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ABSTRACT OF THE DISSERTATION

The mixed Tate property of reductive groups

by

Yehonatan Sella

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Burt Totaro, Chair

This thesis is concerned with the mixed Tate property of reductive algebraic groups G, which

in particular guarantees a Chow Kunneth property for the classifying space BG. Toward

this goal, we first refine the construction of the compactly supported motive of a quotient

stack.

In the first section, we construct the compactly supported motive M c(X) of an algebraic

space X and demonstrate that it satisfies expected properties, following closely Voevodsky’s

work in the case of schemes.

In the second section, we construct a functorial version of Totaro’s definition of the

compactly supported motiveM c([X/G]) for any quotient stack [X/G] whereX is an algebraic

space and G is an affine group scheme acting on it. A consequence of functoriality is a

localization triangle for these motives.

In the third section, we study the mixed Tate property for the classical groups as well

as the exceptional group G2. For these groups, we demonstrate that all split forms satisfy

the mixed Tate property, while exhibiting non-split forms that do not. Finally, we prove

that for any affine group scheme G and normal split unipotent subgroup J of G, the motives

M c(BG) and M c(B(G/J)) are isomorphic.
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CHAPTER 1

Introduction

This paper studies the Chow Kunneth property of classifying spaces of algebraic groups.

Given a topological group G, its classifying space is a space BG together with a principal

G-bundle π : EG → BG such that any principal G-bundle over a CW -complex X is a

pullback of the bundle π by a morphism X → BG which is unique up to homotopy.

In the context of algebraic geometry, given an affine group scheme G over a field k, the

analogous concept is the quotient stack [Speck/G]. By definition, for any k-scheme X, the

groupoid of morphisms X → [Speck/G] is the groupoid of all G-bundles over X.

Burt Totaro defined the Chow groups of classifying spaces, CH i(BG), by approximating

BG up to homotopy by a scheme which agrees with it modulo codimension i. Namely, one

can find a representation V of G and a G-stable closed subset S ⊂ V of codimension larger

than i such that (V −S)/G is a scheme. Totaro defined CH i(BG) = CH i((V −S)/G)[Tot99].

This definition was generalized to arbitrary quotient stacks [X/G] by Edidin-Graham[EG98],

where X is an algebraic space and G an affine group scheme acting on it. The Chow groups

CH i([X/G]) may be thought of as the G-equivariant Chow groups of X.

Classifying spaces provide a fruitful setting for the calculation of Chow groups, as they

combine geometric with group- and representation-theoretic information, and are functorial

with respect to groups.

One striking property of classifying spaces is that, while a k-scheme X often does not

satisfy the Chow-Kunneth property that the map CH∗(X) ⊗ CH∗(Y ) → CH∗(X ×k Y ) is

an isomorphism for all separated k-schemes Y , many classifying spaces BG do satisfy this

property. For example, Totaro proved[Tot14, Lemma 2.12] that, under certain conditions
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on the field k, the classifying space of any iterated wreath product of a finite abelian group

satisfies the Chow Kunneth property. On the other hand, Totaro also gives examples[Tot16,

Corollary 3.1] of finite groups G such that BG does not satisfy the Chow Kunneth property.

A somewhat stronger property than the Chow Kunneth property is the motivic Kunneth

property, which gives information about all motivic homology groups of X×k Y , rather than

just the Chow groups.

In this paper, we turn from finite groups to the case of connected algebraic groups G.

We show that if G is any of the groups GL(n), SL(n), O(q), Sp(2n), G2, or SO(q) for an

odd-dimensional quadratic form, then BG satisfies the motivic Kunneth property over any

field k (of characteristic not equal to 2 in the case of O(q))[Propositions 4.3.3, 4.3.5 and

4.4.3].

The even-dimensional special orthogonal group SO(q) may or may not have the motivic

Kunneth property, depending on the quadratic form q:

Proposition 4.3.7: Let k be an arbitrary field of characteristic not equal to 2 and let

q be a nondegenerate quadratic form over k of dimension 2n. Then the classifying space

of the special orthogonal group SO(q) has the Chow Kunneth property if and only if

det(q) = (−1)n(mod (k×)2).

In particular, the classifying space of the split form of SO(2n) does have the Chow Kunneth

property, even though some forms of SO(2n) do not. One might conjecture that the classi-

fying space of every split reductive group has the Chow Kunneth property.

The technical tools for studying the Chow Kunneth property involve the triangulated cate-

gory of motives DM(k). Totaro defined the compactly supported motive of a quotient stack

M c([X/G]) ∈ DM(k) and proved that [X/G] satisfies the motivic Kunneth property if and

only if the motive M c([X/G]) is a mixed Tate motive[Tot16]. In the future, we will therefore

substitute “mixed-Tate property” for “motivic Kunneth property”.
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In the first two sections of the paper we refine the construction of the M c([X/G]), as

background for the Chow Kunneth question. In section 1, we construct the compactly sup-

ported motive M c(X) for any algebraic space X, and demonstrate that it satisfies expected

properties, such as a localization exact triangle and representability of the Chow groups. In

section 2, we build upon the work of section 1 to define M c([X/G]) for any quotient stack

[X/G] where X is an algebraic space and G is an affine group scheme acting on it; this forms

a slightly larger class of quotient stacks than considered by Totaro.

More importantly, we redefine M c([X/G]) in a functorial way [Theorem 3.4.4], since

Totaro’s construction in the triangulated category DM(k) faces the issue that the cone in a

triangulated category is only defined up to isomorphism, rather than canonical isomorphism.

This functoriality enables a proof of a localization exact triangle for quotient stacks [Corollary

3.3.2].

Functoriality of M c([X/G]) has some concrete consequences. For example, it gives a sim-

ple proof that if B(G×H) is mixed Tate, then so are BG and BH [Lemma 4.1.5]. Moreover,

the functoriality of M c([X/G]) also aids in the proof of the following result:

Proposition 4.5.1: Let G be an affine group scheme and let J ⊂ G be a normal split

unipotent subgroup scheme of dimension d. Suppose G/J acts on a scheme Z. Then

M c([Z/G]) ∼= M c([Z/(G/J)])(d)[2d]. In particular, M c(BG) ∼= M c(B(G/J))(d)[2d].

I am thankful to Burt Totaro for his help and guidance as my advisor and to the math

department at UCLA for their support.
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CHAPTER 2

Defining motives of algebraic spaces

Let k be a field and let R be a commutative ring. We work throughout the paper with

the triangulated category DM(k;R) of motives over k with coefficients in R. In order to

make use of the main properties of motives, we will assume throughout that the exponential

characteristic of k, defined to be 1 if chark = 0 and p = chark otherwise, is invertible in

R. In this section, we work within the smaller triangulated subcategory DM eff
− (k;R) ⊂

DM(k;R) of “effective, bounded above” motives, which is the setting first considered by

Voevodsky.[Voe00]

Given any separated scheme X of finite type over k, Voevodsky defined the associated

motives M(X) as well as the compactly supported motive M c(X) in DM eff
− (k;R). In this

section we extend Voevodsky’s construction of M c(X) to the case of an algebraic space X of

finite type over k, and show that these motives satisfy the expected properties, such as func-

toriality, a localization exact triangle, as well as isomorphisms HomDM(R(i)[2i],M c(X)) ∼=

CHi(X;R).

2.1 Background

We begin by reviewing the construction of DM eff
− (k;R) and its main properties, while at

the same time generalizing relevant definitions to the context of algebraic spaces, which will

be needed later. The main reference is [Voe00], as well as [MVW06].

Throughout, all algebraic spaces will be assumed to be over a field k.

Definition 2.1.1. A map f : X → S of algebraic spaces is equidimensional of dimension r if

it is locally of finite type, every irreducible component of X is dominant over an irreducible
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component of S, and all the fibers are equidimensional of dimension r.

Definition 2.1.2. Let X be an algebraic space of finite type over k. An elementary corre-

spondence from S to X is an integral subspace of S ×X. A correspondence from S to X is

a cycle on S ×X.

Define zequi(X, r)(S) to be the abelian group generated by elementary correspondences

from S toX which are equidimensional of dimension r over S. Define Ztr(X)(S) = Cor(S,X)

to be the subgroup of zequi(X, 0)(S) generated by correspondences in which are finite over

S.

Given a morphism f : S → X, the cycle [Γf ] is a finite correspondence from S to X,

which we also denote by f .

We can compose correspondences between smooth k-schemes as follows.

Let X, Y and Z be smooth k-schemes, α a finite correspondence from X to Y and β a

finite correspondence from Y to Z.

We use the notation pXY ZXY , pXY ZXZ , pXY ZY Z for the projections X × Y ×Z to X × Y , X ×Z,

Y × Z, respectively.

Then β ◦α os defined as pXY ZXZ∗ (pXY Z∗Y Z β ·pXY Z∗XY (α)). Voevodsky shows this is well-defined,

composition satisfies transitivity and the diagonal [∆] ⊂ X ×X acts as identity on X. This

gives the set of finite correspondences of smooth k-schemes a category structure, denoted

Cork, whose objects are smooth k-schemes and where Mor(X, Y ) = Cor(X, Y ).

A presheaf with transfers (with coefficients in R) is a functor F : Cork → R −Mod. A

sheaf with transfers (with respect to a given Grothendieck topology on smooth k-schemes)

is a presheaf with transfers which is additionally a sheaf over the site of smooth k-schemes

with the given topology.

The construction of DM eff
− (k;R) makes use of the Nisnevich Grothendieck topology. A

family of morphisms of schemes {Ui → X} is a Nisnevich cover if it is etale and for every

point x of X there exists i and a point u of Ui lying over x such that the map k(u)→ k(x)

induced by Ui → X is an isomorphism. In particular, a Nisnevich cover is also an etale
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cover.

For any scheme X of finite type over k, the presheaves Ztr(X) and zequi(X, r) in fact have

the structure of integral presheaves with transfer. In fact, they are sheaves with respect to

the etale topology, hence in particular the Nisnevich topology.

If a coefficient ring R is understood, and X is a smooth scheme over k, we define the

sheaves ofR-modules with transfers L(X) = Rtr(X) := Ztr(X)⊗R and Lc(X) = zequi(X, 0)⊗

R.

Let ShNis(SmCor(k);R) denote the category of sheaves of R-modules with transfer on

the site Sm/k equipped with the Nisnevich topology. Let C := Ch(ShNis(SmCor(k);R))

be the corresponding category of chain complexes. Let D− = D−(ShNis(SmCor(k);R))

be its bounded-above derived category. A presheaf with transfers F is homotopy invariant

if for every smooth k-scheme X, the projection X × A1 → X induces an isomorphism

F (X)→ F (X×A1). Then DM eff
− (k;R) is the full triangulated subcategory of D− consisting

of complexes with homotopy-invariant cohomology sheaves.

We may alternatively view DM eff
− (k;R) as a localization, rather than a subcategory,

of D−, as follows. Define the complex C∗(F ) for any presheaf with transfers F by letting

Ci(F )(X) = F (X×∆i), where ∆i is the algebraic simplex, and with differential given by the

boundary map, the alternating sum of restriction to the faces. Then for any Nisnevich sheaf

with transfers F , we have C∗(F ) ∈ DM eff
− (k;R). The exact functor C∗ can be extended to

an exact functor C∗ : D− → DM eff
− (k;R) which is left-adjoint to the inclusion, and which

identifies DM eff
− (k;R) as the localization of D− with respect to the localizing category

generated by complexes of the form L(X × A1) → L(X) induced by projection for any

smooth k-scheme X.

For any schemeX of finite-type over k, defineM(X) = C∗L(X) andM c(X) = C∗L
c(X) ∈

DM eff
− (k;R). We will be primarily concerned with the latter, the compactly supported

motive of X. If X is proper over k, then Lc(X) = L(X), so M c(X) = M(X). The motive

M(Spec(k)) is denoted simply R.

DM eff
− (k;R) is equipped with the structure of a tensor triangulated category, with
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M(X)⊗M(Y ) = M(X ×k Y ).

An important motive is the Tate motive R(1), with the property that the inclusion of a

point R = M(Spec(k)) → M(P1) is a direct summand whose complement is R(1)[2]. For

any r ≥ 0, the motive R(r) denotes the r-fold tensor product R(1)⊗r and, for any motive

M ∈ DM eff
− (k), the motive M(r) denotes the tensor product M ⊗R(r).

While the functor M(−) is covariantly functorial over arbitrary morphisms of schemes,

M c(−) is only covariantly functorial for proper maps, and contravariantly functorial for flat

maps, with dimension shift. More precisely, given a flat map Y → X of relative dimension

r, there is a canonical pullback map M c(X)(r)[2r]→M c(Y ).

Compactly supported motives satisfy homotopy invariance: given a vector bundle E → B

of rank r, the flat pullback M c(B)(r)[2r]→M c(E) is an isomorphism in DM eff
− (k;R).

Given an open embedding of k-schemes U → X with closed complement Z, the natural

sequence

M c(Z)→M c(X)→M c(U)

extends to a distinguished triangle, the localization triangle. This last result was proved by

Voevodsky in the case that k has resolution of singularities, and extended to a general field

by Kelly[Kel13], under the assumption that the exponential characteristic of k is invertible

in R.

Finally, Chow groups are representable by compactly supported motives in DM eff
− (k;R),

in the sense that we have natural isomorphisms

HomDM(R(i)[2i],M c(X)) ∼= CHi(X)⊗R

2.2 Defining motives and bivariant cohomology of algebraic spaces

Let X be an algebraic space of finite type over k. To generalize Voevodsky’s definition of

M c(−) for schemes, we work toward showing that the presheaves zequi(X, r)(S) defined in

Definition 2.1.2 are in fact sheaves with transers.
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We begin with some results about equidimensional cycles. The property of being equidi-

mensional is not in general stable under pullback. For example, consider the morphism

f : Y → X where X ⊂ A2 is given by xy = 0, Y ⊂ A3 is given by xz = 0, and the map

f : Y → X is given by (x, y, z) 7→ (x, yz). This map is equidimensional of relative dimension

1, but if we let i : X1 ⊂ X be the closed subset {y = 0} ⊂ A2, the pullback f1 : Y1 → X1

of f by i is not equidimensional. Indeed, one of the irreducible components of Y1 is the line

{x = 0, y = 0} ⊂ A3, which fails to be dominant over X1. Therefore we need to distinguish

between equidimensional maps and universally equidimensional maps.

Lemma 2.2.1. a) Equidimensional maps of dimension r are local on the domain in the etale

topology.

b) Universally equidimensional maps of dimension r are stable and local on the domain in

the etale topology.

c) Let f : X → S be an equidimensional map of dimension r. If S is a smooth k-scheme,

then f is universally open and universally equidimensional of dimension r.

Proof. a) Let f : X → S be a morphism of algebraic spaces and let u : X ′ → X be an etale

cover.

Suppose f is equidimensional of dimension r. Since etale maps are open, u is open,

hence each irreducible component of X ′ dominates an irreducible component of X, hence

also an irreducible component of S. Again by the fact that etale maps are open, for any

s ∈ S, each component W ′ of the fiber X ′s dominates a component W of the fiber Xs. Thus

dimW ′ = dimW = r, so f ◦ u is equidimensional of dimension r.

Conversely, suppose f ◦ u : X ′ → S is equidimensional of dimension r. For each compo-

nent V of X, there exists by surjectivity of u an irreducible component V ′ of X ′ mapping to

V in X. Since f ◦ u is equidimensional, we know that its restriction to V ′ maps dominantly

onto an irreducible component of S. But V ′ → S factors through V , hence V also maps dom-

inantly onto S. Similarly, for any s ∈ S, and any irreducible component W of the fiber Xs,

there is an irreducible component W ′ of X ′s mapping onto W . So, since the map W ′ → W

has 0-dimensional fibers, dimW = dimW ′ = r, demonstrating that f is equidimensional of

8



dimension r.

b) Let f : X → S be a morphism, u : S ′ → S an etale cover, and f ′ : X ′ → S ′ the

base change of f by u. Suppose f ′ is equidimensional of dimension r. Then u ◦ f ′ is also

equidimensional of dimension r. But u ◦ f ′ equals the map X ′ → X → S, and X ′ → X is

an etale cover, so by part a), f : X → S is equidimensional of dimension r.

c) When X and S are schemes and f is of finite type, this is proved in [SV00], though

this generalizes to f locally of finite type since universally open and universally equidimen-

sional maps are local in the domain. The claim then follows for X and S algebraic spaces

since smoothness is stable, and universally open and universally equidimensional maps of

dimension r are stable and local in the domain.

Let X and Y be smooth schemes over k and let Z be an algebraic space of finite type over

k. Let α be a finite correspondence from X to Y and let β be a correspondence from Y to Z

which is equidimensional of dimension r. Let pXY ZXY , pXY ZXZ , pXY ZY Z denote the projections from

X × Y × Z to X × Y , X × Z, Y × Z, respectively. We define

β ◦ α = pXY ZXZ∗ (pXY Z∗Y Z β ·pXY ZXY
α)

. Note: the above formula uses Fulton’s refined intersection product[Ful03], which can be

evaluated along any morphism from a k-scheme to a smooth k-scheme. if Z is smooth,

then this definition coincides with that found in [Ful03], where α ◦ β is defined to be

pXY ZXZ∗ (pXY Z∗Y Z β · pXY Z∗XY (α))

In order for the above definition to give us a well-defined cycle and give the desired transfer

maps, we need the following lemma:

Lemma 2.2.2. In the above setting,

a) the cycle pXY Z∗Y Z β intersects properly with α along pXY ZXY .

b) The map pXY ZXZ is proper when restricted to |α| × Z ∩X × |β|.

