬁnitarity of .6 and the series expansion of the resolvent

(29) that in general

~, .A;\A -l' g - | . o o
o' + 0 fie") o o (46)

A A Ay
oqet '

sl AN
= [p1+16H

holds.  Therefore the symmetry of G&E, is determined by the lowest symmetry

-of the operators in the denominator

If the ensemble average over the various.orientations of the micro-
crystals of a polycrystalline source can ‘be expressed as an aversge over
angles (which is almost always tacitly assumed), we find for a polycrystal

without a preferential axis, by averaging (l44) over all Eulerian angles,v

v
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B, Bia G =B (2ke) Z:éqlql )
k' T %q'q Pk'k Bk Oqrq B\, G M
which has been proven ‘for several special cases (see -e.g. (F5.231) and (FS. 234)),
In‘polycrystalline sources with a preferentiél direction (as in the presence
~of an external magnetic field)'the only general restriction is again (45),
as in single cfyStais. |

. There are other reiations for the perturbation‘factors which follow

directly from the multipole expansion of the resolvent (29) — explicitly given. -

in Section V. Using (30) and (36) we conclude that

0q - . ' | | o
Gp =0 (k/ 9) | S o - (W8)
is generally true and not restficted to staticvexfranudlear interactions

" (compare Alderugz.gl.l7, Section II.2). Equation (48) expresses the trivial
fact that the operator- Uo(o)'.commutes‘with every operator, so that (Uo(9)1'

Ny

(1 4 + ﬁ)

o . However, the relatioh'
o ' . v ' .
| Ggo =0 (k£ o) : _ (49) -

is'égz generally valid, if reléxation processes must bé considéréd. The
¥easonuis apparent from the secohd term,oﬂ the'right—hand side of (30) which
leads to an»anticoﬁmutétor, whefeby the éreﬁious argumeﬁt fails. vWe mention in
passing that (49) becomes approximately valid in tﬁe-high-temperature limit

. LR - [
fw << 1, because Kiqq (w) may then be neglected compared to Jiqu(w).
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; V MATRIX ELEMENTS OF THE MULTIPOLE EXPANSION OF THE RESOLVENT
We go back to the Laplace transform of Q(t) defined in (29). .
_resblvent, Q(p), is a function of the static perturbation ﬁf and the
dampingiﬁerm ﬁ(p). »The Hamiltonian'fér éta@ic magnetic and quadrupole -

interactions,

Mot ¥ (50)

(FQ(K) stands for the-éXtr&ﬁucleab static fields including the part

induced by the surroundings); can be expressed 1nnterms of the normalized

multipole operators‘ UQ(K). Using the Wigner-Eckart theorem and (Al7) we
have - i Lo “‘ o | - ;. K

-1/2

1) < r s R = ap® (@) 1)

Q
. and the matrix elemenﬁs of'the‘Lioﬁville operator assogiated with'(50) are

simply given by

(o, o ’) Z (1>QRKF ®) (v ‘k)lw (K) .‘.k"j)

X,Q
Z<U“%F“’$Q.!~ e

’

The strﬂctﬁré‘cohstahts, e, are défined in (A2k) as the product of a.
Wigner S-J and 6-3 symbol and alphase factdf, which #aﬁiéhes fbr (K+k'+k) =
even integer. By their definitioh, the structure céﬁstants.arebdifferent
from ®r0 only 1f Q+q q and the trlangular conditlons for the

6-3 symbol are fulfilled
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Because we identified T(l)_ and T(2) with the tensor operators of
the nuelear magnetic moment and quadrupole moment , respectively, the quantlty
F(l) equals the effective magnetic fleld (except,for the sign, if
agn = " p.. Heff)'_ FS's definition of the quadrupole‘Hamiltonian contains |

an extra factor /5 which is not present in (50)} The corresponding quantities

are related by
o(2) s vmys (2l®)) ‘2’ 2 (V, )og -

In terms of the magnetic moment, M, and the quadrupole moment, eQ, the RK-

‘of (51). read

' . N |
/1 1 I | o
ol ) (55a)
I 0 I : e .
| e
Ry =eq | 4 V5 ) o (530)
| - \-1 o 1/J - S -

In the. appendix we have collected some useful symmetry relations for the
structure constants. Making use of the last equality in (A26) or more dlrectly,

. of the properties of the scalar product (52), we find
"l v | T 1y Ay . :
(w W o )y oy @ EIFe My o ()
a et T -q' g :
Equation (54) implies, in partioular, that

(Uo(k),'ﬁ'i“o(k)-)” - S .' (%)

The calculation of the matrix element of M(p) is straightforward and yields -
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e () Kklk Kk ke |
' (.Uq - I‘M(P)l.Uql i ) ) g RK : quq CQ q’ q2 . (56)
—_— ' o 2 % 1q1k292 5 o

k) a1 (Ky) '
x% o (Uql t 'I‘ _[p+lw+m ] _I‘Uq‘2 > Jﬁg ()
.Kklk' Kk-‘"ké 1"v ' (kl) L | 4\1-' -1 (ke) : " At .

The sums over 'ql' and 9% afe redundant. The structure conétants,

. Kk'k ’ S :
dQ'Q'ig , appear as a consequence of the anticommutator ‘ '/

}@+Q.(K)|Uq,(k ))-=‘RK]LUQ.(K2 q (k! )] ) and differ from the likewise -

labeled c only in the phase. we can express this by giving (A2k4) the
form

4 k. +k.+k. ' k. k. .k
2k3 7\'((1)1 2™ 1y g2

(the definition of & being obvious from the compafleon of (57) and (AQM));

v,_( 57) .

' Thenv

k. k. k k+k+k - kkk
1%2 1 172 i
at?3 {(1) > 41)gt?3

qlqeq}. | qlng3 SR S (%8)

In contrast to ‘the c's; the d's vanish'for ki+k2+k '=‘odd integer.h The
sign changes in the symmetry, relations are indicated in (A26) and (A27)
(See the remarks following these formulae )

: . . . . ) ‘.:'2‘, b
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The’phase relations together with the triangular'conditions‘restriét
»thé possible combinatiohs of the multipole orders considerably. For
relaxation processes caused by tensor operatorS‘of the first fank ("magnetic-

_ type,relaxation»processes"), K=k.=1, we have the selection rulés

1
(00
qe% o%z  Rydz
lkk : - 1k ' :
2 o . o :
5.8 5 C e (59w

quq3 l«:2 k3 s Q<;2q3

Analogously, for K=2, i.e. if relaxation is due to quadrupole‘interaction;

