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context of Object oriented data analysis (OODA)

Copyright © 2023

by

Aritra Ghosal

iii



By the grace of Almighty God, I would like to dedicate this

dissertation to my parents Manika Ghosal, and Amartya Ghosal.

iv



Acknowledgements

I would like to express deepest appreciation to my esteemed advisors and co-chairs

of my committee Dr. Wendy Meiring, and Dr. Alexander Petersen for their countless

invaluable feedback sessions, patience, and guidance. I also could not have undertaken

this journey without the rest of my defense committee, also my esteemed professors

Dr. Andrew Carter, and Dr. Yuedong Wang, who generously provided me knowledge,

expertise and suggestions. Additionally, this endeavor would not have been possible

without the generous support from the Department of Statistics and Applied Probability,

University of California Santa Barbara for giving me the various opportunities to teach

courses, attend lectures, conferences, for encouraging further research throughout my

stay as an aspiring PhD student.

I am also sincerely grateful to my collaborator and friend Marcos Matabuena, for his

endless encouragement to put in my best efforts, through his regular feedback sessions.

Thanks should also go to the librarians, fellow graduate students of the department who

impacted and inspired me.

I would be remiss in not mentioning my family, especially my parents. Their belief

in me has kept my spirits up and motivation high during this process.

v



Curriculum Vitæ
Aritra Ghosal

Education

2023 Ph.D. in Statistics and Applied Probability (Expected), University
of California, Santa Barbara.

2014 M.Stat. in Statistics, Indian Statistical Institute, Kolkata.

2011 B.Sc. (Hons.) in Statistics, Presidency College, Calcutta Univer-
sity.

Publications

1. Ghosal, Aritra, Meiring, Wendy and Petersen, Alexander. (2023). Fréchet single
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Abstract

Application of the single index methodology to the local Fréchet regression in the

context of Object oriented data analysis (OODA)

by

Aritra Ghosal

In the context of Object oriented data analysis (OODA), the local Fréchet regression

was formulated in analogy to the local linear regression to model the conditional Fréchet

mean of the response on a single covariate in R. To accommodate p ≥ 2 covariates we

introduced the Fréchet single index (FSI) model in analogy to the single index model

already existing for responses in R. We discussed the model performance on simulated

spherical data and on observed mortality distributions belonging to the L2-Wasserstein

space. We also discussed the consistency of the coefficient vector estimate by combining

the Fréchet regression and the M-estimation methods. We discovered the potential of our

model to analyze the biomedical data obtained from the wearable accelerometer devices,

available for the US population from the NHANES website for the period 2011-14. The

physical activity profiles, transformed into quantile distributions, were considered Object

responses in the partially linear Fréchet single index (PL-FSI) model which allowed an

additive linear part with the single index part. The semi-parametric character of the

model allows us to introduce non-linear effects for such covariates as Age, BMI, while the

inclusion of a linear part retains the advantage of interpretability for other categorical

variables such as diet score, ethnicity, sex and their interaction.
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2.3 Local Fréchet Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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Chapter 1

Introduction

In recent times, sophisticated technology has enabled us to collect massive amounts of

data in various fields of study. Very often, such data may belong to non-euclidean spaces

whose geometric or structural properties may or may not be explicitly defined, only a

measure of distance between two elements in the space is known. Such intrinsic properties

(or their absence) ought to be considered when attempting to analyze such data or to

draw a more comprehensive statistical inference from it. A challenge for the modern

statisticians is to develop better methodologies to handle such data. To understand the

complexity of the data through measures of central tendency, and dispersion, we first

consider the metric that define the space. The earliest attempt in this investigation has

to be credited to Maurice Fréchet, whose work in [1] introduced the concepts of Fréchet

mean and Fréchet variance for the elements of a metric space. In recent studies, such

responses in a metric space have been termed as objects [2] and such methods of analysis

have been collectively termed as Object Oriented Data Analysis (OODA) as discussed

by [3, 4]. As the methods of analysis vary with metric spaces, such concepts have been

discussed when the response is a covariance matrix, residing in the space of symmetric

positive definite matrices [5], probability distribution [6, 7], and networks [8].
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Introduction Chapter 1

The study of modeling random objects on the covariates in Rp has been growing

steadily in the recent times, this is reflected in the studies of circular/spherical data

[9, 10, 11], smooth manifolds [12, 13, 14, 15, 5, 16, 17], and more recently in general metric

spaces [18, 19]. The regression models discussed in the cases of Smooth Riemannian

Manifolds can be fully parametric, semi-parametric or non-parametric. Recently [19] has

developed the global Fréchet model and the local Fréchet regression as generalizations of

the multiple linear regression and local linear regression for objects for the general metric

spaces. The object we are modelling has similar mathematical principles as the classical

Fréchet mean.

As local and global Fréchet regression models are inspired from their respective coun-

terparts local linear regression and the multiple linear regression when the responses

are in R, we looked for inspiration from similar scalar response models to balance the

strengths and weaknesses of these two methods. The model we proposed here for re-

sponses in the general metric space has been discussed extensively for scalar responses as

the single index models. Specifically we followed the approach studied in [20] estimating

the model parameters. Consider the random pair (X, Y ) ∈ Rp × R. The regression

function for the scalar response model asserts that:

m(x) := E(Y |X = x) = g(θT
0 x) (1.1)

where θ0 ∈ Rp is an unknown parameter and g is smooth and unknown function

residing in an infinite-dimensional univariate function space. In multiple linear regres-

sion the g is assumed to be linear while in the fully non-parametric regression it lends

interpretibility to the covariates as the parameter θ0 is estimable, and it adds flexibility

by allowing the effect of θTX to be non-linear. The model discussed in [20] was able to

estimate the parameter θ0 and show the consistency of the estimate with its parametric

2



Introduction Chapter 1

rate of convergence, even proving asymptotic normality under certain conditions.

We proposed the Fréchet single index (FSI) regression model generalizing the stan-

dard single index model by modelling the Fréchet means of the random objects, condi-

tional on the covariates in Rp [21]. We simulated spherical response data to illustrate

the sampling variability of both the estimators of the index parameter and the overall

regression function respectively. As an application of this method we discussed the mod-

elling of the yearly distribution of age-at-death for various countries as elements of the

L2-Wasserstein space, endowed with the Wasserstein metric (1.3). As for covariates we

chose some economic indicators which made sense to utilize in mortality analysis through

various literature.

Having formulated the new model, we looked to the frontier of medical science for

a possible application of our model. With the vast research conducted in the field of

precision medicine [22, 23, 24, 25], its applicability is likely to grow exponentially in the

near future. The patient information is recorded from wearable devices (accelerometers)

and such data on physical activity profiles are represented as probability distributions

[26, 27, 28, 29]. This format of data representation contains far more information about

the patient’s health condition than simple traditional biomarkers, thus improving the

reliability of the inference significantly [27, 28, 29, 30] and introducing more personalized

approach to the treatment. With this logic, distributional representations of physical

activity can be considered a direct extension of the classical summary metrics [31, 32].

One of the key objectives of our exercise was to understand the factors characterizing

the physical activity patterns for the American population while modelling the physical

activity representation as objects in the L2-Wasserstein space. However, the covariates

are known to affect the physical activity in different ways, some linearly, while others

may exhibit various non-linear association, e.g. age and some other anthropomorphic

measures affect the physical energy expenditure non-linearly [33, 34]. We also wanted to

3
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include categorical variables like sex and ethnicity which not only explain the variation

in physical activity levels significantly in the American population, they tend to interact

as well [35, 36, 37]. Hence we improved the Fréchet single index model by introducing

a linear component adding further interpretability and flexibility to the existing model.