9



c) β ◦ α is a correspondence from X to Z which is equidimensional of dimension r; if r = 0

and β is a finite correspondence, then β ◦ α is also a finite correspondence.

Proof. We can assume that α and β are elementary correspondences, so let α = [V ] and

β = [W ], for integral schemes V ⊂ X × Y,W ⊂ Y × Z, where V is finite and surjective

over X and W is equidimensional of dimension r over Y . We can also assume X and Y are

irreducible.

a) We note that the intersection V × Z ∩X ×W ⊂ X × Y × Z equals the fiber product

of V → Y with W → Y , so denote it by V ×Y W . Since W is equidimensional of dimension

r over Y , then by Lemma 2.2.1c), V ×Y W is equidimensional of dimension r over V , so in

particular all its components have dimension dimV + r. Since dimW = dimY + r, it follows

that the codimension of each component of V ×Y W in X ×W equals the codimension of V

in X × Y , as desired.

b) Note that V ×Y W is a closed subscheme of V ×Z, which is finite, hence proper, over

X × Z since V is finite over X.

c) As noted above, V×YW is equidimensional of dimension r over V , hence overX. Hence

pXY ZXZ (V ×Y W ) is also equidimensional of dimension r over X, since the map pXY ZXZ (V ×Y

W )→ X factors through V ×Y W → X via the finite surjective map V ×Y W → pXY ZXZ (V ×Y

W ).

Similarly, if W is finite surjective over Y , then V ×Y W is finite surjective over V , hence

over X, and all components of pXY ZXZ (V ×Y W ) are also finite surjective over X.

Lemma 2.2.3. Let Y and Y ′ be smooth algebraic spaces. Consider a fiber square

X ′
g′
//

f ′

��

Y ′

f
��

X
g
// Y

Let α ∈ Z∗(Y ′), β ∈ Z∗(X). Suppose that the map X ′ → X×Y ′ is a regular closed embedding,

and that f ′ : X ′ → X as well as f ′× idY ′ : X ′×Y ′ → X ×Y ′ are l.c.i. morphisms. Suppose

f is proper along |α|, the intersections β ·g f∗(α), f ′!β and f ′!β ·g′ α are proper intersections,

and that f ′ is proper along |f ′!β ·g′ α|. Then β ·g f∗(α) = f ′∗(f
′!β ·g′ α) in Z∗(X).
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Proof. Assume α = [V ], β = [W ], where V ⊂ Y ′,W ⊂ X are integral. Then consider the

following fiber diagram:

f ′−1(W ) ∩ g′−1(V ) //

f ′

��

W × V
idW×f
��

W ∩ g−1(f(V )) //

��

W × f(V )

��

X
γg

// X × Y

By definition, [W ] ·g f∗[V ] = γ!
g([W ]× f∗[V ]). By [Ful03, Theorem 6.2a)], we have γ!

g([W ]×

f∗[V ]) = f ′∗γ
!
g([W ]× [V ]). On the other hand, we have a fiber diagram:

f ′−1(W ) ∩ g′−1(V ) //

��

W × V

��

X ′
(f ′,g′)

//

��

X × Y ′

��

X
γg

// X × Y

By [Ful03, Theorem 6.2c)], γ!
g([W ] × [V ]) = (f ′, g′)!([W ] × [V ]). Now, (f ′, g′) factors as

(f ′ × idY ′) ◦ γg′ . So (f ′, g′)!([W ]× [V ]) = γ!
g′((f

′ × idY ′)!([W ]× [V ])) = γ!
g′(f

′![W ]× [V ]) =

f ′![W ] ·g′ [V ]. Thus [W ] ·g f∗[V ] = f ′∗(f
′![W ]·g′) as desired.

Lemma 2.2.4. Let X, Y and Z be smooth schemes and let W be an algebraic space. Let

α be a finite correspondence from X to Y , β a finite correspondence from Y to Z, and γ a

quasifinite correspondence from Z to W . Then

a) γ ◦ (β ◦ α) = (γ ◦ β) ◦ α.

b) If f : X → Y is an arbitrary morphism, then β ◦ f equals the pullback f !β, where

f ! : CH∗(|β|) → CH∗(|(f × idZ)−1(β)|) is the refined Gysin homomorphism corresponding

to the following fiber square:

X × Z f×idZ //

��

Y × Z

��

X
f

// Y

c) If f : X → Y is a flat morphism, then β ◦ Γf equals the flat pullback (f × idZ)∗(β).
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Proof. a) The proof is very similar to the proof found in [Ful03], though it is modified to the

case in which W may not be smooth. We have

γ ◦ (β ◦ α) = pXZWXW∗ (pXZW∗ZW γ ·pXZWZW
(β ◦ α))

= pXZWXW∗ (pXZW∗ZW γ ·pXZWXZ
pXY ZXZ∗ (pXY Z∗Y Z β ·pXY ZXY

α))

= pXZWXW∗ (pXZW∗(p
∗
XZγ ·pXY Z (pXY Z∗Y Z β ·pXY ZXY

α)))

= pXW∗((p
∗
ZWγ ·pXY Z pXY Z∗Y Z β) ·pXY α)

= pXW∗((p
∗
ZWγ ·pY Z β) ·pXY α)

Where these equations follow by: i) and ii) The definition of composition; iii) Lemma

2.2.3, which tells us in particular that, given cycles δ ∈ Z∗(X ×Z ×W ), ε ∈ Z∗(X ×Y ×Z),

we have δ ·pXZWXZ
pXY ZXZ∗ ε = p∗XZW δ ·pXY Z ε; iv) by composition of pushforwards and associativity

of intersections; and v) by composition of intersection with pullback.

On the other hand, we have:

(γ ◦ β) ◦ α = pXYWXW∗ (pXYW∗YW (γ ◦ β) ·pXYWXY
α)

= pXYWXW∗ (pXYW∗YW (pY ZWYW∗ (pY ZW∗ZW γ ·pY ZWY Z
β)) ·pXYWXY

α)

= pXYWXW∗ (pXYW∗(p
∗
Y ZW (pY ZW∗ZW γ ·pY ZWY Z

β)) ·pXYWXY
α)

= pXYWXW∗ (pXYW∗(p
∗
ZWγ ·pY Z β) ·pXYWXY

α)

= pXYWXW∗ (pXYW∗((p
∗
ZWγ ·pY Z β) ·p∗XY α))

= pXW∗((p
∗
ZWγ ·pY Z β) ·pXY α)

Where these equations follow by: i) and ii) the definition of composition; iii) Since

pXYW∗YW ◦ pY ZWYW∗ = pXYW∗ ◦ p∗Y ZW ; iv) composition of pullback with intersection; v) projection

formula; vi) composition of pushforwards.

b) Let γf : X → X × Y denote the graph morphism. Then we have

β ◦ [Γf ] = pXY ZXZ∗ (pXY Z∗Y Z β ·pXY ZXY
[Γf ])

= pXY ZXZ∗ (pXY Z∗Y Z β ·pXY ZXY
γf∗[X])

= pXY ZXZ∗ (γf × idZ)∗((γf × idZ)!pXY Z∗Y Z β ·pXZX [X])

= (γf × idZ)!pXY Z∗Y Z β

= f !β

12



Where these equations follow by: i) the definition of composition; ii) [Γf ] = γf∗[X]; iii)

Lemma 2.2.3; iv) by composition of pushforwards, and the fact that intersecting with [X]

leaves a cycle unchanged; v) by composition of gysin homomorphisms, and the fiber diagram:

X × Z
γf×idz
//

��

X × Y × Z
pXY ZY Z //

��

Y × Z

��

X
γf

// X × Y
pXYY // Y

c) Follows from b).

It follows from Lemma 2.2.4 that zequi(X, r) and Ztr(X) are presheaves with transfers. We

now prove that they are in fact sheaves with transfers in the etale topology, hence in particular

in the Nisnevich topology.

Proposition 2.2.5. Let X be an algebraic space of finite type over k. Then zequi(X, r) and

Ztr(X) are sheaves with transfers in the etale topology.

Proof. Let S be a smooth scheme and let π : S ′ → S be an etale cover. Let πX : S ′ ×X →

S ×X denote π × idX .

Identity: Let α, β ∈ zequi(X, r)(S) and suppose α ◦ π = β ◦ π. Thus, by Lemma 2.2.4c),

we have π∗Xα = π∗Xβ. In particular, π−1
X (|α|) = |π∗Xα| = |π∗Xβ| = π−1

X (|β|). So, since hS×X is

a sheaf in the etale topology, we have |α| = |β| as closed subschemes of S ×X.

So let Vi be the irreducible components of |α| = |β|. Let Wij ⊂ S ′×X be the irreducible

components of π−1
X (Vi). Note that the Wij, ranging over all i and j, are distinct. Thus, in

order for π∗Xα to equal π∗Xβ, α and β must have equal coefficients for all the [Vi], so α = β.

Gluability: Let α′ ∈ zequi(X, r)(S ′). Let p1, p2 : S ′ ×S S ′ → S ′ denote the two projection

maps and let p1X , p2X : S ′ ×S S ′ ×X → S ′ ×X. Note that p1X , p2X can also be viewed as

the projections (S ′ ×X)×S×X (S ′ ×X)→ S ′ ×X. Suppose α′ satisfies α′ ◦ p1 = α′ ◦ p2. So

by Lemma 2.2.4c), we have p1
∗
Xα
′ = p2

∗
Xα
′. In particular, p1

−1
X (|α′|) = p2

−1
X (|α′|), so, since

hS×X is a sheaf in the etale topology, and closed immersions are stable in the etale topology,

there is a closed reduced subscheme V ⊂ S ×X such that π−1
X (V ) = |α′|.

13



Then we want to show that there exists a cycle on V whose pullback by πX equals |α′|.

We may reduce to the case of V irreducible. Let V ′i be the irreducible components of π−1
X (V ).

So the V ′i are distinct and are the irreducible components of |α′|. Let V ′′ij = V ′i ×V V ′j ⊂

(S ′ × X) ×S×X (S ′ × X). Again, the irreducible components of V ′′ij , ranging over i, j, are

distinct. Let α′ =
∑

i ni[V
′
i ]. Then p1

∗
Xα
′ =

∑
i,j ni[V

′′
i,j], whereas p2

∗
Xα
′ =

∑
i,j nj[V

′′
i,j]. thus,

ni = nj = n for all i, j. So indeed α′ = f ∗(n[V ]).

It remains to show that, given a cycle α ∈ Z∗(S ×X), α ∈ zequi(X, r)(S) if and only if

α′ := α ◦ π ∈ zequi(X, r)(S ′) and α ∈ L(X)(S) if and only if α′ ∈ L(X)(S ′). This is because

the class of equidimensional maps of dimension r is stable in the etale topology, as is the

class of finite maps.

Tensoring with R, we obtain Nisnevich sheaves of R-modules with transfers, Lc(X) =

zequi(X, 0)⊗R and L(X) = Rtr(X) := Ztr(X)⊗R. We can now define the motives M c(X)

and M(X).

Definition 2.2.6. Let X be an algebraic space of finite type over k. Then we define

M c(X) := C∗(L
c(X)) and M(X) = C∗(L(X))

We also define the bivariant cohomology groups Ar,i(Y,X), though for simplicity we restrict

ourselves to the case where Y is a smooth k-scheme.

Definition 2.2.7. Let X be an algebraic space of finite type over k and let Y be a smooth

k-scheme. Let r ≥ 0 and i be integers. Then we define Ar,i(Y,X) by the hypercohomology

HNis(Y,C∗(zequi(X, r))). Let Ar,i(X) := Ar,i(Speck,X).

In the case of schemes, the groups Ar,i(X) are the Borel-Moore motivic homology groups:

Ar,i(X) ∼= HomDM(k;R)(R(r)[2r + i],M c(X)) = HM
2r+i(X,R(r))

In particular, Ar,0(X) ∼= CHr(X).

Proposition 2.4.5 provides another interpretation of the bivariant cohomology groups

Ar,i(Y,X).
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2.3 Localization

We’ll make use of the following theorem from [GR71]:

Theorem 2.3.1. (platification[GR71]) Let S be a quasicompact and quasiseparated algebraic

space, U ⊂ S an open subspace, f : X → S an algebraic space of finite presentation over S,

M a finite OX-module such that M|−1
f (U) is flat over U . Then there is a blowup p : S ′ → S

along a closed subscheme that lies outside of U such that the strict transform of M along p

is flat over S ′.

Lemma 2.3.2. (generic flatness for algebraic spaces) Let X be an algebraic space of finite

type over k and S a reduced scheme of finite type over k. Let f : X → S be a morphism.

Then there exists a dense open subset U ⊂ S such that XU is flat over U .

Proof. The case of X a scheme is proved (in greater generality) in [Sta17, Tag 0529]. If X is

an algebraic space, then since X is quasicompact, there is a cover X ′ → X of X by an etale

map with X ′ quasicompact. So in particular X ′ is of finite type over k. Applying generic

flatness to X ′ → S, let U be a dense open set of S such that X ′U is flat over U . Therefore, XU

is flat over U , since X ′U is an etale cover of XU and flatness is etale-local in the domain.

Lemma 2.3.3. Let X be an algebraic space, S a scheme and let f : X → S a flat morphism

of finite type. Then f is equidimensional of dimension r if and only if for all generic points

y : Spec(K)→ S of the irreducible components of S, the projection X×SSpec(k)→ Spec(K)

is equidimensional of dimension r.

Proof. In the case that X is a scheme, this is proven in [SV00]. It then follows for X an

algebraic space by the fact that equidimensional maps of dimension r are etale-local in the

domain.

Proposition 2.3.4. Let X be an algebraic space of finite type over k, where k admits reso-

lution of singularities. Let Z be a closed subspace of X and let U := X − Z. Then for any

r ≥ 0 there is a natural left-exact sequence of complexes of Nisnevich sheaves with transfers

0→ C∗(zequi(Z, r)⊗R)→ C∗(zequi(X, r)⊗R)→ C∗(zequi(U, r)⊗R)
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and coker(C∗(zequi(X, r)⊗R)→ C∗(zequi(U, r)⊗R)) is acyclic.

Proof. Since C∗ is an exact functor from presheaves with transfers to complexes of presheaves

with transfers, it suffices to prove that there is a natural left-exact sequence of presheaves

0→ zequi(Z, r)⊗R→ zequi(X, r)⊗R→ zequi(U, r)⊗R

such that the presheaf cokernel Q := coker(zequi(X, r)→ zequi(U, r)) has C∗Q acyclic.

Indeed, the exactness of the above sequence follows directly from the definitions, so it

remains to show that C∗Q is acyclic. By [Kel13, Theorem 5.3.1], it suffices to show that,

viewing Q as a presheaf over Sch/k rather than just SmSch/k, for any scheme S ∈ Sch/k

and section φ ∈ F (S), there is a proper birational morphism p : S ′ → S with F (p)(φ) = 0 ∈

F (S ′).

Indeed, let φ ∈ Q(S) and let α ∈ zequi(U, r)(S) be a representative of φ. Let W |U ⊂ S×U

denote the support of α and let W ⊂ S×X be the closure of W |U in S×X. Let f : W → S

denote the projection. By generic flatness, there is a dense open subset O ⊂ S such that

f−1(O) is flat over O. Thus by platification, there exists a blowup map p : S ′ → S along a

closed subscheme that lies outside of O such that the strict transform of W , which we denote

W ′, is flat over S ′. The map p is proper and birational.

Let W ′|U denote W ∩ (S ′ × U), which is also the same as the strict transform of W |U

along p. We claim that, in fact, W ′|U equals S ′×SW |U , the total transform of W |U . For this

we need to show that E ×S W |U does not contain any irreducible component of S ′ ×S W |U ,

where E ⊂ S ′ is the exceptional divisor. Indeed, this is true by dimension reasons: since

W |U is equidimensional of dimension r over S, Lemma 2.2.1c) implies that all components of

S ′×SW |U are equidimensional of dimension r over S ′ (which is irreducible by our assumption

that S is irreducible), thus of dimension dimS ′ + r. But by the same token, all components

of E ×S W |U are equidimensional of dimension r over E, hence of dimension dimE + r.

Since dimE = dimS ′− 1, we conclude that E ×SW |U contains no irreducible component of

S ′ ×S W |U . So W ′ ∩ (S ′ × U) = |α ◦ p|. Let β be a cycle on W ′ such that the restriction

of β to W ′|U equals α ◦ p. Note W ′|U is dense in W ′ since W |U is dense in W . So W ′ is
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generically equidimensional of dimension r over S ′, hence by flatness and Lemma 2.3.3, it

is equidimensional of dimension r over S ′. Thus β ∈ zequi(X, r)(S ′). So p : S ′ → S is the

desired proper birational morphism such that Q(q ◦ p)(φ) = 0.

Corollary 2.3.5. In the setting of Proposition 2.3.4, there is a canonical localization triangle

of compactly supported motives:

M c(Z)→M c(X)→M c(U)→M c(Z)[1]

Corollary 2.3.6. Let X,Z and U be as in the setting of Proposition 2.3.4, let Y be a

smooth k-scheme and let r ≥ 0. Then there is a canonical long exact sequence of bivariant

cohomology groups:

· · · → Ar,i+1(Y, U)→ Ar,i(Y, Z)→ Ar,i(Y,X)→ Ar,i(Y, U)→ Ar,i−1(Y, Z)→ · · ·

Totaro defined[Tot16], for any j ∈ Z, the subcategory Dj(k) ⊂ DM(k;R) as the smallest

localizing subcategory containing M c(X)(a) for separated k-schemes X and integers a such

that dimX+a ≤ j. An analogous filtration was considered by Voevodsky[Voe00] for effective

motives. Then this subcategory also captures the dimension of algebraic spaces, in the

following sense:

Corollary 2.3.7. Let X be an algebraic space of finite type over k and let a ∈ Z such that

dimX + a ≤ j. Then M c(X)(a) ∈ Dj(k).

