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Abstract

Background—Testicular germ cell tumor (TGCT) incidence has increased over the last 40 years 

in the United States. In contrast to TGCT among infants, it is hypothesized that TGCT in 

adolescents and young men is the result of sex steroid hormone imbalance during early fetal 

development. However, little is known about the neonatal period when abrupt hormonal changes 

occur, and direct supporting evidence is scarce due to the difficulties in obtaining pre-diagnostic 

specimens.

Methods—We conducted a population-based case-control study examining hormone levels at 

birth among 91 infants (0–4 years) and 276 adolescents (15–19 years) diagnosed with TGCT, and 

344 matched controls. Estrogen and androgen levels were quantified using liquid chromatography-

tandem mass spectrometry (LC-MS/MS) from archived newborn dried blood spots. Logistic 

regression models were used to estimate the association between each hormone level and TGCT 

risk.

Results—Higher levels of androstenedione were associated with increased TGCT risk among 

adolescents (OR: 2.33, 95% CI: 1.37–3.97 for highest vs. lowest quartile; p-trend=0.003) but not 

among infants (OR: 0.70, 95% CI: 0.28–1.77). A similar pattern was observed for testosterone 

(OR: 1.73, 95% CI: 1.00–3.00,) although the trend was not significant (p-trend=0.12). 

Associations were stronger among non-Hispanic white subjects, relative to Hispanics. There was 
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no difference by tumor histologic subtype. Estriol (the only detectable estrogen) was not 

associated with TGCT risk in either age group.

Conclusions—Higher levels of neonatal androgens were associated with increased risk of 

TGCT among adolescents, suggesting that early life hormone levels are related to the later 

development of TGCT.
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Introduction

The incidence of testicular germ cell tumors (TGCT), the most common type of testicular 

malignancy, has increased during the past 40 years in the United States (US), with the most 

rapid recent increases observed among men of Hispanic descent (also referred to as Latinos)

[1, 2]. It is the most commonly occurring cancer among male adolescents and young adults 

(AYA), defined by ages 15–19 years and 20–39 years, respectively[3, 4]. Globally, TGCT 

incidence has increased in almost every country in which it has been studied[5]. TGCT is 

comprised of two major histologic types: seminomas and nonseminomas. AYA develop both 

seminomas and nonseminomas, while infants (ages 0–4 years) are almost exclusively 

diagnosed with nonseminomas (either yolk sac tumors or teratomas)[6]. The increases in 

incidence rates are greatest among AYA males and men under age 50[7].

TGCT in AYA are characterized by high heritability and polygenic architecture, and it has 

been suggested that almost half of TGCT are due to inherited genetic factors[8–10]. 

However, the increasing incidence rates of TGCT are suggestive of environmental factors in 

TGCT etiology,[11, 12], alone or in combination with genetic factors, although to date, no 

environmental factors have been identified.

Estrogens and androgens play a central role in the development of the testis,[13] and may 

have a critical role in the etiology of TGCT. Germ cell neoplasia in situ (GCNIS), the 

precursor lesion of the seminomatous and non-seminomatous TGCT most common among 

AYAs, strongly resemble fetal gonocytes, supporting the hypothesis that TGCT is of fetal 

origin and a late-onset manifestation of the failure of normal fetal differentiation of 

primordial germ cells to spermatogonia[14]. Infantile TGCT is thought to differ from that of 

adult and AYA TGCT and be unrelated to GCNIS[15]. Another critical window for the 

development of TGCT may be the transition from intra-uterine to extra-uterine life, which is 

marked by a postnatal surge of the newborns’ steroid sex hormones and other regulatory 

hormones.