For classical regression models with univariate response data, the partially linear single

index model has been a topic with considerable popularity among researchers in the fields

of statistical and econometrics in the last twenty years [38]. Several other works in this

direction discussed recent extensions of the model to functional data [38, 39, 40, 41].

However, the author was not aware of any existing extension to response data in metric

spaces. To analyze such data we proposed the partially linear Fréchet single index (PL-

FSI) regression model [42].

The NHANES (National Health And Nutrition Examination Survey) is a major pro-

gram undertaken by National Center for Health Statistics (NCHS). NCHS is in turn a

part of the CDC (Center for Disease Control and Prevention). The goal of these surveys

are designed to evaluate the health and nutritional status of the adults and children

in the United States. We apply the complex survey sampling design employed by the

NHANES to obtain more reliable population based estimate of the model [43]. We were

not aware of any work that incorporated the complex survey design into the analysis for

the partially linear single index model with responses in metric spaces.

The findings from these studies are important from the perspective of public health

since it elucidates the variables that impact the physical activity among the American

population in all levels of the accelerometer intensities. Moreover, these new findings can

be useful to refine and plan specific health interventions and policies that reduce the gap

in physical inactivity in different US sub-populations.

The structure of the thesis is as follows. Chapter 2 lays the foundation to discuss

the Fréchet regression, defining Fréchet mean and Fréchet variance, thereby defining

4
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marginal and conditional Fréchet mean. Sections 2.2 and 2.3 formally define the global

Fréchet model and the local Fréchet regression respectively and present these techniques

as generalizations of the multiple linear regression and the non-parametric local linear

model to estimate the conditional Fréchet mean of the Object data. Chapter 3 introduces

the Fréchet single index model for the object response regression. Section 3.1 formally

defines the Fréchet single index model for response in metric spaces by utilizing the

properties of the local Fréchet model. Section 3.2 discusses the estimation method of

the object-valued regression function and the single index coefficient vector. Section

3.3 discusses the simulation of the response data on the surface of 3-dimensional sphere

and the sampling variability of the relevant estimators of the Fréchet single index model.

Section 3.4 discusses an example of application of the FSI model where the distribution of

yearly age-at-death is modelled on various economic indicators. Chapter 4 discusses the

NHANES data that will be analyzed by the PL-FSI regression model, it formulates the

quantile distribution of the physical activity data for each participant as the response

for our model, discusses the covariates used in the model, it formulates the quantile

distribution of the physical activity representation on an equidistant grid over t ∈ [0, 1],

while being members of the L2-Wasserstein space, thereby formally defines the PL-FSI

regression model for every t. Section 4.3 discusses the estimation procedure of the single

index coefficient vector by considering a B-spline basis expansion of the unknown single

index function and the parameters of regression. Section 4.4 discusses some findings and

interesting aspects of the inference obtained from our model. Section 4.5 discusses the

criteria for the selection of covariates in the PL-FSI model. Here we explore how the men

and women among different ethnicities differ with respect to physical activity, if there

is possible interaction between sex and ethnicities. It also explores the association of

physical activity with the covariates in the non-linear component of the model, e.g. age

and BMI.

5
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The compilation of all the codes for the simulated spherical data example and the

real data application related to the FSI model can be found on Github (https://

github.com/aghosal89/Frechet_SingleIndex). The compilation of all the codes for

the application of the PL-FSI model can be found in the repository on Github (https:

//github.com/aghosal89/FSI_NHANES_Application).

1.1 Some examples of metrics

We will discuss the analysis of object data in the general metric space (Ω, d). However,

in the following subsections, we define some specific metric spaces and their characteristic

metrics to aid us in discussion for the rest of this paper:

1.1.1 Geodesic distance in spherical data

Consider the data belonging to the space Ω = Sp−1 = {x ∈ Rp : ||x||E = 1}, where

|| · ||E is the euclidean norm, and p ≥ 2. Hence, Sp−1 represents the surface of the unit

sphere with the center as the origin. Then the shortest distance on the spherical surface

between two arbitrary points x1,x2 ∈ S2 is defined as,

d(x1,x2) = arccos(xT
1 x2) (1.2)

Also known as the geodesic distance between x1,x2.

1.1.2 Distributional data in L2- Wasserstein space

Let Ω be the set of probability distribution functions with finite second moment.

The metric between two distributions is called the Wasserstein metric. Let ω ∈ Ω be a

distribution on R, then
∫
R x

2 dω(x) < ∞. For two distributions ω1, ω2 ∈ Ω, the squared

6
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Wasserstein distance [44] between them is

d2 (ω1, ω2) =

∫ 1

0

(
ω−1
1 (t)− ω−1

2 (t)
)2

dt, (1.3)

where ω−1
1 , ω−1

2 are the quantile functions corresponding to ω1, ω2 respectively, also known

as the survival functions. The above form of the metric makes obvious the point that

the L2-Wasserstein space is isometric to a subset of the Hilbert space L2[0, 1]. Thus, it

is a flat Hadamard space, though it is convex and not linear.

1.2 Permissions and Attributions

The contents of chapters 2, 3, 4, and 5 are the result of a collaboration with my co-

advisors Dr. Alexander Petersen and Dr. Wendy Meiring, and has previously appeared as

[21]. The contents of chapters 6 and 7 are the result of my work with my advisors men-

tioned above along with Marcos Matabuena (email: mmatabuena@hsph.harvard.edu)

which earlier appeared as [42].

7



Chapter 2

Background on Fréchet Regression

2.1 Setup of the problem

Let (Ω, d) be a bounded metric space. The response Y ∈ Ω is to be modeled con-

ditionally on a p-dimensional covariate X ∈ Rp. Assume (X, Y ) ∼ F , with F being a

joint distribution on Rp × Ω such that Σ = Var(X) exists with Σ positive definite and

µ = E(X). When Ω is a Euclidean space such as Rp or L2[0, 1] as would be the typical

case for multivariate or functional data, one can utilize the usual notions of expectation

arising from Lebesgue integration to quantify the mean and variance of Y . For arbitrary

metric spaces Ω, the concepts of mean and variance of a random variable are replaced by

the Fréchet mean and the Fréchet variance [1], respectively, defined as

ω⊕ = argmin
ω∈Ω

E
(
d2(Y, ω)

)
, V⊕ = E

(
d2 (Y, ω⊕)

)
. (2.1)

Existence and uniqueness of the Fréchet mean is not guaranteed for general metric

spaces. However, in special cases such as certain Riemannian manifolds [45, 46] or spaces

with negative curvature [47, 48], Fréchet means exist and are unique. For the moment,

8
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we assume at least that a minimizer exists, with the consequence that ω⊕ and V⊕ are

not vacuous, and the latter is unique. Extending these concepts to regression, define the

Fréchet regression function Y given X = x ∈ Rp as

m⊕(x) = argmin
ω∈Ω

M⊕(ω,x), M⊕(·,x) = E(d2(Y, ·)|X = x). (2.2)

Two different approaches were proposed by [19] to estimate the conditional Fréchet

mean m⊕(x). First, a global model was proposed in which m⊕(x) can be written as the

minimizer of an alternative objective function motivated by multiple linear regression in

the case Ω = R. The result is that m⊕(x) can be viewed as a weighted Fréchet mean,

where the weights depend on the joint distribution F and the input x. As a direct gener-

alization of linear regression, global Fréchet regression similarly can be overly restrictive

for random object responses. Thus, in a second approach, [19] also demonstrated how

to generalize local linear regression to estimate m⊕(x) under less restrictive assumptions

on the function m⊕. Both these approaches, termed local and global Fréchet regression,

will now be described.