Proof. Let U ⊂ X be an open subset with complement Z ⊂ X such that U is a scheme and

Z has lower dimension than X. Then the corollary follows by the localization triangle and

induction.

2.4 Representability of bivariant cohomology and Chow groups

Proposition 2.4.1. Let X be an algebraic space of finite type over k and let r ≥ 0. Then

Ar,0(X) = CHr(X)⊗R.
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Proof. The hypercohomology of Speck with coefficients in the complex of sheaves C∗(zequi(X, r))

is simply the cohomology of the complex C∗(zequi(X, r))(Speck). In particular, Ar,0(X) is

the cokernel of the map

zequi(X, r)(A
1)⊗R→ zequi(X, r)(Speck)⊗R

given by i∗1− i∗0, where i0, i1 : Speck → A1 correspond to the points 0 and 1, respectively, in

A1. By right-exactness of tensoring, we may reduce to the case R = Z.

But note that an elementary cycle [V ] ∈ Zr+1(A1 ×X) is dominant over A1 if and only

if it is equidimensional of dimension r over A1. Indeed, the irreducible components of any

fiber have dimension at least r; if one of the fibers had dimension r + 1, then it would be

all of V , so V → A1 would be constant, hence not dominant. Thus Ar,0(X) = CHr(X) as

desired.

The following theorem is proved in [Voe00].

Theorem 2.4.2. Let Y be a smooth k-scheme and F a presheaf with transfers on Sm/k.

Then for any i ≥ 0, there are canonical isomorphisms

HomDMeff
− (k;R)(M(Y ), C∗(F )[i]) ∼= Hi

Nis(Y,C∗(F ))

and these isomorphisms are natural in F .

Corollary 2.4.3. Let Y be a smooth k-scheme and X an algebraic space of finite type over

k. Then there are canonical isomorphisms HomDM(M(Y )[i],M c(X)) ∼= A0,i(Y,X).

We construct canonical morphisms

ϕr,i : HomDMeff
− (k;R)((M(Y )(r)[2r + i],M c(X))→ Ar,i(Y,X)

Corollary 2.4.3 gives us canonical isomorphisms

ϕ0,i : HomDMeff
− (k;R)((M(Y )[i],M c(X))→ A0,i(X)
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Now suppose r > 0. Then C∗(Y )(r)[2r] is canonically isomorphic to the kernel of the

projector on C∗(Y × P1)(r − 1)[2r − 2] induced by the composition P1 → Speck → P1.

Thus, we have a canonical map

HomDMeff
− (k;R)((M(Y )(r)[2r + i],M c(X))→

HomDMeff
− (k;R)((M(Y ×P1)(r − 1)[2r − 2 + i],M c(X))

By induction, there is a canonical map

ϕr−1,i : HomDMeff
− (k;R)((M(Y ×P1)(r − 1)[2r − 2 + i],M c(X))→ Ar−1,i(Y ×P1, X)

We also have a canonical map Ar−1,i(Y × P1, X) → Ar,i(Y,X × P1), given by the natural

morphisms zequi(X, r − 1)(Y × P1 × ∆n) → zequi(X × P1, r)(Y ). Finally, there is a map

Ar,i(Y,X × P1) → Ar,i(Y,X) by pushing forward along the projection X × P1 → X. We

then define

ϕr,i : HomDMeff
− (k;R)((M(Y )(r)[2r + i],M c(X))→ Ar,i(Y,X)

to be the composition of the above maps.

The following theorem is proved in [Voe00].

Theorem 2.4.4. If X is a scheme of finite type over k, the maps

ϕr,i : HomDMeff
− (k;R)((M(Y )(r)[2r + i],M c(X))→ Ar,i(Y,X)

defined above are isomorphisms for all i and all r ≥ 0.

Proposition 2.4.5. Let X be an algebraic space of finite type over k and let Y be a smooth

k-scheme. Then the maps

ϕr,i : HomDMeff
− (k;R)((M(Y )(r)[2r + i],M c(X))→ Ar,i(Y,X)

defined above are isomorphisms for all i and all r ≥ 0.
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Proof. For convenience let Br,i(Y,X) denote HomDMeff
− (k;R)((M(Y )(r)[2r + i],M c(X)).

Let U be a dense open subscheme of X, and Z = X − U . By localization, the triangle

M c(Z)→M c(X)→M c(U) is a distinguished triangle, so it induces a long exact sequence

· · · → Br,i+1(Y, U)→ Br,i(Y, Z)→ Br,i(Y,X)→ Br,i(Y, U)→ Br,i−1(Y, Z)→ · · ·

By the localization sequence for bivariant cohomology, we also have a long exact sequence

· · · → Ar,i+1(Y, U)→ Ar,i(Y, Z)→ Ar,i(Y,X)→ Ar,i(Y, U)→ Ar,i−1(Y, Z)→ · · ·

Since the morphisms ϕr,i : Br,i(Y,−) → Ar,i(Y,−) are natural, they give a morphism

of complexes between these two long exact sequences. We proceed by induction on the

dimension of X (where the base case of 0-dimensional spaces holds since such spaces are

necessarily schemes), so we can assume the result of the proposition holds for Z. By Theorem

2.4.4, the result is also true for the scheme U . Thus by the five lemma, the result holds for

X.

Applying Proposition 2.4.5 to the special case of Y = Speck, i = 0 gives us the following

corollary.

Corollary 2.4.6. Let X be an algebraic space of finite type over k. Then there are canonical

isomorphisms

ϕr : HomDMeff
− (k;R)((Z(r)[2r],M c(X))→ CHr(X)⊗R

for all r ≥ 0. See [EG98] for a discussion of the Chow groups of algebraic spaces.

20



CHAPTER 3

A functorial construction of compactly supported

motives of quotient stacks

We recall Totaro’s construction[Tot16] of the compactly supported motive of a quotient

stack, while slightly generalizing it. Let Q be the category of quotient stacks of the form

[Y/G], where Y is any algebraic space of finite type over k and G is an affine group scheme

acting on it over k. Let X ∈ Q.

Define a resolution of X by algebraic spaces to be the data of a sequence of surjections

· · · f2−→ V2
f1−→ V1 of vector bundles over X and closed substacks Si ⊂ Vi such that Vi − Si is

an algebraic space and Si+1 ⊂ f−1
i (Si), and such that the codimension of Si in Vi approaches

infinity. For simplicity, refer to this data as (Vi − Si). Such a resolution induces a zig-zag of

algebraic spaces

· · · → V3 − S3
i2←− V3 − f−1

2 (S2)
f2−→ V2 − S2

i1←− V2 − f−1
1 (S1)

f1−→ V1 − S1

Where the fk are vector bundles and the ik are open embeddings. Since pulling back by a

vector bundle induces an isomorphism on compactly supported motives, we can invert these

pullbacks.

Definition 3.0.7. Define M c(X) as the homotopy limit of the sequence of motives

· · ·
(f∗2 )−1

−−−−→M c(V2 − S2)
i∗1−→M c(V2 − f−1

1 (S1))
(f∗1 )−1

−−−−→M c(V1 − S1)

for any resolution of X by algebraic spaces (Vi − Si).

In fact, Totaro’s definition[Tot16] applied only to the case X = [Y/G], where Y is a

quasi-projective k-scheme with a G-equivariant ample line bundle; these assumptions were
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necessary to guarantee X has a resolution by schemes. However, since we can now make use

of compactly supported motives of algebraic spaces, we may use a resolution by algebraic

spaces rather than schemes, and therefore no longer need these assumptions. The key is

that we may find by Totaro[Tot99] a sequence of representations Vi of G and closed subsets

Si ⊂ Vi of codimensions approaching infinity such that G acts freely on Vi − Si. But the

quotient of any scheme by a free group action is an algebraic space, so [Y/G] has a resolution

by the algebraic spaces ((Vi − Si)× Y )/G.

In the context considered in his paper, Totaro proved[Tot16] that the motive M c(X) does

not depend, up to isomorphism, on the choice of resolution (Vi−Si). The same proof works in

the larger context considered here. However, homotopy limits in triangulated categories are

defined only up to isomorphism, not canonical isomorphism, so M c is not clearly functorial.

The goal of this section is to give a functorial construction of M c.

We generalize the problem a little by considering homotopy limits of generalized zig-zags.

Let A be the category whose objects are diagrams of algebraic spaces of finite type over k

of the following form:

· · · → X3
i2←− Y2

j2−→ E2
f2−→ X2

i1←− Y1
j1−→ E1

f1−→ X1

where fk are vector bundles, jk are closed embeddings and ik are open embeddings. We

denote this object by (Xi), omitting the data of the Yi and Ei from the name.

For most objects of A that we look at, the closed embeddings jk will be the identity maps,

though we will occasionally need them to be proper closed embeddings. As an example, given

a quotient stack X over k, a resolution of X by algebraic spaces, as defined above, can be

viewed as an object of A.

Define a morphism in A to be a morphism of diagrams between the given zig-zags.

In practice, however, we focus on two classes of morphisms in A. A proper morphism in

A from (Xi) to (X ′i) is a morphism of diagrams

· · · // X2

��

Y1

��

oo // E1
//

��

X1

��

· · · // X ′2 Y ′1oo // E ′1 // X ′1
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where the vertical maps are all proper, and the squares

Ei //

��

Xi

��

E ′i // X ′i

, Xi+1

��

Yioo

��

X ′i+1 Y ′ioo

are fiber squares.

On the other hand, a flat map from (Xi) to (X ′i) is a morphism of diagrams as above,

where the vertical maps are flat and the squares

Yi //

��

Ei

��

Y ′i // E ′i

are fiber squares. The relative dimension of such a flat map is defined to be the relative

dimension of the map X1 → X ′1.

In summary, whether for proper maps or flat maps, we require all squares which mix flat

and proper maps to be fiber squares.

Let Nop denote the diagram category

· · · → · → ·

Definition 3.0.8. We extend M c : AlgSp/k → DM(k) to a functor M c : A → DM(k)N
op

as follows: given an object X = (Xi) ∈ A, define M c(X) to be the sequence

· · · →M c(X2)(−d1)[−2d1]→M c(X1)

where dk is the rank of Ek as a vector bundle over Xk, and the map

M c(Xk+1)(−dk−· · ·−d1)[−2dk−· · ·−2d1]→M c(Xk)(−dk−1−· · ·−d1)[−2dk−1−· · ·−2d1]

is the composition of open pullback induced by ik, proper pushforward induced by jk, and

the inverse of the flat pullback induced by fk.

We then define the limit motive LM c(X) ∈ DM(k) to be the homotopy limit of the se-

quence M c(X), for any X ∈ A.
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In this new terminology, the compactly supported motive M c(X) of a quotient stack X ∈ Q

is LM c((Vi − Si)), for any resolution of X by algebraic spaces (Vi − Si).

Just as on AlgSp/k, the construction M c is covariantly functorial on A with respect to

proper maps, and contravariantly functorial (with dimension shift) with respect to flat maps.

However, as mentioned before, the homotopy limit LM c : A → DM(k) is not obviously

functorial. Our goal is to make the construction LM c : A → DM(k) functorial (with respect

to either flat maps or proper maps) and then to show that this functor descends to a functor

on quotient stacks. In order to do this, we carry out the construction in a model category,

rather than in the triangulated category DM(k).

3.1 Background

We briefly recall the necessary background about the model category. Our main refer-

ence for this section is [CD09]. Let k be a field and let SmCor(k) denote the category of

smooth schemes, with finite correspondences as morphisms. Let ShNis(SmCor(k)) denote

the category of sheaves on the site SmCor(k) equipped with the Nisnevich topology and let

C := Ch(ShNis(SmCor(k))). To each scheme X of finite type over k (or, simply, a k-scheme)

we may associate an object Ztr(X) ∈ C, the Nisnevich sheaf with transfers represented by

X.

The category C can be equipped with a monoidal model category structure in which weak

equivalences are A1-weak equivalences and cofibrations are maps in I-cof, where I is the set

of maps of the form Sn+1Ztr(X)→ DnZtr(X), for n ∈ N and X ∈ Sm/k. In particular, for

any k-scheme X, the object Ztr(X) is cofibrant. The homotopy category HoC is DM eff (k).

We can now enlarge the model category C by adding spectra. Given any cofibrant ob-

ject S ∈ C, we define a symmetric S-spectrum to be a sequence of objects (En)n≥0, where

En ∈ C, together with maps σn : S⊗En → En+1, such that the symmetric group Σn acts on
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En (via automorphisms in C), and such that the composition

S⊗m ⊗ En → · · · → Em+n

induced by the maps σi is Σm × Σn-equivariant.

We define a morphism between S-spectra (En, σn) and (Fn, τn) to consist of a sequence

of Σn-equivariant maps fn : En → Fn which also respect the maps σn, τn. We denote the

category of symmetric S-spectra in C by SpS(C).

There is a monoidal stable model category structure on SpS(C) where weak equivalences

are stable A1-equivalence. There is a natural monoidal left-Quillen functor Σ∞ : C → SpS(C)

given by Σ∞(X)n = X ⊗ S⊗n.

If X ∈ C is cofibrant, then Σ∞(X) is cofibrant, so Σ∞(X) ⊗ − is left-Quillen, with

adjoint denoted HomS(−,Σ∞(X)). The essential property of SpΣ
S (C) is that the functor

Σ∞(S)⊗− : SpΣ
S (C)→ SpΣ

S (C) is a Quillen equivalence. We’ll denote the functor Σ∞(S)⊗−

by ΣS and its adjoint by ΩS.

Proposition 3.1.1. Let T, S ∈ C be cofibrant objects. Suppose that they become isomor-

phic in the homotopy category Ho(C). Then the homotopy categories Ho(SpΣ
S (C)) and

Ho(SpΣ
T (C)) are isomorphic as monoidal triangulated categories.

Proof. [Hov01, 8.4] proved this isomorphism in the case of a weak equivalence f : T → S in

C.

The general case follows by constructing a square

T //

��

S

��

T ′ // S ′

of isomorphisms in HoC, where T → T ′ → 0 (resp. S → S ′ → 0) is a factorization of T → 0

(resp. S → 0) into trivial cofibration followed by fibration. Since T and S are cofibrant, it

follows that T ′, S ′ are both fibrant and cofibrant. Thus HoC(T ′, S ′) = C(T ′, S ′)/ ∼, so the

isomorphism T ′ → S ′ in HoC can be lifted to a map in C, which must therefore be a weak
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equivalence. Now, using the result of the proposition for weak equivalences between cofibrant

objects in C, we see that Ho(SpΣ
T (C)) ∼= Ho(SpΣ

T ′(C)) ∼= Ho(SpΣ
S′(C)) ∼= Ho(SpΣ

S (C)), as

desired.

As a more simple observation in the same spirit, given a cofibrant object S ∈ C and an

integer i, the shift S[i] will also be cofibrant and there is an isomorphism of monoidal model

categories SpΣ
S (C)→ SpΣ

S[i](C) mapping the sequence (En) to the sequence (En[in]).

Recall that, given a pointed k-scheme (X, x), we let Ztr(X, x) be the direct summand of

Ztr(X) given by the projector X → Spec k
x−→ X. Note that Ztr(X, x), being a direct sum-

mand of the cofibrant object Ztr(X), is cofibrant as well. We let Gm denote the pointed

k-scheme (A1−{0}, 1), and we let T denote the pointed k-scheme (P1, 1). Then we have an

A1-equivalence Ztr(T ) ∼= Ztr(Gm)[1].

Cisinski-Deglise defined DM(k) as the homotopy category of SpZtr(Gm)(C), but by Propo-

sition 1.1 and the subsequent remark, it follows that the model category SpTate(k) :=

SpZtr(T )(C) has a canonically equivalent homotopy category, so we may work with this model

category, which is more convenient for our construction, instead. We may implicitly identify

objects of C with objects of SpTate(k) via Σ∞.

Note that Ztr(T ) ∼= Z(1)[2] in DM(k), so we have RΩr
T (X) ∼= X(−r)[−2r] in DM(k) for

any X ∈ SpTate(k).

We also recall that for any algebraic space X of finite type over k, and smooth k-scheme

S, zequi(X, r)(S) is the group of correspondences from S to X which are equidimensional of

relative dimension r over S. The zequi(X, r) are Nisnevich sheaves and zequi(X, 0) ∼= M c(X)

in DM(k).
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3.2 Functorial construction of LM c : A → DM(k)

The main difficulty in constructing an analog of the M c functor in the level of the model

category SpTate(k) is that given a flat map f : E → X of relative dimension r, there is no di-

rect map in SpTate(k) which gives the pullback map M c(X)→M c(E)(−r)[−2r] in DM(k).

Instead, there is only a zig-zag in SpTate(k) inducing the pullback map. For this reason, we

must work with zig-zag diagrams as opposed to sequences.

Remark: for notational simplicity, we carry out all constructions in the integral case, al-

though everything carries through to a general coefficient ring.

We introduce the following shorthand for the sake of readability of future diagrams. In what

follows, let Q denote functorial cofibrant replacement, as in Hovey[Hov99].

Definition 3.2.1. given numbers i, j, r ∈ N and algebraic space X of finite type over k, let

M̂ c
i,j,r(X) = (RΩT )◦i ◦ LΣ∞T ◦ (ΩT ◦Q)◦j(zequi(X, r))

In particular, M̂ c
i,0,0(X) corresponds in DM(k) to the motive M c(X)(−i)[−2i].

Note: as a convention, we will top our constructions with a hat if they are carried out in the

model category rather than the homotopy category.