“the upper indices must fulfill at least the conditions

ekk3 2k2k5 ' - » SR :
“Qa,ay ~ Okooketl CQaja L L (59¢)
Lz Kk Bz C . I

g el L e
gn Tt 0 .
for the coefficients ¢ and d to be nonzéro. ‘For a system with cylinercal

| symmetry v(qi = q, and Jig'-=_8Q Jﬁ , it is obvious from (56) that

again _
(%) (o) 1y (k') (%) o)y (k")
U M U 7)) =5 U M U .
(w M o) v S5y =8 (u S Ce) U )
In the applications, we will be interested mainly in thiszcasef MoreoVer, for

a large number of éxperiments the magnetic-type relaxation processes aré

 dominant. We épecialize (56)»to'this important case by restricting K to
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K =1. By virtue of (59a) and (59b) the sums over kl and - k2 ‘can be

performed and we are left with the much simpler expression

o - .
(U (k)m(p)w (k )) 2: q B~ )% ( é‘;‘l‘q) ~(60)
.. Q=-1 : i . .
"4 | o L
G| e i‘k’npwm lu‘f’w W
+. Z clk.k dlk'kt+1 ; }_ s i (U. (k)![p*'iwﬂ,ﬁ' ]fl‘U(kl}i))
1*;1 Q9 e -Qag, m G Yy ’
K- a(o) -

.If the quadrupole interaction is negligiblé compared to'the magnetic energy
- Ny : . . _ ' . o . A
in the H appearing in the resolvent under the integral, the second term
in (60) is nonzero only for - k-=k'¥l, because "}%mgnv is diagonal. Even if
Ay '

the full }3 is not strictly diagonal, it will often be a reasonable approxi-
mation to fix the_frequenciés in the ihtegrand by a diagonal part approximation
, Ay A A . KA ’

for the resolvent. To do this we decompose 8 ;'Ml +'M2 vhere 'ﬂl(ﬂé)

has diagonal (non-diagonai) matrix elements only. Then to the lowest approxi-

mation
Ay -1 >‘ ‘ A oy \ A A =la
(0,017 10,09 = et SN0 0,00y 0, 00 R ersflyy ™ o 7

The above approximation is better the slower the correlation functions J(w)

and K(o) vary within the range of the frequency shift due to exact. diagonali-
Ay v ' ' .
zation of H (measured with respect to the frequencies of the diagonal part
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: :3;;aipr§Xiﬁaﬁiaé){i;Tﬁé?twabérféginto‘which;(60)'&eeomposeeﬁih the cases mentionedi :

©. . are

,(U.q(yk)lM(p)luq(k.))z =R" ) ( 1)Q ( éﬁll‘q) S (eva). o
| W

e v7v*(k);*fi:F  (kil)ff;} 2 & :elkk 1k+1ke i;f1ff BN
(Uq IM(p)IUq ).Rl Q; : quq quql

* _Kig(f_») aw
. p+‘1m+i(uk—._[ ‘
T Ay

For the pure . magnetlc case, we have according to (52), (53&),_and (A24)

(- uﬁeff)

° ; e L ;‘"1? ey

For later use e glve for thls special case the flnal pairs o; matrix elements;?fe [féf .

for N + M introduced in Eq. (52),
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(Uq(k)m'uq(k))=Rl ( 1)Q ( lkk ) i-g : v j‘v (62&).

Qq q
=—l o »L

o1kk ‘d1k+1k

'-_(Uq; 1E|Uq . JT;Rl quq -Qqql

e

e

(k) jms (k1) 'ye-'+ 1kk LKtk L, f,;fxff:f”gaf' I
,(UqU__?M|?q'_£‘~7,*R1'; quq d_Qqql 1 <QLQ>;T;%~11 “.w,\(62d) R

" The functions Ié ‘and Ié’ _.are ‘the Hilbert transforms of the correlation. .

~ functions’

I(y)-;.f ax———- I”(y)—% I dx -_ (63)

I’Q<y> R S Gr=1pn B R COR

All the correlation functions are real for a system with axial symmetry, -

‘ therefore the same is true for the matrix elements (62) U81ng the properties PR

- (24), (25), and (61+) of the correlatlon functlons and the symmetry relatlons
for -the structu;ce constants gl,ven in the appen_dlx s e easi_ly _prove that for

both k' =k and k' =kfl

v mmw (x ) - . <k>|mu (e >> N % S
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'?-¢¢;- We have shown in detail in this secﬁion?thﬁﬁTthQrﬁafiouéfmatrix e1emen£s"
T SR a o S :
. necessary for the evaluation of . Gﬁ&. _are expressed in terms of the nuclear

A"7 7jmu1tipole moments p and:]eQ;:thefextfaﬁucledr7sfatic_fiélds, §ndlthe c0rreiatioﬁf-

ﬁ3functiohs depending'dn-the properties- of fhé'surroundings,v The nuclear épin

' doesfnot appear_explicitly but, of course, determines thé range of possible

- 'k values and the numerical value of the sttucture constatits. The evaluation =

'f fo'£he perturbétion_factors is .completely reduced to a simple algebraic task. o
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VI CALCULATION OF 'THE PERTURBATION FACTORS
A. - General

We ooﬁ havevthe.ehoice either to'diagonalize the‘deﬁominator'in the
resolvent (29) or to invert a finite-dlmen31onal matrix in the L10uv1lle
space. In both cases one has tc use a computer for higher qpins. We
.briefly discuss in what. follows how the general problem can be adJusted
economlcally to a subproblem defined by the experimental situatlon we will
study in detail special problems which have exact eolutions. In this paper
we always use the meﬁhod“of metrix inversion.

In the general case qug(p) is given by the inverse of the following

(21+1) x (21+1) matrix
G‘M.<p>-(u ‘k>|[p bl Bl Y )

with elements defined in Section V. To define what we called subprobfem,
we consider a'y-y-correlationieXperiment. Only the even-even terms of
: qu, are. of importance in this case. For pure radiation, the maximal K

is. given by Min (2l, L., 2L2); L and L, belng the multipole ordere of

1’
the radiations in the cascade. The dimension-of‘the mﬁtrix to be iﬁverted is,
ho&ever; determined by the noclear spin ohly; For aﬁ.ideal experiﬁent it’
would be sufficient to calculate all poésible Gﬁ?, (k, k' Eeven.integers).
:The admixtures of the other matrix elements to this relevant submatrix can

be taken into account ‘exactly with the help of the ao—called partitioning
~-technique. The problem 1s simplified by the special btructure of the

~ A

matrix a = p-l + iﬂ + M, as we will see later. First, we arrange a 1in

the following form .
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W e e e
o]
o
et

i Lo R T !ii;“ﬁk'e.
'~7We have suppressed the possible ¢ values in (U (k)| ]U (k ))- aqq S

7‘Uaf;so that every element, akk,,'ls in fact a matrlx itself. ? Secondly, we
‘ff‘partltlon theftotal matrix into blocks of two square matrices A-.and Dj;ana'“&j

”71ithe rectaﬁgulaf matriees B and;_C;e The intereSting part of the resolvent R
"' can be determined from the following theorem for partitioned matrices -
P O i)t (s taa)ytept | T R
1(a)- - : R , | | (68a) T
/ Cole(eote-a)t  (paattmyt |, S

" ‘therefore,

L

: For vk > h ‘we are usually interested only in the perturbation factors/up

/‘.to k = h In a real experlment higher-order terms, even if theoretlcally ';gjﬁ”f.ﬁ'
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possible, are nbtvobtained with suffiéieht éccuracy. The described procedure
bmight be used a second time to. determine the experimentally relevant G, ,

A

- (x, k’. =0, 2, L) .