2.2 Global Fréchet regression model for Object data

response

First we introduce the concept of global Fréchet regression in the context of OODA.

An essential task in statistics is to find some regression relationship between the response

Y and the covariate X. For our case, when Y ∈ Ω, modeling and estimating the Fréchet

regression function m⊕(x) from equation (2.2) is often of interest. The motivation stems

from considering a scalar predictor X ∈ R and response Y ∈ Ω = R, so that the target

m⊕(x) =: m(x) in (2.2) is just the usual conditional expectation, as used in local polyno-

9
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mial estimation. However, the global (parametric) modeling may not be straightforward,

especially when Ω lacks a useful algebraic structure, such as an inner product. For in-

stance, in classical linear regression analysis with Ω = R, the distribution of (Y |X = x)

is normally distributed with a mean of m(x) = α + βTx and variance σ2
Y , where α and

β represent the regression coefficients. Similarly, when Ω possesses a linear-algebraic

structure, one can specify a class of regression functions that quantifies the association

between the expected outcome and covariates in an additive or multiplicative manner.

However, the lack of an algebraic structure in general metric spaces may prevent us from

characterizing m⊕(x) with respect to the covariate x in the same way classical regres-

sion analysis determines the conditional expected value of the response with changing

covariates.

Therefore, to tackle this challenge, [19] formulated the global Fréchet regression model

such that for the covariates in the model, we can exploit the structure of the space Rp

instead of Ω. Specifically, they formulated the Fréchet regression function as:

m⊕(x) = argmin
ω∈Ω

M⊕(·,x), M⊕(ω,x) = E(s(X,x) d2
E(Y, ω)), (2.3)

where s(·, ·) : Rp×Rp → R is an arbitrary weight function such that s(X,x) denotes the

influence of X on x. The choice of the function s is considered following [19], in section

2.2.1.

2.2.1 Generalizing Linear Regression

[19] formulated the global Fréchet regression model in analogy to the multiple linear

regression model for response in R so that we may implement and interpret the model

and perform overall inference and testing on it with considerable ease. Global Fréchet

model is fitted under the assumption that there is no bias. Hence, unlike any local model

10
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fitting, global Fréchet regression does not involve choosing a tuning parameter. Here

we follow the notations of [19]. Consider the standard setup of linear regression when

Ω = R, the regression function, considering m = m⊕ in 2.2 becomes:

m(x) := E(Y |X = x) = β∗
0 + (β∗

1)
T (x− µ) (2.4)

where, β∗
0 and β∗

1 are the solutions to the following equations:

(β∗
0 ,β

∗
1) = argmin

β0∈R,β1∈Rp

∫ [∫
y dFY |X(x, y)−

(
β0 + βT

1 (x− µ)
)]2

dFY |X(x) (2.5)

Setting µ = E(X),Σ = Var(X) and σYX = E[Y (X − µ)], we get the solution to

equation 2.5 are: β∗
1 = Σ−1σYX and β∗

0 = E(Y ). Plugging in the solutions into equation

2.4, we get,

m(x) = E(Y ) + σT
YXΣ−1(x− µ) =

∫
ys(z,x) dF (z, y) (2.6)

where the weight function is:

s(z,x) = 1 + (z − µ)TΣ−1(x− µ) (2.7)

Notice that,
∫
s(z,x) dF (z, y) = 1. Hence we characterized the regression in 2.4 such

that the parameters are estimated via a weighted least square method where the weights

are characterized by the covariates and the squared distance depends on the objects in

the metric space.

2.2.2 Estimation

Let i = 1, 2, . . . , n be the index for observations, where n is the total number of

observations under study. Consider the sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be inde-

11
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pendent and identically distributed according to F , and an arbitrary x ∈ Rp. for i = 1, 2,

We estimate µ and Σ by their corresponding empirical versions: µ̂ = 1
n

∑n
i=1 X i and

Σ̂ = 1
n

∑n
i=1(X i − X̄)(X i − X̄)T respectively. Hence, the empirical weights take the

following form:

sin(x) := 1 +
(
X i − X̄

)T
Σ̂

−1
(x− X̄) (2.8)

such that
∑n

i=1 sin(x) = 1. Hence, we get the regression function estimator:

m̂⊕(x) = argmin
ω∈Ω

Mn(ω,x) (2.9)

where, m⊕(x) for x ∈ Rp, and Mn( · ,x) = n−1
∑n

i=1 sin(x) d
2 (Yi, ω).

2.3 Local Fréchet Regression

Local regression is often preferred over the global regression fitting due to its inherent

flexibility but requires the choice of a smoothing parameter that balances the bias and

variance of the regression estimate. Under the similar setting described earlier, let K be

a probability density kernel, and h be a bandwidth, and Kh(·) = h−1K(·/h). For our

exposition we will consider covariates in the space R and follow the notation structure

closely to those in [19].

Similar to the global Fréchet regression, local Fréchet regression is derived from the

non-parametric local linear regression when Ω = R and extended to the case when the

responses are in a general metric space. The target of estimation again being (2.2), for

the specific case Ω = R, we write m = m⊕.

12
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According to [49], the local linear estimate of m(x) is l̂(x) = β̂0, where,

(
β̂0, β̂1

)
= argmin

β0,β1

1

n

n∑
i=1

Kh (Xi − x) (Yi − β0 − β1 (Xi − x))2

by the properties of M-estimation ([50]), β̂0, β̂1 can be viewed as M-estimators of

(β∗
0 , β

∗
1) = argmin

β0,β1

∫
Kh(z − x)

[∫
y dFY |X(z, y)− (β0 + β1(z − x))

]2
dFX(z) (2.10)

Define, for j = 0, 1, 2, . . .;

µj = E
[
Kh(X − x)(X − x)j

]
, rj = E

[
Kh(X − x)(X − x)jY

]
, and σ2

0 = µ0µ2 − µ2
1

the solutions to 2.10 are:

β∗
0 = σ−2

0 (µ2r0 − µ1r1) , β∗
1 = σ−2

0 (µ0r1 − µ1r0)

Hence, we get an intermediate target, which may be considered to be a smoothed

version of the true regression m(x).

l̃(x) = β∗
0 =

µ2r0 − µ1r1
σ2
0

=
1

σ2
0

∫
yKh(z − x) [µ2 − µ1(z − x)] dF (z, y)

= E[sh(X, x)Y ]

(2.11)

where the weight function

sh(z, x) =
1

σ2
0

{Kh(z − x) [µ2 − µ1(z − x)]} .

13
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Since,
∫
sh(z, x) dF (z, y) ≡ 1, the l̃(x) in 2.11 corresponds to a localized Fréchet mean.

l̃(x) = argmin
y∈R

E
[
sh(X, x)(Y − y)2

]
(2.12)

Hence the well-known local linear estimator ofm(x) in order to motivate the local Fréchet

technique is:

l̂(x) =
1

n

n∑
i=1

ŝh(X, x)Yi = argmin
y∈R

n∑
i=1

ŝh(Xi, x)(Yi − y)2. (2.13)

The empirical weight function ŝh, as derived from the local linear least squares criterion,

is;

ŝh(z, x) = ϱ̂−2Kh(z − x) [µ̂2 − µ̂1(z − x)] , (2.14)

where

µ̂j = n−1

n∑
i=1

Kh(Xi − x)(Xi − x)j, ϱ̂2 = µ̂0µ̂2 − µ̂2
1,

and thus satisfies n−1
∑n

i=1 ŝh(Xi, x) = 1. Hence, l̂(x) is a weighted average of the

observed responses.

