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ABSTRACT 

UCRL-18496 ~Rev. 

The effect of electronic relaxation processes on angular correlation 

and on the angular distribution of radiation from oriented nuclei is investi-

gated. The influence of the environment on the radioactive nuclei is taken 

into account by reducing the denSity operator for the total system (nucleus 

and surroundings mutually interacting) to a denSity operator for the nucleus 

alone. Elimination of the unobserved bath variables is performed with the 

help of Zwanzig's projection operator technique. The Liouville formalism 

is used throughout. The (initially unspecified) properties of the environ-

ment enter the theory via second-order correlation functions, which are 

defined in terms of equilibrium ensemble averages of certain bath operators, 

like e.g. the hyperfine field operator. 

The matrix elements of the nuclear evolution operator (which is a 

superoperator in Liouville space) with respect to a complete orthonormal set 

. qq' 
of multipole ~perators are just the usual perturbation factors Gkk , of 

PAC theory. The consequent use of the multipole representation yields 

immediately the final 'formulae needed in the' expression for both the angular 

distribution of radiation from oriented nuclei and the angular correlation 
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function. The general theory includes relaxat~on processes due to magnetic 

and quadrupole interactions. The important case of pure magnetic interactions 

is discussed in more detail. Specialization to relaxation caused by randomly 

.. fluctuating fields yields a formula which contains both the Abragam-Pound 

result for time-fluctuating quadrupole interaction, and Michals extension to 

randomly time-varying magnetic fields in multidomain ferromagnets. Exact 

high-temperature solutions are presented for single crystals in a static 

magnetic field and with magnetic-type relaxation processes (axially symmetric 

case). For nuclei with spin I = 1, the extension to arbitrary temperatures has 

been considered. The application of the present theory to the problem cif 

multipole relaxation (which arises e.g. in spin-lattice relaxation measurements 

with NMR/ON technique) is discussed. 
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I. INTRODUCTION 

The influence of static extranuclear perturbations on angular correlation 

has been exhaustively'studied during the last twenty years, and a full account 

, . 1 
of the' important results 'has been given in standard re'View articles. 

Attempts to understand the effects of the fluctuating part of the radioactive 

nuclei's environment on angular correlation, or on the angular distribution 

of radiation from oriented nuclei, have almost exclusively been based on the 

2 classic paper of Abragam and Pound and, to a much smaller extent, on the 

Dillenburg-Maris theory of random statistical interactions. 3 In the Abr~~am-

Pound treatment a time-dependent perturbation operator representing the 

surroundings is added to the static ~art of the nuclear Hamiltonian. Stand-

ard first-order perturbation theory is used to account for the additional 

interaction. 

The Dillenburg-Maris theory gains its conceptual simplicity by postulating 

the validity of a certain master equation. The transition matrix is left 

. physically unspecified and is only restricted by some invariance properties. 

The disadvantage of leaving the perturbing interaction mechanism unspecified 

is that the damping constants appearing in the final angular correlation 

function play merely the role of fit parameters. For the interpretation of 

an experiment, this is a rather unsatisfying situation. 

The present theory of relaxation effects on angular correlation and 

on radiation from oriented nuclei is based on a model which nas been used by 

the author4 to study the influence of electronic relaxation on Mossbauer 

spectra. The main features of the model are briefly described in Section II. 

In contradistinction to Coester·' s density matrix .approach to perturbed 

1 
I 

I 
I 
I 
~ 
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angular correlations5 (PAC), we will not postulate an instantaneously acting, 

time-dependent, Hamiltonian for the interaction between nuclei and environment, 

but will instead derive a relaxation operator by I'educing thedensi ty operator 

of the entire system (nuclei and surroundings mutually interacting) to a 

density operator of the nuclei alone. The more general case, in which the 

entir~ particular ion, rather than the nuclear spin, is relaxing to its 

( .• 6 
equilibrium state worked out for Mossbauer relaxation by Afanasev and Kagan 

and Gabriel et a1. 7), will not be conside;ed in this paper. Spin-lattice 

relaxation in ionic solids most often requires application of the more gen-

eral theory. The present approach yields a good description of spin~lattice 

relaxation in metals, if the interaction Hamiltonian8 is Buitably chosen. 

The general equation of motion for the nuclear density operator is a 

non-Markoffian integro-differential equation, and no explicit, practical use-

fUl, solutions (except for over-simplified special examples) are known. 

Throughout the Sections following Section II, we consider only second-order 

effects in the interaction between nuclei and environment. A further simplifi-

cation is achieved by studying ~nly the long~time behavior of the generalized 

master equation. With respect to the perturbation of a nucleus in the inter-

mediate state (PAC case), the latter approximation implies that the condition 

~c «~N is fUlfilled. The correlation time, T ,characterizes the c 

behavior of the electronic correlations entering the relaxation operator. 

( 
, 8 

In the definition of Hubbard, T 
C 

satisfy the inequality 'f > ti/kT ). 
c "" 

is temperature-dependent because it must 

Thesecond-ordel' approximation is 

sufficient only if the smallest of the nuclear spin-lattice relaxation times 

. is large compared to 'f 
C 

(which is usually true in:metals) . Of course, 
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the potential of the generalized master equation is only partly exploited; 

whenever the assumptions mentioned above are used. 

From the,equatioJ;l of motion for the nuclear spin system we get an 

operator which descr:Ibes its time evolution. We will show that the matrix 

elements of the evolution operator with respect to Fano's state multipole 

representation9 are exactly the perturbation factors G~~:(t) (we essentially use the 

notation of FS, whenever possible). We start with the general form of the 

perturbed directional correlation function for a nuclear double cascade. It 

is given by the trace expression 

(1) 

The denSity matrix P(~l' 0) describes the nuclear system immediately after 

the emission of the first radiation in the direction' ~l at time t = O. 

The denSity matrix p(~) corresponds to the second transition at a later 

time t.' Due to interactions with extranuclear perturbations, P(~l' t) is 

in general different from its value at t = 0.' We obtain it by acting on 

the initial density matrix P(~l' 0) for the intermediate state with an 
A W 

evolution operator n(t) (to be specified in Section II) 

(2) 

, T~e main problem is to derive, for a given interaction model, an expliCit 
, A 

expression for the evolution operator n entering 
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We notice that a similar expression can be written down for the angul-

ar distribution of oriented nuclei, taking into account destruction of the 

initial orientation state by relaxation effects. In the case (which is of 

very limited practical importance) where the excited state of a particular . , 

nucleus is oriented, we just have to substitute P(!l' 0) ~ Pi(O) and 

omit the index 2 in p(~)~ The angular distribution of the ~-radiation 

is then given by 

W(k, t) == Tr{p(k) net) p. (o)} • - _. 1. (4 ) 

It is time-dependent, if there is any noticeable interaction of the nucleus, , 
oriented in the excited state at time t == 0, with the surroundings. 

The more important case is that in which a p-radioactiveparent 

nucleus, with a sufficiently long lifetime, is initially oriented, thus 

causing an anisotropy in the subsequent transition(s) starting from the· 

( 
. . 11 

excited state of the daughter nuc~eus. de Groot et~. diSCUSS, for a 

" " system without relaxation (n == 1), how the angular distribution function (4) 

has to be modified in this experimental situation.) If the interaction of 

the parent nucleus with the environment is not negligible, we may again use 

Eq. (2), replacing p(!l'0)by the denSity o~erator Po for the parent 

nucleus with spin IO' The ~-ahgular distribution is described by 

.) (5) 

where p~(t) corresponds.to the state of the system after the ~-decay. In 

contrast to the PAC case, changes in the ~-ani8otropy are caused by 

reorientation effects in the parent nucleus; thus the time-depemdence of 
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... 

A." , , ,. 

= net) poco) , ( 6) 
" 

which replac~s (2). Under certain circUIllBtance~, the reorientation effects 

are completely described by introducing time:"dependent~rientation parameters;' 
. " 

~(tL in the final expression for the angular distribution (see Section VII). 

'>j 
, '. 

:' ~. 
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II. FORMAL DESCRIPrION OF EXTRANUCLEAR INTERACTION 

One aim of the present paper is to point out the interrelationship 

of quantities' used in nuclear magnetic relaxation studies and PAC or NMR/ON 

experiments and to describe in either case the influence of the environment 

on the nuclear spin system. It is, therefore, natural to base the calculations 

on physically equivalent models. We apply a procedure which has recently 

been used to study the influence of electronic relaxation effects on the 

Mossbauer line shape. 4,7 The method exploits the elegant projection operator 

technique of Zwanzig,12 first used by him in problems of nonequilibrium 

statistical mechanics. The first application to a line shape problem has been 

. b F 13 glven y' ano. All aforementioned theories, as well as most of the nuclear 

magnetic relaxation theories,14 are based on a density matrix approach. 

That the latter is directly applicable to our problem is clear from Eqs. 

(2) and (6). 

We recall some of the main features of the widely used model: The' 

radioactive nuclei (dilutely dissolved in a host lattice, so that their 

direct interaction can be ignored) are considered to be imbedded in a heat 

bath responsible for the extranuclear interactions we are interested in. ) The 

elimination of the unobserved bath variables is accomplished by means of 

Zwanzig's formalism, which combines the use of Liouville operators with that 

of an appropriate projection operator. The Hamiltonian for one particular 

nucleus is the'sum of three terms 

(7) 



• 
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The Hamiltonian for the nucleus, ;Un' includes the interaction with an 

external magnetic field •. (Although :we have also investigated ·the NMR/PAC 

and NMR/ON situations including relaxation effects, l\l'e here restrict ourselves, 

for the sake of simplicity, to the case where.no radiofrequency field is 

applied~) The second term, ~, is the Hamiltonian for the reservoir. With 

respect to the interaction Hamiltonian, J!nR' we only assume that it can be 

written as a scalar product of irreducible tensor operators. 