Lemma 3.2.2. Let i, j, r, t ∈ N and let X,E, Y be algebraic spaces of finite type over k.

Then we have the following canonical maps in SpTate(k):

a) M̂ c
i,j,r(X)→ M̂ c

i,j,r+s(E) for any flat map E → X of relative dimension s.

b) M̂ c
i,j+t,r(X)→ M̂ c

i,j,r+t(X), which is an A1-weak equivalence.

c) M̂ c
i,t+j,r(X)→ M̂ c

i+t,j,r(X).

d) M̂ c(f) : M̂ c
i,j,r(X)→ M̂ c

i,j,r(Y ), for any proper map f : X → Y .

The maps in a) - d) are the basic maps we will use in our construction.

Proof. a) Follows from the natural flat pullback maps zequi(X, r)→ zequi(E, r + s).
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b) We can reduce to the case i, j = 0, t = 1.

Since the cofibrant resolution Qzequi(X, r) → zequi(X, r) is a trivial fibration, and ΩT ,

being right-Quillen, preserves trivial fibrations, it follows that the map ΩTQzequi(X, r) →

ΩT zequi(X, r) is an A1-weak equivalence. Thus it suffices to establish a map ΩT (zequi(X, r))→

zequi(X, r + 1) which is an A1-weak equivalence.

Recall that for any algebraic space X of finite type over k and Nisnevich sheaf with

transfers F , we have HomC(Ztr(X), F )(U) = F (U ×X) for all U ∈ Sm/k. Thus there is a

natural map HomC(Ztr(P1), zequi(X, r))→ zequi(X, r + 1)) given by

HomC(Ztr(P1), zequi(X, r))(U) = zequi(X, r)(U × P1)

→ zequi(X × P1, r + 1)(U)→ zequi(X, r + 1)(U)

where the first arrow follows since any cycle W of U × P1 ×X which is equidimensional of

relative dimension r over U×P1 may also be viewed as equidimensional of relative dimension

r + 1 over U ; and the second arrow follows by proper pushforward.

Restricting the above map to the direct summand Ztr(T ) of Ztr(P1), and recalling that

ΩT = HomC(Ztr(T ),−), we obtain the desired map

ΩT (zequi(X, r))→ zequi(X, r + 1)

Voevodsky[Voe00] proved this is indeed an A1-weak equivalence in the case r = 0. The

general case follows similarly.

c) It suffices to show that for any object F ∈ C, there is a natural morphism LΣ∞T (ΩTQF )→

RΩT (LΣ∞T F ). Indeed, to see this we first note that by adjunction, we have a natural map

Σ∞T ΩTF → ΩTΣ∞T F . Thus we obtain a map

LΣ∞T (ΩTQF )→ Σ∞T (ΩTQF )→ ΩT (Σ∞T QF ) = ΩT (LΣ∞T F )→ RΩT (LΣ∞T F )

d) By the proper pushforward zequi(X, r)→ zequi(Y, r).

Note on functoriality: The maps of Lemma 2.1a)-d) behave well with each other in the

following ways. The maps of type a) are functorial with respect to flat maps, and the maps
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of type d) are functorial with respect to proper maps. The maps of type b) or c) commute

with any of the maps of type a)-d). And finally, the pullback maps a) commute with the

pushforward maps d) for any fiber square

E1

��

// E2

��

X1
// X2

where the horizontal maps are proper and the vertical maps are flat.

The following is the model-category version of flat pullback, which forms the main ingredient

of our construction.

Construction 3.2.3. Let i, j, r ∈ N. Let f : E → X be a flat map of algebraic spaces of

finite type over k, of relative dimension d. Then we define M̂ c
i,j,r(f) as the following zig-zag

in SpTate(k):

M c
i,j,r(X)

α

&&

M c
i,j+d,r(E)

β

ww

γ

''

M c
i,j,r+d(E) M c

i+d,j,r(E)

Here α, β, γ are given by Lemma 2.1 a),b),c), respectively.

Note: By Lemma 3.2.2, the map β is an A1-weak equivalence. So the zig-zag M̂ c
i,j,r(f)

represents a map γ ◦ β−1 ◦ α in DM(k) from M c
i,j,r(X) to M c

i+t,j,r(E). We denote this map

M c
i,j,r(f).

Lemma 3.2.4. a) As a special case, M c
i,0,0(f) is the natural flat pullback map M c(X)(−i)[−2i]

to M c(E)(−i− t)[−2i− 2t].

b) If furthermore f is a vector bundle, then α and γ in the construction of M̂ c
i,0,0(f) are

A1-weak equivalences.

Note: it follows that the reverse zig-zag of M̂ c
i,0,0(f), which we will denote M̂ c

i,0,0(f)−1,

corresponds in DM(k) to the isomorphism M c(E)(−i − t)[−2i − 2t] → M c(X)(−i)[−2i]

inverse to the natural pullback.
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Proof. a) Follows from [Voe00].

b) We first show that γ is an A1- weak equivalence, for which it suffices to show that the

map M c
0,d,0(E)→M c

d,0,0(E) is. Consider the following commutative diagram in DM(k):

M c
0,d,0(E) = LΣ∞T ((ΩT ◦Q)◦d(zequi(E, 0))) //

ε

��

M c
d,0,0(E) = (RΩT )◦d(LΣ∞T zequi(E, 0))

LΣ∞T (RΩd
T (zequi(E, 0)))

HomDMeff (k)(Z(d)[2d],M c(E))
θ

// HomDM(k)(Z(d)[2d],M c(E))

where all maps are the natural ones (and θ is only defined in DM(k)).

Voevodsky[Voe00] showed that the natural map Ωd
T zequi(E, 0) → RΩd

T zequi(E, 0) is an

isomorphism in DM eff (k), hence so is ε.

On the other hand, becauseE → X is a vector bundle it follows that we haveHomDM(k)(Z(d)[2d],M c(E)) ∼=

M c(E)(−d)[2d] ∼= M c(X) ∈ DM eff (k), so in fact θ is an isomorphism. Thus α, the diag-

onal of the above square, induces an isomorphism in DM(k), so it is an A1-weak equivalence.

Now since β and γ are both isomorphisms in DM(k) and γ ◦ β−1 ◦ α = M c(f) is an

isomorphism in DM(k) as f is a vector bundle, it follows that α must be an isomorphism

in DM(k), hence it is an A1-weak equivalence in C.

If X is an algebraic space of finite type over k and ι : U → X is an open embedding, then ι is

a flat map of relative dimension 0. But in this case the pullback M c
i,j,r(ι) can be represented

in SpTate(k) directly as a morphism M̂ c
i,j,r(ι) : M̂ c

i,j,r(X)→ M̂ c
i,j,r(U), as opposed to a zig-zag.

Now we are ready to extend the M̂ c
i,j,r construction to a similar construction M̂ c

i,j,r : A →

SpTate(k)ZigZag, where ZigZag is the indexing category

·

!!

·

�� ��

·

��

· · ·
· ·
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Definition 3.2.5. given an object X ∈ A of the form

· · · → X3
i2←− Y2

j2−→ E2
f2−→ X2

i1←− Y1
j1−→ E1

f1−→ X1

where fi is flat of relative dimension di, define M̂ c
i,j,r(X) to be the concatenation (denoted

by �) of zig-zags

· · · � M̂ c
i+d1,j,r

(f2)−1 � (M̂ c
i+d1,j,r

(j1) ◦ M̂ c
i+d1,j,r

(i1)) � M̂ c
i,j,r(f1)−1

outlined as follows:

·

��
||

M c
i+d1,j,r

(X2)

&&
~~

·

~~
��

M c
i,j,r(X1)

��

· · ·

M c
i+d1+d2,j,r

(E2) · M c
i+d1,j,r

(E1) ·

Note: Define M̂ c : A → SpTate(k)ZigZag to be M̂ c
0,0,0. Then by lemma 2.3, it induces the

functor M c : A → DM(k)N
op

upon localization, inverting the A1-weak equivalences and

passing to a subsequence.

We know that M c is functorial on A. To study the functoriality of M̂ c, we simply iter-

ate our above constructions. The following lemma is an analogue of Lemma 3.2.2 in the

context of M̂ c.

Lemma 3.2.6. Let i, j, r, t ∈ N and let X,E, Y ∈ A. Then we have the following canonical

maps in SpTate(k)ZigZag:

a) M̂ c
i,j,r(X)→ M̂ c

i,j,r+s(E) for any flat map E → X of relative dimension s.

b) M̂ c
i,j+t,r(X)→ M̂ c

i,j,r+t(X), which is a termwise A1-weak equivalence.

c) M̂ c
i,t+j,r(X)→ M̂ c

i+t,j,r(X).

d) M̂ c(f) : M̂ c
i,j,r(X)→ M̂ c

i,j,r(Y ), for any proper map f : X → Y .

Proof. We apply the corresponding maps from Lemma 2.1 termwise to the relevant zig-zags.

These maps form a morphism of diagrams by the functoriality properties of Lemma 2.1.
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Note: The maps in Lemma 2.5 have the same functoriality properties as noted for Lemma 2.1.

We can similarly iterate Construction 3.2.3:

Construction 3.2.7. Let f : E → X be flat of relative dimension d in A. Then we define

M̂ c
i,j,r(f) to be the following zig-zag in SpTate(k)ZigZag

M̂ c
i,j,r(X)

α

&&

M̂ c
i,j+d,r(E)

β

xx

γ

''

M̂ c
i,j,r+d(E) M̂ c

i+d,j,r(E)

where the morphisms are given by Lemma 3.2.6

Having defined M̂ c : A → SpTate(k)ZigZag, we can now take the homotopy limit in the setting

of a model category which, unlike with triangulated categories, is functorial.

It helps to consider SpTate(k)ZigZag as a model category. For any model category C and an

inverse small category D, the diagram category CD has the Reedy model category structure.

A weak equivalence in SpTate(k)ZigZag is a termwise weak-equivalence. For our purposes we

only need to additionaly use the fact that a fibrant object in SpTate(k)ZigZag is a zig-zag

consisting of fibrations between fibrant objects. The limit functor lim : SpTate(k)ZigZag →

SpTate(k) is a right-Quillen functor. We define holim : Ho(SpTate(k)ZigZag)→ DM(k) to be

its right-derived functor.

Given an object X ∈ A, we let M̃ c
i,j,r(X) denote the image of M̂ c

i,j,r(X) in the localiza-

tion Ho(SpTate(k)ZigZag). We will focus in particular on the case M̃ c
i,0,0(X), which we may

abbreviate M̃ c
i (X). Let LM c

i (X) ∈ DM(k) denote holim((̃M c
i (X))).

Let f : E → X be a flat map in A of relative dimension d. Since the map β in

Construction 2.6 is termwise an A1-weak equivalence, the zig-zag M̂ c
i,0,0(f) above induces

a map M̃ c
i (f) : M̃ c

i (X) → M̃ c
i+d(E) given by the composition γ ◦ β−1 ◦ α. Let LM c

i (f) :

LM c
i (X)→ LM c

i+d(E) be the result of applying the holim functor to M̃ c
i (f).

Similarly, if f : X → Y is a proper map in A, let M̃ c
i (f) : M̃ c

i (X) → M̃ c
i (Y ) be the
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localization of the map M̂ c
i,0,0(f) : M̂ c

i,0,0(X)→ M̂ c
i,0,0(Y ). Let LM c

i (f) : LM c
i (X)→ LM c

i (Y )

be the result of applying the holim functor to M̃ c
i (f).

Proposition 3.2.8. (Functoriality of the LM c
i ):

a)(Functoriality with respect to proper maps). Let f : X → Y and g : Y → Z be proper

maps in A. Then LM c
i (g) ◦ LM c

i (f) = LM c
i (g ◦ f) for all i ∈ N.

b)(Functoriality with respect to flat maps). Let θ : F → E and ϕ : E → X flat maps in

A of relative dimensions e and d, respectively. Then LM c
i (ϕ ◦ θ) = LM c

i+d(θ) ◦ LM c
i (ϕ) for

all i ∈ N

c)(Mixing flat and proper maps) Consider a square

E1
f
//

ϕ

��

E2

θ
��

X1
g
// X2

in A where the horizontal maps are proper, the vertical maps are flat of relative dimension

d, and the square is componentwise a fiber square.

Then LM c
i (θ) ◦ LM c

i (g) = LM c
i+d ◦ LM c

i (ϕ)

Proof. We prove the functoriality properties in a)-c) for the M̃ c
i functors. They will then

follow for the LM c
i functors by applying the holim functor. We also reduce to the case i = 0

throughout.

a) Follows from the functoriality of M̂ c
i,j,r with respect to proper maps.

b)Consider the following diagram in SpTate(k)ZigZag, where all morphisms are the natural
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ones given by Lemma 2.5 and applying the holim functor:

M̂ c
0,0,0(X)

##

��

M̂ c
0,d,0(E)

��

{{ ""

M̂ c
d,e,0(F )

��

##

M̂ c
0,0,d(E)

��

M̂ c
d,0,0(E)

��

M̂ c
d+e,0,0(F )

M̂ c
0,d,e(F )

{{ ""

M̂ c
0,0,d+e(F ) M̂ c

d,0,e(F )

The commutativity of the diagram demonstrates that the upper zig-zag and the lower

zig-zag from M̂ c
0,0,0(X) to M̂ c

d+e,0,0(F ) induce the same map in the homotopy category

Ho(SpTate(k)ZigZag).

The upper zig-zag is the concatenation M̂ c
0,0,0(ϕ) � M̂ c

d,0,0(θ). On the other hand, the

lower zig-zag itself induces the same map as M̂ c
0,0,0(ϕ◦θ) in Ho(SpTate(k)ZigZag), by similarly

comparing the top zig-zag and bottom zig-zag in the following commutative diagram:

M̂ c
0,d+e,0(F )

��

�� ))

M̂ c
0,0,0(X)

##

M̂ c
0,d,e(F )

zz ##

M̂ c
d,e,0(F )

|| ##

M̂ c
0,0,d+e(F ) M̂ c

d,0,e(F ) M̂ c
d+e,0,0(F )

In conclusion, the concatenation M̂ c
0,0,0(ϕ) � M̂ c

d,0,0(θ) induces the same map as M̂ c
0,0,0(ϕ ◦ θ)

in Ho(SpTate(k)ZigZag), which is to say that indeed M̃ c
d,0,0(θ) ◦ M̃ c

0,0,0(ϕ) = M̃ c
0,0,0(ϕ ◦ θ), as

desired.
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c) Consider the natural commutative diagram

M̂ c
0,0,0(X1)

&&

��

M̂ c
0,d,0(E1)

xx &&

��

M̂ c
0,0,d(E1)

��

M̂ c
d,0,0(E1)

��

M̂ c
0,0,0(X2)

&&

M̂ c
0,d,0(E2)

xx &&

M̂ c
0,0,d(E2) M̂ c

d,0,0(E2)

By commutativity of the diagram, the top path and the bottom path from M̂ c
0,0,0(X1) to

M̂ c
d,0,0(E2) induce the same map in Ho(SpTate(k)ZigZag).

That is, M̃ c
d(f) ◦ M̃ c

0(ϕ) = M̃ c
0(θ) ◦ M̃ c

0(g), as desired.

Having shown the functoriality of the LM c
i , it remains to show that LM c

i , which we defined

using a homotopy limit on the model category level, agrees with the previously defined LM c

construction, which was defined using a homotopy limit on the triangulated category level.

Proposition 3.2.9. Let X ∈ A, i ∈ N. Then LM c
i,0,0(X) = LM c(X)(−i)[−2i], where

LM c(X) is as defined in 3.0.8

To prove Proposition 3.2.9, we examine the relationship between the homotopy limit con-

structions in model categories and the analogous one in triangulated categories. Working in

generality and overriding previous notation, let C denote an additive model category.

We begin by comparing the additive structure with the model category structure.

Lemma 3.2.10. a) For W equal to any of the classes fibrations, cofibrations, trivial fi-

brations, trivial cofibrations, or weak equivalences in C, the class W of maps is closed un-

der direct sum, in the sense that if f : A → B and g : C → D are in W, then so is

f ⊕ g : A⊕ C → B ⊕D.

b) The localization functor γ : C → Ho(C) is additive.
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Proof. a) In a general model category, fibrations and trivial fibrations are closed under co-

product. Similarly, in a general model category cofibrations and trivial cofibrations are closed

under product. Thus in an additive category, all of these classes of maps are closed under

direct sum. It then follows that weak equivalences are closed under direct sum, since every

weak equivalence can be factored into a trivial fibration and a trivial cofibration.

b) In a general model category, given an arbitrary index set I, the product map
∏

I : CI → C

is a right Quillen functor adjoint to the diagonal map, giving rise to a right-derived functor

on the homotopy categories, R
∏

I : HoCI → HoC, adjoint to the diagonal map. This ad-

junction shows that R
∐

I is the product in HoC. Thus if Ai : i ∈ I are fibrant objects in C,

then γ(
∏

i∈I Ai) =
∏

i∈I γ(Ai).

Dually, the left-derived functor L
∐

I : HoCI → HoC is the product in HoC, so if Ai : i ∈ I

are cofibrant objects in C, then γ(
∐

i∈I Ai) =
∐

i∈I γ(Ai).

Now suppose C is additive and let A,B ∈ C. Since weak equivalences are closed un-

der direct sum by a), we see by replacing A and B by fibrant objects that γ(A ⊕ B) =

γ(A)
∐
γ(B). On the other hand, replacing A and B by cofibrant objects shows that

γ(A⊕B) = γ(A)
∏
γ(B). Thus, the biproduct of γ(A) and γ(B) exists and equals γ(A⊕B).