Now consider the case when Y ∈ Ω is a general metric space. The local Fréchet

regression estimator ofm⊕(x) in (2.2) for a general metric space Ω is obtained by replacing

the squared difference (Y − y)2 in (2.13) by its appropriate counterpart in metric spaces,

the squared distance. Hence the definition of the local Fréchet regression:

l̃⊕(x) = argmin
ω∈Ω

L̃n(ω), L̃n(ω) = E
[
sh(X, x) d2(Y, ω)

]
.

14
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2.3.1 Estimation

Consider the sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent and identically

distributed according to F , and an arbitrary x ∈ R. The local Fréchet estimator is

l̂⊕(x) = argmin
ω∈Ω

n∑
i=1

ŝh(Xi, x) d
2 (Yi, ω) (2.15)

where the weights are again given by (2.14). The criterion minimized in the right-hand

side of (2.15) is, for each x and ω, a local linear estimator of the conditional expected

value represented by M⊕(ω, x) in (2.2). Thus, the local Fréchet regression approach

is equivalent to pointwise estimation of M⊕ by local linear regression, followed by its

minimization over Ω.

15



Chapter 3

The Fréchet single index models for

object response regression

The extension of the local Fréchet estimator for a covariate x ∈ Rp for p > 1 is mathemat-

ically straightforward. However, its performance deteriorates quickly as the dimension

p increases due to the curse of dimensionality. Thus the global Fréchet model may be

preferable for a moderate p, despite its bias due to increased stability in the estimation

procedure. Hence we attempted to utilize the strengths and mitigate the weaknesses of

these two Fréchet approaches in the same way the semiparametric method does so for

parametric and non-parametric estimators in the classical models. More specifically, we

proposed the FSI model which assumes that the Fréchet regression function depends on

the covariate x ∈ Rp, and the index parameter θ0 ∈ Rp only through the index θT
0 x ∈ R.

3.1 Model Definition

The estimation of the parameter θ0 ∈ Rp was the primary target of our new model.

It lends interpretability by specifying the contribution of each predictor in the model.

16
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For identifiability [51] we define the parameter space as follows:

Θp = {θ ∈ Rp : the first non-zero element of θ is positive, and ||θ||E = 1}

Hence, θ belongs to the surface of the unit sphere in Rp. Hence, by this convention,

Θ1 = {1} for which the necessary theoretical foundation had been laid out as local

Fréchet regression in [19]. Here our focus will be on analyzing p ≥ 2.

A comprehensive discussion of a large class of single index models and their appli-

cations can be found in [20] when the response data is in R, where the parameter θ0 is

estimated using the Semiparametric Least Square (SLS) method. The procedure that

will be described for estimating the coefficient in the proposed model is inspired by this

intuitive technique, and leverages local Fréchet regression and standard distance-based

least squares.

Now we formally define the new model. Let FX denote the marginal distribution

of X, with support X ⊂ Rp. For any θ ∈ Θp, define the Fréchet regression function

conditional on the projected variable θTX as

g⊕(u,θ) = argmin
ω∈Ω

Λ⊕(ω, u,θ), Λ⊕(·, u,θ) = E(d2(Y, ·)|θTX = u) (3.1)

where u ∈ Uθ =: {θTx : x ∈ X} and a minimizer is assumed to exist. Thus, the FSI

model for m⊕(x) in (2.2) is

m⊕(x) = g⊕(θ
T
0 x,θ0) (3.2)

Given existence of the minimizers in (2.1), the identifiability of the index parameter

θ0 is equivalent to the statement

P (g⊕(θ
TX,θ) ̸= g⊕(θ

T
0X,θ0)) > 0,

17
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from which it can be deduced that

W (θ) = E
(
d2(Y, g⊕(θ

TX,θ))
)
, (3.3)

the natural generalization of the least-squares criterion for metric spaces, is uniquely

minimized at θ0. Thus, the above criterion will be used to construct an M-estimator

for θ0. In a recent preprint, [52] independently investigated model (3.2), though using a

slightly different strategy to estimate W (θ) than that employed in this paper.

3.2 Estimation

Suppose a random sample (X i, Yi), i = 1, . . . , n, distributed according to F is avail-

able. As the true parameter θ0 is unknown, we proceed to estimate the target in (3.2)

in two steps. First, g⊕(θ
Tx,θ) is estimated for fixed θ using local Fréchet regression,

followed by optimization over θ. Let h > 0 be a given bandwidth and K a univariate

probability density kernel, as before. The estimates in this section depend on h, although

we suppress this dependence for simplicity in several formulae.

For a fixed θ ∈ Θp, repurposing (2.14) and (2.15) for use with the predictors θTX i,

we obtain the estimator

ĝ⊕(θ
Tx,θ) = argmin

ω∈Ω
Λ̂⊕(ω,θ

Tx,θ), Λ̂⊕(ω,θ
Tx,θ) =

1

n

n∑
i=1

r̂h(X i,x,θ) d
2 (Yi, ω) .

(3.4)

Here, the weight function r̂h : Rp × Rp ×Θp → R is

r̂h(z,x,θ) = σ̂−2
θ (x)Kh(θ

T (z − x))
[
µ̂2,θ(x)− µ̂1,θ(x)(θ

T (z − x))
]
, (3.5)
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where, for j = 0, 1, 2,

µ̂j,θ(x) = n−1

n∑
i=1

Kh(θ
T (X i − x))(θT (X i − x))j (3.6)

and σ̂2
θ(x) = µ̂0,θ(x)µ̂2,θ(x)− µ̂1,θ(x)

2.

Utilizing this result, we construct a criterion for estimating θ0 by defining an empirical

version of (3.3). Replacing the expectation with the empirical distribution, and replacing

g⊕(θ
TX i,θ) with the fitted value Ŷi(θ, h) = ĝ⊕(θ

TX i,θ) yields

Wn(θ) =
1

n

n∑
i=1

d2(Yi, Ŷi(θ, h)). (3.7)

The coefficient vector θ0 is then estimated by

θ̂ = θ̂(h) = argmin
θ∈Θp

Wn(θ). (3.8)

As is typically the case in this type of semi-parametric estimation approach, the

bandwidth h cannot decay too quickly if one is to obtain a consistent estimator of θ0.

Indeed, Theorem 1 stated in [21] restricts the decay of h in a way that depends on the

dimension p as well as the sample size n. Nevertheless, in constructing the final estimator

m̂⊕(x) of the regression function m⊕(x), a different smoothing bandwidth may be used,

potentially improving the overall rate of convergence. Specifically, denote by g̃(θTx,θ)

the estimator in (3.4) for any θ and x using a bandwidth h̃ > 0. Then the final regression

estimator is

m̂⊕(x) = g̃⊕(θ̂
T
x, θ̂). (3.9)
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3.3 Simulation Study on Spherical Data

We implement our methodology when the responses lie on a Riemannian manifold

object space. Let Ω = S2, the surface of the unit sphere in R3, with origin being the

center. For any two points, the geodesic distance between them is given by the equation

1.2. We refer to a simulation setting as a unique combination of the sample size n,

covariate dimension p, and noise level σ2 > 0 that will be defined below.

3.3.1 Data Generation

For a given setting (n, p, σ2), independent and identically distributed data pairs

(X i, Yi) ∈ Rp × S2, i = 1, . . . , n were generated according to the following steps.

1. Independently generate predictor components Xij, j = 1, . . . , p, as Xij = Wij/
√
p,

where Wij
iid∼ U(−1, 1).