(8) 

acting on the nuclear system: and the bath, respectively. The density operator 

for an ensemble of equivalent nuclei in the reservoir, W(n,R), obeys the 

. equation of motion 

l
' dw(n,R) 'l.1 ~ ( ) dt =[<H, W] == <H W n,R (li = 1) 

" On the right-hand side of (9) we have introduced a spectal superoperator J!, 

the Liouville operator associated with the Hamiltonian, J:t, arid defined by; 

. the commutator relation as indicated in (9). The concept of.superoperators 

has been generalized to include, bes:i.des the Liouville operator, any super-

operator, R, transforming an ordinary operator, A, of a given. Hilbert space 

" into another operator B = RA of the same space. In order not to obscure 

the main physical features of the paper, we have collected the mathematical 

tools in the appendix. Of special interest for our problem will be the 

finite-dimensional unitary vector space, tt, spanned by the (2I+l) state 

vectors of the nucleus with sp:i.n I, and the associate Liouville space, L , 
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of dimension. (2I+l)2, spanned by the operators A of U. The fact that 

the operators A, B, ••• of u.. (transforming a state vector 1'1/1) into 

another one, i.e. 1'1/1);::: AI'I/I) ) may be considered elements of the Liouville 

space, :t. , is indicated by adopting the notation I A). The action of a 

superoperator R on IA) yields some IB) ;::: RIA). The reader is referred to 

the appendix for details~ 

The reduction of (9) to an equation of motion for a reduced density 

operator, pen), of the spin system alone is achieved b~ Zwanzig's formalism 

using the special projector13 

where PT(R) is the equilibriUIil density operator for the reservoir. ThJ 

operation (10) performed on W(n,R) yields the reduced density operator, 

pen), which is independent of the bath variables· 

P W(n,R) ;::: PT(R) pen) 

The irrelevant part (l-P) W(n,R) in the decomposition 

(10) 

(11) 

W;::: PW + (l-P)W . (12) . 

is exactly eliminated: from (9) by the projector technique. It is yery useful 

" to split the Liouville operator }f into 

(14) 

• 
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(15) 

" i.e. to combine with ;U the static contribution of the spin-hath interaction, n 

given by the ensemble average 

" " (J~n)R = TrR (~n PT(R)} (16) 

"I "II . 4 
The Liouville operators ;U and;U obey the relations 

"I " I "II "II "II 

p;U :::;;U P, p;U P = 0, p;U (l-P) = p;U , / (17) 

which have been used to simplify the expressions. With the initial condition 

that at t = 0 the combined n-R-systemis uncorrelated, Le. (l-P) W = 0 

for t = 0, we derive the following integro-differential equation forp(n) 

(18) 

The influence of the heat bath on the nuclei is condensed :1.n the relaxation 

(super) operator 

" " " ", 
M(t) = TrR(~n eX}l(- it(l-P)J:t) A~n PT(R») (19) 

We notice that the exact eq\lation of motion is non-local in time. As is well-

known from non-equilibrium statistical mechanics the non-Markoffian behavior 

of (18) arises' from the exact elimination of the time-varying irrelevant 

part of the density operator W{n,R). Equation (18) shows that it is not 

in general possible to describe the influence of the environment by adding 
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,a time-dependent perturbation to the nuctear Hamiltonian as was assumed ~.g. 
~ , 

by Coester. / For applications to a particul'ar physical problem, it is often 

desirable and also sufficient to study approximate solutions of a problem. 

" We restrict our further calculations to the second-order term in ~n' i.e. 

" " 
we will replace the ,Liouville operator in the exponential,by ~R' A rough 

criterion for this to be valid has been given in the introduction. Using (8) 

we can factorize (19) into nuclear operator parts modulated by correlation 

'functions depending on the properties of the dissipative lattice system. With 

v (k) = V (k) _ (V (k)) (20) 
q q' q R 

, we define correlation functions and their Fourier transforms by 

ck'q'(t) = !i(_l)q+q'([v (k)(t) v (k')(O)]} 
kq 2 -q' _ql +'R 

Dk'q'(t) =! (-l)q+q'({v (k)(t) V_'q,(k'),(O)]}R 
kq 2 -q' 

-iwt e 

(22) 

(23) 

• 
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Using (A25) and the ident~ty (a(t) b(O»R = (a(O)~(-t»R it can be shown 

that the following relations hold 

k " * q+q' k I q I Jkq~ (m) = (-1) J -. (-m) k-q 
= '( -l.)q+q ~ J k- q (m) 

k'_q' 

Kklql(m)* = ('_l)q+ql+l vIt'_ql(_m) = (-l)q+ql vIt":q ( ) 
kq. ~_q ~~I _q I m 

(24) 

(25) 

The quantities defined in (22) and (23) are pot independent of each other but 

related by 

T,k:.' I . ~I I 

~qq (m) = tanh (~2) J kq
q 

(m) (t3 = l/kT, 1'i = 1 !) (26) 

which is analogous to the well-known quantum-mechanical fluctuation-dissipation 

theorem. We follow the' assumption bYWang~ness and Bloch15 that the fluctuations 

of the magnetic and electric fields (connected with k.= 1 and k ~ 2 

respectively; see Eq. (8» are uncorrelated and, therefore, restrict ourselves to 

correlation functions with k = k'. In addition, we will be interested 

mainly in the axially symmetric case which requires q I = - q. The c0rrelation 

functions (24) and (25) are real for k = k' and q' = -g. 

Introducing (22) and (23) into (19) we find 

M(t) = L 
k=1,2 

.~ .{ Ckq"t) T (k) 
~ kq \ q 

q;q =-k . 

(27) 

+ nkql(t) T (k) exp.(-it"H,) T+ (k) } 
. kq q. q' , 

, where, according to our notation, T (k) 
q 

iathe Liouville operator belonging 
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'" 

" to the nuclear-part ofthe:tnteractionHamiltonia,n :(8) and T+ (k) is the 
g, 

super-operator' defined by the', anticonunutatbr relation 

(28) , 

The exact formal solution of (18) is easily found by Laplace trans format ibn 

to be 

(29)' 

where pep) is the Laplace transform of pet) and 

~(p) = L " ,t '" 
qp e-P M{t) 

= 2.:2: 
k q,ql 

1 I~" dID T (k) [P+iID+tU'Jl~Jkq,i (IDj~ :, (k)' -
7T. "q', " ,'" . kq q " 

.JXJ' " ," , ,""',' 

+ Kkql(ID)'T+ (k)} 
kq , ql , 

, , 

l 
/ 

The form of (29) establishes theconn~~tion with the Laplacet~ansfobne of ,,' 

"' .. 
Eqs. (2) and (6)., The evolution operator 'n(p) (or its Laplace inverse 

" net»~ , is now explicitly defined by (29)i'n terms of the static nuclear 
"'I 

Liouville operatorll' and the effective interaction of the nuclei wi ththe 

'" lattice M{p). The relaxation operator (30) is a function of, the spectral 

denSity of the correlation functions (22) and (23). 

. .'~ " 
'" , 

, , . 

.. j': 

, " 
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For times t > 1" , the generalized master equation (18) can be approximated by . c 

a Markoffian equation of motion. Since we restrict ourselves,to'second';'order 

effects in the spin-bath interaction, we may approximate p(t-1") in the integral,. 

of Eq. (18) by the f~rmal solution of the unperturbed Liouville equation, 
AI 

p(t-1") = exp(-ill 1') pet). Furthermore, since the correlation functions, and 
... 

consequently M(t), are practically zero for t > ,. , the upper limit of the c 

remaining integral in Eq. (18) may be pushed to infinity. We will make use of 

the identity 

I exp(ixt)dt = 1 
i - + 7T 8(x) 

x 

and decompose 

N == 'I M(t)exp(J)'t) = M + 1 M 
o 

In the representation'we will use, bothM and M are real, i.e. we separate 

-a second-order energy renormalization M from the damping term M. We will give 

explicit expressions for Mand M for 'the special case of an axially symmetric 

envirorunent. The approximation leading to the Markoffian equation of motion 

dp(t) 
at 

AI = . 
i (ll + M) pet) - 14 pet) (l8a) 

is valid only for t > "c and this requires ,1"N» "c for radioactive nuclei. 

. (For impurities in metals, this condition is fulfilled in many cases.) In 

the region where,. is of the order of magnitude of the mean nuclear lifetime, 
c ' 

TN' results based on the approximation (32) have only very limited validity. 

To find a reliable solution in this case we could e.g. first specify the time 

behavior of the correlation functions in (27) and then look for a solution 

of the'non-Markoffian equation (18). In this paper we will restrict olITselves 

to the aforementioned approach with the advantage'that the noise spectrum of the 

·fluctuating lattice need not be specified at this· stage, of the theory. 



-14- UCRL-18496-Rev . 

. III. CONN1OC!TION· mmiEEN THE EVOLUTION· OPERATOR AND THE 
PERTURBATION FACTOR 

For definiteness we choose the PAC case to point-out the connection 

between our formalis~ and that reviewed in the existing comprehensive articles 

on the subject. l We interpret the density operators appearing in (1) as 

supervectors in the Liouville space and use the definition of scalar product 

(A9) to rewrite (1) as 

(In the case of a y-transition, p(k,,) is Hermitian.) We now use the.expan-
-c 

16 
sion of an operator into an orthonormal set of basis operators or basis 

supervectors in Liouville space. For the problem of extranuclear pe.rturbation 

of the nuclei in 

spherical tensor 

a given state specified by spin I, we choose the normalized 

operators U (k) (their properties are described in (Al?) 
q 

to (A20» as an appropriate set of basis supervectors. USing (A19) twice, 

(33) reads 

W(~, ~; t) = L (p(~)IUq(k»)(Uq(l<.)ln(t)IUq\l<.'»)(Uq\k')lp(~,:O». 
kq,k'q' . . 

. (34) 

The scalar products are ~efined by (A9).The evolution operator is labeled 

by four indices as is characteristic of a superoperator tran~forming one 

ordinary operator into another. The k's assume all integral ·values up to 

21; the multipole orientation q, as it was named by Fano,9 is specified 

by all integral value.s between -k and k. The multipole expansion clearly 

avoids the cumbersome intermediate steps of the usual calculations performed 

>. 

