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Abstract

Tissue engineering can provide in vitro models for drug testing, disease modeling,

and perhaps someday, tissue/organ replacements. For building 3D heart tissue, the

alignment of cardiac cells or cardiomyocytes (CMs) is important in generating a syn-

chronously contracting tissue. To that end, researchers have generated several fabri-

cation methods for building heart tissue, but direct comparisons of pros and cons

using the same cell source is lacking. Here, we derived cardiomyocytes (CMs) from

human induced pluripotent stem cells (hiPSCs) and compare the assembly of these

cells using three fabrication methods: cardiospheres, muscle rings, and muscle strips.

All three protocols successfully generated compacted tissue comprised of hiPSC-

derived CMs stable for at least 2 weeks. The percentage of aligned cells was greatest

in the muscle strip (55%) and the muscle ring (50%) compared with the relatively

unaligned cardiospheres (35%). The iPSC-derived CMs within the muscle strip also

exhibited the greatest elongation, with elongation factor at 2.0 compared with 1.5

for the muscle ring and 1.2 for the cardiospheres. This is the first direct comparison

of various fabrication techniques using the same cell source.

K E YWORD S

cardiomyocytes, cardiosphere, cell alignment, cell assembly, muscle strip, pluripotent stem cells,
tissue engineering

1 | INTRODUCTION

The field of tissue engineering has inspired researchers to re-imagine,

design, and construct microphysiological systems as in vitro organ

models of development and disease. While drug discovery has histori-

cally relied on 2D cell culture and animal models, the low predictive

power of these models is burdening the industry—with only one in

10 drugs making the leap from phase I clinical trial to FDA approval.1

What's more, the therapeutic potential of pharmaceuticals is limited in

tissues that have little-to-no regenerative capabilities. The research

and clinical relevance of engineered tissues is only valuable to the

extent at which the cellular microenvironment and architecture

accurately represents in vivo tissue. As 3D engineered tissues and

organ-on-a-chip technologies are better able to recapitulate human

physiology, their promise as effective tools in drug development

and/or replacement tissue therapy approaches reality.2,3

Cell organization within tissues plays a critical role in cell growth,

death, migration,4 as well as cell-to-cell communication and electrical

propagation.5 The relationship between cell organization and cell/

tissue function has been shown in the visual cortex,6 granulosa cells,7

mammary cells,8 stem cells,9 and cardiomyocytes.10 Moreover, cell

patterning in organs can lead to highly complex configurations such as

gut undulation,11 neural circuits,12 or angiogenesis and

vasculogenesis.13
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For building heart tissue, the alignment of cardiac cells or cardio-

myocytes (CMs) is important in generating a synchronously contract-

ing tissue. CM alignment enhances the maturation of

β-adrenoreceptor signaling,14 calcium cycling,15,16 and force genera-

tion.15,17 Mathematical models of collagen alignment in the heart cor-

roborate increased left ventricular stroke volume with increased cell

alignment.18 Topographical guidance of cardiac cells on patterned sur-

faces has been shown to enhance alignment, cell–cell communication,

and contractile forces of the cardiac cells.19

The three major tissue engineering techniques for generating

engineered heart tissue (EHT) involve cell-hydrogels, cellularization of

acellularized or preformed matrix, and layering cell-sheets. Our labora-

tory has explored the generation of topographically-aligned CM

sheets and found that cell sheets of single cell layers can be generated

using topographically-guided CM alignment,20 but highly contractile

sticky CM cell sheets resist stacking into larger structures.21 Acellular-

ized matrix22 can preserve native 3-D architecture and vascularity but

is not yet able to integrate high densities of cells. As such, the hydro-

gel technique is considered the most promising method for creating

functional myocardium with high cell densities and flexible designs

such that heart muscles develop within devices23 and maintain geo-

metrical forms24 allowing attachment to force transducers. The hydro-

gel technique can include mechanically active strip-like muscles25 cast

into molds in which two flexible silicone posts are positioned from

above.26 The posts allow the tissue to be mechanically strained for

enhancing cell alignment and contractile forces.27

Current methods for fabricating 3D heart tissue28 include: micro-

engineered hydrogels,29 cardiac biowires,30 cardiac muscle strips,31 as

well as, unaligned 3D cardiospheres.32 However, because these stud-

ies were conducted in different laboratories using a range of cell

sources: skeletal muscle cells, neonatal or mature primary rat or

mouse cardiac cells, or stem cell-derived cardiomyocytes, comparing

the pros and cons of these distinct fabrication methods is difficult.