2. With θ0 = (θ01, θ02, ..., θ0p)
T being the true parameter, compute the latent predictor

Ui = θT
0X i.

3. Compute the conditional Fréchet mean at X i, depending only on Ui, as

m⊕(X i) =

(√(
1− U2

i

p

)
cos

(
πUi√
p

)
,

√(
1− U2

i

p

)
sin

(
πUi√
p

)
,
Ui√
p

)
.

4. Generate a noise vector Z i as follows. First, let (V i1,V i2) be an orthonormal basis

for the tangent space span{m⊕(X i)}⊥. Next, for a given noise level σ2, generate

Ci = (ci1, ci2)
T iid∼ N2(0, σ

2I2). Finally, set Z i = ci1V i1 + ci2V i2.

5. Generate the spherical response variable as

Yi = cos (∥Z i∥E)m⊕(X i) + sin (∥Z i∥E)
Z i

∥Z i∥E
.
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Steps 4 and 5 produce a point Yi on the sphere with conditional Fréchet mean equal

to m⊕(X i). To give an idea of what the responses look like relative to the conditional

Fréchet mean function for a given noise level, Figure 3.1 shows example data sets and

corresponding estimates for p = 5 under two noise scenarios (σ2 = 0.4 and σ2 = 0.8) and

three sample sizes (n = 50, 100, 200).

3.3.2 Computational Details

For each simulated data set, estimation was performed using a grid for the bandwidth

h. For given values θ and h, the local Fréchet estimate ĝ⊕(u,θ) in (3.4) was obtained for

values u = θTX i, i = 1, . . . , n, using a non-convex optimization trust region algorithm

as implemented in ManOpt toolbox for Matlab [53, 19]. As the algorithm requires an

initial estimate, we computed the leave-one-out Nadaraya-Watson estimate

Ỹ
(NW )
(i) (h,θ) =

∑
l ̸=i YlK

([
XT

i θ −XT
l θ
]
/h
)∑

l ̸=iK
([
XT

i θ −XT
l θ
]
/h
)

for each observed predictor values X i. Then, the initial estimate that is entered into the

algorithm is obtained by projecting onto the sphere, i.e.

Ŷ
(0)
(i) (h,θ) =

Ỹ
(NW )
(i) (h,θ)

∥Ỹ (NW )
(i) (h,θ) ∥E

.

Computation of the estimate θ̂(h) by optimizing the criterion Wn is the more chal-

lenging task, particularly for larger values of p, since there is no explicit form for the

gradient or Hessian. Numeric evaluation of the gradient can also be quite expensive

when n is large due to the need to repeatedly perform local Fréchet regression for each

data point. In addition, any optimization procedure is sensitive to the starting value for

θ, particularly for larger p, further increasing the computational burden since multiple
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Figure 3.1: Examples of simulated data sets for covariate dimension p = 5, corresponding to

sample sizes n = 50 (top row), n = 100 (middle row), and n = 200 (bottom row), and noise

levels σ2 = 0.4 (left column) and σ2 = 0.8 (right column). The red dots represent values of Yi

in the sample, while the regression function values m⊕(x) are shown by the black curve for

x ∈ [0, 1]p. The blue dots represent the FSI fitted responses for n observations using (3.9).

The green dots are the fitted responses obtained by computing (3.4) for a value of θ far from

the true value θ0.
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starting values must be used. Therefore, we took the following approach.

First, a collection {θk : k = 1, . . . , Kp}, of starting values was randomly generated

for each setting (n, p, σ2), with the same starting values being used for all data sets under

that setting. The number of starting points was taken to be K2 = 10, K5 = 50, and

K10 = 100, so that these increase with the dimension p. We then reduce this initial pool

of starting values by optimizing a proxy to Wn given by

W ∗
n(θ) = n−1

n∑
i=1

d2(Yi, Y
∗
i (h,θ)), (3.10)

where

Y ∗
i (h,θ) =

∑n
j=1 rh(Xj,X i,θ)Yj

∥
∑n

j=1 rh(Xj,X i,θ)Yj∥E

is the projection onto the sphere of the local linear estimate of the Euclidean regression

function E(Y |θTX = u) at u = θTX i. The advantage of using this proxy is that an

analytic gradient and Hessian forW ∗
n are available, so that optimization ofW ∗

n is relatively

fast. Using each of the Kp starting values, we obtain as many initial estimates θ̃k(h),

k = 1, . . . , Kp. This optimization was executed using the fmincon function in Matlab

with the trust-region-reflective option for the optimizer. In this optimization, θ

was represented by its polar coordinates to handle the constraints in a simple way.

In the final optimization step, K̃p of the initial estimates θ̃k are retained as starting

values based on having the lowest values of the proxy criterion W ∗
n , with K̃2 = 2, K̃5 = 3,

and K̃10 = 5. For each starting value, Wn is directly optimized using fmincon with the

SQP option for the optimizer that does not require a gradient input, again using the polar

representation of θ. The value of θ that, at convergence, attains the lowest value of Wn

is taken to be the estimate θ̂(h) for that bandwidth. Lastly, fitted values are computed

using (3.9) by setting h̃ = h, θ̂ = θ̂(h), and Ŷi(h) = m̂⊕(X i).
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As a competitor to the FSI model, we also implemented a multivariate local Fréchet

estimator. The estimator is defined as in (2.15), with the only difference being that the

weights ŝh(X i,x) are computed from multivariate local linear regression, since X i ∈ Rp,

using a product Gaussian kernel with the same bandwidth for each predictor. The

optimization for this estimator was performed using the ManOpt trust region algorithm

described above.

3.3.3 Performance Evaluation

Data were generated under 18 unique parameter settings using samples sizes n =

50, 100, 200, for noise levels σ2 = 0.4, 0.8, and for dimensions p = 2, 5, 10, with 200

simulation runs per setting. Let s = 1, . . . , 200 be the index for simulations within a

given setting, and (Xs
i , Y

s
i ) denoted the simulated data. Then, from each simulated data

set and bandwidth we obtain an estimate θ̂
s
(h) ∈ Rp and fitted values Ŷ s

i (h), i = 1, . . . , n

from the FSI model, as well as fitted values Y̌ s
i (h) from the multivariate local Fréchet

(mLF) estimator. The following performance metrics were computed for each simulated

data set across the entire range of bandwidths.

1. As the parameter space Θp is a subset of the (p − 1)-dimensional unit sphere, a

natural measurement of empirical squared error for the s-th simulated data set is

SE(θ̂
s
(h)) =

[
arccos

(∣∣∣θT
0 θ̂

s
(h)
∣∣∣)]2 , (3.11)

where we have introduced the absolute value to account for the fact that θ0 and

−θ0 are indistinguishable from the data.

2. To evaluate the estimation error in regression for the FSI model, the mean square
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estimation error (MSEE) for the s-th simulated data set was quantified by

MSEE
(s)
⊕,FSI(h) =

1

n

n∑
i=1

[
arccos

(
m⊕(X

s
i )

T Ŷ s
i (h)

)]2
(3.12)

3. To evaluate the estimation error in regression for the multivariate local Fréchet

estimator, the mean square estimation error (MSEE) for the s-th simulated data

set was quantified by

MSEE
(s)
⊕,mLF(h) =

1

n

n∑
i=1

[
arccos

(
m⊕(X

s
i )

T Y̌ s
i (h)

)]2
(3.13)

Tables 3.1 and 3.2 show empirical performance metrics for the various simulation

settings considered. In these tables, the average and standard deviation of each metric

across simulations is reported. For each metric, the reported values are for the bandwidth

value in the chosen grid that minimizes the corresponding average across simulations. We

observe that the average squared estimation errors and their standard deviations for the

FSI estimator of the coefficient θ0, and both FSI and mLF estimators of the regression

function m⊕(x), all behave in the expected fashion. Namely, they decay toward zero

with increasing sample size and are larger for higher values of p and for the higher

noise level. However, the FSI regression estimation errors are overall smaller than those

of the multivariate local Fréchet regression estimator when both are evaluated using

their optimal bandwidth, with differences becoming more pronounced for larger covariate

dimensions p.