.... 
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within the familiar (!Im») . representation •. In addition, the transformation 

properties of the quantities entering (34) became obvious. From comparison 
. ..!. . . A A 

of (34) with (FS. 208), both specialized to the unperturbed case (n = 1), 

we immediately find (in terms of spherical harmonics and the coeffiCients, ~, 

defined by (FS. 99» 

(p(~) !Uq(k» :; ~ Yk Q(e,<1» [lm/(2k+l)]1/2 (35) 

and thus benefit from the fully worked out theory of unperturbed angular. 

correlations. Returning to the general case we define our perturbation factors by 

(36) 

A simple change of repi'esentation (A28) together with the use of (Al T) yields 

~ 2I-m -~ (I = L (-1) a J (2k+l)(2k' +1)' . m' 

mm. b . a 0 

, A , 

(~ ~!n!ma. ma) 

I 

-m 
b 

I 

-m 

/ 

a 

The expression on the right-hand side has exactly the. general form of the 
31 . ·A . 

perturbation factor (FS. 209), if the evolution operator n can be represented 

in the special form 

D X = I\. X 1\.+ (X an arbitrary operator of U) (38) 
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A(t) is a unitary operator describing the evolution of the state 11m)" 
, ,"-

The matrix elements of n in the lIm)~ representation are easily calculated 

from (38) using (AI3) and (AI4) 

From (36) to (39) we learn that the G-operator defined in (FS. 206) is a'ctuallY 

a special superoperator in a Liouville space. Consequent use of the concept of 

Liouville representation leaves no uncertainty about the character of the 

used quantities and no arbitrariness in labeling them with respect to a given 

basis, 

We recall that we - in contradistinction to usual treatments - will 
.~ . 

make no use of the standard representation as in (37) and (39), but perform 

all calculations within the state multipole representation. The general 

formula for the angular distribution shows us that this is the preferred 

framework with repsect to the analysis of an experiment-, It is also a con-

venient form for deriving the symmetry relations and general properties of 

the perturbation matrix G~~:(t). 

' . 
• 
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, IV. GENERAL PROPERTIES AND SYMMETRY RELATION, S OF G qq I 
kk' 

The reality condition 

implies that the following relations for the real and imaginarypartei hold 

, I 

The behavior of G~~, depends, of course, on'the prope;rties of 
A 

nand, 
A A' 

consequently, on those of (iJ:J+ M). If we set A equal to the rotation 
A 

( 40) 

( 41a) 

( 41b) 

operator D, (38) defines the unitary super operator D associated with the 

rotation D in the ~ector space tl . . In addition to the transformation law 
+ A" 

of an operator A, which can be rewritten as A', = DAD == 'DA, we get for 

the transformed superoperator after the rotation 

AI AA"+ 
R = DRD ( 42) 

A A 

It follows from the requirement (A' IR 'I Bi) = (AIRI B) that this is in fact 

the general transformation law of a superoperatorunder an arbitrary unitary 
" A A+ A+A A 

transformation 0 (0 0 = 0 0 = 1; unitary with respect to the spur metric 

" (A9) of L ). The matrix elements ofD with respect to the multipole 

representation' I U (k» are just the rotation matrices: 
q 

(uq(k)ln/uql(k
l
» = (Uq(k)ID uql(kl)D+) = L 

q 

, , (k) =iJ' ' " 
qq' .' 

(U(k)!U_ (kl».EL (k') 
q q q l' 
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It is obvious from (43) and (36) that 
qq' Gkk , . transforms under rotation 

( <x, f3, ')' ) as :1 

/ 
(44) 

In the important case that the physical system 1.s invariant under a certain 
A A A A A+ A 

transformation 0, Eq. (42) is modified to R' == ~ R e = R. One of the 

simplest examples is that· of axial symmetry c . 
00 

The lnvariance condition 

for rotation about the symmetry axis applied to (44) leads to the well-known· 

restriction 

qq' qq 
Gkk , = 0qq' Gkk , (for C ). 

00 
(45) 

A 

It follows from the unitarity of.~ and the series expansion of the resolvent 

(29) that in general 

(46) 

holds. qq' Therefore the symmetry of Gkk , is determined by the lowest symmetry 

of the operators in the denominator. 

If the ensemble average over the various orientations of the micro-: 

crystals of a 'polycrystallinesource can be expressed as an average over 

angles (which is almost always tacitly asswned), we find for apolycrystal 

without a preferential axis, by averaging (44) over all Eulerian angles, ... 
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(47) 

which has been proven 'for several special cases (see ·e.g. (FS.231) and (PS. 234», 

In polycrystalline sources with a preferential direction (as in the presence 

of an external magnetic field) the only general restriction is again (45), 

as in single crystals. 

There are other relations for the perturbation factors which follow 

directly from the multipole expa;nsion of the resolvent (29) - explicitly given. '. 

in Section V. USing (30) and (36) we conclude that 

oq . 
Gok = 0 (k f 0) ( 48) 

is generally true and ,not restricted to static extranuclear interactions 

(compare Alder ~ al. 17, Section II. 2). Equation ( 48) expresses th~ trivial 

fact that the operator' Uo(o) commutes with every operator, sothat (Uo(o)l 
"', ... 

(i ~ + M) = o. However, the relation 

G
qo = 0 ko (k 1= 0) 

is not generally valid, if relaxation processes must be considered. The 

reason is apparent from the second term on the right-hand side of (30) which 

leads to an anticommutator, whereby the previous argument fails. We mention in 

passing that (49) becomes approximately valid in the high-temperature limit. • 

t:W « 1, because ~~ q I (0) may then be neglected compared to J~~ q '(0) • 
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V. MATRIX ELEMENTS OF THE MULTI POLE EXPANSION OF THE RESOLVENT 
. . A . 

We go back to the Laplace transform of n(t) defined in (29)., The 
A '. A, 

resolvent, n(p), is. a function of the static perturbation;U and the 
A 

damping term M(p). The Hamiltonian for static magnetic and quadrupole 

interactions, 

li + li' 'd" magn qua· (50)' 

(F Q (K) stands for the· extranuclear static" fields including the part 

induced by the surroundings), can_be expressed in terms of the normalized 

It · 1 t' U (K) mu lpO e opera ors Q • Using the Wigner-Eckart theorem and (A17) we 

have 

. and the, matrix elements of the Liouville operator asso,ciated with (50) are 

simply given by 

(Uq(k)I~'IUq~k'» = L (-l-}Q ~ F_Q(K) (Uq(k)I[UQ(K)~ U~,(k')]) 
K,Q . , 

'. = L (-l)Q ~,F_Q(K) 
K,Q 

The structure constants, c, are defined in (A2lJ) as the product of a 

(51) 

(52) 

Wigner 3-J and 6-J symool and a phase factor, which vanishes for (K+k'+k) = 

even integer. By their definition, the structure constants are different 

from ~ro only if Q+q'=q. and the triangular conditions for the 
" 

6-j symbol are fulfilled., 

J; 

.' 
I 

.... j 

1 
\ 

" 1 , 



-, 
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Because we identified T(l) and T(2) ~th the tensor operators of 

the nuclear magnetic moment and quadrupole moment, respectively, the c;l.uantity 

F(l) equals the effective magnetic field (except for the sign, if 

,J:t = - I-L • H ff). FS 1 S definition of the quadrupole, Hamiltonjan contains magn e 

an extra factor lm/5 which is not preset;tt in (50). The corresponding quantities 

are related by 

In terms of the magnetic moment,l-L, and the quadrupole moment, eQ, the I1c 
of (51), read 

1 

o 

( I 2,' I ) ]'-1 
-I 0 I 

In the appendix we have, collected some useful symmetry relations for the 

(53a) 

(53b) 

structure constants. Making use of the last equality in (A26) or more directly, 

of the properties of the scalar product (52), we find 

(54) 

Equation (54) implies, in particular, that 

(U (k) 1;111 Iu (k» = 0 
o 0 

'" The calculation of the matrix element of M(p) 1s straightforward and yields 
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The sums over ,ql and ~ are redundant. The structure constants, 

, n'~ , 
dQ, I' ,appear as a consequence of the anticommutRtor 
q~ , ) 

T+ (K) Iu (k 1»= R-_/[U (K) U (k I)]) and differ from the likewise 
Q I q' -x , Q' , q' + " . 

, ' 

labeled c only in the phase. We can ,express this by gi"ing (A24) the 

form 

(57) :. 

(the definition o'f c bcing obvious from the comparison of (57) and (A24)). 

Then 

(58) 

In contrast to 'the CiS' the d's , , vanish for ~ +~ +k3 = odd integer." The 
, ' 

sign changes in the symmetrY,relations are indicated in (A26) and (A27). 

(See the remarks following these formulae.) 

:,..' . 

, : 
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The phase relations together with the triangular conditions restrict 

the possible combinations of the multipole orders considerably. For 

relaxation processes caused by tensor operators of the first rank ("magnetic_ 

type .relaxationprocesses"), K=kl=l, we have the selection rules 

. (59a) 

(59b) 

" Analogously, for K=2, i.e. if relaxation is due to quadrupole-interaction, 

. the upper indices must fulfill at least the conditions 

. (59c) 

, (59d) 

for the coefficients c and d to be non7.ero. For a system with cylinqrical 

symmetry (q1 = ~ and 
...KQ1KQ: 18 / 
J KQ = 5Q, ,_QJ""KQ)' . it is obvious from (56) that 

again 

In the applications, we will be interested mainly in this.csse. Moreover, for 

a large number of experiments the magnetic-type relaxation processes are 

dominant. We specialize (56) to this important case by restricting K to 
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K = 1. By virtue of (59a) and (59b) the sums over kl and ~can be 

perform~d, and we are left with the much simpler expression 

(60 )" 

/ 

If the quadrupole interaction is negli.gible compared to the magnetic energy 
..... , 

in the It appearing in the resolvent under the integral, the second term 
..... 

in (60) is nonzero only for k:.=k' ±l, because It is diagonal. Even if magn 
..... , 

the full It is not strictly diagonal, it will often be a reasonable approxi~ 

mation to fix the frequencies in the integrand by a diagonal part approximation 
..... 1 .......... A ..... 

for the resolvent. To do this we decompose It '; ltl +}!2 where}!1(}!2) 

has diagonal (non-diagonal) matrix elements only. Then to the lowest approxi-

mation 

The above approximation is be,tter the slower the correlation functions J (ru) 

and K{ru) vary·within the range of the frequency shift due to exact diagonali-
.....1 

zation of}! {measured with respect to the frequencies of the di'agonal part 

r __________________________________________ __ 



~ .. 