By similarly considering the empty biproduct, we can see that γ(0) = 0.

Thus HoC is at least semi-additive, so Hom groups HoC(γA, γB) are at least abelian

monoids. To show additive inverses, we may assume by fribrant and cofibrant replacement

that A is fibrant and B cofibrant. In this case we have that γ : C(A,B) → HoC(γA, γB)

is quotient by homotopy, so it is surjective. Since γ is a homomorphism of monoids and

C(A,B) has additive inverses, the monoid HoC(γA, γB) must have additive inverses as well.

So HoC is additive and γ is an additive functor.

Lemma 3.2.11. Let · · ·A2 → A1 → A0 → 0 be a sequence of fibrations. Then the map

id− shift :
∏

iAi →
∏

iAi is a fibration as well.

Proof. We prove this by verifying that id − shift satisfies the right-lifting property with
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respect to trivial cofibrations. Consider a diagram

X
(ti)
//

s

��

∏
iAi

id−shift
��

Y
(ri)
//
∏

iAi

where s : X → Y is a trivial cofibration. Then we recursively construct the following

commutative diagrams:

X
t0 //

s
��

A0

Y
h1

>>
, X

ti+1
//

s

��

Ai+1

fi+1

��

Y
hi+1

==

hi−ri
// Ai

Where the lifts hi exist by the lifting properties of the fi. Then (hi) : Y →
∏

iAi is a lift of

the original diagram, since for each i, we have hi ◦ s = ti and hi − fi+1 ◦ hi+1 = ri.

Now assume further that C is stable, so the homotopy category Ho(C) is triangulated. Given

a sequence of maps · · · → A2 → A1 → A0 in a triangulated category D which has arbitrary

products, the homotopy limit holimAi in the sense of Bokstedt-Neeman[BN93] is defined as

the fiber of the morphism id− shift :
∏

iAi →
∏

iAi

Lemma 3.2.12. a) Given a diagram · · · → A2 → A1 → A0 → 0 in C consisting of fibrations,

then the limit limAi, taken in C, is isomorphic to the homotopy limit holimAi taken in HoC.

b) Let F be a diagram CZigZag of the form

A3

s2

!!

A2

t2}}
s1

!!

A1

t1}}
· · ·

B2 B1

where all maps are fibrations between fibrant objects and the ti are trivial fibrations. Then

limF = holim(· · · → A3

t−1
2 ◦s2−−−→ A2

t−1
1 ◦s1−−−→ A1)

.

Proof. a) As in the proof of lemma 3.2.10b), since the Ai are all fibrant, then the product∏
iAi, taken in C, is still fibrant, and it equals the product

∏
iAi taken in HoC. Also, since
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the localization functor C → HoC is additive, id− shift :
∏

iAi →
∏

iAi maps to id− shift

under the localization. By lemma 3.2.11, the map id− shift is a fibration. Thus we obtain a

fiber sequence ker(id− shift)→
∏

iAi
id−shift−−−−→

∏
iAi. But ker(id− shift) = limAi so we have

a fiber sequence limAi →
∏

iAi
id−shift−−−−→

∏
iAi. Since fiber sequences in stable model cate-

gories induce exact triangles in the homotopy category, we see that indeed limAi ∼= holimAi

in HoC, as desired.

b) By taking successive pullbacks, form the following diagram:

X3
f3

//

h3
��

X2
f2

//

h2
��

X1

h1

· · · A3

t3~~
s2

  

A2

t2~~
s1

  

A1

t1~~

B3 B2 B1

That is, define X1 = A1, Xn+1 = An+1 ×Bn Xn.

Since fibrations and trivial fibrations are closed under pullback and composition, it follows

that the Xi are fibrant, the maps fi+1 : Xi+1 → Xi are fibrations, and the maps hi : Xi → Ai

are trivial fibrations, thus forming an isomorphism between the sequences · · ·X3 → X2 → X1

and · · ·A3 → A2 → A1 in HoC.

By part a), limXi
∼= holimXi in HoC. But limF = limXi by comparing the two limits’

universal properties, and (Xi) ∼= (Ai) in HoC. Thus limF = holimAi, as desired.

Proof of Proposition 3.2.9: Let X ∈ A. Applying Proposition 3.2.12 to the category C =

SpTate(k) and the zig-zag F = M c
i,0,0(X), we obtain Proposition 3.2.9 as a corollary. Indeed,

keeping the notation of Proposition 3.2.8b) applied to this case, we use that the sequence

· · · → A5 → A3 → A1 is precisely the sequence M c(X)(−i)[−2i], and homotopy limit is

preserved by passing to a subsequence.
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3.3 Localization triangles

Define an open embedding in A to be a flat morphism i : U → X in A which is termwise an

open embedding. Note that by our definition of flat morphisms, i is of the following form:

· · · // U2

��

Y1 ∩ E1|U1

��

oo // E1|U1
//

��

U1

��

· · · // X2 Y1
oo // E1

// X1

Similarly, we define a closed embedding in A to be a proper morphism j : Z → X in A

which is termwise a closed embedding. By our definition of proper morphisms, j is of the

following form:

· · · // Z2

��

Z2 ∩ Y1

��

oo // E1|Z1
//

��

Z1

��

· · · // X2 Y1
oo // E1

// X1

We now define the closed complement of i : U → X as above to be the following closed

embedding, denoted j : X − U → X:

· · · // X2 − U2

��

Y1 − Y1 ∩ U2

��

oo // E1|X1−U1
//

��

X1 − U1

��

· · · // X2 Y1
oo // E1

// X1

Note that Y1 ∩ E1|U1 ⊂ U2, so Y1 − Y1 ∩ U2 ⊂ Y1 − Y1 ∩ E1|U1 . Thus indeed Y1 − Y1 ∩ U2 ⊂

E1|X1−U1 , so that the diagram makes sense.

Lemma 3.3.1. Let A→ B → C be a complex of objects in SpTate(k)ZigZag which termwise

extend to exact triangles in DM(k). Then the homotopy limits of these diagrams also extend

to an exact triangle

holim(A)→ holim(B)→ holim(C)→ holim(A)[1]

in DM(k)

Proof. Since holim : Ho(SpTate(k)ZigZag)→ DM(k) is exact, the proposition will follow once

we show that the sequence A→ B → C is an exact triangle in Ho(SpTate(k)ZigZag).
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We use the description of exact triangles as cofiber sequences. Fix a square

WA
f
//

��

WB

��

A // B

in SpTate(k)ZigZag, where f : WA → WB is a cofibration between cofibrant objects, and the

vertical maps are A1-weak equivalences. Let P = coker(f). Then by definition, WA →

WB → P is a cofiber sequence.

By the assumption that A→ B → C is a complex, we can extend the above square to a

commutative diagram

WA
f
//

��

WB

��

// P

ϕ

��

A // B // C

But now we note that the upper sequence is termwise a cofiber sequence since f , being a

cofibration in SpTate(k)ZigZag, is termwise a cofibration; and the bottom sequence is also

termwise an exact sequence in DM(k) by assumption. Moreover, the two leftmost vertical

maps are termwise isomorphisms in DM(k). Thus there is a termwise isomorphism ψ : Pα →

Cα in DM(k) for any α ∈ ZigZag. To see that ϕ itself gives such an isomorphism, consider

the diagram in DM(k)

(WA)α
fα
//

��

(WB)α //

��

Pα

ψ

��

RAα // RBα
// RCα

where R denotes fibrant replacement and ψ is an isomorphism. But the top row consists of

cofibrant objects and the bottom row of fibrant ones. Thus we can regard ψ : Pα → RCα

as a morphism in SpTate(k), such that the diagram commutes in SpTate(k). But since Pα =

coker(fα), there is a unique morphism Pα → Cα making the diagram commute. This implies

that ψ equals ϕα followed by fibrant replacement, so ϕ is indeed termwise an isomorphism

in DM(k), hence a weak equivalence in SpZigZagTate .

Thus the sequence A→ B → C is isomorphic in Ho(SpTate(k)ZigZag) to the exact triangle

WA → WB → P , so it is exact, as desired.
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Corollary 3.3.2. Let i : U → X be an open embedding of quotient stacks with closed

complement j : Z → X. Then there is a natural exact triangle in DM(k) of the form

M c(Z)→M c(X)→M c(U)

Proof. Fix a representative (Vi − Si) is of X in A. Then

LM c((Vi − Si)|Z)→ LM c((Vi − Si))→ LM c((Vi − Si)|U)

is exact since it termwise consists of localization exact triangles.

Note: the following section will show that the compactly supported motive M c(X) does

not depend (up to canonical isomorphism) on the choice of presentation (Vi − Si) of X by

algebraic spaces.

The following argument is made by Totaro[Tot16], but we repeat it for clarity and to em-

phasize the canonical nature of the stated isomorphism.

Corollary 3.3.3. Let i : U → X be an open embedding in A of the form

· · · // U2

��

Y1 ∩ E1|U1

��

oo // E1|U1
//

��

U1

��

· · · // X2 Y1
oo // E1

// X1

such that the codimension of (Xi − Ui) in Xi approaches infinity. Then i induces by flat

pullback an isomorphism LM c(X) ∼= LM c(U).

Proof. We claim that LM c(X − U) ∈ Dj for all integers j, where Dj, as defined by

Totaro[Tot16], is the smallest localizing category of DM(k) containing M c(Y )(a) for all

k-schemes Y and all integers a such that dimY + a ≤ j. This would imply, as explained by

Totaro[Tot16], that LM c(X −U) = 0, so that by the localization exact triangle, LM c(X) ∼=

LM c(U).

To prove the claim, let Zi := (Xi − Ui). By definition, LM c(X − U) is the homotopy

limit holim(M c(Zi)(−d1− · · ·− di−1)[−2d1− · · ·− 2di−1]), where di is the rank of the vector
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bundle Ei over Xi. Here we’re viewing it as a homotopy limit of a sequence in DM(k) rather

than in the model category.

Let ei = dim(Zi)− d1 − · · · − di−1. We have

ei = dim(Xi)− d1 − · · · − di−1 − codim(Zi ⊂ Xi)

. But dim(Xi) − d1 − · · · − di−1 ≤ dimX1 < ∞. So, since codim(Zi ⊂ Xi) approaches

infinity, we see that ei → −∞. By 2.3.7, it follows that for every j ∈ Z, the sequence

(M c(Zi)(−d1 − · · · − di−1)[−2d1 − · · · − 2di−1]) is eventually in Dj, so indeed its homotopy

limit LM c(X − U) is in Dj.

3.4 Functoriality of M c on quotient stacks

We have defined LM c as a functor from A to DM(k). We now seek to show that it in fact

induces a natural functor from the category of quotient stacks to DM(k).

Consider the category R of resolutions of quotient stacks by algebraic spaces.

To be precise about the definition of R, it helps to extend the category A to a category

Ā, which is defined just like A, except with quotient stacks in place of algebraic spaces. We

define proper and flat morphisms in Ā just as in A.

There is a natural embedding A → Ā. Let Q be the category of all quotient stacks.

Then we embed Q → Ā by constant zig-zags.

We define R to be the category of factorizations U → V → X in Ā, where X ∈ Q ⊂ Ā,

U ∈ A ⊂ Ā, the map V → X is a termwise vector bundle, and U → V is an open embedding

whose closed complement has codimension approaching infinity. This is a rephrasing of the

concept of a resolution of X by algebraic spaces.

We define a flat map in R from U → V → X to U ′ → V ′ → X ′ to be a commutative

diagram

U //

��

V //

��

X

��

U ′ // V ′ // X ′
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where all the vertical maps are flat in A. A proper map in R is defined by a similar

commutative diagram, where the vertical maps are proper and the squares are termwise

fiber squares.

Note that, as explained in the beginning of the section, every quotient stack X ∈ Q

admits a resolution U → V → X in R.

Define the roof

R
πA

��

πQ

��

A Q

by πA(A) = U and πQ(A) = X, where A ∈ R is a factorization U → V → X in R.

The goal of this section is to show that the functor LM c ◦ πA : R → DM(k) descends

via πQ to induce a functor M c : Q → DM(k). We now make this idea precise.

Define LM c : R → DM(k) by LM c(A) = LM c(U)(−dχ)[−2dχ], where A ∈ R is a

factorization U → V → X and dχ is the rank of V1 over X1. Then LM c is contravariantly

functorial in flat maps in R, and covariantly in proper maps. Similarly, LM c is functorial

on fiber squares in R which mix proper and flat maps.

Given an object X ∈ Ā, let RX denote the fiber of X under the functor πQ : R → Ā.

Construction 3.4.1. Let X ∈ Q. Then given two different resolutions A and B in RX , we

construct a canonical isomorphism ϕAB : LM c(A) ∼= LM c(B), such that

a) We have ϕAA = id for any A ∈ RX .

b) We have ϕBC ◦ ϕAB = ϕAC for any three objects A,B,C ∈ RX .

Proof. Let A be the factorization U → V → X and let B be the factorization U ′ → V ′ → X.

Consider the product A×RX B, which is the factorization U ×X U ′ → V ×X V ′ → X, these

fiber products being taken in Ā.

Let πABA : A×RX B → A and πABB : A×RX B be the natural projections in RX .

Note the projection U ×X U ′ → U decomposes as U ×X U ′
i−→ U ×X V ′

p−→ U . The map

i is an open embedding in A satisfying the hypothesis of Corollary 3.3.3, since its closed
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complement is U ×X (V ′ − U ′) ⊂ U ×X V ′, and we know that the codimension of V ′ − U ′

in V ′ approaches infinity by definition of R. Thus LM c(i) is an isomorphism. The map p

consists termwise of vector bundles, so LM c(p) is an isomorphism as well. Thus LM c(πABA )

is an isomorphism. Symmetrically, so is LM c(πABB ).

We then define ϕAB = (LM c(πABB ))−1 ◦ LM c(πABA ).

We now prove the functorial conditions a),b):

a) Automatic from the definition.

b) LetA,B,C ∈ RX , withA,B be as above and C being the factorization U ′′ → V ′′ → X.

Let πABCA , πABCB , πABCC be the natural projections from A ×RX B ×RX C to A,B,C,

respectively. We proved above that a projection from a product to a factor induces an

isomorphism upon applying LM c, so this holds for all these projection maps. We can rewrite

the formulas for ϕAB, ϕBC , ϕAC by pulling back to A×RX B ×RX C:

We have

ϕAB = (LM c(πABB ))−1 ◦ LM c(πABA )

= (LM c(πABCB ))−1 ◦ LM c(πABCA )

and similarly

ϕBC = (LM c(πABCC ))−1 ◦ LM c(πABCB )

and

ϕAC = (LM c(πABCC ))−1 ◦ LM c(πABCA )

combining the above three equations we see that indeed ϕAC = ϕBC ◦ ϕAB.

The above construction shows that, given X ∈ Q, we may define M c(X) up to canonical

isomorphism by the formula M c(X) = LM c(A) for any resolution A ∈ RX .

We record the following result, which will be used in the next section and has a similar

proof.
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Lemma 3.4.2. Consider a quotient stack X and an object A ∈ A together with a flat

morphism A → X in A of relative dimension r. Suppose that the flat pullback M c(Y ) →

LM c(A ×X Y )(−r)[−2r] is an isomorphism for all algebraic spaces Y over X. Then so is

the flat pullback M c(X)→ LM c(A).

Proof. For any representable morphism of stacks Y → X, let H(Y ) ∈ SpTate(k) denote

LM c(A×X Y ). Let ĀX be the category of objects in Ā equipped with a representable map

to X. Then H can be extended to a functor Ĥ : ĀX → SpTate(k)ZigZag by evaluating H at

each morphism of Ā. We can then define LH : ĀX → DM(k) by holim ◦ Ĥ.

Now, fix a resolution U → V → X of X by algebraic spaces. Consider the sequence

LH(V − U)→ LH(V )→ LH(U)

Note that H satisfies a localization triangle H(Y − U) → H(Y ) → H(U) for any open

embedding U → Y of stacks, by Lemma 3.3.1. Similarly, the functor LH satisfies a local-

ization triangle LH(A − U) → LH(A) → LH(U), for any open embedding U → A in ĀX ,

by another application of Lemma 3.3.1. Thus the above sequence is an exact triangle in

DM(k).

We know U consists of algebraic spaces, and by assumption H(Y ) is naturally isomorphic

to M c(Y ) for any algebraic space Y over X. Thus

LH(U) ∼= LM c(U)(−r)[−2r] ∼= M c(X)

by definition of the compactly supported motive of a quotient stack.

On the other hand, the vector bundle V → X induces an isomorphism of motives

LH(V ) ∼= H(X) = LM c(A).

Finally, we claim LH(V − U) = 0. Indeed, for each term Vi − Ui in V − U , we see that

H(Vi−Ui) is a homotopy limit of motives in D−ri , where ri is the codimension of Vi−Ui in

V). Thus H(Vi − Ui) is in E⊥−ri , since D−ri ⊂ E⊥−ri and E⊥−ri is colocalizing.

Therefore LH(V − U) = holimH(Vi − Ui) is in the intersection of the E⊥−rj , which is 0

since rj →∞.
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In conclusion, since the homotopy limits of the three sequences form an exact triangle,

we see that the map LM c(A)→M c(X) is an isomorphism, as desired.

Having shown that the motive M c(X) is defined up to canonical isomorphism, we now

turn to its functoriality, studying descent of morphisms under the functor πQ : R → Q.

Proposition 3.4.3. Let f1 : A → B and f : A′ → B′ be (flat or proper) morphisms in

R such that πQ(f1) = πQ(f2). Then LM c(f1) and LM c(f2) are conjugate via the canonical

isomorphisms ϕAA′ and ϕBB′.