While originally hypothesized that TGCT is related to increased exposure to estrogens 

during development[16], later studies contradicted this theory[17]. More recently, it has been 

proposed that androgen insufficiency, or an imbalance between androgens and estrogens 

during testis development, may be relevant[5, 17]. Supporting studies have been 

retrospective focusing on maternal exposure to exogenous hormones during pregnancy and 

tumors occurring 20–40 years later in male offspring[5, 18]. However, assessing the 
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potential role of perinatal sex hormones in the neonate has proven challenging, mainly due 

to difficulties in obtaining perinatal biospecimens, particularly when TGCT onset is 

typically decades later. Regarding the postnatal period, epidemiologic studies have not 

indicated that external hormonal exposures are associated with TGCT[5].

The current study is the first to examine the relationship between sex steroid hormone levels 

at birth and risk of TGCT among infant and adolescent males.

Methods

Study Population

TGCT cases and controls were selected from the Childhood Cancer Record Linkage Project 

(CCRLP). Details of the CCRLP have been described previously[19]. Briefly, the CCRLP 

was created using a probabilistic record linkage of cancer registry records from the 

California Cancer Registry (CCR) to birth records maintained by the Vital Statistics unit of 

the California Department of Public Health (CDPH). Cases were diagnosed from 1988 (the 

earliest year the CCR data were electronically available) through 2011 (when the linkage 

was conducted) and born in or after 1982 (the earliest year the California birth data were 

electronically available and archived newborn blood spots are available). By comparing 

CCRLP cases to California SEER registry data for years 2000–2010 (years with complete 

SEER coverage of California), we estimated that ~70% of pediatric (0–19 years of age at 

diagnosis) cancer cases were linked to California birth certificates. Cases included in this 

analysis were diagnosed with testicular germ cell cancer (International Classification of 

Childhood Cancer, 3rd edition recode 103; International Classification of Diseases for 

Oncology, 3rd edition [ICD-O-3], morphology codes 9060–9065 [germ cell tumors] 9070–

9072 [embryonal carcinoma] 9080–9085 [teratomas] 9100, 9101, 9105 [choriocarcinoma]; 

topography codes C62.0, C62.1, C62.9). Only subjects with invasive cancer were included. 

To increase power to detect associations in the two age groups of interest for childhood 

TGCT, we selected only cases aged 0–4 years (“infants”) and 15–19 years (“adolescents”) at 

diagnosis. These age groups have the highest incidence of pediatric TGCT and comprise 

95% of the cases in our pediatric population. Cases were sampled to roughly reflect the age 

distribution in the population, with 25% being infants and 75% being adolescents.” Control 

subjects were randomly selected from the statewide birth records and matched to the case on 

year and month of birth and race/ethnicity (Hispanic, non-Hispanic white, non-Hispanic 

black, non-Hispanic Asian/Pacific Islander, non-Hispanic other). Eligible controls were 

those who were cancer-free by age 19, or by the year 2011 (whichever came first). A total of 

370 TGCT cases and 370 matched controls were selected for this study. This study was 

approved by the State of California’s Committee for the Protection of Human Subjects 

(protocol #12-07-0529) under the US Common Rule, where information and biospecimens 

may be obtained and used for research by the Department or Department-approved scientific 

researchers without identifying the person or persons from whom these results were 

obtained. Research protocols were approved by Institutional Review Boards at the CDPH 

and the University of California, Berkeley.
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Data Collection

Biologic specimens were obtained through the CDPH California Biobank Program (CBP), 

the entity that represents the biospecimen and data resources of the CDPH California 

Genetic Disease Screening Program (GDSP), including the newborn screening program 

(NBS). The California NBS is a public health program initiated in 1966 that screens all 

babies shortly after birth for serious but treatable genetic disorders. Shortly after birth, a few 

drops of blood from the newborn’s heel are collected on filter paper and sent to a state-

contracted regional laboratory for testing. The residual dried blood spot (DBS) samples are 

sent to the CDPH laboratory for archiving.