2. - Examples

2.1. Randomly fluctuating fields - ' , - //,

Two interesting cases'have been diséuséed in ﬁetaill bAbragam aﬁd Pound2
~have treated the case of a randomly fiuctuating quadrﬁpoiétinteréctioﬁ as it
appears e.g. in liquids. Michagvextended the meﬁhod to a multidomain ferrd-‘
magnetic metal with both an average static magneticifield in eéch domain and
a randomly time-fluctuating component. No external fieldsfare present in
eithef.case. The comméﬁ apprbach\with respeét_to the timéifluctuating part

is to split the ensemble average into an dverage OVér direétions“-

and magnitudes of the perturbations. If we interpret our bath opéraﬁors’

Q Q

VV.IVQ(K) or v (K)  (see qu; (8) gﬁd (20))as clgssical fields F (K), as in
»(50), we must also read the former ensemble average,  (°9$>R: as an
.avefage over an ensemble of_random.prodesses. ' The maiﬁ assﬁmptions'used.bj
the_auth6r52 are Tc‘<< Tﬁ and mrc << 1 (where @ is either the Lérmof '
 frequency in the ave?age static field or ®p? the splitting of the ipter-
mediate state by intéractionsléther than the fluctuating field gradient).

In the following we show how the same resulﬁs cah bé deducea from our
formalism. The first éssumppion justified the use of the Markoffian approxi-
mation, as we mentioned in Section.II. The condition ETC <1 allows:

us to neglect the frequéncy dependence of the réﬁaining correlation iunctions,
i.e. to write Jgg(59 s Jgg(O).‘vlt follows from (60) thét-ihis approximation
is equivalent‘to:é'cancéllétiéﬁ of the static Liouville operator, ﬁ', in

the integrand.
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v

Because (U (k)|M|U (k )) transforms undex rotation as Q (see Eq

(lth)) the average of the relaxation matrix over the Euler angles can be

expressed in a form analogous to (%7), i.e.

gles

’ -1 (x ~ < o |
(U (k)lMIU () - Bkk:?' Bqqt (241) INCARTEAS BRI
A ' q L

(69)
A glance at (56) shows that in the present approx1mation only the flrst term
contributes, because we have L = ke, ql = q2 ‘and the structure constants

¢ and d cannot be different. from zero simultaneously. In the first term

we can- neglect the 1maginary part for wT < 1. “(It can be shownu that for

an exponentially decaying correlatlon iunction, . gg(t); the Hilbert srans-
form of the associated Q(u)) is smaller than KQ(w) by a factor
570.) Substituting the surviving and properly‘simplified part of (56) into

(69), we find

N = (2K+1)” (-1)? 59 <o) Z ( ) | (70)
o Kas | o
-2 ) RS ilj ()? JJ‘Q(O) o - ()FEE oot

X=1,2 Q=-K !

The sums over the squared structureiconstants can be perforined using the

orthogonality relation for the 3-j symbol and the sum rules (6.2.9) and

(6.2.11) of Edmonds' book. 2°
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The relaxation constapte, (70), afe-exactly the-eame as those reported
" by Abragam and Pound (their Eq. (71)) and Micha (his Eq. (21)).

For' K =1 and an exponential correlatioﬁtfunction Witﬁ a sinéle
_correlation time- T, We find:
() T0) = (H - (W) = (@) x,
=1 ' s C |
and therefore, using (53a) and the exflicit epression~for the.6-j symbol end

the gyromagnetic ratio instead of u,
12,2 o - - | |
N =3 7 (@) o k() N S (11)
The perturbation factor is giVen by
0 (@) = () Y et (1)
Kk i ata e @ Kk o o S l
v q o ,

from which both the time-dependent ahd the integrei attenuation fectors
are easily dertved; | ) o

In (70), the eum of Jﬁg over the muitipolevorientetion Q is
iﬁvapiant under rotation. The correlation functions can therefore be described
with respect to an arbitrary coordinate system For an axially symmetrlc

field gradlent with an instantaneous symmetry axis along z', we may write

jff ()2 2Q(o> V0 T,

Q=22

The lengthy expression for A (see (FS. 354)) will not be repeated here.

peremem, 5z
N NN b v b A
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2.2, Static magnetic fields and-magnetic-rela#étion processes.,

The high-temperature limit

In the last examples the terms depending on the_éorrelation:funétion,
K(w), dropped out by averaging ovef the directions. The same matﬁemaficél
simplification mayvalso be effécted in single crystals_withﬁut the assumftion
~ of randomly fluctuating cléss;calAfields. We have. mentioned at the end of
Section IV that, by virtue of (26), thé damping part of the relaxatiQn matrix
reduces to diagonal form in the multipole representation if Bw << 1. Thé
frequencies We'are concerned with are integral multiples 6f the Larmor
frequeﬁcy aiv.belongingrto the effective field at the_nuéieus:(see Egs.
| (62a) and (62b)). The high-temperature limit in nuclear magnetism may in
factbinclude rather low températures eyen.if the effecﬁive field is high. The 
study of the analytical sdlution of the high-tembérature approximation is ," 
therefore of somé inferest. o
| In the following we always assume that the quéntization axis 1is along
H and that no quadrﬁpole interaction is presenﬁ. The use of fhe matrix -

eff

elements (62) requires ™ >> Ty as before. We restrict ourselves to the .

diagonal terms (62a) and (62c). The solution is ﬁhen given by

Co(p) = (Uq(k)|[P‘1+iC§magn L) . ﬁj"lluq(k) )

ot Coya + (0 N fify B0y o o Wi It (g3

which is exact in the present approximation, valid for arbitrary k, and
does not explicitly depend on the nuclear spin i. The order of magnitude of

the second-order fréquency'shift cannot be estimated without specifying the |

¢
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4

electronic dorrelation mechanism. It is negligiblevfor aLTc << I, but

might bé appreciable in situations where 7 =~ 1, Using the abbreviations

Vg = opa + @ ) o im0 (74)

the time-differential perturbation matrix is given by the Laplace inverse

of (73),
ﬁq ;itvxq B qut - : S o
G (t) = e o (e>0) , (73)
The time-integral perturbatioﬁ factors follow,immediately'from (73) by
substitution of p = l/TN and multiplication by l/TN-,
The main deviation from the Abragam-Pound solution (70) is that there
exist individual'damping'constants for every multipole ofientation q. It

follows form (65b) that Yk ='evk_q, i.e. the frequency shift in (7h4)

leads to a symmetrical change in the frequencies at *g ‘relative to the
center at q = 0. The associated damping constants are even functions of

a (g = N_g). This follows from (65a).