Proof. Assume first that f1, f2 are flat maps. Let f : A×RX A′ → B ×RY B′ be the natural

map. Consider the following square in R:

A×RX A′
f
//

πA
��

B ×RY B′

πB
��

A
f1

// B

By functoriality of LM c on R with respect to flat maps, we have

LM c(f) = LM c(πA) ◦ LM c(f1) ◦ LM c(πB)−1

By similarly considering projections to A′ and B′, we have

LM c(f) = LM c(πA′) ◦ LM c(f2) ◦ LM c(πB′)
−1

Combining the two equations, we see

LM c(πA′)
−1 ◦ LM c(πA) ◦ LM c(f1) = LM c(f2) ◦ LM c(πB′)

−1 ◦ LM c(πB)

which by the details of Construction 3.4.1 amounts to

ϕAA′ ◦ LM c(f1) = LM c(f2) ◦ ϕBB′

as desired.

Now assume that f1, f2 are proper maps. Note that the above square becomes a termwise
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fiber square, so by functoriality of LM c on R with respect to fiber squares of flat and proper

maps, we see by a similar argument that

ϕBB′ ◦ LM c(f1) = LM c(f2) ◦ ϕAA′

as desired.

Note that any flat map f : X → Y in Q is covered by a flat map f̄ : A → B in R, in the

sense that πQ(f̄) = f . Indeed, first fix a resolution A0 ∈ RX and B ∈ RY . Then define

A = f ∗B ×X A0. That is, writing A0 as the composition U → V → X and writing B as the

composition O → W → Y , we define A ∈ RX as the composition U×X f ∗O → V ×X f ∗W →

X. In general, f ∗O might not be in A (that is, a zig-zag of algebraic spaces), but we know

U ×X f ∗O ∈ A, since it is an open embedding of a termwise vector bundle over U ∈ A. The

composition A→ f ∗B → B covers the map f .

On the other hand, not every proper map f : X → Y in Q can be covered by a proper

map f̄ : A → B in R. The point is that, by our definition of proper maps in R, the

object A would have to be the termwise pullback f ∗B, which may not always be in R. For

example, if G is a finite group, then BG → Spec(k) is proper, but given any resolution

U → V → Spec(k) in R, the pullback f ∗U equals the product BG ×k U , which is not a

zig-zag of algebraic spaces.

For this reason, we restrict to proper maps in Q which are termwise representable. Such

maps, which in the future we simply refer to as representable, can always be covered by

proper maps in R.

Theorem 3.4.4. There is a functor M c : Q → DM(k), canonical up to natural isomorphism,

which is contravariantly functorial with respect to flat maps and covariantly functorial with

respect to representable proper maps, and functorial with respect to fiber squares mixing flat

maps and representable proper maps.

Proof. For each object X ∈ Q, fix a resolution AX ∈ RX . Then define

M c(X) := LM c(AX)
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Similarly, for each morphism f : X → Y in Q which is either flat or representable proper, fix

a cover f̄ : Af,X → AY of f in R. Then define the morphism M c(f) : LM c(Y )→ LM c(X)

by

M c(f) = ϕAf,XAX ◦ LM c(f̄) if f is a flat map

M c(f) = LM c(f̄) ◦ ϕAXAf,X if f is a representable proper map

To show functoriality, consider a sequence of flat maps X
f−→ Y

g−→ Z in Q. The key is

that there is a cover A → B → C of in R of X → Y → Z consisting of flat maps. It then

follows formally from functoriality of LM c on R, together with the results of Construction

3.4.1 and Proposition 3.4.3, that M c(f) ◦M c(g) = M c(g ◦ f).

Functoriality with respect to representable proper maps is proven in the same way.

Functoriality with respect to fiber squares mixing flat and representable proper maps is

also proven similarly, by noting that given any fiber square

X ′ //

��

Y ′

��

X // Y

in Q with vertical maps flat and horizontal maps representable proper maps, this square is

covered by some fiber square in R similarly of the form

A′ //

��

B′

��

A // B

where the vertical maps are flat and the horizontal maps are proper.

Finally, we note that a different choice of representatives AX and Af,X would yield a

naturally isomorphic functor via the isomorphisms in Construction 3.4.1.

Corollary 3.4.5. The association GpSch/k → DM(k) given by G 7→M c(BG)(dimG)[2dimG]

is contravariantly functorial.

Proof. Given a group homomorphism H → G, there is a flat morphism of quotient stacks

BH → BG.

48



CHAPTER 4

The Mixed Tate Property

Throughout this section, we assume that we have fixed a field k and a coefficient ring R such

that the exponential characteristic of k is invertible in R. All statements about motives are

understood to be with coefficients in R.

4.1 Background

We describe three different types of Kunneth properties, from weaker to stronger.

Definition 4.1.1. Let X be a quotient stack of finite type over a field k.

X has the weak Kunneth property if for any field extension K of k, the natural morphism

CH∗(X)→ CH∗(XK) is a surjection.

X has the Chow Kunneth property if for any separated scheme Y of finite type over k,

the natural morphism

CH∗(X)⊗ CH∗(Y )→ CH∗(X ×k Y )

is an isomorphism.

X has the motivic Kunneth property if for any k-scheme Y , the Kunneth spectral sequence

for X and Y converges to motivic homology groups of X × Y .[Tot16]

The motivic Kunneth property implies the Chow Kunneth property, which in turn implies

the weak Chow Kunneth property. Totaro characterized these properties in terms of the

motive M c(X) ∈ DM(k;R).

The triangulated category DMT (k;R) of mixed Tate motives is the smallest localizing

subcategory of DM(k;R) that contains the Tate motives R(j) for all integers j.[RO08]
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Proposition 4.1.2. (Totaro[Tot16]) The quotient stack X satisfies the motivic Kunneth

property if and only if the motive M c(X) is a mixed Tate motive.

Note that, since DMT (k;R) is triangulated, if we are given an exact triangle A→ B → C

in DM(k;R) such that two out of three of the motives are in DMT (k;R), then so is the

third. For example, this may be applied to the localization triangle of M c(Z)→ M c(X)→

M c(X − Z) for any substack Z of a quotient stack X, showing that if two of Z,X,X − Z

have mixed Tate motives, so does the third.

A related notion is a linear scheme. The family of linear schemes over k is the smallest

set of schemes containing affine space An
k for all n ≥ 0 and such that for any scheme X of

finite type over k with a closed subscheme Z, if Z and X − Z are linear schemes, then so is

X, and if X and Z are linear schemes, then so is X − Z. By the definition of mixed Tate

motives, together with the localization exact triangle, it follows by induction on dimension

that whenever X is a linear scheme, the motive M c(X) is mixed Tate.

We say that an affine group scheme G satisfies the mixed Tate property if M c(BG) is

mixed Tate, which, by the above Proposition, is equivalent to BG satisfying the motivic

Kunneth property.

The following result makes the mixed Tate property easier to check.

Proposition 4.1.3. (Totaro[Tot16]) Let X be a quotient stack of finite type over k and let

E → X be a GL(n)-bundle. Then M c(X) is mixed Tate if and only if M c(E) is mixed Tate.

Corollary 4.1.4. Let G ⊂ GL(n) be a subgroup scheme. Then G has the mixed Tate

property if and only if M c(GL(n)/G) is mixed Tate.

We note basic results about the mixed Tate property.

Lemma 4.1.5. Let G,H denote affine group schemes.

a) The product G × H has the mixed Tate property if and only if both G and H have the

mixed Tate property.

b)(Totaro)[Tot16] If BG can be approximated by linear schemes, then so can the wreath prod-

uct Z/p oG.
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b’) In particular, if G ⊂ GL(n) and GL(n)/G is a linear scheme, then BG can be approxi-

mated by linear schemes, so Z/p oG has the mixed Tate property.

Proof. a) Suppose G and H have the mixed Tate property. Then B(G × H) ∼= BG × BH

does as well, sinde DM(k;R) is closed under tensor product.

Conversely, suppose G × H has the mixed Tate property. We may form the sequence

G→ G×H → G, which induces by functoriality a sequence

M c(BG)→M c(B(G×H))(dimH)[2dimH]→M c(BG)

whose composition is the identity, demonstrating that M c(BG) is a summand of M c(B(G×

H)), so it has the mixed Tate property as well since the category of mixed Tate motives is

localizing.

b) See [Tot16].

b’) Let UN consist of linearly independent n-tuples in AN+n. Then the projection π :

UN → Gr(n, n+N) mapping a tuple to its span is a GL(n)-bundle. The variety Gr(n, n+N)

has an affine stratification into cells such that π is a trivial GL(n)-bundle over each cell. Thus

the quotient p : UN/G → UN/GL(n) ∼= Gr(n, n + N) is a GL(n)/G-bundle which is trivial

over each cell. Thus UN/G can be stratified into pieces of the form Am × GL(n)/G, which

are linear if GL(n)/G is linear, showing that UN/G is linear, so BG may be approximated

by linear schemes.

4.2 Techniques

Lemma 4.2.1. Let G be a smooth affine algebraic group over k acting on a scheme X over

k. Suppose that the induced action of G(k̄) on X(k̄) has finitely many orbits Oi ⊂ X(k̄)

and that, furthermore, each orbit Oi contains a k-point xi (that is, a point of X(k̄) which

comes from X(k)). Then X can be stratified by quotient schemes G/Hi, where Hi ⊂ G is

the stabilizer group of xi. That is, there is a chain of reduced closed subschemes X = X0 ⊃

X1 ⊃ · · · ⊃ Xn = ∅ such that, for an appropriate reordering of the xi, G/Hi is isomorphic

to an open subscheme Ui ⊂ Xi−1, whose complement is Xi.
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Proof. Since the action of G(k̄) on X(k̄) has finitely many orbits, each irreducible component

ofX(k̄) must be contained in (exactly) one of the closuresOi. So fix an irreducible component

V ⊂ X and an orbit O1 such that O1 contains V . Note that O1 does not intersect any Oi for

i 6= 1, since if it did, then Oi, being stable under G, must contain all of O1, a contradiction.

Thus O1 must be contained in the open complement of
⋃
i 6=1 Oi, so it equals this open set,

demonstrating that O1 is open in X(k̄).

Now, by our assumption that each orbit contains a k-point, let x1 ∈ O1 be a k-point. Let

Ox1 ⊂ X be the orbit scheme of x1. So we know that Ox1(k̄) = O1 and the orbit Ox1 is open

in X. Also, since x1 is a k-point, the orbit map G → Ox1 : g 7→ gx gives Ox1 the structure

of a quotient G/H1, where H1 is the stabilizer group of x1. Now, the closed complement

X\Ox1 , with the reduced scheme structure, is stable under G. The orbits of the action of

G(k̄) on X(k̄)\O1 are exactly the orbits of X(k̄) other than O1, and the stabilizer of a k-point

x ∈ X\Ox1 is isomorphic to the stabilizer of x ∈ X, so we may now apply induction.

The following corollaries are two common situations:

Corollary 4.2.2. Let X be a mixed Tate scheme with a GL(n) action. Suppose that

GL(n)(k̄) acts on X(k̄) with finitely many orbits each of which contains a k-point. Let

xi be k-points which are representatives of all the orbits of GL(n)(k̄) on X(k̄). For each i,

let Hi ⊂ GL(n) denote the stabilizer group of xi. Assume the orbit of x1 is an open orbit.

Suppose that the groups Hi satisfy the mixed Tate property for all i > 1. Then H1 also

satisfies the mixed Tate property.

Proof. Assume without loss of generality that the xi are ordered as in the statement of

lemma 1.1 and let Xi, Ui be as in the statement of lemma 1.1. We prove by induction that

each Xi, i ≥ 1, is mixed Tate (the base case being Xn = ∅). Indeed, let i ≥ 1 and assume

Xi+1 is mixed Tate. By the assumption that each Hi+1 has the mixed Tate property ,and

since Ui+1
∼= GL(n)/Hi+1, the open subscheme Ui+1 ⊂ Xi is mixed Tate. But we assumed

Xi+1 = Xi\Ui+1 is mixed Tate, so it follows that Xi is mixed Tate, as desired. Since

X1 = X\U1 is mixed Tate and X is mixed Tate, it follows that the open subscheme U1 ⊂ X

is mixed Tate. Since U1
∼= GL(n)/H1, the group H1 has the mixed Tate property.

52



Corollary 4.2.3. Let G be a split solvable algebraic group over k acting on a scheme X.

Suppose G(k̄) acts on X(k̄) with finitely many orbits, each of which has a k-point. Then X

is mixed Tate.

Proof. Let Xi, Ui be as in the statement of lemma 1.1. By induction, we assume X1 is mixed

Tate. Also U1
∼= G/H1 is mixed Tate since all homogeneous spaces of split solvable groups

are mixed Tate. Since X1 is the complement of the open subscheme U1 ⊂ X, we conclude

that X is mixed Tate.

Note: the assumption that every orbit has a k-point is necessary for the above corollary.

As a simple example, let G = 1 act on X = SpecC over R. This action has two orbits over C

since SpecC×R SpecC consists of two points. But X = C is not mixed Tate over R since it

does not have the weak Chow Kunneth property. We now describe a common type of group

which has the mixed Tate property. Given a sequence n1, . . . , nk, set n = n1 + · · · + nk.

Let Tn1,...,nk ⊂ GL(n) denote the stabilizer of the flag F1 ⊂ · · · ⊂ Fk = V , where V is an

n-dimensional vector space with basis ei and Fi =< e1, . . . , en1+···+ni >. Concretely, Tn1,...,nk

consists of block-upper-triangular matrices with blocks of sizes n1, . . . , nk along the diagonal.

Let T ′n1,...,nk
be the transpose of Tn1,...,nk , that is, consisting of block-lower-triangular matrices

of the same sizes.

Let Dn1,...,nk
∼= GL(n1)×· · ·×GL(nk) ⊂ GL(n) denote the subgroup of GL(n) stabilizing

all of the subspaces < e1, . . . , en1 >, . . . , < enk−1+1, . . . , enk >. Concretely, Dn1,...,nk consists

of block-diagonal matrices with blocks of sizes ni. We have a group homomorphism π :

Tn1,...,nk → Dn1,...,nk given by picking out the diagonal terms. Let Un1,...,nk denote the kernel

of π, consisting of block-unipotent matrices. Then Un1,...,nk is isomorphic as a variety to

affine space AN , where N =
∑

i<j ninj. Similarly, we have a map π′ : Tn1,...,nk → Dn1,...,nk

and we denote its kernel U ′n1,...,nk
.

Lemma 4.2.4. We use the above notation. Suppose H ⊂ GL(n) can be expressed as the

semi-direct product JoK, where K ⊂ Dn1,...,nk and J ⊂ Un1,...,nk (respectively, J ⊂ U ′n1,...,nk
),

where the multiplication operation on J oK comes from GL(n). Suppose K has the mixed
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Tate property and J is a linear subspace of Un1,...,nk
∼= AN (resp. of U ′n1,...,nk

). Then H has

the mixed Tate property.

Proof. By assumption, H = J o K, so every element h ∈ H can be written (uniquely) as

h = j · k, with k ∈ K and j ∈ J . In fact, we must have k = π(h), j = hk−1. Thus the

map ϕ : H → J given by h 7→ hπ(h)−1 induces an isomorphism of varieties ϕ̄ : H/K → J .

The group H acts on H/K ∼= J ∼= Am via ϕ̄. We verify that H acts on Am by affine-linear

transformations. It suffices to verify that both K and J act by affine linear transformations.

Indeed, Indeed, consider elements h ∈ H and j ∈ J . Write h = kj;, where k ∈ K, j′ ∈ J .

Then h̄ · u = j′u ∈ J . Note that multiplication by a fixed element of Un1,...,nk is affine-linear

on Un1,...,nk
∼= AN . Since J ⊂ Un1,...,nk is a linear subspace, the induced map on J is also

affine-linear. Thus H acts on J ∼= Am by affine-linear transformations, as desired.

An algebraic group G is special if every G-bundle is Zariski-locally trivial. For example,

the group of affine transformations is special.

Now, there is a natural map p : GL(n)/K → GL(n)/H with fiber H/K ∼= J ∼= Am. Since

H acts by affine transformations on J and the group of affine transformations is special, p

is Zariski-locally trivial. Since K has the mixed Tate property, GL(n)/K is mixed Tate,

hence, since p is an affine-space bundle, GL(n)/H is mixed Tate, so H has the mixed Tate

property.

The case of J ⊂ U ′n1,...,nk
instead of Un1,...,nk is similar.

4.3 Sp(2n), O(q) and SO(q)

Before treating the mixed Tate property for these groups, we first record the known compu-

tations of the Chow groups of their classifying spaces. Note these Chow group calculations

hold for any field, already indicating the weak Chow Kunneth property.

Proposition 4.3.1. (Totaro[Tot99]) We have the following computations

CH∗BGL(n) = Z[c1, . . . , cn]
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CH∗BO(n) = Z[c1, . . . , cn]/(2ci = 0 for i odd)

CH∗BSp(2n) = Z[c2, c4, . . . , c2n]

CH∗BSO(2n+ 1) = Z[c2, c3 . . . , c2n+1]/(2ci = 0 for i odd)

Here ci stand for the chern classes under the natural representations.

The Chow groups of SO(2n) involve a more difficult calculation. Indeed they stand out

for not being generated by Chern classes.

Proposition 4.3.2. (Field[Fie12])

CH∗BSO(2n) = Z[c2, c3 . . . , c2n, yn]/(2codd, yn · codd, y2
n + (−1)n22n−2c2n)

Proposition 4.3.3. Over an arbitrary field k and for any n > 0, the symplectic group

Sp(2n) over k has the mixed Tate property.