Here, we derive reproducible CM cell populations from human

induced pluripotent stem cells (hiPSCs) and compare the cardiac tissue

assembly of these cells using three distinct methods: generation of

cardiospheres,32,33 assembly of muscle rings using a ring-shaped

mold,34 and formation of muscle strips using a sacrificial gelatin tem-

plate35 (Figure 1). We then compared the cell compaction, alignment

and elongation within these tissues. The results show that the

increased cell alignment and elongation is best achieved using

the muscle strip assembly.

2 | MATERIALS AND METHODS

2.1 | Maintenance of human iPS cells

DF 19–9-7 T human induced pluripotent cells (hiPSCs; WiCell) with

puromycin under α-MHC (donated by Dr. Chiamvimonvat, UC

Davis)36,37 were plated on Human Embryonic Stem Cell-Qualified

Matrigel™-coated dishes (Corning), and fed mTeSR Medium

(STEMCELL Technologies, Inc.) daily. Cultures were passed at 80%

confluence by dissociating the colonies for 3 min with Accutase

(Innovative Cell Technologies). Cell pellets were re-suspended in

mTeSR Medium and re-plated onto Human Embryonic Stem Cell-

Qualified Matrigel™-coated dishes diluted per manufacturer

specifications.

2.2 | Cardiomyocyte differentiation

Cardiomyocytes were generated using a previously published proto-

col.38 Briefly, hiPSCs were prepared by dissociating with Accutase

(STEM CELL Technologies, Inc), plated at 5 � 105 cells per well in

hESC-Qualified Matrigel™-coated 12-well dishes, treated with 5 μM

Rho-associated, coiled-coil containing protein kinase inhibitor (ROCKi,

Y27632; Selleckchem), and fed 2 mL of mTeSR™1 Medium every day

for 4 days (days �4 to �1). On the first day of induction (day 0), cells

were re-plated in Roswell Park Memorial Institute (RPMI; Thermo

F IGURE 1 Photographs of
the three methods used to
generate 3D muscle:
cardiospheres, muscle strips, and
muscle rings. The top images
include schematics of the lab-
on-chip platforms used for
forming the muscle tissues. The
bottom images depict the hiPSC-
derived CMs after self-assembly
within each platform.
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Fisher Scientific) supplemented with 2 mL of 2% B27 without insulin

(Thermo Fisher Scientific) and 12 μM of GSK-3B inhibitor

(CHIR99021; Tocris). After 24 h, the medium was replaced with 2 mL

of RPMI/B27 medium without insulin or GSK-3 inhibitor. On day 3, a

partial medium change was completed with 1 mL of fresh RPMI/B27

without insulin and supplemented with 5 mM Wnt inhibitor (IWP-2;

Tocris) to the 2 mL volume. On day 5, cells were fed with fresh RPMI/

B27 without insulin. Starting on day 7, cells were fed with RPMI/B27

with insulin every other day. After 21 days, the hiPSC-derived CMs

were purified with 3.6 μg/mL puromycin (Thermo Fisher Scientific)

treatment for 24 h and fed with RPMI/B27 every 3 days. Purified

hiPSC-derived CMs were harvested between days 24 and 40.

2.3 | Immunostaining for fluorescence microscopy

For staining, the cells were first washed with PBS, fixed via 4% (v/v)

paraformaldehyde for 15 min at room temperature. The staining solu-

tion consisted of 5% (w/v) nonfat dry milk, 0.4% (v/v) Triton X-100 in

PBS, and either Oct-3/4 (eBioscience) pluripotent marker, or α-actinin

(Santa Cruz Biotech). Cells were incubated in the staining solution for

1 h at room temperature before undergoing three PBS washes and

DAPI counter-staining for 5 min. For cytoskeletal organization of

human iPSC-derived CMs, cells were stained and observed under

fluorescence microscopy 24 h after seeding (day 24 of total differenti-

ation). Images were taken using a Nikon microscope.