Introducing the explicit expressions = - o b
1kk - o o A » : o
Coqq =0 3 @ =V3 [I(1+1)(21+1)] e (76a) ?
1kk . . Ve o '
1971 ¥ [(k*q)(kia+1)/2] / | | : - - (rew)

1

into (62a) we find 7 _ P L ‘ ' .

MNeg = 72 {qg[Jig(O) + J%%(wa)} - k(k+1) Ji%(_mL)}‘. (77) .
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The appeafance of the gyromagnetic“raﬁio-shows‘that théicorfelation functions

are expressed in terms ofﬂanieffective hyperfine'field operator ‘Ehf; i.e.
the interaction Hamiltonian has been given the'form'
+1 ' : - :
b Qo (1), (1) - . CH L
Ho = (LT ) V= ey D B | ()
) . =-l . . - ‘

With 3 = Hopp - (geff)R the correlationvfunctions'are then defined by

a2 9 -3 at exp{imjg-;-[hz(t), 0, (010 - (798)
@ = -5 | b expliat)(3in(e), b_(0)])y = e ()

=0

which shows thatvtd ali»multipole[orders, the demping 1is determined»by secﬁlar
and non-seéular prpcesses.--AsﬁiS‘Well‘known from MR studies, the latter
include the.effeét'of transitions'induced betweeﬁ the stétes of different
multipoie orientations byvthe trahsverée components of_thé hf operator.
The secular processes describe the influencé of the spread of Larmor |,
_ frequencies'due tq the change'of'ﬁhe z -component of.the ht operator.

The damping constants (77) may be expreésed in terms of the appropriate

longitudinal and transverse spin-lattice relaxation‘times,' Tl “and T2.
Instead of (77), we then have
Neg = K(k+1)/2T) + o7(3/T, - /1)) . o o (TTe)

For rapidly decaying correlations in the electronic systém, W Ty <1,

and isotropic hf interaction, Tl bedomes'eﬁual'tov T2, and the'damping'
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constsnts are then 1ndependent of'ﬁhe multipole‘ofientatioﬁ 'q.

.. The EaSe.dTl £ Tz' shouid_under féVorabie conditions_be directly
obser%eblevin a time-differentiel PAC eXperiment. 'Let‘us look at a typical
. i . ) .
experimental geometry. We orient the static magnetic field perﬁendicular
_Ato fhe de£ector plane and observe thevtwo radiations with collinear counters
(6 = m). Furthermore, we consider the case kﬁé# = é (reaiized-e.g. in

+ + F - ' '
the extensively studied 1 M1 y 2 Bl » 1 cascade of lOORh)., The

directional correlation function is then given by

W_L(’IT;t) =1+ A, [Ggg(t) .+.3Re Ggg(t)]

| =1 + % Aég exp( - Bt/Tl}[1‘+ 5_expt;dﬁt(l/mé._1/T])}cos(v22t)]?

'where A is the correlation factor (Fs. 92)  of the unperturbed correlatlon
end Voo = dpL ﬁgg Besides the second- order frequency Shlft Mgg, the

. relaxation is manifest in the two damplng terms If we-ellmlnate from the

~ experimental data the exponentlal decay (due to the nuclear lifetime and the :
relaxation factor 3/T ), a damped cosine oscillation should occur accordlng

to the second exponentlal in the equatlon for W (t)

2.3. External magnetic field and magnetlc relaxatlon processes, for arbltrary

temperatures

We consider a simple example for the general case sketohed in Section
VI.2.1l. Because the results afe now 1o lonéer independent of the nucléar spin,
it must be specified from the outset We choose the simplest case and take
I =1 for the spin of the intermediate state. | The dimension of the partlcular
unitary vector space is N = 21+l = 3. The matrix (g) 1ntroduced 1n Sectlon

VI.1. gets the following explicit form for the present example
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) R D L
(@) = o (U(2)|p+i(31 gn +M)+M|U(2)) " (0w
\U(l)lMﬂMIU‘O)) (U(l)[MﬂMlU(e)) o (U(l)|p+i(ﬁmgn+ﬁ)+ﬁiu(l))J

| (80)
where the missing indices, q,3', indicate that each element in (80) is itself

a square or rectangular matrix. For an ax1ally symmetric system, only terms

- with gq =vq' are non-zero, All matrix operations with the supermatrix (80)

can then be done as if the elements were simple numbers. We nevertheless use
the rigorous matrix notation, because the formulae are then easily generalized‘

to the nonsymmetfic caée_without change in the brder of terms. ‘It is a gen-

eral feature of the resolvent that (besides p in the upper left corner) all

elements of the first row vanish. This has been stated in a-different wgy

in Eq. (48). The asymmetry of (80) is obvious from the nonvanishing element

‘of the first column and the other "low temperature" nondiagonal matrices in

(80). _

Tt follows from (68) that, due to special structure of (80), the firéﬁ
column does.not contribute to the inversé»of submatrix (3) labeled by |
k = 1,2. Explicitly, we find

OOrp> - - (hHPE0. 2 (1=1,2), (81)

1
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i.é. Goo(t) ='l,‘aé required; and the eﬁeneodd~term is of nO'intefest for
¥~y directional correiations; The_remaining (3)"matrix-consists of the
diagonal square matrices;»alfeédy.knéwﬁ from (73), and'ﬁhe two.fectangular
matr.ices;belonging to multipole orders k =1 and k =2. Using (74) and

(65), we find the following tridiagonal matix . (see next’ page)

PO
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partitioned in the indicated manner. Equation (82) 'is a simple example

for the applicatlon of the partltionlng technique, (68), to calculate

(b-l) - [(A - BD"C)” C) oo The result can be glven the form
Q. .y & o 9Q,.Tady (., \-1. (99,200 -1
633e) 2 (> - [p+iv2q+x - <M21+1M21)(P+?V1q+%1q? (MigHbid)1™ .
(¢ =0, 81, #25 11) o (83)

. which shows clearly how the low-temperature terms’modify the high-temperature
‘soiution (73), or (75). For spins I > 1, the results are of a similar form.
For specializxng (83) to the possrble multipole orientations q, we
have to keep in mind that v ﬁgg. 0. This insures'that G22 _is reel
as required by the reality condition (4C). * The perturbation factors with
.lqmaxl 2 are exactly those of the high- temperature solution, because
,622 1\122 0 (see Eq. (82)). Therefore, Gea(t) can be taken from (75)