Next, we more closely examine the empirical sampling distribution of θ̂(h) across

different values of n for p = 2, since these can be easily visualized via histograms of

the (scalar) polar coordinate representations η̂(h). Specifically, Figure 3.2 shows the

empirical distribution of η̂(s)(h) for different values of n and σ2, where h is the same
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Table 3.1: Simulation results for settings with low noise, σ2 = 0.4. Here p and n are covari-

ate dimension and sample size, respectively. The third column is the average of the values

SE(θ̂
s
(h)) from (3.11) across simulations, with standard deviation in parentheses. Columns

4 and 5 give the averages of MSEE
(s)
⊕,FSI(h) and MSEE

(s)
⊕,mLF(h) from (3.12) and (3.13), re-

spectively, across simulations, with standard deviation given in parentheses. For each of the

metrics in columns 3–5, results are shown for the bandwidth that minimizes the reported

average of that metric and are rounded to 3 significant digits.

p n Avg. MSE Avg. MSEE⊕,FSI Avg. MSEE⊕,mLF

50 0.032 (0.047) 0.063 (0.039) 0.078 (0.042)
2 100 0.014 (0.020) 0.030 (0.017) 0.040 (0.020)

200 0.006 (0.008) 0.016 (0.008) 0.021 (0.010)

50 0.326 (0.283) 0.100 (0.051) 0.143 (0.054)
5 100 0.168 (0.132) 0.050 (0.026) 0.074 (0.029)

200 0.071 (0.056) 0.023 (0.012) 0.036 (0.015)

50 0.938 (0.519) 0.166 (0.064) 0.251 (0.081)
10 100 0.544 (0.386) 0.082 (0.038) 0.128 (0.038)

200 0.285 (0.152) 0.039 (0.016) 0.065 (0.018)

minimizing bandwidth used to compute the average of the SE(θ̂
s
(h)) values for p = 2

in Tables 3.1 and 3.2 for σ2 = 0.4 and σ2 = 0.8, respectively. For reference, the true

polar coordinate parameter η0 is superimposed as the red vertical line. In all cases, as n

increases the empirical sampling distribution becomes more concentrated near η0.

Finally, to more fully examine the estimation performance of the overall regression

function m⊕(x) more closely, Figure 3.3 juxtaposes the boxplots of MSEE
(s)
⊕,FSI(h) from

(3.12) for each simulation setting on the log scale, where h is the minimizing bandwidth

used for this metric in Tables 3.1 and 3.2. The variation increases with p, but under each

p it decreases with n. These reflect the numerical summaries given in Tables 3.1 and 3.2.
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3.4 Regression of Mortality Distributions

3.4.1 Fréchet Regression with the Distributions as response

To demonstrate the application of our method, we consider human mortality data

at the country level. The goal is to model the dependence of age-at-death distributions

for a given year based on country-specific covariates. For this illustration, the year 2013

was selected, and human mortality data were sourced for 39 countries from the Human

Mortality Database (HMD, [54] www.mortality.org) for this year. The HMD provides

data for 41 countries; Hong Kong and Taiwan were omitted due to lack of availability

of records for all covariates used in this illustrative example. The data for each country

are structured as life-tables; for integer-valued age j, 0 ≤ j ≤ 110, the life table provides

the size of the population mj which is at least j years old, normalized so that the total

Table 3.2: Simulation results for the settings with high noise, σ2 = 0.8. Descriptions of

column names and contents correspond to those given in Table 3.1.

p n Avg. MSE Avg. MSEE⊕,FSI Avg. MSEE⊕,mLF

50 0.154 (0.284) 0.231 (0.160) 0.285 (0.177)
2 100 0.090 (0.244) 0.130 (0.107) 0.163 (0.100)

200 0.025 (0.037) 0.063 (0.038) 0.084 (0.048)

50 1.038 (0.624) 0.376 (0.180) 0.558 (0.238)
5 100 0.680 (0.555) 0.208 (0.118) 0.298 (0.142)

200 0.367 (0.350) 0.100 (0.056) 0.143 (0.057)

50 1.481 (0.528) 0.496 (0.190) 0.927 (0.302)
10 100 1.297 (0.578) 0.298 (0.104) 0.535 (0.171)

200 0.869 (0.477) 0.160 (0.069) 0.276 (0.083)
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Figure 3.2: For p = 2 and sample sizes n = 50 (left panels), n = 100 (middle panels),

n = 200 (right panels) the simulated empirical distributions of η̂(h), the polar coordinate of

θ̂
s
(h), are represented by histograms, with h chosen to minimize the average of SE(θ̂

s
(h))

across simulations. In the top and bottom rows we have low noise (σ2 = 0.4) and high noise

(σ2 = 0.8) scenarios respectively. The vertical red line represents the polar coordinate of θ0,

η0 on the floor of the plot.

population is m0 = 100, 000. By computing differences, one can compute histograms

of age-at-death that are specific to each country and year. In order to focus on adult

mortality, we consider the histogram over the age range [20, 110].

The impacts of many socioeconomic, environmental, and other variables on health

outcomes have been extensively researched. For this illustration, we chose five covariates

that, intuitively, have strong potential to influence mortality patterns of a nation. These
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Figure 3.3: For each covariate dimension p = 2, 5, 10; boxplots of log(MSEE
(s)
⊕,FSI(h)) from

(3.12) are given over all simulations for the optimizing bandwidths used in Tables 3.1 and 3.2,

in each panel from left to right for sample sizes n = 50, 100, 200 as indicated by blue, yellow,

and cyan in the plot, respectively. The top and bottom panels correspond to low and high

noise scenarios, respectively, with different vertical axis ranges.
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include year-on-year percentage change in GDP (GDPC [55]), carbon dioxide emissions

in metric tons per capita (CO2E [56]), current health care expenditure as a percentage

of GDP (HCE [57]), the human development index (HDI [58]), and infant mortality

per 1000 live births (IM [59]) [60, 61, 62, 63, 64, 65, 66, 67, 68, 69]. Hence, X i ∈ R5

constitutes the covariate vector for the i-th country, i = 1, . . . , 39.

To apply the proposed FSI model, Let Yi represent the empirical quantile distribution

of the age-at-death data for the i-th country, and X i the vector of covariates for the i-the

country for the year 2013. As random object responses Yi are assumed to belong to Ω,

the L2-Wasserstein space, whose metric between two points is given by 1.3. The density

histograms constructed from the lifetables were smoothed and then used to produce

a quantile function for each country. This smoothing step was performed using the

CreateDensity function in the R package frechet in order to obtain a smooth density,

with the default cross-validated bandwidth choice, followed by conversion to a quantile

function using the function dens2quantile in the package fdadensity [70, 71]. These

constructed distributions will be referred to as observed distributions, and are visualized

in Figure 3.4.