Proof. We consider the action of GL(2n) on the space V of alternating forms of dimension

2n. Let f0 = 0 and let fi = x1 ∧ x2 + · · ·x2i−1 ∧ x2i), for i = 1, . . . , n, and fn+1 = 0. Let

Hi ⊂ GL(2n) be the stabilizer of fi. Then Hi = Ki o Ji, where Ki ⊂ D2i,2n−2i consists of

matrices of the block-matrix form

 A 0

0 B

 and Ji = U ′2i,2n−2i. By induction, if i < n then

Sp(2i) has the mixed property, so Ki has the mixed Tate property. So by lemma 4.2.4, Hi

has the mixed Tate property. The forms fi form a set of representatives for all orbits of

GL(n)(k) on V (k), and the orbit of fn is the open orbit of nondegenerate alternating forms.

Since all the stabilizers Hi of the fi with i < n have the mixed Tate property, it follows by

Corollary 4.2.2 that Sp(2n), the stabilizer of fn, has the mixed Tate property, as desired.

For the remainder of this section, let k be a field of characteristic not equal to 2. We

now show that O(q) has the mixed Tate property for any nondegenerate quadratic form q

of dimension n. We could use the same idea as above, analyzing the GL(n)-orbits on the

space of quadratic forms, but instead we take a different approach, analyzing the B-orbits

on the homogeneous space GL(n)/O(q), where B ⊂ GL(n) is the Borel subgroup consisting

of upper-triangular matrices. This approach lends itself better to the study of SO(q). We
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identify the homogeneous space GL(n)/O(q) with the space Pn of nondegenerate quadratic

forms q of dimension n. The action of GL(n) is given by (A ·q)(v) = q(Av) and the quadratic

form q ∈ Pn is taken as the neutral element of GL(n)/O(q). We also identify Pn with the

space of nonsingular symmetric matrices, by associating to each quadratic form q′ the unique

symmetric matrix Q′ ∈ GL(n) such that q′(v) = vTQ′v.

Lemma 4.3.4. Let Sn be the symmetric group on n letters and let In ⊂ Sn consist of all

involutions. Then the permutation matrices corresponing to elements of In form a set of

representatives for the orbits of B(k̄) on (GL(n)/O(n))(k̄).

Proof. See [RS90].

Proposition 4.3.5. Let k be an arbitrary field of characteristic not equal to 2 and let q be

a nondegenerate quadratic form over k. Then the orthogonal group O(q) has the mixed Tate

property.

Proof. The above lemma shows that B(k̄) acts on (GL(n)/O(n))(k̄) with finitely many

orbits, each of which has a point defined over k (since permutation matrices are defined over

Z). By corollary 1.3, it follows that GL(n)/O(q) has the mixed Tate property.

We now study the mixed Tate property for SO(q), for a nondegenerate quadratic form

q. If q has dimension 2n+ 1, this is easy.

Proposition 4.3.6. Let k be an arbitrary field of characteristic not equal to 2 and let q be

a nondegenerate quadratic form over k of dimension 2n+ 1. Then the group SO(q) has the

mixed Tate property.

Proof. We have O(q) ∼= SO(q)×µ2. Since O(q) has the mixed Tate property, so does SO(q)

by 1.4a).

The even-dimensional case is harder. We again consider consider the action of B on

GL(n)/SO(q). Given n ≥ 0, let P2n ⊂ GL(2n) denote as above the space of nonsingular

quadratic forms of dimension 2n. Given d ∈ k, let W d
n denote the subscheme of P2n × Gm
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consisting of pairs (q, t) such that det(q) = t2d. Given a quadratic form q of determinant

d, we can view W d
n as the quotient scheme GL(2n)/SO(q), where GL(2n) acts on W d

n by

g · (q′, t) = (g · q′, det(g)t) and (q, 1) is the neutral element of GL(2n)/SO(q).

Proposition 4.3.7. Let k be an arbitrary field of characteristic not equal to 2 and let q be

a nondegenerate quadratic form over k of dimension 2n. Then:

i)If det(q) = (−1)n(mod (k×)2), then the special orthogonal group SO(q) has the mixed Tate

property.

ii)Conversely, if det(q) 6= (−1)n(mod (k×)2), then SO(q) does not satisfy the weak Chow

Kunneth property, so in particular it does not satisfy the mixed Tate property.

In order to prove part ii) of the proposition, we calculate CH∗(GL(2n)/SO(q)). Field[Fie12]

calculated this over the complex numbers, though her proof works as well over any alge-

braically closed field of characteristic not equal to 2. We generalize Field’s computation to

an arbitrary quadratic form q over a general field k.

Lemma 4.3.8. i)If det(q) = (−1)n(mod (k×)2), then CH∗(GL(2n)/SO(q)) ∼= Z⊕Zy, where

y is a codimension n cycle.

ii)If det(q) 6= (−1)n(mod (k×)2), then CH∗(GL(2n)/SO(q)) ∼= Z.

Proof of Proposition 4.3.7 and Lemma 4.3.8:

4.3.7i) Consider the action of the Borel subgroup B of GL(2n) on GL(2n)/SO(q). For an

element q′ ∈ GL(2n)/O(q) = P2n, the fiber of q′ under the projection GL(2n)/SO(q) →

GL(2n)/O(n) consists of two elements over k̄: (q′,±
√
det(q′)/d).

Let h ∈ I2n ⊂ S2n ⊂ GL(2n) be the representative of q′ under the action of B on P2n.

First suppose that h(ei) = ei for some basis vector ei. Then consider the diagonal matrix

b ∈ B with b(ej) = ej for j 6= i, b(ei) =
√
d/det(h)ei. Thus b ·(h,±

√
det(h)/d) = (b2 ·h,±1),

which is a k-point. Thus x has a k-point in its orbit.

Now suppose that h is fixed-point free as a permutation. Then det(h) = (−1)n since it is

a product of n transpositions. Then the condition that d = (−1)n (mod (k×)2) is precisely

the condition that
√
det(h)/d ∈ k, thus implying that x has a k-point (h,

√
det(h)/d) in
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its orbit. Thus, if d = (−1)nmod (k×)2, then every orbit has a k-point so GL(2n)/SO(q) is

mixed Tate by corollary 4.2.3.

4.3.8i) Field[Fie12] proved this result for algebraically closed fields. By 4.3.7i), if det(q) 6=

(−1)nmod (k×)2, then SO(q) has the mixed Tate property, hence by the Kunneth property,

CH∗((GL(2n)/SO(q))k) ∼= CH∗((GL(2n)/SO(q))k̄).

4.3.8ii) Now suppose that d := det(q) 6= (−1)nmod (k×)2. We closely follow the proof

method of [Fie12] to show that CH∗(GL(2n)/SO(q)) = CH∗(W d
n) ∼= Z, arguing by induc-

tion. The base case is taken to be n = 0, in which case W d
0 ⊂ Gm is Spec(k[t]/(t2 = 1

d
)). In

the case of n = 0, d 6= (−1)nmod (k×)2 implies 1
d

is not in (k×)2. Thus, k[t]/(t2 = 1
d
) is a

field, so Spec(k[t]/(t2 = 1
d
)) is irreducible, and CH∗(W d

0 ) ∼= Z as desired.

Now we consider general n > 0. For each i between 1 and 2n, let Xi ⊂ W d
n be the

subvariety consisting of pairs (q′, t) such that q′(ei, e2n) 6= 0 and q′(ej, e2n) = 0 for i < j ≤ 2n.

Let q̄′ be the restriction of q′ to the orthogonal complement of k < ei, e2n > with respect to q′.

Then q̄′ is a quadratic form of dimension 2(n−1) and we have det(q′) = det(q̄′) ·−q′(ei, e2n)2.

We can therefore define a map Xi → W−d
n−1 by (q′, t) 7→ (q̄′, t/q′(ei, e2n)). This map is a trivial

fibration, with fiber Gm × A2n+i−2
k . Since, by assumption, d = (−1)n(mod (k×)2), it follows

that −d = (−1)n−1(mod (k×)2) Thus we may apply induction to conclude CH∗(Xi) ∼= Z.

We now show that CH∗(Xi) ∼= Z for all i, by induction. The base case is i = 1, where

it follows from above, since X1 is closed in W d
n . For each i > 1, Xi is an open subvari-

ety of Xi whose closed complement is Xi−1. By induction, CH∗(Xi−1) ∼= Z, generated by

the codimension-zero cycle. Since Xi−1 is cut out of Xi by q′(ei, e2n) = 0, we see that the

pushforward CH∗(Xi−1)→ CH∗(Xi) is the 0 map, so by the basic exact sequence of Chow

groups, CH∗(Xi) ∼= CH∗(Xi) ∼= Z. In particular, since X2n = W d
n , we have CH∗(W d

n) ∼= Z,

as desired.

4.3.7ii) If d := det(q) 6= (−1)nmod (k×)2, then it follows from Lemma 4.3.8i) and ii) that the

map CH∗((GL(2n)/SO(q))k)→ CH∗((GL(2n)/SO(q))k̄) is not surjective.
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4.4 G2

We first record the Chow groups of G2.

Proposition 4.4.1. (Guillot[Gui08])

CH∗BG2 = Z[c2, c4, c6, c7]/(c2
2 = 4c4, c2c7 = 0, 2c7 = 0)

For any field k, let V = k7. Let e1, . . . , e7 denote the standard basis and let x1, . . . , x7

denote the dual basis of V ∗. We identify
∧3 V ∗ with the space of alternating trilinear forms

on V . Let GL(V ) act on
∧3 V ∗ by (A · f)(x, y, z) = f(Ax,Ay,Az).

Lemma 4.4.2. Let k be a field. The group GL(V )(k̄) acts with 9 orbits on
∧3 V ∗(k̄), with

representatives f1, dots, f9 defined over k. Let Hi ⊂ GL(V ) denote the stabilizer of fi. Then

for all i < 9, Hi has the mixed Tate property. The orbit of f9 is an open orbit and its

stabilizer H9 equals G2 × µ3, where G2 denotes the split simple algebraic group of type G2

over k.

Proposition 4.4.3. The group G2 has the mixed Tate property over any field k.

Proof. By Lemma 4.4.2 and Corollary 4.2.2, we conclude that H9 = G2 × µ3 has the mixed

Tate property. Thus by lemma 4.1.5a), G2 has the mixed Tate property as well.

Proof of lemma 4.4.2: Cohen-Helminck[4] identified the forms fi:

f1 = x1 ∧ x2 ∧ x3

f2 = x1 ∧ x2 ∧ x3 + x1 ∧ x4 ∧ x5

f3 = x1 ∧ x2 ∧ x3 + x4 ∧ x5 ∧ x6

f4 = x1 ∧ x6 ∧ x2 + x2 ∧ x4 ∧ x3 + x1 ∧ x3 ∧ x5

f5 = x1 ∧ x2 ∧ x3 + x4 ∧ x5 ∧ x6 + x1 ∧ x4 ∧ x7

f6 = x1 ∧ x5 ∧ x2 + x1 ∧ x7 ∧ x4 + x1 ∧ x6 ∧ x3 + x2 ∧ x4 ∧ x3

f7 = x1 ∧ x4 ∧ x6 + x1 ∧ x5 ∧ x7 + x2 ∧ x4 ∧ x5 + x3 ∧ x6 ∧ x7
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f8 = x1 ∧ x2 ∧ x3 + x1 ∧ x4 ∧ x5 + x1 ∧ x6 ∧ x7

f9 = x1 ∧ x2 ∧ x3 + x4 ∧ x5 ∧ x6 + x1 ∧ x4 ∧ x7 + x2 ∧ x5 ∧ x7 + x3 ∧ x6 ∧ x7

Cohen-Helminck proved the above fi form a set of representatives of the action of

GL(V )(k̄) on
∧3 V ∗ and showed that the stabilizer of f9 is G2 × µ3. The forms fi are

defined over Z, hence over k. The fact that the orbit of f9 is an open orbit can be seen from

the fact that dimGL(V )/(G2 × µ3) = dim
∧3 V ∗.

It remains to prove that the Hi have the mixed Tate property for all i < 9. Cohen-

Helminck calculated the stabilizers Hi. We cite the calculations and use them to prove Hi

are mixed Tate for i < 9.

1. H1 = J oK, where J = U ′3,4 and K = SL(3) × GL(4) ⊂ D3,4. Since SL(3) and GL(4)

have the mixed-Tate property, so does K = SL(3)×GL(4). By lemma 4.2.4, it follows that

H1 has the mixed Tate property.

2. H2 = JoK, where J = U ′1,4,2, K = (1×Sp(4)×GL(2))oGm ⊂ D1,4,2, and Gm ⊂ GL(7)

embeds in the subgroup of diagonal matrices by λ 7→ (λ, λ−1, 1, λ−1, 1, 1, 1).

By Lemma 4.2.4, N := JoK ⊂ GL(7) has the mixed Tate property. Since H2/N ∼= Gm,

there is a Gm-bundle π : GL(7)/N → GL(7)/H2, from which we can conclude that GL(7)/H2

is mixed Tate, so H2 has the mixed Tate property.

3. H3 = J o K, where J = U ′6,1 and K = ((SL(3) × SL(3)) o Z/2) × Gm ⊂ D6,1, where

SL(3)× SL(3) embeds diagonally into GL(6) and Z/2 embeds into GL(6) by the permuta-

tion (14)(25)(36). Then in fact (SL(3)×SL(3))oZ/2 is a wreath product Z/2 oSL(3). Since

GL(3)/SL(3) ∼= Gm is a linear scheme, it follows by Lemma 4.1.5b’ that K = Z/2 o SL(3)

has the mixed Tate property. So by Lemma 4.2.4, H3 has the mixed Tate property.

4. H4 = J o K, where J ⊂ U ′3,3,1 consists of those matrices 1 + B ∈ U ′3,3,1 subject to

the condition x1 ∧Bx6 ∧ x2 + x2 ∧Bx4 ∧ x3 + x1 ∧ x3 ∧Bx5=0;

and K ⊂ D3,3,1
∼= GL(3) × Gm, where GL(3) embeds into D3,3,1 by h 7→ (h, h · det(h)−1, 1)

and Gm embeds into D3,3,1 by λ 7→ (1, 1, λ).
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Since J is cut out of U ′3,3,1 by a linear condition, it is a linear subspace of U ′3,3,1
∼= A15.

Since K has the mixed Tate property, it follows by lemma 4.2.4 that H4 has the mixed Tate

property.

5. It is more convenient for our purposes to permute the indices, letting f ′5 = x1 ∧ x3 ∧

x4 + x2 ∧ x5 ∧ x6 + x1 ∧ x2 ∧ x7. The form f ′5 lies in the same orbit as f5, so we may consider

f ′5 instead as a representative of the orbit.

Let H ′5 ⊂ GL(7) be the stabilizer of f ′5. Then H ′5 = J oK, where J ⊂ U ′2,4,1 consists of

those matrices 1 +B ∈ U ′2,4,1 subject to the condition x1 ∧Bx3 ∧ x4 + x1 ∧ x3 ∧Bx4 + x2 ∧

Bx5 ∧ x6 + x2 ∧ x5 ∧Bx6 + e1 ∧ x2 ∧Bx7 = 0;

and K ∼= (GL(2) × GL(2)) o (Z/2), where GL(2) × GL(2) embeds into D1,1,2,2,1 ⊂ D2,4,1

by (A,B) 7→ (det(A)−1, det(B)−1, A,B, det(A)det(B)) and Z/2 embeds into D2,4,1 by the

permutation π(12)(35)(46).

Since J is cut out of U ′2,4,1 by a linear condition, it is a linear subspace of U ′2,4,1
∼= A14.

The group K is a wreath product Z/2 o GL(2). By Lemma 4.1.5b, K has the mixed Tate

property. It follows by Lemma 4.2.4 that H ′5 has the mixed Tate property.

6. H6 = J o K, where J ⊂ U ′1,3,3 consists of matrices 1 + B ∈ U ′1,3,3 subject to the

condition x1 ∧Bx5 ∧ x2 + x1 ∧Bx7 ∧ x4 + x1 ∧Bx6 ∧ x3 = 0, and K = Gm×SL(3) ⊂ D1,3,3,

where Gm × SL(3) embeds into D1,3,3 via (λ,A) 7→ (λ,A, λ−1(AT )−1).

Since J is cut out of U ′1,3,3 by a linear condition, it is a subspace of U ′1,3,3
∼= A15. Since K

has the mixed Tate property, it follows by lemma 4.2.4 that H6 has the mixed Tate property.

7. Let W1 =< e1, e2, e3 > and W2 =< e4, e5, e6 >. Let q = x4x6 + x5x7, a quadratic

form on W2.

Then H7 = J oK, where J ⊂ U3,4 consists of the matrices 1 + B ⊂ U3,4 subject to the

condition Bx1 ∧ x4 ∧ x6 +Bx1 ∧ x5 ∧ x7 +Bx2 ∧ x4 ∧ x5 +Bx3 ∧ x6 ∧ x7 = 0;

and K = SO(W2, q) oGm ⊂ D3,4.
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The embedding of SO(q) in D3,4 uses the exceptional isomorphism SO(q) ∼= (SL(2) ×

SL(2))/(Z/2). Specifically, let SL(2)× SL(2) act on the space of 2× 2 matrices by (g, h) ·

x = gxh−1. This action preserves the determinant, so SL(2) × SL(2) maps to SO(q) by

identifying the tuple (x4, x5, x6, x7) with the matrix

 x6 x7

−x5 x4

, inducing an isomorphism

ϕ : (SL(2)×SL(2))/µ2
∼= SO(q). Also, let SL(2)×SL(2) act on the space of traceless 2× 2

matrices by (g, h) · x = 1
det(g)2

gxg−1. By identifying the tuple (x1, x2, x3) with the traceless

matrix

 x1 −x2

x3 −x1

, we obtain a map θ : (SL(2)× SL(2))/µ2 → GL(W1).