The Laplace inverses of

300 700
(P+k20)(P+K10)_' My Mp

Bs) - PMo . P . (8ha)

p+ivll+}\.ll ‘ R : . : ~ (8ub)
(p+ivg hy) ) (pHivy + 11) - ( M%l)( —ll)

il

11,
Gon(p)

are easily expressed in terms of the negative roots, (ag?)iiﬁgi))(i=l,2) of the
: denominators;v The time-dependent pertufbatibn factors are superposifions of

two exponentials

ho- °g;'_ R " UCRL-18496-Rev.
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A ), _
Ggg(t) =ia° e ° 4 b¢ve ° L A: o (85a)
1) (1) NG RCINIEE
(t) ==a",e.(o’1 jas! ‘)t-+ b, e (Oi P ,)t,*, B (851b)

Equation (85a) has the form of the Dillenburg and MarisBssolution for the
pafticular PAC‘problem under'consideration. A detailed eomparisen of theif
~statistical theory with our approach will be given elsewhere. iﬁ our theory,
the effective relaxation constants and modified frequencies (if present) may
ne expressed explicitly in terms of the electronic correlation functions; The
lenéthy formulae will not be given here for all conponents, but only for (85a).

The'negative roots of the quadratic equation are (I=l)'

oél,e) = 1'/2(;\1.O * M) ¥ 1200, - *20) + UM gg 5211/2 - | (86)

/ “(ane : <cosh(ewL/e>)'1

' + " 'I.
ﬁ.lz (2 * (cosh(puy/2))™)

In deriving Eq. (86), we have used Egs. (26), (53&), 62), and (77)
temperature dependence of the damping constants is determined partly by the
.correlatlon function J (mL), and in addltlon, by a low-temperature correction
which follows directly from (26) and is, therefore, independent of the partlcular
- interaction model. The cofactors a, and bO are also temperature dependent and
given by | | |

a, = 1/2(cosh(Bu /2) +1); b, = 1/2(1 - cosh(fay /2)) . (86a)

In the high-temperature limit the second‘tefm=drops out and Ggg(HT) = exp(-§t/Tl)v*

(1,2)

as it should. At extreme low temperatures we get a double root, o = Q/Tl,

according to (86) and, therefore, GOO(LT) a(l-t/Tl)exp(-Et/Tl) (for I=1) .
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VIiI. ANGULAR.DISTRIEUTION FROM ORIENTED.NUCLEI.v_RELAXATION:EFFECTS
TheAradiafive deteétioﬁ of ﬁagnetic fesonanceal'ihiorieﬁted nuclei

 (NMB/ON) has opened a hew'experimental method of measﬁring épin-lafticeA
' relaxation for radiogétive nuclei at low temperaﬁures; It 1is, therefore,
wathWhile to discuss how the present theofy may be applied to this probleﬁ;
The underlying physical model ﬁékes our approach especially appfopridté for
spin-lattice‘reléxaﬁion in mgtals, a field inveétigated intensivély By various’
groups.21 | | -

The basis of this'Section has already been given in the Ihtroductioﬁ
(see Eqgs. (k) to_(6)). For practical reasons, we discuss reofientation effects
in parent.nucleif' Although it 18 now a welléestablished experimental fact
that~the preparatién of the initial conditions.are of cruéial importance in
the NMﬁ/ON technique, we will‘not plunge info'the compléxities»of a theoreﬁical .
description of the ﬁrepar;tion'pfocedufe. Let us assumé that our parent
nucleus can be characterizéd_by a pafticular_axially éymmetric‘density v
matrix, po(t=0), at the eﬁd of'some‘preparation ﬁrogeés. The‘timé evolution
of the system of radioactive parent nuclei tdgether with the environment ié
again fully described by the evolution operator ﬁ(t). |

As in the PAC case, we determine the radiatién parameters by éompariSon ,
with the unperturbed case 6 =1, ‘qu a system with cylindrical symmetry,. |
.,the initial density matrix, -po(O), is fully defined by the Ro(k) o

components of fano's statistical tensors (FS. L4ib)

' : I -m . . - :
)T 0O (e 1w k) L (0 my ) = (0 (g (0))

my ' _ o . (e
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We mention the following relations for:quantities used instead of Rb(k)'

in the various standard a.‘z"(:icles]‘:L"Q2

r (8 Gk(.I)(de Groot) _ (ppn)H/2 p (Bin-Stoyle) o (gg)

The angular distribution (5), in standard notation, is given by

axial5®) - 36,0 - ). <cos6>(u<0)1§(t>lu<°)) B.(0)
K,k' . N
- Z " Fk Pk. (cos6) B(t) e
k . .
with | | | |
- @@

" according to (36). The U, Fk depend on the decay»schemé of the particular

nucleus. In the asymmetric case, Eq# (90) hasfto be generalized to

R(k)(t) - z G ,(t) R(k )(t—O) . ‘ S | (91)'

In the éase that only the directional distribution of the ' -y-radiation
‘ emitted from the daughter nucleus is observed, the sum ‘in (89) contains 6nly
even k. Nevertheless, statistical tensors of odd rank contribute to the

associated Bk(t) according to (90).
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We now show that the problem of réorientation'effects in ON studies

is inﬁimately‘related to the theory of multipole felaxation.' Sclr_lweglerg3
has eXtensively studied thié problem, utilizing methods of irreversible thérmo;
dynamlcs to take into account the d1ss1pat1ve propertles of the. heat bath
The theory of multlpole relaxation has also been sketched in Fano s version
| | 16 ‘ /

of the Wangsness-Bloch theory. -
We base the following considératiohs'dn the physical model describéd

above. According to the remarks at the end of Section II, the long-time

béhavior of the system is governed by the differential equaﬁion

(“)/dt - a(u (k)lp (t))/at = Z (u (k)| 1(34 +M) L TACRNLRN
_ k'g .
(92)

The perturbation factors_obey the same differential equation, subject to the

initial condition qu (t= o) s,k,o é,. Tt then follows that

qu.(t) = (U (k)lexp{ e M)t Mt}lU (! )) N S (93)

which is, of course, just the inverse Laplace transform of 9(p), defined in - -
. A ) : )
(29) (with ﬁ(p)‘ replaced by N). In the case of cylindrical symmetry of the

k! S are required in (90). In this case,’

the imaginary part M drops out exactly. (It is apparent from (65b) that

-ﬁgﬁ =0 for all k,k'). Except for the case that T, %~l, the energy

initial density matrix, only the GO

renormalization is negligible; therefore we cancel M in (93), even for

asymmetric situations.
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Eqpationé (92) and (93) may be rewritten 1n-a form which‘shows thét the
assembly of nuclear spins relaxes asymptoticélly to the teﬁperaturé of the
-.lattice. Thié ié»agcémplished bj using the féct that thé reél'part of the
relaﬁation operator, M, applied:to the equilibrium density matrix. for the

' 1 ’ t ' . :
parent nuclei, pECH ) = exp{;ﬂv/kT}/ Tr exp{-# /k&T) (T = lattice temperature),

gives zero
Y e ’ - ‘ : E
Moo, (H)=0 . | | | | - (9%)
: BEquation (94) implies the following relations between the matrix elements of
M in the state multipole representation
0 O By BTy Yo e ()¢ Iy »
(U IRIu S )W o) = Mo Rgro © (ea) =0 . (95)
qul : o ' qul ) .