While one may, to some extent, employ linear methods to analyze such data, practical

and theoretical problems emerge even in this simple case. From a practical standpoint,

certain critical outputs, such as fitted values, that should be distribution-valued may not

be so when linear methods are applied. These may be easily remedied using an ad hoc

correction, but this is a clear disadvantage compared to the object treatment provided

by Fréchet methods that will always respect such constraints. Beyond estimation, use of

the non-linear geometry has distinct advantages when it comes to inference, particularly

in the formulation of error models and uncertainty assessment, even in the setting of

univariate distributions [72, 73, 7]. In addition, although univariate distributions are

employed in this illustrative example, the model is equally applicable to multivariate
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Figure 3.4: The estimated densities for each country for year 2013 over the age interval

[20,110]; the countries with top 6 and bottom 6 mode ages are highlighted in blue and red

colors respectively. The red colored densities include Russian Federation, Belarus, Ukraine,

Hungary, Slovakia, Latvia. The densities in blue include Australia, Canada, Spain, France,

Japan, Switzerland.

distributions [74], in which case the Wasserstein space is no longer flat.

Letting (X, Y ) denote a generic covariate-distribution pair, the target is the Fréchet

regression function m⊕ as defined in (2.2), for which we will assess seven competing

models for object data. Specifically, m⊕ was estimated using global and local Fréchet

regression techniques, the latter for each individual predictor, yielding six competitors to

the proposed FSI model in (3.2).

3.4.2 Computational details

The computations for global and local Fréchet estimates, the letter for any fixed

bandwidth, were carried out using the existing functionalities of the frechet package

[70]. For the FSI model, for any specified θ and bandwidth h, this package was also used
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to compute ĝ⊕ in (3.4). To estimate θ0 via (3.8), the optim command was used with

option "L-BFGS-B" [75] with a lattice of 34 = 81 starting points of polar coordinates

η ∈ [−π/2, π/2]4. The predictors were each centered and scaled to have sample mean

zero and unit sample variance prior to fitting all models. For simplicity we use the same

acronyms for the standardized covariates as previously given for the unstandardized ones,

with the X i values in each model being on the standardized scale.

As a first step, for each of the local Fréchet regression fits and the FSI model fit, a

single bandwidth was selected by leave-one-out cross validation on the entire data set;

no bandwidth is needed for global Fréchet regression. With m denoting a model index

corresponding to the FSI model or one of the local Fréchet fits, let Ŷ
(m,−i)
i (h) denote the

fitted value for the i-th country produced by the estimate of model m using all countries

except county i and with bandwidth h. Then the chosen bandwidth is

h∗
m = argmin

h∈Hm

n∑
i=1

d2W (Yi, Ŷ
(m,−i)
i (h)), (3.14)

where Hm is a grid of potential bandwidth choices for the given model. For the local

Fréchet fits of each individual predictor, this step was executed using built-in functionali-

ties of the frechet package. For the FSI bandwidth, the model was fit for each bandwidth

in a pre-defined grid as described above, then h∗
FSI was computed as in (3.14).

3.4.3 Model Comparisons

To assess model performance, two metrics were computed. The first metric, termed

the Fréchet R2, quantifies the quality of model fit by in-sample performance. Specifically,

for a given model m, let Ŷ
(m)
i denote the fitted value that it produces for the i-th country.
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Furthermore, let

ω̂⊕ = argmin
ω∈Ω

1

n

n∑
i=1

d2
W (Yi, ω)

denote the sample Fréchet mean. Indeed, this is simple to compute due to the nature of

dW in (1.3), as it is known that ω̂⊕ is the distribution with quantile function n−1
∑n

i=1 Yi.

The Fréchet R2 for model m is

R2
⊕,m = 1−

∑n
i=1 d

2
W (Yi, Ŷ

(m)
i )∑n

i=1 d
2
W (Yi, ω̂⊕)

, (3.15)

which measures the proportion of Wasserstein-Fréchet variability in the data that is

explained by the model.

The second performance metric is based on out-of-sample performance, in which the

data were randomly split into a testing set of size 10 and training set of size 29, with 30

distinct random splits being executed. With k = 1, . . . , 30 representing the index of each

unique split of the data, denote by Y[k,j], j = 1, . . . , 10, the age-at-death distribution for

the j-th country in the k-th testing set, and by Ŷ
(m)
[k,j] the predicted distribution for the

same country using the fit of model m produced by the k-th training set. The error for

the k-th split and model m is then quantified by

MSPE
(m)
k =

1

10

10∑
j=1

d2
W

(
Y[k,j], Ŷ

(m)
[k,j]

)
. (3.16)

For local Fréchet and FSI model fits, the bandwidth used for each training set was fixed

to be the value h∗
m in (3.14).

Table 3.3 gives the computed metrics for all models. The top three models in terms

of Fréchet R2 are the proposed FSI model, the local Fréchet fit using the HDI covariate,

and the global Fréchet model. Figure 3.5 plots the fitted distributions (as densities)

for these three models, along with the observed densities. The plot provides a visual
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Table 3.3: Performance metrics for comparing seven Fréchet regression fits in three classes

of models: (GF) global Fréchet, (LF) local Fréchet, (FSI) Fréchet single index. The predic-

tor used for each local Fréchet fit is indicated for each subcolumn below LF: (HDI) human

development index; (HCE) current health care expenditure as a percentage of GDP; (GDPC)

GDP year-over-year percentage change in GDP; (IM) infant mortality; (CO2E) carbon diox-

ide emissions in metric tonnes per capita. The R2
⊕ row gives the Fréchet R2 values defined in

(3.15). The MSPE row gives the average out-of-sample mean-square prediction error (MSPE),

defined in (3.16), across the 30 data splits. The SD (MSPE) row gives the standard deviation

of the out of sample prediction errors across the 30 data splits.

Evaluation LF
Measures GF FSI

HDI HCE GDPC IM CO2E

R2
⊕ 0.697 0.688 0.521 0.132 0.433 0.162 0.827

MSPE 6.23 6.87 6.93 13.51 12.08 13.74 4.35

SD(MSPE) 2.45 5.45 3.44 4.82 10.03 5.40 2.11

reinforcement of the Fréchet R2 findings as these three models all produce distribution

fits that approximate the observed distributions reasonably well.

Using out-of-sample performance, the FSI model emerges as the best model with

the lowest average MSPE of 4.35. The left panel of Figure 3.6 shows boxplots of the 30

different MSPE
(m)
k values for each model across splits, reinforcing the metrics in Table 3.3.

In addition to having the smallest median MSPE value, the dispersion across folds for

the FSI is among the lowest, second only to the global Fréchet model. The global Fréchet

model suffers from model-induced bias, while the local Fréchet estimates using HDI lack

relevant information from other variables and suffer from poor prediction in certain data

splits. As designed, the FSI model balances the strengths of these two models. However,

these results do not examine the relative performance of these models for each individual
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Figure 3.5: Observed smooth densities (top left) along with their fits produced by the pro-

posed FSI model (top right), global Fréchet model (bottom left), and local Fréchet regression

with HDI as predictor (bottom right). Densities are colored by the mode of the age-at-death

distribution.

split of the data. The right panel of Figure 3.6 shows the boxplots of the logarithm of

the ratio of MSPEs for each of three competing models (global Fréchet and local Fréchet

estimates using HDI and HCE, respectively) to the MSPEs of FSI across splits. This

comparison shows FSI as the best in overall out-of-sample prediction, as its prediction

error is smaller than that of the other top-performing models for the majority of the 30
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training/test data splits.