DBS specimens were located for 370 cases and 344 controls. For each specimen, CBP 

supplied information on the age of the blood spot in hours (time from birth until blood 

draw). Information on sociodemographics and birth characteristics were obtained from birth 

records. Data on birthweight, gestational age, race, maternal and paternal age at delivery, 

maternal and paternal educational status at delivery, mode of delivery, plurality (single vs. 

multiple births), birth order, maternal birthplace, maternal history of miscarriage, and 

maternal history of stillbirth were abstracted to account for potential confounding and/or to 

examine potential effect modification.

Hormone Measures

Hormone assays in DBS specimens were carried out using liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) at the ZRT Laboratory (Beaverton, OR), and blinded to 

case-control status. The ZRT laboratory has shown that steroids and peptide hormones in 

DBS specimens are stable for at least 10 years when maintained frozen at −70°C [20, 21]. 

Prior to processing study samples, a pilot study using 25 randomly selected and freshly 

collected neonatal DBS specimens (from infants born within the last 30 days) from CBP was 

conducted to 1) help determine the minimum amount of specimen that can be used to 

produce valid and reproducible measures, and 2) evaluate the stability of steroid hormones in 

DBS specimens that were up to 20 years old. All methods were optimized during this pilot 

study. Four 3-mm punches (~12 ul of blood) from each DBS spot were rehydrated, partially 

purified by solid phase extraction (SPE) column chromatography, eluted into solvent, dried, 

reconstituted and derivatized to increase sensitivity (estrogens only), and then run by LC-

MS/MS. Methods for sex steroid measures by LC-MS/MS have been described and 

validated previously[22]. In brief, LC-MS/MS was carried out using a Shimadzu 

Prominence UFLC system equipped with an InfinityLab Poroshell 120 EC-C8 (Agilent) 

column (3.0 mm × 50 mm × 2.7 µm) coupled to a Sciex 5500 tandem quadrupole mass 

spectrometer with APCI source. All analytes were monitored in a single analytic run using a 

mobile phase variably consisting of 20% – 95% methanol. Internal standards (deuterated or 

C13) were included in the extraction solvent for each steroid being extracted. Mass 

transitions and retention times for each hormone are listed in Supplementary Table 1. Assay 

detection limits for each analyte are shown in Table 1. All samples were run with Biorad 

serum controls (low, intermediate, and high levels of hormones) that were prepared by 

mixing (1:1) with washed red blood cells that were then spotted onto Whatman filter cards, 

dried overnight, and stored with a desiccant in plastic bags at −70°C. Each control was 

confirmed by repeat testing using eleven assays over a sixty day period, to establish intra- 
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and inter-assay coefficients of variability. The CVs for each hormone at various 

concentrations are given in Supplementary Table 2. The cutoff for the lower limit of 

quantification (LLOQ) was 20% CV, similar to the cutoff used in other studies[22], and each 

hormone had a signal to noise ratio of at least 10 at the LLOQ..

Valid ranges for each hormone were established by comparing our measures in controls to 

corresponding hormones in DBS from other populations of infants[22, 23], as well as 

published reference ranges from commercial diagnostic laboratories 

(www.questdiagnostics.com, www.mayomedicallaboratories.com, www.esoterix.com) for 

infants. In general, androstenedione, testosterone, and DHEA measures in our population 

were similar to those in reference populations,[22, 23] with some variation due to our larger 

sample size (n=714 vs. n=105–147 males) and tighter time frame from birth to blood 

sampling (~80% of our subjects had their blood drawn in the first 48 hours after birth, while 

the reference population blood draws were as much as 33 weeks after birth). There were no 

comparable published reference ranges for estrogens and progesterone in newborn infants; 

however, because estrogen levels in newborns at birth are very elevated (reflective of levels 

in late pregnancy and in placenta [24, 25]), then drop precipitously after birth and reach pre-

pubertal levels during the first week of life[26], the wide range of estrogen measures in our 

population is expected. Progesterone follows a similar pattern[27].