‘we'also conclude that, fo;.fhe special perturbation matrix (93) (With %=o0),
j{: (Uq(k)la(t)squk'))(Uqgkf)'pg) - j{: GE&:(t) ngk')(eQ):ﬁ‘Rq(k?(¢Q).

With . |
B oy P

the diffefentialiequatign‘(92) now reads
s - (o 0 R S N 17 T
_ dz;Rq /at = (Uq ‘_lf':d - M.|.Uq, )Aaq, _ o . (98)
qul . . .

-and has the formal solution
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2, Mo - Z (v, (k)lexp( '+ B )m (e )(t ©) . (99)

For the axially symmetric case, the simpler equation :

B(t) - Blea) = ) G kk.(t) 2B, (£=0)

kl

2B, (t)

=) (@, (k)lexp{ (3 + )810, (k! ))[Bk (t-O) - Bk (ea)] *(100)
k'

holds. Substitution of Eq. (lOO) in (89) yields an expression for the time-
dependent éngular distribﬁtion,vgeheralizing Shirléy's Eq. (lO), whiéh'was
{used in a discussion of spih-latﬁice relaxationbinvestigations by NMR/ON :

’techniques.gu | | /
| It is well-known, and apparent from Egs. (99) and (100), that the
angular distribution of fadiation'emitted frdm oriented nuélei:depends cn thé.’
preparation of the initial state aﬁd on the dynamic properties df,the éurroundf
ings. . A discussion of the iatter part has alréady'beeﬁ giveﬂ in the preceding
Section; the details will not be'rapeated here. A few remarks might be in

order with respect to the case of a statie magnetic field and relaxatlon

processes of the magnetic type. It can be shown‘qulte generally, that under
N . :

these conditions Nmagn commutes with the axially symmetric relaxation
A o . ) o ~ A :
operator, M. ' Therefore the Liouville operator, H » drops out of Eq.(100),

magn
and we are left with '

AR (t) = Z (U (k)texp{ it )u, (k) ABk (t=0) . (101)

kl

[ STy SR RN S —
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In the'high-temperature'approximation, where'the'off-diagonal matrix elements

of M may be neglected, we already know from Egs. (74) and (75) that

AR (t) = éxP[“’ﬁ@ﬂ ABk(‘t=0) . R o o (102)

For the interaction Hamiltonian (78), the damping constants de follow

. from (77) and (79b) to be

2 ll(

Mo = -k(k+1) u)L) ‘k(k+l)/2‘rl-. o | , -(103)

| we noticé that the relaxation rate is determined by a multiple‘of the uSual 

' longltudlnal spin-lattice relaxation time Tl As méntioned abové,-this

: simple result is valid only in the high-temperature limit and in the absence»
of quadrupole interactions. To cover the entire temperature‘range,-the pro-
.qcedure,of Section VI.2.3. haé to be used. It isvsometimes more convenient

ﬁo diagonalize thé relaxation matrix M +to determine the relaxation constants.-
(One of the eigenvalues is always zero [see Eq. (81)]). The solutions

are similar to Eq. (86), thegsolution for I=1. Numerical calculatlons for

“higher spins and various initial conditions are in preparation.
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VIII. sUmARY AND D'ISCUSSION. |

We have shown that the combined use of the Liouville operator formalism
and Fano's expansion of operators into an orthonormal set of multlpole operators
is also a powerful tool for treating relaxation phenomena in PAC‘or in experi-
v‘ments mith oriented nuclei. An account of‘the less familiar mathematioal »
means has»been added. |

‘The'perturbation factors.have'oeen given as the'multipole representation
of a resolvent, which is defined in,terms'of the Liouville operator.for the%
static extranuclear interactions, and of a relaxation soperoperator (definedl
by the nucleus-bath interactionvand‘thevpropertiesgof the environment).
Several examples have been discussed: (l) Randomly fluctuating fields
~ (Abragam and Poundetand Michae). (2) Single -crystals in static magnetic fields
(external and/or caused by'the lattice) with relaxation processes of the,mag-
netic type. The "higthemperature" condition aL/kT <1 mae assumed' |
| to be fulfilled. (3) For muiclei with spin I=1, extension of case (2) to
arbitrary tempelatures. (h) The influence of reorientation effects (relaxation ;f
processes ) '‘an the angular_distribution of radiation from»oriented nuclel t"
(general discuesion). B A

The following suppiementary remarks eretconcerned with some approiié

.mations made in the general part of the theory and w1th the Qpantltles enterlng

éj .
the final formulae. In ‘the second part of the paper we have ﬁsed the relaxation

~N
operator N, i.e. we have neglected the memory effects whlch'are contalned in
N ?

the gereralized master equation (18). The Markofflan equatléh of motlon (18a)

resultlng from this approx1matlon is valld only for times long compared to

the electronlc correlation time, Tye Since for radioactive nuclel, the
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'evaileble time is the'nuclear lifetime, N’ use of the limifing relaxation
Aoperator N is Justified only when To << Ty ' In a forthcoming note we will
©  discuss the relexatlon problem in PAC, including the intermediate case

T, = Ty The restriction to second-order correlation functions requires,
2 2

roughly speaking, that v (H )
hf R ‘
“and (77) to (79). ~Since the reciprocal nuclear bpin-lattice relaxation times :

2

are proportional to vy (th )R Tc, the criterion tc << Trelax must be

<< 1, which can be seen from Eqs (7&)

valid in addition'to and;independently of Tc&<<‘Tﬁ. Conditions like
441 Tc < l' have not been used in ourutheory, exceptvin discussing special
‘situations, as in Section VI.2.1.
| . . KQ! | s
‘The second-order correlation functions »J%Q (w) are basic quantities
for the particular physical model used.here and in related papers. Relaxation
effects in NMR, Mossbauer expefiments, PAC and NMR/ON’may be, and have been,
:aeecribed invterms of eesentially the same electronic.correlation functions.
In general we must not expect to be able to express the damping con-
stents appearing in the pertunbation factors in terms of the two spin-lattice
" relaxation times used in the Bloch‘equations for the macroscopic magnetination.
_Relaxation times measured by conventional NMR characterize the irreversiole
| behavior of only the dipole polarization, although of’ course, higher-rank
statistical tensore.are present for I>1/2. Ina directional'correlatlon
| experiment, for instance, ne observe underveuitable conditions (at least in
principle) damping conetants belonging to higher—rank multipolarizations,
‘e.g. by looking at the pefturbation factors qu(t) and G&E(t). The same o

is true for relaxation proc%sses observed using the NMR/ON technique.
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The gengral theory of multipole relaxétion (formulated.briefly by