" '. 

' ..... , 

.... 

··,11 

,'. .... 
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. . . , . ", . , 

, ,'. approxima~ioIl)'· The two -parts. into which (60) decomposes'in the caseS mentioned 

are 

. " 

with' , .", 'J . 

(-l)Q (c1kk )' .. 2 .... . 
, . Qq1q , ... . 

. ' 1 L+cq x - .. , ' 
7T 

,. ..JX) 

p+i(J)+i~ , 
. qr· 

' : 1 
, X,

,. : 7T 

+1 

L Q;::l 

. ·I'-f<>Q· ..JX). 

lkk lk±lk 
c d 

Qq1q -Qqql" 

.... 

,For the pure magnetic case , wehave according to (52), (53a), and (A24) 

ill,'= HI F. (1) c1kk 
= HI (-H ff) q (3/fI(2I+1)(I+l)])1/2 

Kq 0 oqq .' e .. - , 

(60a) 

(for all kj . 11 ::1) . (61), .. ' ' . " . 

For later use "Ie gi vefor this special case the final pairs of matrix elements ' '.. . .' . 

• A ~ , 

'.for, N == M + i M , introduced in Eq.(32) 

" ;1 
~l 

:1 
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. . .,,: :', " .. ~ '; ~ : :'" , ' ' +1 " "(' )2' ", ;'" 
,(U,q" ,(k) ,1M, ,I"t1q(k) '= R12", V :::'-' , ,(,: -"l,,),Q,', ikk J lQ (ru..Q')' 

" ,,~1 " ' ,CQql q ", ~QL ' 

(62a) 

': . ' .. "~ .. ' 
" ' 

(u q(k)I,MIUq (k», :;,~R12, ,f' (-l)Q ',' (c~~q)·2IQ("'r;Qk 
" ~l 

(62c) , 

~. '. 

.' ~. : . 
'( 62d) 

. ' .... ' 

, The functions I' and' I" Q Q ,are the Hilbert transforms of the correlation ' 

", 4 
functions 

'£,00,', ' J1,Q (x) I
Q
' (y), = !. We lQ ' "; 

7T 'x - Y 
..;:JO 

obeying the relations 

I" (;' ) 
"Q y 

I'_Q(y) =;. IQ'(-Y)," I" (y)= I'; (-y) , 
'-Q " '. Q',' • 

All. the correlation functions are real for a system with ax,ial s ynune try ; , 

(63) 

, (64) 

, therefore the' same is true for the matrix elements (6~). Using the properties 

(24), (25), and ( 64) of the correlation functions and thesymluetryrelations 

for the structure constants given in the appendix, we easily prove that for 

both k' = k and k' :;k±l 

(65a) . 

,,\' 

I, 

t 

,j 

r 

I 
r ., 

',1",'1,. 

" 

.: ~ . 
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'. .~ . ~. .'. 

(65b) 

We have shown tndetail in this section thEl1; the various matrix elements' 

necessary for the eval\lation of· G:-: a.re expressed in terms of the nuclear 

multipole moments J..L and eQ, the extranuclear static fields,and·the correlation 

functions depending on the properties of the surroundings. The nuclear spin 

does not appear explicitly but, of course, determireS the range of pqssible 

k values and the numerical value of the structure constants. The evaluation 

of the perturbation factors is completely· reduced to a Simple algebraic 1fisk. 

"'j. 
. .,,;i 

.. ".-

. ', ..... . 
" ' 

:: .' 

• • I . 

,:< .. ":' 

, . 
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VI. ' CAWULATIQN OF 4 THE PER'l'URPATION FACTORS 

A. ' General 

We now have the choice either to diagonalize the denominator tn the 

resolvent,(29) or to invert a finite-dimensional matrix in the Liouville 

space. In both cases one has to use a computer for higher spins. We 

briefly discuss in what follows how the general problem can be adjusted 

economicallY,to a subproblem defined by the experimental situation. We will 

study in detail spedal problems which have exact solutions. In this paper 

we always use the method of matrix inversion. 

In the general case is given by the inverse of the following' 

(21+1) x (21+1) , matrix 

with elements defined in Section V. To define what we called subprOblem, 

we consider a ~_~-correlation experiment. 
I 

Only the even-even terms of 

qq' Gkk , are of importance in this case. Fot' pure radiation, the maximal k 

(66) 

is given by Min (21, 2Ll , 2L2 );Ll and L2 being the m1.l1tipole orders of 

the radiations in the cascade. The dimension, of the matrix to be inverted is, 

however, determined by the nuclear spin only. For an ideal experiment it 

would be sufficient to calculate all possible (k, k' even integers). 

The admixtures of the other matrix elements to this relevant submatrix can 

be taken into account exactly with the help of the so-called partitioning 

technique. The problem is simplified by the special structure of the 
" " "',,, 

matrix a == p·l + ill + M, as we ,vill see later. " First, we arrange' a in 

the'following form 

~'. 

1. 
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.~ . 

>, .. : 

;;. 

"(~) = 

, .. :', 
, . 

k' k '0·2 ··4.·.. ,1 ',3 5.,.0 

0 a 
,00 

0 .... .. , : .~ a 
01 

a03 . . 
2 a22 
4 !;l44' 

-
1 

.. ~ . . a lO a12 all 
,. : .. . . 

3 a
33 

5 . 

"W,e have suppressed the possible q' values. in ',(U (k) I ~'Iu, (, k 
I »'~aqql 

"q q,' > kk" 

. " 

:"so that every element, '~k" is infact a matrix itS~lf.19Secondly,we 

partition the total matrix into blocks of two square matrices A and D ,', arid 

the rectarigular matrices Band C. The interesting part of the re~olvent 

n can be determined from the following theorem for partitioned matrices 

therefore, , 

" 

(A _ BD-IC)-l 

D-lC(BD-1C_A)-1 

,I 

(n)kk I - [(A 
-1 -1" 

ED C) Jkk, 

(BD-l ";ArlBD-l 

( D_CA-IB)-l , 

(k., k' even intege:rs) 

(68a) , 

( 68b) 

For kmax >4 we are, usually interested only in the perturb~tion factorsjtp 

to k = 4. In a real experiInent,higher..,order terms, even ifthe6r~tically , 

. '. . ' 
... ' .:'": :.~:;:' ~' 

;. .. 

,. ~ . 
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possible, are not obtained with sufficient accuracy. The described procedure. 
, 

might be used a second time to determine the experimentally relevant Gkkl 

(k, kl = 0,2, 4) • 

2. Examples 

2.1. Randomly fluctuating fields / 
Two interesting cases have been discussed in detail: 

. 2 
Abragam and Pound 

have treated the case of a randomly fluctuating quadrupole interaction as it 

appears e. g. in liquids. Micha 2 extended the method to a multidomain ferro

magnetic metal with both an average static magnetic' field in each domain and 

a randomly time-fluctuating component. No external fields!are present in 

either case. The common apprbach with respect to the time~fluctuating part 

is to split the ensemble average into an average over directions 

and magnitudes of the perturbations. If we interpret our bath operators . 

V (K) (K) (see Eqs. ( 8) and (20» as classical fields 
. (K) 

as in Q 
or v

Q FQ ' 

(50) , we must also read the former ensemble average, (. T dR' as an 

.average over an ensemble of random processes. The IDal.n assumptions 'used by 
. 2 

the authors are ~ «TN and m~ «1 (where ill is either the Larmor c· c 

frequency in the average static field or wab ' the splitting of the inter

mediate state by interactions other than the fluctuating field gradient). 

In the following we show how the same results can be deduced from our 

formalism. TQe first assumption justified the use of the Markoffian approxi-

mation, as we mentioned in Section II. The condition W~ «1 allows 
c 

us to neglect the frequency dependence of the remaining correlation functions, 

1. e. to write It follows from (6o) that this approximation 
"I 

is equivalent to a cancellation of the static Liouville operator, }~, in 

the integrand. 
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Because (U q (k) IMlu q ~k'» 
,.. 

transforms under rotation as n ( seeEq. 

(44» the average of the relaxation matrix over the Euler angles can be 

expressed in a form analogous to (47), i.e. 
. [: 

angles. 

(u (k)IMlu ~k'» = 0 ij 0 (2k+l)-1 \' (U_(k)!Mlu_(k»= 
. q q' . kkl' qq'. L q q 

q 

A glance at (56) shows that in the present approximation only the first term 

contributes, hecause we have 1>.1 = k2' ql = ~ and the structure constants 

c and d cannot be different from zero simultaneously. In the first term 

we can neglect the imaginary J2art for ffi-r «l. c (It can 4 be shown thet for 

an exponentially· decaying corr~latiqIl function" 

form of the associated ~~«(t); is smaller than 

KQ ' 
. CKQ(t), the Hilbert trans-

~~«(t) bY,a factor 

roTC') Subs~ituting the surviving and properly Simplified part of (56) into 

( 69), we find 

K 
1 ~, (_1)k+K+21 

21+1 {

I 

. I k 

The sums over the squared structure iiconstants can be perfOI'lned using the. 

orthogonality relation for the 3-,j symbol and the sum rules (6.2.9) and 

(6.2.11) of Edmonds' boOk.
20 

.. il 

(70) 
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The relaxation consta~ts, (70), are exactly the same as those reported 

by Abragam and Pound (their '.~q. (71» and Micha (his Eq. (21». 