The final hormone panel of sex steroid hormones measured included estradiol, estriol, 

estrone, testosterone, progesterone, androstenedione, dehydroepiandrosterone (DHEA), and 

dihydrotestosterone (DHT).

Statistical Analysis

Of the 716 DBS that were obtained from GDSP, two controls were removed for mismatched 

gender, leaving a total sample size of 370 cases and 344 controls. Pearson’s chi-square tests 

were used to compare cases and controls on sociodemographic and reproductive 

characteristics. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using 

unconditional logistic regression. Two-way scatterplots and statistical models plotting 

neonate age (in hours) at blood draw against each hormone among controls suggested a 

correlation with all hormones (r2 range: 0.0199–0.2642; p-value range: 0.01–<0.0001) 

except estradiol and estrone (r2 range: 0.001–0.009; p-value range: 0.0804–0.4265) 

(Supplementary Table 3). Adjusted models included year of birth, race/ethnicity, and 

neonate age at blood draw (except for estradiol). All hormones were modeled categorically 

(centiles above LOD as defined among controls); p-trends were calculated for grouped 

categorical variables. Because infant and adolescent germ cell tumors are pathogenically 

different[15], all analyses were stratified by age at diagnosis (0–4 years vs. 15–19 years). 

Additionally, stratified analyses by histologic subtype (seminomas vs. non-seminomas), 

race/ethnicity (non-Hispanic white vs. Hispanic), and method of delivery (vaginal vs. 

caesarian) were conducted for adolescents only. The small number of infants in this study 

precluded their examination in stratified analyses. SAS (version 9.4, SAS Institute, Cary, 

North Carolina) and STATA (release 13, StataCorp, College Station, TX) were used for all 

analyses. All tests were two-sided, and p < 0.05 indicated statistical significance. Evidence 

of effect modification was defined as p-interaction < 0.20.
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Sensitivity analyses were conducted to ensure that 1) potential outlier hormone measures, 2) 

subjects whose blood was drawn more than three days after birth, and 3) the inclusion of 

multiple births, did not bias results. For the first sensitivity analysis, subjects whose 

androgen measures were higher than those observed from commercial laboratories 

(androstenedione> 290 ng/dL, testosterone>400 ng/dL, or DHEA>12.92 ng/dL) were 

excluded, removing 51 (14%) cases/59 (17%) controls, 4 (1%) cases/7 (2%) controls, 83 

(22%) cases/89 (26%) controls from analyses, respectively. For the second sensitivity 

analysis, subjects who were older than 72 hours when their blood sample was drawn were 

excluded, removing 23 (6%) cases and 25 (8%) controls from analyses. For the third 

sensitivity analysis, twelve subjects who were non-singleton births (4 cases and 8 controls) 

were removed. Point estimates all sensitivity analyses were very similar to those using full 

data with somewhat wider confidence intervals; therefore, only results using full data are 

presented.

Results

Of the eight sex steroids examined, seven were present in the newborn samples 

(androstenedione, DHEA, estradiol, estriol, estrone, testosterone, and progesterone). DHT 

was not detected or below the LOD in all samples and are therefore not included in any 

tables. The 2.5% – 97.5% range for all hormone measures among controls were similar to 

those observed from the freshly collected DBS specimens measured in the pilot study, 

suggesting that major degradation was not observed in blood spots archived for up to 20 

years. Similarly, hormone levels were similar across birth years among controls 

(Supplementary Table 4), demonstrating the relative stability of steroid hormones in DBS 

specimens up to 20 years old. Descriptive statistics (mean, median, standard deviation, 

minimum value, maximum value, and range) and the number of samples with measures 

below the LOD, for each of the 7 measured hormones, are shown in Table 1. The proportion 

of measures that fell below the LOD ranged from 1.3% (progesterone) to 98.2% (estradiol). 

Because there were so few subjects with estradiol and estrone measures above the LOD 

(n=13 and n=39, respectively), they were not included in subsequent analyses. Hormone 

levels by case-control status, race/ethnicity, and decade of birth are shown in Supplementary 

Table 4.