Fano;l6 in detail by-Schwegler,23

and within our approach in Section VII)
yields an increasing nqmber of independehf'relaxation tihéé foriincreasing
spin valcues. (For é'systém'without any’s&mﬁetry the maximal number of
independent relaxation timés is {(21+1)2 - 1} according to ﬁef. 16, 23,
E&en for dxial.symmetry and I=1, we alreédy.get 5 independent damping cpnstgqts;)
It seems rather unlikély thét all of the possible relaxatiqn.timeS'can-be‘ |
determined experimentalliy, especially for higher spins. Thﬁs, in précfice the
problem will be to interprét'conéistently‘the incomplete smailer set of
experimental,paramefers; Provided that thé basic assumptiohs of - the present
theory are suitable, the electronic correlation functions Jggl(w) may be

_ used. Cnly in special caées, like in the phes leading ﬁo.(77a) or to Eq./
(103), the usual_spih-laftice relaxation times occur. There, the dampiﬁg
constants are linear combinations of Tl»Aand T2 ﬁith fixed "geometrical .~
factors", which depend on the multipole order k -and the ﬁultipole

orientation g. That such a simple result is not always valid is clear.from o

the example of Section v.2.3. (see Eq. (86)).

g

. e A et s s m e« 7 5 st et 410
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IX. APPENDIX

Liouville Representation
We collect here some pfoperties of the quantum'mechanical'Liouville,
25 , A

operator first used by Kubo,“” then applied to problems of nonequilibrium '

statiéticél mechanics by Zwanzig12 and, subéeqﬁently, to line shape problems
by varioué authérs.h’7’l3’26 in the preéent paper we make use of operator
‘techniques described by Fano16 and applied to the theory:of.multipole reiaxétion
by‘Schwégler.23 For the pfdblem.under consideration we are mainly concerned
with the special finite-dimensioﬁal‘unitary vector space €. of dimensioﬂ N
(spanned, e.g., ﬁy the standard representatioﬁ {12,12}_.§f'a spin system of
angﬁlarfmomentum .I) and linear oberators acting on state vectors of o,

Let us assume for simpliéity that tﬁe quantum~nﬁmbers I and m
specify the state uniquély. From the complete»orfhonormal set of vectoré
“{|Im)} in 1Z we define a set of operators {|Im)(Im'|} which may be
considered elements of a uﬁitar& space Z (Liéuviile ébace) with.dimenéibn:
Nz. Following‘Sau'ermann27 we denote this orthonormal basis in -Zf_by
(|Im){Im'|} z.{llmim')}' or, if no confusion ‘arises, simply by {|m')}.

Using this "Dirac" notation for the basis operators |mm') in £ &nd the

orthonormality and closure relations

(Al).

1]

(ImIm lIm;ImQ) Smml 6m'm2

) Imm)(mn'| =1 (wit operator tn ) (A1)

mm'

we find, in complete analogy to the usual rules of quantum mechanics; for the

e o 2 e o e bmer b,
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' decompesitionﬂqf an operator Ae %, considered as an element of the Liouville

. - space [a),
[a) = z _!ImIm')(ImIm"_l_A) = Z |Im1in')(1m|-A'|im") , o (Aé)'
(A| = Z (AlImIm')(ImIm_,"lé z '(I‘m[A.lIm'){e (TmIm'| ; | | (AE.;)H

The advantage of this seemingly complicating notation will soon become evident.
To make caleculations in the Liouv1lle space it is necessary to introduce |
superoperators R, S, cee (deflnltlons to be given later) denoted by a " s
which transform en ordinefy operator Ae? into some B = ﬁA ¢ ™ . TFor the
expansion of a Superoperetor ﬁ we_have (suppreesing I 1in all subsequent

formulae)

RPN . ‘ ' .
R - Z Z ) G 1R|m1m )(mlmu R (43)
‘ mn' mm, ' L :
The matrix elemente of ﬁ are characterized by four.indicest A special
~

example of such a tetradic is the well-known Liouville operator L=}

defined, for a glven Hamiltonian ﬂ by
M = [H,A] for arbitrary A ¢ ¥ _ _ (ak)

with matrix elements given by

<m'|m%>_<mmtm> o -<mg|34|m>_sml:_"3_;'v_- o w)
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‘The physical significance of this spec1al superoperator ﬁf becomes clear if
" we choose the eigenbasis, say {Ia) Ib), ...} of H for our matrlx
,representation. Equation (a5) may then be written as an eigenvalue equation
By = fav) = (2 - e)la) ,  (16)
A 4 N R | o
i.e., the operator |ab) is én eigenoperator of H belonging to the physically
observable beat freqﬁencies ahb‘z ut (Ea -»Eb) as»eiggnvalues.: We obtain
a'different éigenoperator vlba); corresponding to mba ='«bab,»by Liouville
conjugétion‘ lba) - c Iab) ”(With C_l =C ), as pointéd out by Ben-Reuven.e8
In addltion to (A2) and (A}) we mention the multiplication laws for

a superoperator R with an ordlnary operator A and for two superodperators

R and S:
(m'|84) = (mlfale) = ) (o [Rlmm)mlalmy — (a7)
| B T
(' [RS|) = Z (run? lﬁlmlmgxmlmgyslm) [ 01 )Y
™" ‘ o

So far we have used é very épecialvsystem of orthdhormal bééis opera-
toré. The generalization to-other completé'sets 6f (noﬁ neéesSafily Hermitian)
operators is discussed bf Fanol6‘and is based on the fact that the lirear
operaforé A,B, ... invé unitary spacelzl of di@enéion- N span another

29

unitary space /C which can be metrized by defining a scalar product

(AlB) = Tr (a"B) (spur metric) . ' . ' o (A9)
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As mentioned above we use the notation |A), |B), «.. to emphasize that these
operators are considered to be elements of A(‘.., Indeed, the Liouville space
Z 1is a unitary space, since it follows diiectlnyrom (A9) that for arbitrary

vectors {A), |B), |C) and arbitrary complex numbers  o,8 the properties

(alB)" = (Bla) o - | | | ‘(Alo)
(ca+sBlc) = & (alc) + 6" (B|C) . o (a)
- (ala) >0, if (ala) =0 then A =0 S (ae)

hold. We notice that according to (A9) the special scalar products (mm'|A)
and .(Aimm') are unambiguously associated to the ordinary matrix elements of

the operator A with respect to the basis (|m))

(mm'|A)

i

e ((Im)(n'])'a) = T (In')(mlA) = (mlalm)  (A13)

and

(Alum') (mm'lA)*=(m'|A+|m)=<.m|Aim'_‘>*:“ L | (A1)

A )

. - A . L
We introduce superoperators R, S, ... in Z so that

R|a) = |RA) 1d defined for all A e %
‘and that
ﬁIA) ='|RA) e X or RA ¢ forall Ae ¥ ,

They are lihear operators if for arbitrary complex numbers -
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[

» _ » A '_
R(|oa) + |BB)) = a|RA) + BIRB) ..
With the help of (A9) we definé the adjoint & or theAsuperopérafor R by
the relation ' ' :

(AlRB) = (R'A|B) . . S | (A15)

The adjoint of a product of superoperators is, according to

i

(alR8e) = (Ral8m) = (§'R*alm) = ((R8)*al®)

(§§)+ §+§+ L B D . 'i, : : (Al6)

RN

o
.