For K = 1 and an exponential correlation function with a single 

. correlation time 

+1 

L Q=-l 

't" 
C 

we find!' 

, 

and therefore, using (53a) and the explicit expression for the 6-j symbol and 

the gyromagnetic ratio instead of ~, 

The perturbation factor is given by 

Gkk(p) = (2k+l)-1 L[P+i~q+~1-1 
q 

from which Doth the time-dependent and the integral attenuation factors 

are easily der~ved. 

(71) 

(72 ) 

In (70), the sum of ~~ over the multipole orientation Q is 

invariant under rotation. The correlation functions can therefore be described 

with respect to an arbitrary coordinate system. For an axially symmetric 

field gradient with an instantaneous symmetry axis along 

r ( -l)Q J2Q(0) = (V 2) 2Q ZIZI 't"c 

Q=-2 

Zl , we may write 

The lengthy exprestiion for ~. (see (FS. 354» will· not be repeated here. 

.. 

" 

I ., 
! 
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2.2. Static n~gnetic fields and magnetic relaxation processes. 

The high-temperature limit 

In the last examples the terms depending on the correlation function, 

K(ill), dropped out by averaging over the directions. The same mathematical 

simplification may also be effected in single crystals without the assumption 

of randomly fluctuating classical fields. We have. mentioned at the end of 

Section IV that, by virtue of (26L the damping part of the relaxation matrix 

reduces to diagonal form in the multipole representation if ~« 1. The 

frequencies we are concerned with are integral multiples of the Larmor 

frequency ~ belonging to the effective field at the nucleus· (see Eqs. 

(62a) and (62b». The high-temperature limit in nuclear magnetism may in 

fact include rather low temperatures e.ven if the effective field is high. The. 

study of the analytical solution of the high-temperature approximation is 

therefore of some interest. 

In the following we always assume that the quantization axis is along 

Heff and that no quadrupole interaction is present. The use of the matrix 

elements (62) requires 'fN» 'fc' as before. We restrict ourselves to the '"' 

diagonal terms (62a) and (62c). The solution is then given by 

which is .exact in the present approximation, valid for arbitrary k, and 

does not explicitly depend .on the nuclear spin I. The order of magnitude of 
"' ) 

the second-order frequencyshif't cannot be estimated without specifying the 
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electronic correlation mechanism. It is negligible for ~tc« 1, but 

might be appreciable in situations where ~Tc ~ 1. Using the abbreviations 

the time-differential pertUl'bation matrix is given by the Laplace inverse 

of (73), 

-itv - ",kqt 
G~( t ) = e Kq (t > 0). 

The time-integral perturbation factors follow immediately from (73) by 

substitution' of p = l/TN and multiplication by l/TN• 

(74) 

The main deviation from the Abragam~Pound solution (70) is that there 

.exist individual damping constants for every multipole orientation q, It 

follows form (65b) ,that vk = -vk ,i.e. the frequency shift in (74) q -q 

leads to a symmetrical change in the frequencies at ±q relative to the 

center at q = 0·, The associated damping constants are even functions of 

q ( A.. - A-- ) Thi s follows from (65a) . . -kq - . "k-q , 

Introducing the explicit expressions 

lk1~ 
c = aq oqq " ex =.J3' [I(I+l)(2I+l)]-1/2 (76a) 

(76b) 

into (62a) we find 
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The appearapce of the gyromagnetic ratio shows. that the correlatbn functions 

are expressed in terms of an effecti ve hyperfine field operator ~f' 1. e" 

the interaction Hamiltonian has been given the form 

With !!. = !!eff - (!!.eff)R the correlaUon functions are then defined by 

JIO( ,,~ 1 
10 '-<1 == 2" L 

(78 ) 

(79a) 

(79b) 

which shows that to all multipole orders, the damping is determined by secular 

and non-secular processes. As is well-known from NMR studies, the latter 

include the effect of transitions induced between the states of different 

multipole orientations by the transverse components of the hf operator. 

The secular processes describe the influence of the spread of Larmor , 

frequencies due to the change of the z-component of the hf operator. 

The damping constants (77) may be expressed in terms of the appropriate 

longitudinal and transverse spin-lattice relaxation times, Tl and T2" 

Instead of (77), we then have 

For rapidly decaying correlations in the electronic system,~~c « 1, 

and isotropic hf interaction, Tl becomes' equal to T2 , and the damping 

i 
I 
I 
I 

I 
I 
I 
t 
\ . 
t 
\' 
I 
f 
f 
f .' ~ .. , 
r 
I 
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constants are then independent of the multipole orientation q. 

The case Tl 1= T2 should under favorable conditions be directly 

observable in a time-differential PAC experiment. Let us look at a typical 

experimental geometry. We orient the static magnetic field perpendicular 

to the detector plane and observe the two radiations with collinear counters 

(8 = 7T). Furthermore, we consider the case k = 2 
m8..x 

(realized e.g. in 

the extensively studied 1+ Ml 2+ El ) 1 cascade of lOORh). The 

directional correlation function is then given by 

. , 
:·1 + ~ A22 exp( - 3t / Tl }[1 +3. exp( .. 4t{1/T2 - liT 1) }cos{ v22 t)], 

where A22 is the correlation factor (FS.92) of the unpertUrbed correlation 

~2 ~2 and v22 = 2~ + v~2' Besides the second-order ~requency shif~ v~2' the 

relaxation is manifest in the two damping terms. If we eliminate from the 

experimental data the exponential decay (due to' the nuclear lifetime and the 

relaxation factor 3/Tl), a damped cosine oscillation should occur according 

to the second exponential in the.equation for'W1(t). 

2.3. External magnetic field and magnetic relaxation processes, for arbitrary 

temperatures 

We consider a simple example for the general case sketched in Section 

VI. 2.1. Because the results are now no longer independent of the nuclear spin, 

it must be spec.if'ied from the outset. We choose the Simplest case and take 

I = 1 for the spin of the intermediate state. The dimension of the particular .. 

'" unitary vector space is N = 2I+l = 3. The matrix (a) introduced in Section 

VI.1. gets the following explicit form for the present example 

{ 

I 

'I 
1 

.1 

1 

1 
I 
I 
1 
I 
I 
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p ° ° 
(~) = ° (U(2) I P+i(Jlmagn~M)+Mlu(2» (u( 2 ) I M+iMI u( 1» 

. . . . 

(u( 1) I M+iMlu( 2» , (u( 1) I P+i(Jl +M)+MI u( 1» 
"magn . 

(80) 

where the missing indices, q,q', indicate that each element in (80) is itself 

a square or rectangular matrix. For an axially synunetric system, only terms 

with q = q' are non-zero. All matrix operations with the supermatrix (80) 

can then be done a3 if the elements were simple numbers. We nevertheless use 

the rigorous matrix notation, because the formulae are then easily generalized 

to the nonsymmetric case without change in the order of terms. 'It is a gen-

. eral feature of the resolvent that (besides p in the upper left corner) all 

elements of the first row vanish. This has been stated in a·different wal 
in Eq. (48). The asymmetry of (GO) is obvious 'from the nonvanlshinl3 element 

of the first colunm and the .other "low temperature" nondiagonal matrices in 

(80). 

It follows from (68) that, due to special structure of (80), the first 

column does not contribute to the inverse of submatrix ("b) labeled by 

k = 1,2. Explicitly, we find 

1 
= -P 

oo() ("-1)00 -00 1 
G iO p, == - b il M10 ' P (81) (i = 1,2) , 
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Le. Goo(t) = 1, as required, and the even-odd-term is of no interest for 

"/-"/ directional correlations. The remaining (b)matrix.consists of the 

diagonal square matrices, already. known from (73), and the two ,rectangular 

matrices belonging to multipole orders k = 1 and k = 2. Using (74) and 

(65), we find the following tridiagonal matix (see next'page) 

I, 

., 

1 
\I~ 
I 
a 
'I 
I 
j 

! 
f 
1 
i 
\ 

I 
1 
! - i 
t 
! . I 
I 
( 
I' 
I' 

r , 
• , , 
I 

} 
~ 

t 
I 

~ 
/: 
.1 

'i] 



\ 

" +~ 0 0 0 0 I 0 0 0 P-1.V22 22 
I 
I 

0 p-iv21 +~21 0 '0 0 1~1 "~O ' I -1. 
I. 1. 1 

0 .0 

I 

0- 0 P+~20 0 0 I 0 
-00 
M21 0 

0 0" 0 +" ,+~ P 1.V21 21 Q 0 0 M11+"~1 
21 1. 1 

(b) :: 
'/ 

0 0 0 0 p+iv22+~22 : 0 -0- 0 
. ' .. 

- -. -.- - - ~ -" -.- - - -.- -. - - _. - - - '!"-' - - - - - - -- - - - ~ - - -" - - - - ~ - - -

0 "':11 "~ Ml2';'1. .-:.. 0- 0 0 " +~ P-1.V11 1L 0 0 

0 0 
-00 
Mi2 0 0 0 P+~lb 0 

0 0 0 Mil+" Mil ' 2 1. 2 0 0 0 p+iV11+~1 

. ~'. 

(82) 

. , 
.:/"- . 

'-----

J 
• \).I 
\0 
I 

g 
~ 
t"i 
I 
f-' 
co 
$ 
0\ 
I 
~ 
CJ) 
<: 
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partitioned in the indicated manner. Equation (82) is a simple example 

for the application of the partitioning technique, (68), to calculate 

( A~l) A [C· -1 )-1 )-1] 
. b 22 = A - ~ C C 22' The result can be given the form 

/ 
(q = 0, ±l, ±2; 1=1) (83) 

which shows clearly how the low-temperature terms 'modify the high-temperature 

solution (73), or (75). For spins I > 1, the results are of a similar form. 