2.4 | Immunostaining for flow cytometry

Cell purities were determined using fluorescence activated cell scan-

ning. Cells were washed with PBS, then dissociated by incubating with

0.25% trypsin for 5 min at 37�C. Single cell suspensions were

achieved by washing and pipetting each dish with cell culture medium.

After pelleting, the cells were resuspended in 1% (v/v) formaldehyde

in PBS for 20 min at room temperature followed by 90% (v/v) cold

methanol and incubated for 15 min at 4�C. After fixation, the cells

were counted using a hemocytometer and split into tubes containing

0.5 million cells in 2 mL of PBS buffer with 1% Bovine Serum Albumin,

washed twice, and stained in 100 μL of flow buffer with either Oct-

3/4 (eBioscience), or cardiac troponin T (Thermoscientific). Stained

cells were then washed and resuspended in 2 mL of flow buffer and

transferred to a round bottom flow tube. Sorting was run on BD LSRII

flow cytometer.

3 | QUANTIFICATION OF
CARDIOMYOCYTE BEAT RATE

Beat rates were collected as the number of contractions per minute,

or beats per minute (bpm), determined by visually using live or

recorded videos and counting the number of contractions each cell

(N = 100) for 1 min each.

3.1 | Generation of 3D cardiospheres

Cell aggregates containing approximately 1 � 106 hiPSC-CMs each

were formed by passing and suspending hiPSC-CMs in RPMI with

20% FBS (Thermo Fisher Scientific). Using a multichannel pipette,

50 μL of solution was dropped onto the lid of a 150 mm cell culture

dish. The lid was inverted and incubated in 37�C and 5% CO2 for 12 h

to allow the cells to aggregate at the bottom of the droplet. It should

be noted that although co-cultures of CMs with of non-myocytes

(fibroblasts, endothelial cells and smooth muscle cells) appear to

improve tissue architecture and the cardiomyocyte phenotype,39,40

we used only pure CMs in order to maintain continuity across 3D tis-

sue platforms.

3.2 | Generation of 3D muscle ring

Molds used to generate 3D muscle rings were fabricated by collabora-

tor, Rashid Bashir, University of Illinois, Urbana-Champaign (Figure 2).

Using a stereolithographic 3D printer (SLA 250/50, 3D Systems), an

ultraviolet laser (325 nm) selectively polymerized a photosensitive

hydrogel resin comprised of 20% wt/v poly (ethylene glycol) diacrylate

(PEGDA;1000 g/mol) with 0.5% wt/v biocompatible photoinitiator

Irgacure 2959.41 Once completed, the molds were transported in PBS

and sterilized by soaking in 70% ethanol for 30 min and rinsed with

sterile PBS for an additional 45 min. To generate the 3D muscle tis-

sue, 300 μL solution of 1% NaOH (Millipore Sigma), 200 NHI units of

thrombin (Millipore Sigma), 30% v/v Matrigel™ (Corning), 5 mg/mL

fibrinogen (Millipore Sigma), and cell culture medium containing 1 mg/

mL aminocaproic acid (Millipore Sigma) with 10 million cells/mL was

F IGURE 2 Fabrication of muscle ring. (A) Schematic of
steriolithographic 3D printing the ring mold. (B) This design is
15 � 20 mm total and supports two muscle rings. (C) In order to make
2 rings, 150 μL of solution is added to each ring mold containing
thrombin, fibrinogen, NaOH, Matrigel, and 6 million hiPSC-derived
CMs was added to the ring mold.

HATANO ET AL. 3
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pipetted into the cavity of the ring mold. After 20 min at 37�C, addi-

tional cell culture medium containing 1 mg/mL aminocaproic acid

(Millipore Sigma) was gently added to fill the 35 mm petri dish. Media

was replaced every other day.