The 370 TGCT cases and 344 age and race/ethnicity-matched controls were similar with 

respect to all socio-demographic and birth characteristics compared (Table 2). As sampled, 

25% of cases were diagnosed between ages 0–4 years, and 75% were diagnosed between 

ages 15–19 years. Eight percent of cases were classified as seminomas, and 92% were non-

seminomas, including 35% mixed germ cell tumors, 21% yolk sac tumors, and 11% 

embryonal carcinomas. All cases were neoplasms of the testis, with 54% arising from 

descended testes, 1% from undescended testes, and 44% from unspecified descended or 

undescended testes.

High androstenedione levels were associated with TGCT among boys diagnosed during 

adolescence (15–19 years) (Q4 vs Q1 OR: 2.33; 95% CI: 1.37–3.97; p-trend<0.01) but not 

among boys diagnosed in infancy (0–4 years) (Q4 vs Q1 OR: 0.70; 95% CI: 0.28–1.77) (p-

value for interaction<0.01) (Table 3). A similar finding was observed for testosterone (15–19 
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years, Q4 vs Q1 OR: 1.73; 95% CI: 1.00–3.00 vs 0–4 years, Q4 vs Q1 OR: 0.67; 95% CI: 

0.26–1.72 (p-value for interaction=0.17). Androstenedione and testosterone exhibit a weak 

positive linear relationship (r2=0.32). In models mutually adjusting for each hormone 

(androstenedione and testosterone), the observed association with androstenedione among 

adolescents remained (Q4 vs Q1 OR: 2.2; 95% CI: 1.25–3.91), while the association with 

testosterone was attenuated (Q4 vs Q1 OR: 1.28; 95% CI: 0.71–2.33). The associations 

between high androstenedione and adolescent TGCT appeared to be stronger among non-

Hispanic whites (Q4 vs. Q1 OR: 3.29; 95% CI: 1.33–8.12 vs. 1.95; 95% CI: 0.97–3.94 in 

Hispanics; p-value for interaction = 0.15). Similarly, the association with testosterone was 

limited to non-Hispanic whites (Q4 vs. Q1 OR: 2.97; 95% CI: 1.21–7.30, compared to 0.82; 

95% CI: 0.39–1.74 in Hispanics; p-value for interaction = 0.03) (Table 4). There was no 

evidence that the relationship between any hormone and adolescent TGCT differed by major 

histologic subtype (seminoma vs. non-seminoma) or method of delivery (vaginal vs. 

caesarian birth).

Discussion

In the first TGCT study with direct measures of sex steroid hormones at birth, we found that 

elevated androgens (androstenedione and testosterone) were associated with an increased 

risk of TGCT, while estriol, the predominant estrogen during pregnancy and the only 

estrogen present in detectable concentrations at birth, was unrelated. The association of 

androstenedione and testosterone was observed only in TGCT diagnosed in adolescence and 

not TGCT diagnosed in infancy. The marked difference in risk by age at diagnosis (infants 

vs. adolescents) was not unexpected; germ cell tumors arising in infants are predominantly 

teratomas and yolk sac tumors[6], are not preceded by GCNIS, and are thought to be 

etiologically distinct from those arising in AYA[15]. The association between androgens and 

TGCT was stronger among non-Hispanic white males, relative to those reporting Hispanic 

ethnicity. While non-Hispanic white men have higher incidence rates than other ethnic 

groups within the same geographic region[28], this result does little to further explain the 

observed recent increase in incidence rates among Hispanic adolescents in the United 

States[1, 2].

Androgen insufficiency and/or an imbalance between androgens and estrogens during 

critical windows of testis development have been posited as a factor in the development of 

TGCT[5]. Direct evidence of these relationships in humans is sparse, however, due to the 

protracted time between perinatal life and disease onset, and to the rarity of TGCT. 