~or sPecializing (83) to the possible mUltlpole orientations q, we 

-00 00 have to keep in mind that vko = Mkk' = O. This insures that G22 is real 

as required by the reality condition (40). The perturbation factors with 

I~I = 2 are exactly thoBe of the high-temperature solution, because 
1\22 ~22 22 . . 

. N21 = ~2 = 0 (see Eq. (8~». Therefore, G22(t) can be taken from (75). 

The Laplace inverses of 

p+~o 
= --------------~~~= 

( )( ) -00 -00 
P+~20 P+~lO· - M21 M12 

(84a) 

(84b) 

are easily expressed in terms of the negative roots, of the 

denominators. The time-dependent perturbatiC'n factors are superyositions of 

two exponentials 

,. 

i , 
i 
J 

I - I 
I 

! 
I 

• 1 
I 
! 
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=a o + b e o 

Equation (85a) has the form of the Dillenburg and Maris3 solution for the 
I 

(85a) 

(85b) 

particular PAC problem under consideration. A detailed comparison of their 

statistical theory with our approach will be given elsewhere. In our theory, 

the effective relaxation constants and modified frequencies (if present) may 

be expressed explicitly in terms of the electronic correlation functions. The 

lengthy formulae will not be given here for all co~ponents, but only for (85a). 

The'negative roots of the quadratic equation are (1=1)' 

1 
= Tl 

In deriving Eq. (86), we have used Eqs. (26), (53a), (62),and (77). The 

(86) 

temperature dependence of the damping constants is determined partly by the 

correle.tion function Jii<m.r..), and in addition, by a low-temperature correction 

which follows directly from (26) and is, therefore, independent of the particular 

interaction model. The cofactors a and b are also temperature dependent and o 0 

given'by 

ao = 1/2(cOSh(~2) +1); bo = 1/2{1 - COSh(~/2» (86a) 

. 00 
In the high-temperature limit the second term. drops out and G22(HT) == exp(-3t / Tl

) 

as it should. At extreme low.temperatures we get a double root, a~1,2) = 2/T
1

, 

according to (86) and, therefore, G~g(LT) = (i-t/Tl )exp(-2t/Tl ) (for I=l). 
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VII. ANGULAR .DISTRIWTION FROM ORIENTED NUCLEI. RELAXATION : EFFECTS 

The radiative detection of magnetic resonance21 in oriented nuclei 

(NMR/ON) has opened a new experimental method of measuring spin-lattice 

relaxation for radioactive nuclei at low temperatures. It is, therefore, 

worthwhile to discuss how the present theory may be applied to this problem. 

The undE:rlying physical model makes our approach especially appropriate for 

spin-lattice relaxation in metals, a field investigated intensively by various 

21 
groups. 

The basis of th~s Section has already been given in the Introduction 

(see Eqs. (4) to (6». For practical reasons, we discuss reorientation effects 

in parent nuclei. Although it is now a well-established experimental fact 

that the preparation of the initial conditions are of crucial importance in 

the NMR/ON technique, we will not plunge into the complexities of a theoretical 

description of the preparation procedure. Let us assume that our parent 

nucleus can be characterized by a particular axially symmetric density 

matrix, p (t=O), at the end of some preparation process. The time evolution o 

of the system of radioactive parent nuclei together with the environment is 

'" . again fully described by the evolution operator net). 

As in the PAC case, we determine the radiation parameters by domparison 

'" with the unperturbed case n = 1. For a system with cylindrical symmetry, 

the initial denoity matrix, p (0), is fully defined by the o 
, 

components of Fano's statistical tensors (FS. 41b) 

R (k) 
(I 

m m I 
0' 0 

I -m 
(-1) 0 0 (I m ,I -m 'ikq)(m Ip (O)lm ') = o a 0 0 ·00 0 

R (k) 
o 

,. ) 

(u {k)!p (0» 
q 0 

(07) 
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We mention the following relations for quantities used instead of R 
o 

, 1122 
in the various standard articles ' 

R (k) = G (I)(de Groot) = (2I+lr l / 2 R (Blin-Stoyle) 
o k -k . 

The angular distribution (5), in standard notation, is given by 

,/ Waxial (~jt) == wee, t) ::;: L Uk Fk Pk (cose )(U~ 0) In(t) IU~?» ~,( 0) 

with 

k,k' 

= L Uk Fk Pk (cose) l\(t) 

k 

(k) 

(88 ) 

according to (36). The Uk Fk depend on the ?ecay scheme of the particular 

nucleus. In the asymmetric case, Eq, (90) has to be generalized to 

cqq'(t) R(k' )(t=o) 
kk' 'q' 

k'q' 

In the case that only the directional distribution of the ~-radiation 

emitted from the daughter nucleus is observed, the' sum 'in (89) contains only 

even k. Nevertheless, statistical tensors of odd rank contribute to the 

associated \(t) according to (90). 
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We now ,show that the problem of reorientation effects in ON studies 

is intimately related to the theory of multipole relaxation. Schweglel3 

has extensively studied this problem, utilizing me~hods of irreversible thermo-

dynamics to take into account the dissipative properties of the heat bath. 

The theory of lnultipole rel~{ation has also been sketched in Fano's version 
- 6 ,J 

of theWangsness-Blbch theory.l 

We base the following considerations on the physical model described 

above. According to the remarks at the end of Section II" the long-time 

behavior of the system is governed by the differentiul equation 

L (uq(k)l_i(;i)' +M) _ MIUq~k' »Rq~k') 
k'q' ' 

(92) 

The perturbation factors obey the same differential equation, subject to the 

initial condition Gkkqq:(t=O)=o'k'O I' It then follows that 
, .K, qq 

,. 
which is, of course, just the inverse Lapla,ce transform of n(p), defined in 

. "" ,. 
(29) (with M(p) replaced by N). In the case of cylindrical symmetry of the 

initial denSity matrix, only the 00 
Gkk,'s are required in (90). In this case,' 

the imaginary part M drops out exactly. (It is apparent from (65b) that 

~O?,=o f 1'1 k k') lKk or a , • Except for the case that 

renormalization is negligible; therefore we'cancel 

asymmetric situatioris. 

~TC ~ 1, the energy 

M in (93), even for 



. ~. 
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Equations (92) and (93) may be rewritten in a form which shows that the 

assembly of ,nuclear spins relaxes asymptotically to the temperature of the 

lattice. This is accomplished by using the fact that the real part of the 

relaxation operator,M, applied to the equilibrium density matrix, for the 

parent nuclei, p~(~I) ~ exp{~'/kT}/ Tr exp(~'/kT) (T = lattice temperature), 
) 

gives zero 

T I 
M Po (~ ) = 0 

Equation (94) implies the follOwing relations between the matrix elements of 

M in the state multipole representation 

k'q' k'q' 

We also conclude that, for the special perturbation matrix (93) (with M = 0), 

k'q' k'q' 

With 

, (97) 

the differential equation (92) now reads 

d6R
q 
(k) /dt = L -I (k l

})' (k') _MU, 6R, 
q q (98) 

k'q' 

and has the formal solution 
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ARq(k)(t) =. L (uq(k)I,eXP(.(ili' +M)tJIUq~k' »~q~k' )(t=O) (99) 

k'q' 

For the axially symmetric case, the simpler equation 

6.Bk(t) = ~(t) - l\(eq) = L G~~,(t) .~,(t=O) 
k' 

= L (Uo(k)lexp(_(ili' + M)t)IUo(k'»)[l\,(t~) -l\,(eq)] (lOO) 

k' 

holds. Substitution of Eq~ (100) in (89) yields an expression for the time-

dependent angular distribution, generalizing Shirley's Eq. (10), which was 

( used in a discussion of spin-lattice relaxation investigations by NMR/ON 

techniques. 
24 ) 

It is well-known, and apparent from Eqs. (99) and (100), that the 

angular distribution of radiation emitted from oriented nuclei·depends on the 

preparation of the initial state and on the dynamic properties of ,the surround. 

ings .. A discussion of the latter part has already been given in the preceding 

Sectionj the details will not be repeated here. A few remarks.might be tn 

order with respect to the case of a static magnetic tield and relaxation 

processes of the magnetic type. It can be shown quite genera.lly, tha.t under 

" these conditions}l commutes with the axial,ly symmetric relaxation magn 
" " . 

operator, M •. Therefore, the Liouville operator, It ,drops out of Eq. (100), 
. : magn· . 

and we are left with 

~(t) = L (101) 

k' 

I 
I 
I 
I 

I 

- .~ 

! 
I 

! 

\ 

! 
~ 

1 
! , 
i 
i 
t 

- I 
! 

~i 
1 
I 

i 
I 
I 
! 
.~ 

! 
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In the high-temperature tiPproximation, where the off-diagonal matrix elements 

of M may be neglected,we already know from Eqs. (74) and (75) that 

For the interaction Hamiltonian (78), the damping constants 

from (77) and (79b) to be 

~ . follow 
1m 

(102) 

(103) 

We notice that the relaxation rate is determined by a multiple of the usual 

, longitudinal spin-lattice relaxation time Tl . As mentioned above, this 

simple result is valid only in the high-temperature limit and in the absence 

of quadrupole interactions. To cover the entire temperature range, the pro-

cedureof Section VI.2.3. has to be used. It is sometimes more convenient 

to diagonalize the relaxation matrix M to determine the relaxation constants. 

(One of the eigenvalues 'is always zero [see Eq. (81)]). The solutions 

are similar to Eq. (86), the solution for 1=1. Numerical calculations for 

higher spins and various initial conditions are in preparation. 

" ' 
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VIII. SUMMARY AND DISCUSSION 

We have shown that the combined use of the Liouville operator formalism 

and Fano's expansion of operators into an orthonormal set of multipole operators 

is also a powerfUl tool for treating relaxation phenomena in PAC or in experi-

ments with oriented nuclei. An account of the less familiar mathematical 

means has been added. 