3.3 | Generation of 3D muscle strip

The protocol for muscle strip assembly has been previously devel-

oped.31 Briefly, a 10:1 ratio of PDMS and curing agent was de-gassed,

poured on a 3D printed mold with 0.5 mm music wire inserted

through the mold holes. After solidifying at 60�C for 2 h, the music

wire and PDMS were removed from the mold. To make individual

devices, a razor blade can be used to cut through the PDMS between

the hollowed-out channels. Three cavities were carved and discarded

using a 6 mm biopsy punch. After inserting two music wires with a

diameter of 0.5 mm through the device cavities, the PDMS was

plasma treated and bonded to a glass coverslip.

Tissue was created (Figure 3) by allowing a solution of 10% (w/v)

gelatin (Millipore Sigma), 1% (v/v) NaOH (Millipore Sigma), and

300 NHI units of thrombin (Millipore Sigma) form around the 0.5 mm

diameter wire or 6 mm O-rings. After 45 min at 4�C to allow the solu-

tion to solidify, the wire or O-ring was removed. A solution of 5 mg/

mL fibrinogen (Millipore Sigma), 10% v/v Matrigel™, 20 million cells/

mL, and RPMI with 20% FBS (Thermo Fisher Scientific) plus 1 mg/mL

aminocaproic acid (Millipore Sigma) was pipetted through the cavity

from the displaced wire or O-ring. The microfluidic device was cul-

tured at 37�C to allow the gelled thrombin to further diffuse into the

cell-fibrinogen solution to form a fibrin-muscle strip. After 30 min at

37�C, the gelatin solution was replaced with cell media treated with

of 5 μM ROCK inhibitor (Tocris). Media was replaced daily from the

center well.

3.4 | Image processing

Although fluorescent staining of cytoskeletal actin is typically used to

quantify cell alignment,5 high resolution brightfield images

(Supplemental Data S1) can also generate comparable data as previ-

ously shown.42 Here, images were processed using a custom MATLAB

(MathWorks, Inc) script. High resolution brightfield images were ana-

lyzed by first transforming the images into 8-bit representations. A

2-by-2 median filtering Medfilt2 operation was applied to ensure

proper identification of edges. Brightfield images were smoothed and

then enhanced by increasing the image brightness and contrast

(Supplemental Data S2A). Image threshold values, optimized for each

image, were then tuned into binary images using Graythresh and

Shanbhag thresholding (Supplemental Data S2B). The Watershed fea-

ture was used to isolate individual cells.

3.5 | Quantification of cell alignment and
elongation

Rose diagrams were generated in MATLAB using data collected from

Fiji's analyze particles function. All orientations were normalized to

F IGURE 3 Fabrication of 3D muscle strips. (i) Muscle strip formation starts with pipetting a solution of gelatin and thrombin over music wire
in the outer well(s) of the microfluidic device. (ii) Once the gel solidifies, the music wire is replaced with a cell-fibrinogen solution, and (iii) placed
in the incubator. The warmer temperature returns the gel to a liquid state, allowing the thrombin to diffuse into the lumen with the cell-fibrinogen
solution and forms a fibrin gel with the embedded cells. (iv) After approximately 25 min, the liquid gelatin is replaced with cell culture medium.

4 HATANO ET AL.
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reflect a 0�–90� measurement and plotted on a 0�–90� polar histo-

gram (polarhistogram). The plotted bin size was set to 6�. The mean

angle was also calculated and displayed in text. Binary actin lengths

between 10 and 200 pixels were measured. Anything smaller or larger

was assumed to be an image artifact. The percentage of aligned cells

was defined as any cell between ±30� from the wrinkle or average

direction on a flat surface. The elongation factor (EF) was calculated

using a ratio of each cell's maximal diameter (Dmax), length, to the min-

imal diameter (Dmin), width.

EF¼Dmax=Dmin ð1Þ

3.6 | Statistical analysis

All comparisons for statistical significance were conducted using a

student's t-test using the mean degree of alignment or EF, and the

standard deviation for N = 100 cells.