Supporting studies have been retrospective, focusing on maternal exposure to exogenous 

hormones during pregnancy[5, 18].

The results from the current study are based upon hormone levels at birth and reflect the 

hormone environment during late gestation/extremely early postnatal life; they suggest that 

biologic mechanisms operating during this period and related to androgens promote germ 

cell pathogenesis. However, since sex steroid hormone levels vary during and after 

pregnancy, the measures in our study do not necessarily reflect the hormonal in utero milieu 

during germ cell differentiation and initiation/promotion of germ cell neoplasia in situ in 
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early pregnancy. Therefore our study may not adequately test the hypothesis that TGCT 

arises from hormone imbalance during early gestation.

The steady increases in TGCT strongly point to environmental causes, and it has been 

hypothesized that exposure to endocrine disrupting chemicals (EDCs) may play a 

fundamental role[4, 29–31]. Sources of exposure to EDCs are diverse and vary widely 

around the world, and in humans, can disrupt reproductive and sexual development. Fetuses, 

infants, and children may have greater susceptibility than adults, thus the impact of EDCs 

during gametogenesis, fetal development, and early life can be particularly important, even 

though effects may not become apparent until adolescence and adulthood[32]. Male 

reproductive disorders thought to be related to TGCT, including undescended testes, 

hypospadias, and poor semen quality, have been induced in rodents after perinatal exposure 

to EDCs[5, 29, 30], and exposure to EDCs has been associated with shortened anogenital 

distance, a sensitive marker of androgen action in utero among male newborns[33]. 

Although it has been speculated that exposure to EDCs during fetal development plays a role 

in TGCT development[34], the lack of prospectively collected samples from the prenatal 

period has hindered direct examination of this relationship in humans. [34–36]

Strengths of this study include its inclusion of neonatal pre-diagnostic specimens, unbiased 

data collection from cases and controls, large sample size, ethnic diversity, and validated 

laboratory methods. There are some limitations, however, that should be considered. First, 

given the design of the study, our study did not include TGCT cases that were diagnosed in 

California but born elsewhere. In addition, it is possible that some of the controls could have 

moved from California prior to a diagnosis of TGCT, and therefore not linked to the CCR. 

Given the rarity of TGCT, however, the chance of this is low. More important, there are no 

data to suggest that such out-migration is associated with hormonal status. Sex steroid 

hormone measures in this study represent a single point in time; specifically, the window 

immediately after birth, when the hormonal milieu is a mixture of those being produced by 

the newborn testis and the residual maternal hormones. As such, these levels do not 

necessarily reflect levels during other potentially important windows of exposure, such as 

periods of gonocyte differentiation early in pregnancy and puberty. However, as the first 

study with direct measures during the neonatal period, the information obtained in this 

investigation provides the first piece in defining the relationships between these hormones 

and future risk of TGCT. Due to the low concentrations of some sex steroid hormones at 

birth and the small amount of biospecimen used for assays, some compounds of interest 

were below the limit of detection for most or all of the samples, including estradiol, estrone 

and dihydrotestosterone. As technology and methods for more precise quantification of 

steroid hormones in dried blood spots are developed, the role of these, and potentially other, 

compounds can be more clearly defined. Cryptorchidism and personal/familial history of 

testicular cancer are known risk factors for TGCT, although contributing to a small fraction 

of testicular cancer[28]. While our record linkage study is the first to measure sex hormones 

at birth, data for cryptorchidism was not available on California birth record. Future studies 

measuring sex hormones levels at birth should attempt to collect and account for these 

characteristics. Finally, the relatively small sample size, particularly for infant TGCT, 

hindered our ability to examine some associations,
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We consider this study to be the first step in a more expansive investigation into the rising 

incidence of TGCT observed worldwide. Future investigations should include 1) the 

confirmation of the observed associations with androgens, perhaps in a larger population that 

includes young men with the highest incidence, 2) environmental in utero and postnatal 

exposures, including EDCs, and their impact on the developing fetus and future TGCT risk, 

and 3) an examination of sex steroid hormones at other critical periods of development. In 

conclusion, this study fills a gap in the current knowledge of early life origins of TGCT, as 

well as quantifies sex hormone levels at birth among males.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 2