Then SO(W2, q) embeds into GL(W1) × GL(W2) by A 7→ (θ(ϕ−1(A)), A). The group

Gm embeds into GL(7) diagonally by λ 7→ (λ−1, λ−1, λ−1, λ, 1, 1, λ). These two embeddings

define the embedding of SO(W2, q) oGm into D3,4.

The group SO(W2, q) has the mixed Tate property since q is a split nondegenerate

quadratic form. Thus, K has the mixed Tate property as well. Moreover, J ⊂ U3,4 is a

linear subspace, so we conclude by lemma 4.2.4 that H7 has the mixed Tate property.

8. Let W =< e2, . . . , e7 > and let p = x2 ∧ x3 + x4 ∧ x5 + x6 ∧ x7, a symplectic form

on W .

Then H8 = J o K, where J = U ′1,6 and K = (1 × Sp(W, p)) o Gm ⊂ D1,6, where Gm

embeds into GL(7) diagonally by λ 7→ (λ−1, λ, 1, λ, 1, λ, 1).

Since Sp(6) has the mixed Tate property, we conclude that K has the mixed Tate prop-

erty. By lemma 4.2.4, it follows that H8 has the mixed Tate property.

4.5 Quotients by Unipotent groups

The goal of this section is to prove the following.

Proposition 4.5.1. Let G be an affine group scheme and let J ⊂ G be a normal split

unipotent subgroup scheme of dimension d. Suppose G/J acts on a scheme Z. Then

M c([Z/G]) ∼= M c([Z/(G/J)])(d)[2d]. In particular, M c(BG) ∼= M c(B(G/J))(d)[2d].
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Note, the above proposition is not hard to prove in characteristic 0, but we work over a

general field k.

Lemma 4.5.2. Let B be a closed subgroup of (Ga)
n = Spec k[x1, . . . , xn] over k. Let

π : (Ga)
n → (Ga)

n/B be the projection. Let H((Ga)
n/B) ⊂ Aut((Ga)

n/B) denote the

group of automorphisms ϕ : An/B → An/B with the property that for any regular func-

tion f ∈ k[(Ga)
n/B], the degree of π∗f equals the degree of π∗ϕ∗f in k[x1, . . . , xn]. Then the

group H((Ga)
n/B) is special.

Proof. Throughout the proof, let H denote the group H((Ga)
n/B).

We first note that (Ga)
n/B ∼= (Ga)

s, where s = n − dim(B). Indeed, Rosenlicht

proved[Ros63] that B ⊂ (Ga)
n is cut out by s additive functions y1, . . . , ys : (Ga)

n → Ga

which are algebraically independent. Then y := y1 × · · · × ys : (Ga)
n → (Ga)

s is a dominant

homomorphism with kernel B, showing that (Ga)
n/B ∼= (Ga)

s.

Let I ⊂ k[x1, . . . , xn] denote the ideal cutting out B from (Ga)
n. Let p =char k. Then

each yi ∈ I ⊂ k[x1, . . . , xn], being additive, must be a p-polynomial of the xi, that is a linear

combination of the monomials xp
r

i (If p = 0, a p-polynomial means a linear combination of

the monomials xi).

Let pm be the highest degree out of all the polynomials yi ∈ I ⊂ k[x1, . . . , xn], and let

V ⊂ I be the vector space of all p-polynomials in I whose degree is at most pm. Note that

every polynomial y ∈ I is of the form π∗(z) for a unique regular function z ∈ k[An/B]. Then

V is a faithful representation of H, where an automorphism ϕ ∈ H acts by mapping each

y ∈ V to π∗(ϕ∗(z)), for z ∈ k[An/B] such that π∗(z) = y.

An automorphism in H is determined by its action on the yi, since any additive poly-

nomial in I is a p-polynomial of the yi. Thus H ⊂ GL(V ) consists precisely of h ∈ GL(V )

preserving degree and such that h · (vp) = (h · v)p whenever v, vp ∈ V .

We can choose the yi such that the top-degree terms of all the yp
r

i , ranging over all i and all

r ∈ N are linearly independent. Indeed, suppose we have a nontrivial linear relation between

the top-degree terms. We can assume that the polynomials yp
r

i involved in this relation
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all have the same degree pd. This implies that there exists a nontrivial linear combination∑
ciy

pri
i of degree less than pd. Let r be the smallest of the ri such that ci 6= 0. Note the

top-degree terms of yp
ri

i are linearly independent if and only if the top-degree terms of yp
ri−r

i

are linearly independent. Thus we may reduce to the case of r = 0.

It follows that, for some i, a polynomial of the form y′i = yi −
∑

j 6=i cjy
prj

j has smaller

degree than yi. We may replace yi with y′i and still retain an additive generating set of

I. Since this process reduces the degrees of the yi, it must eventually terminate, and on

terminating the yi must have the desired property.

We now introduce two flags on V . On the one hand, for each 0 ≤ i ≤ m, let Fi ⊂ V be the

subspace of all polynomials V of degree at most pi. Let F ′i ⊂ V be the subspace spanned

by all the (yj)
pr of degree pi. Then, by our choice of the yj to have the property that

the top-degree terms of (yj)
pr are linearly independent, it follows that Fi = ⊕j≤iF ′j . Since

automorphisms in H preserve degree, H preserves each Fi, though H may not preserve the

F ′i . Conversely, if g ∈ GL(V ) preserves the Fi, then g must also preserve degree, since for

each v ∈ F ′i , the component of gv in F ′i must be nonzero by nonsingularity, so g preserves

the degree of vectors in each F ′i , hence in all of V .

On the other hand, for each 0 ≤ i ≤ m, let W ′
i ⊂ V be spanned by all the (yj)

pr ∈ V

such that yj has degree exactly pi. Let Wi = ⊕j≤iW ′
i . Then H preserves each Wi since the

action of H on V preserves degree and commutes with taking pth powers. However, H may

not preserve the W ′
i .

Let T ⊂ GL(V ) be the subgroup preserving the flag Wi. Let D ⊂ T be the subgroup

preserving each of the W ′
i . Let π : T → D be the natural projection, and let U be its kernel.

We claim that π maps H to H.

Indeed, let h ∈ H, v ∈ Wi. Then h·v = π(h)·v+v′, where π(h)·v ∈ W ′
i , v
′ ∈ Wi−1. By our

choice of the yi, it follows that π(h)·v has degree no larger than the degree of h·v, which equals

the degree of v. Thus π(h) preserves each Fi, so by an earlier observation, π(h) preserves

degree. Furthermore, since (W ′
i )
p =⊂ W ′

i for each i, it follows that π(h) · vp = (π(h) · v)p.

So π(h) ∈ H, as desired.
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Thus, H splits as the semidirect product of H ∩ D and H ∩ U . Let W ′′
i ⊂ W ′

i be the

subspace spanned by all the yj of degree pi. An automorphism of W ′
i commuting with taking

pth powers precisely corresponds to an automorphism of W ′′
i . Hence, H ∩D ∼= ΠiGL(W ′′

i ).

Now, consider the standard normal series Ui of U , where Ui consists of all h ∈ U such that,

for each j > i and v ∈ W ′
j , the projection of h(v) onto Wj−i−1 is 0. The groups Ui ∩H form

a normal series of U ∩H. Similarly to above, we have an isomorphism (Ui+1∩H)/(Ui∩H) ∼=

ΠjHom(W ′′
j , Fj ∩W ′

j−i) as commutative groups. We conclude that U ∩H is a split unipotent

group.

Thus H is an extension of copies of GL(ni) for various ni and copies of Ga. Since

extensions of special groups are special, and GL(ni), Ga are special, it follows that H is

special.

Lemma 4.5.3. Let V be a vector space over k. Let G ⊂ GL(V ) be a subgroup scheme and

let J ⊂ G be a normal unipotent subgroup scheme. Then there exists a flag 0 = V0 ⊂ V1 ⊂

V2 ⊂ · · ·Vk = V which is preserved by G and such that J acts as the identity on each quotient

space Vj/Vj−1 for j = 1, · · · , k.

Proof. By induction, it suffices to find a subspace V1 ⊂ V preserved by G, on which J acts

trivially. We use the fact that J is unipotent to find v ∈ V such that jv = v for all j ∈ J . Let

V1 be the subspace spanned by all vectors gv, for all g ∈ G. The group G clearly preserves

V1. To show J acts as the identity on V1, we use the fact that, for any j ∈ J , g ∈ G, we

have g−1jg ∈ J since J is normal in G. In particular, g−1jgv = v, so jgv = gv, so j fixes all

vectors gv, as desired.

In the context of the above lemma, let ni = dim(Vi/Vi−1). It follows that there is a choice

of basis ei for V such that G is contained in the group Tn1,...,nk fixing the flag 〈e1, . . . , en1〉 ⊂

· · · ⊂ 〈e1, . . . , en1+···+ni〉 ⊂ · · · ⊂ V , and J is contained in the subgroup Un1,...,nk of Tn1,...,nk

acting trivially on each quotient space 〈e1, . . . , en1+···+ni+ni+1
〉/〈e1, . . . , en1+···+ni〉.

Lemma 4.5.4. Let n = n1 + · · · + nk. Let U := Un1,...,nk , T := Tn1,...,nk ⊂ GL(n). Suppose

G ⊂ T and J ⊂ G ∩ U is normal in G. Let X be a scheme on which T acts freely and
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let Y be a scheme on which G/J acts freely. Then the U/J-fibration (X/J × Y )/(G/J) →

(X/U ×Y )/(G/J) induces by flat pullback an isomorphism M c((X/U ×Y )/(G/J))(r)[2r] ∼=

M c((X/J × Y )/(G/J)), where r = dim(U/J).

Proof. Note that G normalizes U , so G/J indeed acts on X/U .

Let 1 = Z0 ⊂ Z1 ⊂ · · · ⊂ Zm = U be a central normal series for U , whose successive

quotients are isomorphic to (Ga)
ri for various ri. We can furthermore ensure that each Zi is

normal in T , by letting Zi be cut out of Zi+1 by setting all entries in a given nj × nk-block

equal to 0.

Let Ei = (X/Zi)/(J/(Zi ∩ J)). Note we have a sequence of maps

X/J = E0 → E1 → · · · → Em−1 → Em = X/U . Each map Ei → Ei+1 is a principal bundle

with fiber Ai/Bi, where Ai := (Zi+1/Zi), Bi := (J/(J ∩ Zi)).

Since G normalizes each of the Zi, we have a sequence of Ai/Bi-fibrations:

(X/J × Y )/(G/J)→ (E1 × Y )/(G/J)→ · · · → (Em−1 × Y )/(G/J)→

(X/U × Y )/(G/J).

Each of the above fibrations has a flat trivialization:

Ei × Y × Ai/Bi
//

��

Ei × Y

��

Ei × Y //

pi
��

Ei+1 × Y
pi+1

��

(Ei × Y )/(G/J)
πi // (Ei+1 × Y )/(G/J)

Consider a base point b ∈ (Ei+1 × Y )/(G/J). Let Fb = π−1
i (b). Each point (e, y) ∈ Ei × Y

over b gives a trivialization ψe,y : Ai/Bi
∼= Fb : a 7→ pi(ae, y), for a ∈ Ai/Bi. Now, all

other points in Ei×Y over b are of the form (a′ge, gy), where g ∈ G/J, a′ ∈ Ai/Bi. We have

pi(ae, y) = pi(gae, gy) = pi(((gag
−1)a′−1 ·a′ge, gy)). Thus the transition function ψ−1

a′ge,gy◦ψe,y

is a 7→ (gag−1)a′−1.

Recall Ai = (Zi+1/Zi) ∼= (Ga)
ri corresponds to a certain nj × nk-block of matrices in

U . There is a natural vector space structure on A with respect to which conjugation by an
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element of G is linear, since it corresponds to multiplication by fixed matrices, and translation

by an element of Ai is affine-linear since it corresponds to addition of a fixed matrix. Thus the

transition functions on Ai/Bi descend from affine-linear transformations on Ai. In particular,

each transition function ϕ : Ai/Bi → Ai/Bi has the property that, for each f ∈ k[Ai/Bi],

the degree of q∗f equals the degree of q∗ϕ∗f . Thus the transition functions belong to the

group H(Ai/Bi) ⊂ Aut(Ai/Bi) described in Lemma 1. Since H(Ai/Bi) is special, it follows

that each fibration πi is Zariski-locally trivial with fiber Ai/Bi isomorphic to affine space.

Thus pullback by πi induces an isomorphism of compactly supported motives (with a shift),

so the composite pullback is an isomorphism as well.

Recall that given an affine group scheme G we say that (Vi − Si)/G is a resolution of BG

by algebraic spaces if the Vi are representations of G of dimensions ni, Si ⊂ Vi are G-

invariant closed subschemes outside which G acts freely, such that the codimension of Si

in Vi approaches infinity and such that we are given linear surjections fi : Vi+1 → Vi with

Si+1 ⊂ f−1
i (Si). We think of such as a resolution as an object of the category A introduced

in Section 3.

Proof of Proposition 4.5.1: Let G ⊂ GL(n) be a subgroup scheme and let J ⊂ G be a

normal unipotent subgroup scheme. By Lemma 2, we may assume after change of basis that

J ⊂ U := Un1,...,nk and G ⊂ T := Tn1,...,nk .

Let (Vi−Si)/T be a resolution of BT by algebraic spaces. Then consider the corresponding

resolution Xi := (Vi − Si)/J of BJ by algebraic spaces. Then G/J acts freely on Xi. Let

n be the relative dimension of Xi/(G/J) → B(G/J) in A. We claim that (Z ×Xi)/(G/J)

satisfies the hypotheses of Lemma 3.4.2 with respect to the quotient stack [Z/(G/J)]. Once

we show this, the proposition will follow, since by Lemma 3.4.2, M c([Z/(G/J)]) will be iso-

morphic to the homotopy limit of LM c((Xi×Z)/(G/J))(−n)[−2n]. But (Xi×Z)/(G/J) ∼=

((Vi − Si)× Z)/G, so the above homotopy limit is isomorphic to M c([Z/G])(−d)[−2d].

Let Y be an algebraic space on which G/J acts. As in Lemma 3.4.2, let H(Y ) denote the
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(canonical) homotopy limit LM c(((Vi − Si)/J × Y )/(G/J))(−n)[−2n]. Concretely, the hy-

pothesis of Lemma 3.4.2 amounts to the statement that the pullback M c(Y/(G/J))→ H(Y )

be an isomorphism for all Y . Let H̃(Y ) denote the similar homotopy limit LM c(((Vi −

Si)/U×Y )/(G/J))(−n+r)[−n+2r], where r = dimU/J . By Lemma 4.5.4, flat pullback by

((Vi−Si)/J × Y )/(G/J)→ ((Vi−Si)/U × Y )/(G/J) induces an isomorphism of compactly

supported motives with dimension shifts, so the homotopy limit of these isomorphisms yields

a canonical isomorphism H̃(Y ) ∼= H(Y ). Thus we can reduce the question to showing that

H̃(Y ) ∼= M c(Y/(G/J)).

First consider the principal T/U -bundle p : (T/U × Y )/(G/J) → Y/(G/J). Since T/U ∼=

ΠGL(ni) is special, p is Zariski-locally trivial. So let O ⊂ Y be a (G/J)-invariant open

set such that (T/U × O)/(G/J) → O/(G/J) is a trivial T/U -bundle, with trivializaton

ϕ : (T/U × O)/(G/J) ∼= T/U × O/(G/J). We claim that each fibration πi : ((Vi − Si)/U ×

Y )/(G/J)→ Y/(G/J) is also trivial over O.

Let q : (T/U × O)/(G/J) → T/U be the composition of ϕ with projection onto the

first component. Since T acts on V , T/U acts on (Vi − Si)/U . We then define a map

ψ : (Vi−Si)/U×O → (Vi−Si)/U×O/(G/J) by (v, y) 7→ (q(1, y)v, y), for v ∈ (Vi−Si)/U, y ∈

O. Let g ∈ G/J and for simplicity let g also denote the image of g in T/U . Note that

ψ(gv, gy) = (q(1, gy)gv, gy)) = (q(g−1, y)gv, y) = (q(1, y)g−1gv, y)) = ψ(v, y), where we have

used the T/U -equivariance of the trivialization ϕ. Since ψ is constant on G/J-orbits, it

descends to give the desired trivialization of the bundle πi over O.

Now, let Z be the closed complement of O in Y . We have a map of triangles:

M c(Z/(G/J)) //

α
��

M c(Y/(G/J)) //

β
��

M c(O/(G/J))

γ
��

H̃(Z) // H̃(Y ) // H̃(O)

where the vertical maps are homotopy limits of flat pullback maps.

The map γ is an isomorphism. Indeed, we know that each of the schemes ((Vi−Si)/U ×

O)/(G/J) is isomorphic to (Vi − Si)/U × O/(G/J). The projection morphism (Vi − Si) ×
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O/(G/J)→ (Vi−Si)/U×O/(G/J) is a principal U -bundle, hence it induces an isomorphism

of compactly supported motives with shifts. Thus H̃(O) is isomorphic to the homotopy

limit of the motives M c((Vi − Si) × O/(G/J))(−li)[−2li], where li = dim(Vi). But by the

localization triangles, and since the codimension of Si in Vi approaches infinity, this homotopy

limit is M c(O/(G/J)).

By induction on the size of an open cover for the trivialization, α is also an isomorphism.

It follows that β is an isomorphism, as desired.
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