, The perturbation factors have been given as the multipole representation 

of a resolvent; 'which is defined in. 'terms of the Liouville operator for the l. 

static extranuclear interactions, and of a relaxation superoperator (define.d 

by the nucleus-bath interaction and the properties of the environment). 

Several examples have been discussed: (1) Randomly fluctuating fields 

2' 2 
(Abragam and Pound and Micha). (2) Single ,crystals in static magnetic fields 

(external and/or caused by the lattice) with relaxation processes of the mag

netic type. The "high-temperatm'e" condition ~../k!r« l' was assumed· 

to be fUlfilled. (3) For nuclei with spin 1::::1, extension of case (2) to 

arbitrary temperatures. (4) The influence of reorientation effects (relaxation 

processes) an the angular distribution of radiation from oriented nuclei 

(general discussion). 

The following supplementary remarks are concerned with some approxi-

mations made in the general part of the theory and with the ~antities entering 
',1· _ 

the final formulae. In the second part of the paper we have'hsed the relaxation .' 
.; 

A , 

operator N, i.'e. we have neglected the memory effects whichjU'e contained in 
::;,1 

the gerleralized master equation (18). The Markoffian equati~h of motion (18a) 
, 
\ ~ 

resulting from this approximation is valid only for times loqg compared to 

the electronic correlation time, 'f • 
C 

Since for radioactive nuclei, the 

i 
I 

. ! 
! 
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available time is the nuclear lifetime, ~N' use of the limiting relaxation 
,.. 

,operator N is justi,fied only when ~ c «~N" In a forthcoming note we will 

discuss the relaxation problem in PAC, including the intermediate case 

~ ~ T. The restriction to second-order correlation functions reqUires, c N, 

roughly speaking, that ~2(Hhf2)R ~c2 « 1, which can be seen from Eqs. (74) 

and (77) to (79). Since the reciprocal nuclear spin-lattice relaxation times 

~c «T '1 must be ,re ax 

valid in addition to and independently of ~c «~N' Conditions like 

,m.. ~ «1 have not been used in our theory, except in discussing special 
L c ' 

situations, as in Sect.ion VI.2.L 

The second-order correlation functions~~ I (<.0) are basic quantities 

for the particular physical model used here and in related papers. Relaxation 

effects in NMR, M"ossbauer expertments, PAC and NMR/ON may be, and have been, 

described in terms of essentially the same electronic correlation functions. 

In general we must not expect to be able to express the damping con-
. ; . 

stants appearing in the perturbation factors in terms of the two spin-lattice 

relaxation times used in the Bloch equations for the macroscopic magnetization. 

Relaxation times measured by conventional NMR characterize the irreversi~fe 

behavior of only the dipole polarization, although"of'course, high~r-rank 

statistical tensors are present for I > 1/2. In a directional correlation 

experiment, for instance, we observe under suitable conditions (at least in 

principle) damping constants belonging to higher-rank multipolarizations, 

e.g. by looking at the perturbation factors Gi.i(t) 

is true for relaxation proJesses observed using the 

, qq 
and G44(t). The same 

NMR/ON technique. 
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The gEm~ral theory of multipole relaxation (formulated briefly by 

F .. 16. ano, l.n 
( ~ ..' . 

detail by.Schwegler, and within our approach in Section VII) 

yields an increasing number of independent relaxation times for increasing 

spin valcues. (For a' syst~m without any' symmetry the maximal number of 

independent ~elaxation times is (21+1)2 - l} according to Ref. 16, 23. 

Even for axial symmetry and 1=1, we already get 5 independent damping consta~ts·.) 

It seems rather unlikely that all of the possible relaxation. times can be 

determined experimentally, especially for higher spins. Thus, in practice the 

problem will be .to interpret consistently the incomplete smaller set of 

experimental parameters. Provided that the basic assumptions of, the present 

_KQ' 
theory are suitable, the electronic correlation functions JKQ (ill) may be 

used. Only in special cases, like in the ones leading to (11a) or to Eg.) 

(103), the usual spin-lattice relaxation times occur. There, the damping 

constants are Hnear combinations of Tl and T2 with fixed "geometrical 

factors", which depend on the multlpole order kand the multipole 

orientation g. That such a simple result is' not always valid is clear from 

the example of Section IV.2.3. (see Eg. (86». 

l 
i. 

'l'i~ , 
: 
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IX. APPENDIX 

Liouville Representation 

We collect here some properties of the quantum mechanical Liouville. 

operator first used by Kubo,25 then applied to problems of nonequilibrium . , 

statistical mechanics by Zwanzig12 and, subsequently, to line shape problems 

by various authors. 4,7,13,26 In the present paper we make use of operator 

techniques described by F'ano16 and applied to the theory of multi pole relaxation 

by schwegler. 23 F'or the problem.under consideration we are mainly concerned 

with the special finite-dimensional unitary vector'space U. of dimension N 

(spanned, e.g., by the stahdard representation (l,I } 
z ofa spin system of 

angular'momentum I) and linear operators acting on state vectors of U. 

Let us assume for simplicity that the quantum numbers I and m 

specify the state uniquely. From the complete orthonormal set of vectors 

. (11m)} in U we define a s~t of operators ( 11m) (1m' I } which may be 

considered elements of a unitary space L (Liouville space) with dimension 

N2 . Following Sauermann27 we denote this orthonormal basis in t: by 

(IIm)(Im',I} == (IImIm'») or, if no confusion >arises, simply by ([nun')}. 

Using this "Dirac" notation for the basis operators Imm') in L and the 

orthonormality and closure relations 

.1\ I ImIm' )( ImIm 'I :;:: 1 (unit· operator in .t) 

nun ' 

(Ai) 

(Al,' ) 

we find, in complete analogy to the usual rules of quahtum mechan.ics, for the 

'" 
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decomposition qf an operator Ae 1i, considered as an element of the Liouville 

space IA), 

I A) = L I 1mIm ' )( ImIm ' JA) = L I 1mlm ' ) (1m IAI 1m ,') (A2) . 

nun' nun ' 

(AI = L (AllmIm')(ImIm'l = L * (1m I A I 1m ' ). (1mIm' I (A2') 

nun ' nun ' 

The advantage of this seemingly complicating notation will soon become evident. 

To make calculations in the Liouville space it is necessary to introduce 
n n n 

superoperators R, S, ..• (definitions to be given later) denoted by a , 
n 

which transform an ordinary operator Ae U into some B = RA € U. For the 
A 

expansion of a superoperator R we have (suppressing I in all subsequent 

formulae) 

(A3) 

n 
The matrix elements of R are characterized by four indices. A special 

n 
example of such a tetradic is the well-known Liouville operator L = ~ 
defined) for a given Hamiltonian ~, by 

'" Jt\ = [J:l,A] for arbitrary A € U . (A4) 

with matrix elements given by 

8, - (~IJ:llm') 
m ~ t: e~. (A5) 



A 

The physical significance of this specia.l superoperator J:J becomes clear if 

we choose the eigenbasis, say (,la),lb), .~.} of J:J for our matrix 

representation. Equation (A5) may then be written as an eigenvalue equation 

, (A6) 

, ' 

i.e., the operator lab) is In eigenoperator of ~ belonging to the physically 

observable beat frequencies m'b = ~-l (E -R) a a 0 
as eigenvalues., We obtain 

a different eigenoperator Iba.), corresponding to ~a = -illab" by Liouville 
'1 ' 28 

conjugation Iba) = CLlab) (with C~ = CL), as pointed out by Ben-Reuven. 

In addition to (A2) and (A3) we mention the multiplication laws for 
A 

a superoperator, R with an ordinary operator A and for two super6perators 
A A 

Rand S: 

(mm'Ii1A) - (mIRAlm t) = L(mmtIRI~~)(~IAI~) 
~~ 

(nun'IRSIIiMi) = L (nun'IRI~~)(~~ISlmm) 
ml I!J,2 

(A7) 

(A8)' 

So far we have used a very special system of orthonormal basis opera-

tors. The generalization to other complete sets of (not necesSarily Hermitian) 

, · 16 
operators ,is discussed by Fano 'and is based on the fact that the linear 

operators A, B,·.. . in a unitary space U of dimension N span another 

unitary space L which can be metrized by defining a scalar product29 

(spur metric) 
" (A9) 

t 
[ 

l 
~ 

! 

I 
i 

f 
I 
t 
I 
I 
I 
i 
I 
~, 

I 
I 
! 
I 

I 

I 
I 

~ f 

t 

i 
f 
t 
r 
! 
$. 

! 

I 
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As mentioned above we use th~ notation IA), ·!B), ... to emphasize that these 
.. 

operators are cons:l,dered to be elements of L . Indeed,. the Liouville space 

L is a unitary space, since it follows directly from (A9) that for arbitrary 

vectors !A), !B), Ic) and arbitrary complex numbers <x,f3 the properties 

(A10) 

* * (aA+f3Blc) = a (Alc) + f3 (Blc) (All) 

(AlA) ~ 0, if (AlA) = 0 then A = 0 (A12) 

hold. We notice that according to (A9) the special scalar products (rom'IA) 

and (Airom t ) are unambiguously associated to the ordinary matrix elements of 

the operator A with respect to the basis (1m)} 

(romtIA) = Tr (lm)(mtl)+A} = Tr C!mt)(mIA) = (mIAlm t) . (A13) 

and 

(Alnun') = (rom'IA)* = (m t IA+lm) = (mIAlm')* (A14) 

" A) 

We introduce superoperators R, S, ..• in:t. so that 

RIA) = IRA) id defined for all A € U 

and that 

" A 
RIA) = 'IRA) € if. " or RA € U for all A € U • 

They are linear operators if for arbitrary complex numbers 
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( ) 
A+ A 

With the help of A9 we define the adjoint R of the superoperatorR by 

the relation 

(A15) 

The adjoint of a product of superoperators is, according to 

(A16) 

A 

The Liouville operator If is Hermitian if If is Hermitian. This follows 

immediately from (A15) which for arbitrary A leads to 

""+ "" A~ AA+ A 
By (A15) Hermitian (R = R) and unitary superoperators (R R = RR = 1) 

are defined. 