Comparison of demographic and birth characteristics at birth, among 370 cases and 344 controls from the 

California Cancer Registry Linkage Project (CCRLP) (1988–2011)

Variable Category
Controls

n (%)
Cases
n (%)

Age at Diagnosis 0–4 years 88 (26) 94 (25)

15–19 years 256 (74) 276 (75)

Histologic Subtype Seminomas

  Seminoma, NOS 23 (6)

  Seminoma, anaplastic 1 (0)

  Germinoma 7 (2)

Non-seminomas

  Germ cell tumor, non-seminomatous 12 (3)

  Embryonal carcinoma 41 (11)

  Yolk sac tumor 77 (21)

  Teratoma, malignant 28 (8)

  Teratocarcinoma 22 (6)

  Mixed Germ Cell Tumor 131 (35)

  Choriocarcinoma 7 (2)

  Choriocarcinoma combined with other germ cell elements 21 (6)

Birthweight (in grams) Low Birthweight (<2500g) 19 (6) 20 (5)

Normal Birthweight (2500–4000g) 281 (82) 291 (79)

High Birthweight (>4000g) 44 (13) 59 (16)

mean(g) 3421.6 3412.4

Gestational Age (in weeks) Preterm (< 37 weeks) 39 (11) 42 (11)

Normal (37–40 weeks) 278 (81) 297 (80)

Overdue (> 40 weeks) 11 (3) 11 (3)

Missing 16 (5) 20 (5)

mean(weeks) 41.8 42.1

Race/Ethnicity Non-Hispanic White 111 (32) 128 (35)

Non-Hispanic Black 3 (1) 3 (1)

Hispanic 200 (58) 207 (56)

Non-Hispanic Asian 25 (7) 27 (7)

Non-Hispanic Other 5 (1) 5 (1)

Mother's Age At Delivery (in years) Less than 20 35 (10) 34 (9)

20–29 195 (57) 204 (55)

30–39 110 (32) 128 (35)

40+ 4 (1) 4 (1)

Father's Age At Delivery (in years) Less than 20 15 (4) 7 (2)

20–29 163 (47) 176 (48)

30–39 132 (38) 136 (37)

40+ 24 (7) 30 (8)

Unknown 10 (3) 21 (6)
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Variable Category
Controls

n (%)
Cases
n (%)

Mother's Education Status High School or less 129 (38) 136 (37)

At Delivery At least some college 59 (17) 63 (17)

Unknown 156 (45) 171 (46)

Father's Education Status High School or less 128 (37) 129 (35)

At Delivery At least some college 56 (16) 61 (16)

Unknown 160 (47) 180 (49)

Mode of Delivery Cesarian 74 (22) 91 (25)

Vaginal 268 (78) 278 (75)

Unknown 2 (1) 1 (0)

Plurality Singleton 336 (98) 366 (99)

Multiple Birth 8 (2) 4 (1)

Birth Order First child 126 (37) 158 (43)

Second child 116 (34) 101 (27)

Third child 61 (18) 55 (15)

Fourth or higher child 41 (12) 56 (15)

Mother History of Miscarriage Never 288 (84) 321 (87)

(prior to index birth) Ever 56 (16) 49 (13)

Mother History of Stillbirth Never 338 (98) 363 (98)

(prior to index birth) Ever 6 (2) 7 (2)

DBS Age of Collection Less than 22 hours 82 (24) 82 (22)

22 to 31 hours 76 (22) 100 (27)

31 to 45 hours 75 (23) 84 (23)

More than 45 hours 92 (27) 93 (25)

Missing 19 (6) 11 (3)

mean (hrs) 37.5 38.1
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