%)

The Liouville operator # is Hermitian if 3} 1is Hermitian. This follows |

immediately from (Al5) which for arbitrary A leads to

B 1a) = 1,81 .

Ar

. + A ' » o
By (A15) Hermitian (R = R) and unitary superoperators '(ﬁ+ﬁ = RR ='i)

are defined. I -
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W

Exﬁansién.in Mult;po;é;dperators
;The.theory of extrénuclear”ﬁerturbations on.angular corfelationé can
_ be formulated within a finiterdimehsional unitary fector spdce} therefore,l
 the mathematical tools discussed above may be applied. The dimensioﬁ of z(
~is detefmined by the spin I of the intermediate nuclear state. .It is
reasonable-to‘perform all'calcﬁlétions in the same representapion in which .

the final expreséion for the angular correlation is usually given. In the

._ present paper we therefore use'as an appropriate set ofibasis operators the

normalized spherical tensor operators Uq(k) .which have the real matrix .

.elements

(ImIm'lu.(k)) = (Im|U (k)lIm.) - (_l)I-m ok+1 ( ! k  ! ) ; (a17) -
AL | " \em q w/) ST

’Thé index k takes ali'ihtegral values up to ,k'é‘EI; q isvrestricted to’
‘-k <g< +k. Including the n-;imalized unit operator U(()(_)) = v(2_I+l)'l~/ 2. '1
| we have N2 = (21+l)? different operators Uq(k) in U . |

To point out the connectipn with boﬁh the first part of this appendix
and the notation used by"Fano, we interpret the multipole oﬁerators as
elements of the Liouville space g{ s denéted by ]Uq(k)). Thgn the
© orthonormality relafidn reads | )

(Uq(k)vll'Uq_('k")) =TI' {Uq(k)+ Uq(lk’)? =v5kk,v' o}

Bq (w8)

" and the completeness of the basis {IUq(k))] in ,Zi is expressed by |
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kq

The condition (A18) implies that
(Ugo)qu(k)) = Tr (Uq(k)}v= 0 for k, a0 . o (A20)

The expansion theorem for an arbitrary opérator A e:Z(.ahd a superoperator

sl
R ed is simply :

) =y o e Ky (r21)

W BT

EE T I
kq k'q' ’ : , T - ;

Of special interest are the Liouville operétors ﬁq(k) associated to thé mi1lti-
pole operators by the definition (Ak). The commutator of two multipole super-

| operators can be reduced to the known result for the commutator of the E

associate Uq(k)'s. This follows from

a (k) A (k) o (B) e (') g g (K)o (')
U U A‘qIUq ’[Uq' f A]]f.FFUq . Uq, J, A)

e (kD) (6) , ae (k) (kD)
+ [Uql " [Uq b ;A ]] - '[Uq 2 Uql ] A. '

EYOEION
a q :

A AT P (19)
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A0 W) [ k) (k) |
v ! , 2 v 1 e = Z ¢y 2k5 (A23)
i R 19%%" ‘13 ,
3%
, o) ()] o
using the fact that - Uq T, qu "itself can be expanded into a sum
. -1 : o .

 of basis operators. The definition of the expansion coefficients (structure

constants) is given by

k1k2k3 ? (kB) i (Fl) ‘ﬁ (ké)-> ‘=.   U (k3) : U (kl) u (k2) ;
<1l<12q3 a3 Gy’ % % Ty %

(ky)+ Lf'(kl), , () |
k.

v
[

Y3 Y

.(_1)21'q3 {} 1)k1+k2+k3_1 } 'Jﬁék +1)(2k +])(2k3+1)

12 3 L2 ) ()
I I I 9y %Y -q5 ’ :

The expliéit expression for the structure constants in terms of certain

products of 3-j and 6-j symbols has been taken from Judd;Bo

Ina sketch of
the theory of cdntinuous groups Judd also mentions that the te#sor.operators R
Uq(k) (-k <aq é.k, 1<k 5721) canvbe regarded as infiniﬁesimal operators.of
the unimodular group in 2I+1 dimensiohs, SU21+1. .For this reason we also
use the-name_strﬁcture constants. for the expansion.coefficients. With Racah's

definition of the adjoint spherical tensor operator -
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ARTENEI SERRCINERSIE I (a25)
" and the propertieS”of the trace, éeveral*symmetry'relatiOns can be established.

For example, for fixed position of the first pair of indices,

_— . a. k.k k B )
= (5 () lchi_;?qg (26)

Kk gk (-1)ql cklk3k2
"4 %%

N R A

7

of, for the permutatign.of the first two columns and‘cyclic permutations‘of

columns
k. k. .k kK k. k, | ’q‘+q k k.k o o .
g = (1) o S () TP eE3T (e
% 9 ‘959,95 | e U S

When two signs are given, the‘qpper one has to be taken5 The lowervsigns in

parenthesis apply when the c¢ ~coefficients are replaced by the dv coefficien£s de- .

fined in Section v, Eqﬁ (58). "The sﬁructure constants play a central role not>oﬁly
in the theory‘of continuous groups but glso in practicél.éalculations utilizing
the exﬁansion in multipole operators. For some spéciai gaseslwe have given

the explicit expréssions for the c¢'s. R. Melhorn has wriﬁteﬁ a computer

program to calculate (in both decimal and prime factor notation) all structufg
constants important in fhé theory of perturbed angular correlation gnd reiatéd
problems. The Fransformation theory of vectors in the Lioﬁvillé space can be
formulated in complete_analogy to the ordinary tranéformation theory of quantum
mechanics. Here, we mention onl& a special casé.VIThe change between the state :

multipole representation {lUgF))} and the standard representation {|ImIm'))}
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,?'follows from (A2) and (A21) by substituting for the arbitrary operator | |A)
" the tensor - operator IU( )) or the basis operator : |ImIm ), respectively

ThlS ylelds

9,0 =Y zatm >(Im1m-lu “‘)) N T )
- lmm'_)EZ'bqu(k)").(Uq(k)“ImIm') o) :

the elements of the transformation matrix being:éiVeﬂ,by?(Ai7)ﬁkil"‘

Ta®
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