4 | RESULTS

4.1 | Cell characterization

The hiPSCs were cultured at least 2 weeks before differentiating into

the cardiac cells with verified expression of pluripotent marker Oct 3/4

(Figure 4) and healthy colony formation verified prior to induction.

After induction and purification of the CMs, the CMs expressed

functional sarcomeric α-actinin z-bands (Figure 5A). Purification was

achieved with 92% cardiac troponin-T+ cells (Figure 5B). The sponta-

neous contraction rates of the CMs exhibit two distinct sets of spon-

taneously contracting cells beating either �70 bpm or � 110 bpm

(Figure 5C), likely corresponding with nodal CMs and atrium-like CMs,

respectively.43 No differences were observed between single cells, or

clusters with 5 or more cells together.

4.2 | Fabrication of 3D muscle

All three protocols successfully generated compacted tissue com-

prised of hiPSC-derived CMs (Figure 6A–C). Once the 3D tissue

assembly methods were found to be reproducible and maintained

structural integrity for at least 2 weeks, the alignment and cell elonga-

tion of the hiPSC-derived CMs was evaluated. The cardiospheres

formed into raised disk-shapes rather than spheres with little cell

alignment and no elongation. The percentage of aligned cells was

greatest in the muscle strip (55%) and the muscle ring (50%) compared

with the relatively unaligned cardiospheres (35%) (Figure 6E). The

iPSC-derived CMs within the muscle strip also exhibited the greatest

elongation, with elongation factor at 2.0 compared with 1.5 for the

muscle ring and 1.2 for the cardiospheres.

5 | DISCUSSION AND CONCLUSIONS

Protocols for differentiating human ESC and iPS cells into CMs typi-

cally contain mixtures of ventricular-like, atrial-like, and nodal-like

CMs.44 The human iPSC-derived CMs used in these studies exhibited

F IGURE 4 Characterization
of the DF19-9-7 T human iPSCs.
(A) Bright field image of the
human iPSC colony taken at a
20� magnification (scale bar
200 μm). (B) Fluorescent image of
the hiPSC colonies stained with
Oct3/4 (green) and
counterstained with DAPI (blue).
Scale bar 100 μm. (C) Histogram
of flow cytometry data showing
the percentage of cells expressing
pluripotent stem cell markers
Oct-3/4.

HATANO ET AL. 5
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beating rates at �70 and � 110 bpm, respectively, correlating with

atrial-like and nodal-like,43 with spontaneous beating of CMs suggest-

ing that these cells are more fetal-like than less spontaneously con-

tracting mature cardiac cells.45 Studies exploring extended culture

times, electrical pacing, mechanical stretch, or pharmacological agents

aim to increase the maturity of iPSC-CMs (reviewed in46).

Here we show that muscle strip and ring methods of cardiac tis-

sue fabrication both generate aligned CMs from hiPSC-derived CMs.

F IGURE 5 Characterization
of human iPSC-derived CMs.
(A) Differentiated CMs are
stained with α-actinin (green) and
counterstained with DAPI nuclear
stain (blue). Scale bar = 100 μm.
The α-actinin staining shows the
striations of z-bands in the
myofibrils. (B) Histogram showing

the percentage of human iPSC-
derived CMs expressing cardiac
troponin. (C) Contracting human
iPSC-derived CMs (n = 100) were
analyzed for rates of contraction.
Most cells contract at 70 beats
per minute, with a second group
of cells contracting at a
faster pace.

F IGURE 6 Alignment of 3D CM tissue. (A) Schematic representations of 3D muscle tissue formed as cardiospheres (i.e. muscle disks), muscle
strips, and muscle rings. Stitched brightfield images were taken at (B) low magnification, scale bar = 1000 μm, and (C) higher magnification, scale
bar = 100 μm. (D) Rose-plots showing individual cell orientations with respect to the primary direction for each tissue. (E) The percentage of
aligned hiPSC-derived CMs within the three different tissues was calculated *p < .0001 and **p < .02. (F) The elongation factor calculated for the
hiPSC-derived CMs within the three different tissues. ***p < .0001.