• ~ I' 

- ! 
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Expansion in Multipole Operators 

The.theory of extranuclear perturbations on angular correlations can 

be formulated within a finite:-d-1mensional unitary vector space; therefore, 

the mathematical tools discussed above may be applied. The dimension of ~ 

is determined by the spin I of the intermediate nuclear state. It is 

reasonable to perform all calculations in the same representation in which 

the final expression for the angular correlation is usually given. In the 

present paper we therefore use as an appropriate.set of basis operators the 

normalized spherical tensor operators 

. elements 

_ (1m I U (k) I Im I ) 

.... q .. 

U (k) 
q 

.which have the real mat~ix 

. ( I = (_l)I-m .J2k+l' 
-m 

k 

:.) q 

The index k takes all integral values up to .k= 21; q is restricted to 

-k ~ q :5. +k. Including the normalized unit operator U~O)::: (21+1)-1/2 • 1 

we have N2 = (2I+l)2 different operators U (k) in U . . .. q 

To point out the connection with both the first part of this appendix 

and the notation used by Fano, we interpret the multipole operators as 

elements of the Liollville space L , denoted by 

orthonormality relation reads 

Iu (k». Then the 
q 

and the completeness of the basis (Iu (k» lin ;1 is expressed by 
. q 

·(A18) 
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[IUq (k) )(Uq (k) I 
kq 

A 

= 1 • 

The condition (A18) implies that 

(A19) 

(A20) 

The expansion theorem for an arbitrary operator A € U . and a superoperator 
A 

R E.;( is simply 

IA) = Lluq(k»(Uq(k)!A) 

kq 

. R = L 2: IUq(k»(Uq(k»IR1Uq~k'»(Uq\k')1 
kq k'q' . 

) (A2l) 

(A22) 

Of special interest ·are the Liouville operators U (k) 
q 

associated to the mlllti-

pole operators by the definition (A4). The commutator of two multipole super-

operators can be reduced to the known result for the commutator of the 

associate This follows from 

A (k) A (k') 
U U I A q q 

[U(k) [U(k') A]]= 
. q , q' , 

[[U(k) U(k')] A] 
q , q' , 

+ [U (k') 
q' , 

~ 
= [U (k) u (k')] A . 

q , q' 

+ U (kl)U (k) A 
. q' q 

, 

I 
i 
I 

1 

j 

j 
i 

.1 

~ ! 
'1 
j 

'1'1 
j 
~ 
I 
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(A23) 

[ 
(kl ) (k2 ) ] 

using the fact that - U
ql

· , U~ itself can be expanded into a sum 

of basis operators.- The definition of the expansion coefficients (structur~ 

constants) is given by 

(A24) 

The explicit expression for the structure constants in terms of certain 

products of 3-J and 6-jsymbols has been taken from JUdd.30 In a sketch of 

the theory of continuous groups Judd also mentions that the tensor operators 

U (k) (-k < q ~ k, 1 < k < 21) ca.n be regarded as inf:i.nitesimal operators of 
- q - - --

the unimodular group in 21+1 dimensions, 8U21+l • For th1.s reason we also 

use the name structure cqnstants for the expansion. coefficients. With Racah I s 

definition of the adjoint spherical tensor. operator 
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U (k)+ = (-l)q U (k) 
q -q (A25) 

and the properties of the trace, several symmetry-relations can be established. 

For example, for fixed positiqn of the firet pair of indices) 

(A26) 

or, for the permutation of the first two columns and cyclic permutations of 

columns 

q +q 
_ (-1) 1. 3 (A27) 

When two signs are given, the ~pper one has to be taken. The lower signs in 

parenthesis apply when the c coefficients are replaced by the d . coefficients de-, 

fined in Section V, Eq. (58). 'The structure constants playa central role hot only 

in the theory of continuous groups but also in practical calculations ut.ilizing 

the expansion in multipole operators. For some special cases we have given 

the explicit expressions for the CiS. R. Melhorn has written a computer 

program to calculate (in both decimal and prime factor notation) all structure 

constants important in the' theory of perturbed angular correlation and related 

problems. The transformation theory of vectors in the Liouville space can be 
, 

formulated in complete analogy to the ordinary transformation theory of quantum 

mechanics; Here, we mention only a special case. The change between the state 

multipole representation (lU(k)} and the standard representation f I ImIm I)} 
q 

, 
t 
I 

! 
i 

I 
I . ! 
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follows from (A2)and (A2l) by substituting forthearbitr~ryoperator IA) 

the tensor operatorlu(k» or the basis operator I ImIm' ), respectively. 
q 

This yields 

lu q (k» = L IImIm I )(ImIm' IU
q 

(k» , (A28) 

nun' 

(A29) 
kq ..... ' . 

.' ~ . '. . 

the elements o'f the transformation matrix being given, by (A17 )~' 
L; 

·f 

" 

,( 

I 
I 
I 
1 
I 



* 
t 

UCRL-18496-Rev. 

REFERENCES, 

Work performed under the auspices of the u.S. Atomic ,Energy Commission. 

On leave from Institut ~ Theoretische Physik A, Technische Univerist~t 

Braunschweig. 

l~' R. M. Steffen and H. Frauenfelder, in Perturbed Angular Correlations, 

edited by D. Karlsson, E. Matthlas, and K. Siegbahn (North Holland Pub~ . 

, lishing Company, Amsterdam, 1965); H. F:t'auenfelder and R.' M. Steffen, in 

Alpha-, Beta- and Gamma-Ray Spectroscopy, Vol. 2, edited by K. Siegbahn 

(North Holland Publishing Company, Amsterdam, 1966). We refer to the 

latter review as FS and denote equations therein bY,e.g. (FS. 208). 

2. A. Abragam and R. Pound, Phys. Rev. 92, 943 (1953); D. A. Micha, Phys. 

Rev. 156, 627 (1966). 

3. D. Dillenburg and Th. A. MariS, Nucl. Phys. 33, 208 (1992 ); 53, 159 

(1964); Physics Letters ~, 357 (1963). 

4. H. Gabriel, Phys. Stat. Sol. 23, 195 (1967). 

5. F. Coester, Phys. Rev. 93, 1304 (1954). 

6. A. M. Afanasev and Yu.' Y.agan, Zh. eksper •. teor. Fiz. 45, 1660 (1963); 

Soviet PhYs. - JETP l~, 1139 (1964). 

7. H. Gabriel, J. Bosse, and K. Rander, Phys. Stat. Sol. 27, 301 (1968)~ 

8. P. S. Hubbard, Rev. Mod. Phys. 33, 249 (196l)~ 

9., u. Fano, Ph;ys. Rev. '90, 577 (1953). 

10. Throughout this paper we agree to orient the tlme aJ(:is horizontally from the 

right to the left; i.e. in a graphical representation a density p(t2 ) 

would appear to the left of p(t l ) for t2 >tl • 



• 

lL 

-63- UCRL-18496-Rev. 

S. R. de Groot, H. A. Tolhoek, and W. J. Huiskamp, in Alpha-, Beta- and 

Gamma-Ray Spectroscopy, Vol. 2, edited by K.Siegbahn (North Holland 

Publishing Company, Amsterdam, 1966). 

12. R. Zwanzig, Physica 30, 1109 (1964). 

13. U.' Fano, Phys. Rev. 131, 259 (1963). 

14. For a review and further references see: J. M. Deutch and 1. Oppenheim 

in Advances in Magnetic Resonance, VoL 3, edited by J. S. Waugh (A,cad

emic Press, New York and London, 1968). 

15. R .. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953). 

16. U. Fano, Rev. Mod. Phys. 29, 74 (1957). 

17. K. Alder, E. Matthias, W. Schneider, and R. Steffen, Phys. Rev. 129, 

1199 (1963). 

18. We use the notation 
~Q -.K_Q .rKQ ;:: .rKQ 

19. The reversed order of lower and upper indices has been introduced to 

agree with the customary notation G~~: . 
20. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University 

Press, Princeton, New Jersey, 1957), 

21. Hyperfine Structure and Nuclear Radiations, edited by E. Matthias and 

D. A. Shirley (North.Holland Publishing Company, Amsterdam, 1968). 

22. R. J. Blin-Stoyle and M. A. Grace, in Encyclopedia of Physics, edited 

by S. Flugge (Springer-,Verlag, Berlin, 1957), VoL 42. 

23. H. Schwegler, Z. Physi~ 181,22 (1964); 189, 163 (1966). 

24. D. A. Shirley, in Ref. 21, 'page 843. 

25. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957) . 

26. M. Blume, to be published. 



~4-' UCRL-18496-Rev. 

27· 

28. 

" 

G. Sauermann, Physica g 2()17 (1966) .. " 

A. Ben-Reuven, Phys. Rev. 141, 38 (1966). .- . 

29. H. Primas, He1v. Phys. Acta ~.; 331 (1961). 

30. B. Judd, Operator Techniques in Atomic Spectroscopy (r.icGraw~Hi11 

Book Comp~ny, Inc., New York, 19(3). ".;." ." 

31. FS use the notatiOnG~:~ for the perturbation factors (37). We prefer 

the abbreviation (36) because it maintains the natural order of indices 

introduced by the decomposition (34). 

. : . ',' 

.;... 

. " 

, 
i , 
t 

·1 

t 
t 

• f I 
I 

~ I 

j 

r 
i 

! 

" 1 i 
I 
I 
i 
! 
t 
I 
I 

I 
! 
1 
\ 



LEGAL NOTICE 

This report was prepared as an account of Government sponsored. work. 
Neither the United States, not the Commission, nor any person acting on 

. behalf of the Commission: 
A. Makes any warranty or representation, expressed or implied, with 

respect to the accuracy, completeness, or usefulness of the informa
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person ac;ting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 



•. ,:f, ..... ~ 

TECHNICAL INFORMATION DIVISION 
LAWRENCE RADIATION LABORATORY 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 

.:k?I" ~ 

/:: 