6 HATANO ET AL.
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Consistent with previous studies using skeletal C2C12s47–49 the mus-

cle strip was superior in generating a greater percentage of aligned

cells with a larger elongation factor (summarized in Table 1). The align-

ment and elongation factors are of interest because these have been

shown to correlate strongly with muscle tissues' ability to generate

and sustain high contractile forces critical for generating large ejection

fractions during heart contractions.50 The elongated shape of CMs

correlates with the shape and organization of the sarcomere, an

important mechanism by which the heart regulates its force of con-

traction, and the CMs actin networks and organized sarcomere arrays

is regulated by its shape.51 With increased sarcomere length, there is

an increase in the force of contraction (i.e., tension development by

the muscle fiber). Well-organized cardiac monolayers can be as much

as 2� the force measured in isotropic tissues.17 Several groups have

shown the CM cell alignment and elongation can be achieved using

micropatterning,5,17,52,53 but this is proving more difficult in 3D tissue.

The superior elongation found in the muscle strips compared with

disks or rings (Table 1) is likely due to the ability of those tissues to

generate greater tensions from the biaxial attachments at the ends of

the muscle strips.

Although tissue contraction is the gold standard for measuring

heart tissue function, comparing the contractile forces of 3D cardiac

tissue is complicated by the various tissue shapes and thicknesses, as

well as, various methods used to calculate muscle cell and tissue con-

tractile forces, and most reported values do not average the contrac-

tile forces over the tissue area. Here, we also provide reported values

for 3D cardiac tissues generated from stem cell-derived CMs in units

of force per area of tissue (Table 1) after pacing at 2 Hz. Consistent

with expectations, unaligned human ESC-derived CM patches exhibit

lower contractile forces 0.25 mN/mm2 of force after 25% strain54

compared with aligned strips at 0.6 mN/mm2.55 This manuscript is the

first report of ring-shaped tissue generated from hiPS-CMs, but

mature rat neonatal cardiac cells patterned into ring-shaped tissue can

generate forces at 2 mN/mm2 (reported as twitch tension).24 To date,

the best stem cell-derived 3D cardiac tissues generated in vitro

exhibits forces almost two orders of magnitude lower than native

myocardium which can generate 25 mN/mm2 of contractile forces at

rest and up to 45 mN/mm2 at maximal output.56

Conduction velocities (CVs) of CMs are another indicator of heart

function. CVs measure the speed of conduction of an electrical impulse

through the cells or tissue. The conduction velocity of aligned mono-

layers of genetically purified induced CMs has been reported as high as

�21 cm/s,57 with more complex 3D systems at 17 cm/s58 and up to

25 cm/s when highly organized.59 Again, these values still fall short of

CVs in native adult tissue �30 to 100 cm/s.60 The highest CVs reported

for 3D engineered cardiac tissue was obtained using neonatal rat CMs

at 32 cm/s,61 rather than from immature stem cell-derived CMs.

One of the primary limitations in current fabrication methods for

generating cardiac muscle tissue is the cell density. The cell density of

native myocardium in rats is between 50 and 100 million cells per

mL62 and 100–1000 million cells per mL in humans.63 However, cur-

rent methods are not yet able to incorporate more than 20 million via-

ble CMs per mL into hydrogels, likely contributing to the lower

contractile forces. This limitation may also be related to the limits of

oxygen diffusion in current engineered tissue. An in vitro model at

20 million cells per mL cannot be thicker than a few 100 μm, other-

wise a necrotic core will develop. At higher cell densities, the viability

of the cells will only decrease without a network of perfused capil-

laries. In fact, the metabolic activity of cardiac cells is so high that a

ratio of three endothelial cells to one cardiomyocyte is usually cited as

required.

Current improvements in stem cell derivation methods and engi-

neering cardiac tissue fabrication methods—longer culture times, mus-

cle conditioning (i.e. static or dynamic stretching),64 electrical

signaling30 or incorporation of cardiac fibroblasts65,66—have improved

current engineered cardiac muscle by make possible a platform for

disease modeling and drug discovery, the use of engineered cardiac

tissue for heart tissue repair and, eventually, replacement remains lim-

ited by key challenges in cell density and vascular perfusion.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.
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