Next, we interpret the coefficient estimate for the FSI model. Rounded to three digits

after the decimal, this was

θ̂ = (0.667, 0.741, −0.067, 0.005, 0.046)T .

with the order of standardized covariates being human development index (HDI), health-

care expenditure as percentage of GDP (HCE), year-on-year percentage change in GDP

(GDPC), infant mortality per 1000 live births (IM), carbon dioxide emissions metric tons

per capita (CO2E). The estimated coefficients for HDI and HCE have the highest mag-

nitudes of 0.667 and 0.741 respectively, indicating their heavy influence relative to the

other three predictors on the index Ûi = θ̂
T
X i that drives the FSI fit, when all variables

are in the model. As the FSI fit can be viewed as a local Fréchet estimate based on the

univariate predictor Ûi, the superiority of the FSI model to the local Fréchet fit using

either the HDI or HCE as predictor indicates that the combined predictive power of HDI

and HCE, as quantified by the projection direction θ̂, is stronger than either individual

predictor when using local Fréchet regression. On the other hand, the global Fréchet

model also combines the influence of all predictors, but does so less efficiently due to bias

in the underlying model.

Since HDI and HCE appear to have relatively higher importance as predictors of

mortality distributions for the local Fréchet regression as well as for the FSI model in

terms of both in-sample and out-of-sample performance, it was interesting to explore

how a small change in standardized value of HDI or HCE would affect the mortality

distribution prediction of FSI model, while keeping all other covariates fixed at their

median values. Figure 3.7 shows the age-at-death distributions predicted by the fitted

FSI model. As expected, higher HDI or HCE are associated with increased longevity.
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Figure 3.6: Left panel: boxplots of MSPE
(m)
k values from (3.16) across splits for the following

estimates from left to right: global Fréchet (GF); local Fréchet for each of the predictors human

development index (HDI), healthcare expenditure as percentage of GDP (HCE), year-over-year

percentage change in GDP (GDPC), infant mortality per 1000 live births (IM), and CO2

emissions in metric tonnes per capita (CO2E); and Fréchet single index (FSI). Right panel:

boxplots of log of ratio of the MSPEs from global Fréchet estimates (dark red, left), local

Fréchet estimates using HDI (dark purple, midde), and HCE (green, right) relative to those of

FSI are shown. The MSPE values of each competitor are higher than the FSI values for more

than 75% of the folds, shown by the first quartile of the log-ratios being above the dotted

horizontal line.

In particular, the plots suggests that the mode of mortality distributions increases for

higher values of HDI or HCE, keeping other covariates fixed.

3.5 Discussion

The Fréchet single index model developed in this paper offers an alternative to global

and local Fréchet regression for random object response data with vector-valued predic-

tors in the spirit of semiparametric regression. While global Fréchet regression comfort-

ably accommodates multiple predictors, it can be unduly rigid for many complex data

settings. Indeed, even in the special case Ω = R, in which global Fréchet is multiple lin-

ear regression, such a model is often inadequate, so that its inadequacy in more complex
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Figure 3.7: Age-at-death densities fitted by the FSI model for varying values of HDI (human

development index, left) and HCE (health care expenditure, right), with other variables at

their sample median. Colors indicate regularly spaced standardized values of the covariate.

metric spaces Ω is more likely than not. Local Fréchet regression, on the other hand,

is unattractive when multiple predictors are present on both theoretical and practical

grounds, despite its flexibility. Indeed, the data illustration involving mortality profiles

demonstrates that the FSI model outperforms both global Fréchet regression and the

best single-predictor model fitted using local Fréchet regression. Future extensions of the

FSI model to handle more complex predictors, such as high-dimensional, functional, or

object-valued data, will be valuable assets.

The technical issue surrounding existence and uniqueness of Fréchet means, whether

marginal or conditional, has been circumvented in this work by assumption, although

specific concrete examples of spaces satisfying the relevant assumption (M) have been

provided due to the work of others on this challenging topic. Nevertheless, as pointed out

by reviewers, a particular limitation of the FSI model is its requirement that the condi-

tional Fréchet means m⊕(x) in (2.2) not only exist for each x, but that those conditional

on θTx, namely g⊕(θ
Tx,θ) in (3.1), exist and are unique for every θ. Examples can be

quickly constructed in which the FSI model holds while g⊕(θ
Tx,θ) are only unique for
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θ equal to or in a neighborhood of θ0. It seems plausible that one should still be able

to estimate θ0 in this setting, yet the methods proposed in this paper are inadequate. It

is likely that criterion functions less restrictive than (3.3) may provide a path, and we

leave this for future work.

While we have used a generalized version of semiparametric least squares for the

estimation of the coefficient vector and local Fréchet regression to estimate g⊕ in (3.1),

other options are of course available. For example, projection pursuit [76, 77], average

derivatives [78], the conditional minimum average variance estimation (MAVE) technique

[79], and sliced inverse regression [80], among others, have been validated practically and

theoretically for scalar responses. Such approaches could conceivably work for object

responses as alternatives to the method presented here for estimating the coefficient in

the FSI model. More broadly, alternative smoothing methods could be developed for the

estimation of the link function g⊕, although local Fréchet regression and the Nadaraya-

Watson estimator [81] seem to be the only available options to date for a general metric

space. Other semiparametric approaches for scalar data, such as multiple index models,

may well prove to be adaptable to this scenario, although their extensions are less obvious.

39



Chapter 4

The partially linear Fréchet single

index Regression model

4.1 Quantile distributional physical activity repre-

sentations

We adopt a novel representation of the resulting data that extends previous compo-

sitional metrics to a functional setting [28], aimed at overcoming their dependency on

certain physical activity intensity thresholds. This approach also overcomes some pre-

viously known limitations of more traditional approaches. Let i ∈ {1, 2, . . . , n} be the

index for participants, where n is the total number of participants in the study. For the

i-th participant, let Mi indicate the number of days (including partial days) for which

accelerometer records are available and ni be the number of observations recorded in the

form of pairs (mij, Aij), j = 1, . . . , ni. Here, the mij are a sequence of time points in

the interval [0,Mi] in which the accelerometer records activity information and Aij is the

measurement of the accelerometer at time mij.
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The partially linear Fréchet single index Regression model Chapter 4

In this paper, each individual’s accelerometer measurements {Aij}ni
j=1, i = 1, . . . , n,

are studied without regard for their ordering. We consider the empirical quantile func-

tion, Yi(t) = Q̂i(t), for t ∈ [0, 1], as the response in the regression model. Here,

Q̂i(p) = inf{t ∈ R : F̂i(p) ≥ p} is the generalized inverse of the empirical cumula-

tive distribution function F̂i (a) = 1
ni

∑ni

j=1 1{Aij ≤ a}, a ∈ R for the physical activity

values for the i-th individual. In order to illustrate clearly the difficulty of analyzing

raw physical activity data in which different participants are monitored during different

periods and in different experimental conditions, Figure 4.1 shows the plot of observed

Aij against mij for an arbitrary participant in our study. In Figure 4.2 the left panel

shows the empirical quantile of the physical activity distribution of the participant whose

raw measurements are shown in Figure 4.1, the right panel shows the empirical quantile

functions of all participants after transforming the raw time series physical activity data

into distributional quantile physical activity representation. Quantile physical activity

representation overcomes the problem of summary physical activity when the raw time

series have different lengths. In addition, the new representation uses all accelerometer

intensities (over a continuum) to construct the new physical activity functional profile,

unlike traditional representations of physical activity that summarize the information in

a compositional vector.

4.1.1 Details of covariates

Four thousand six hundred sixteen individuals were chosen for our analyses, with

physical activity monitoring available for at least 10 hours per day for four days. The

covariates used in the model include socio-demographic, physical activity, dietary, and

clinical variables such as age, Body Mass Index (BMI), Healthy Eating Index (HEI), along

with the categorical variables Ethnicity and Sex. Age at the time of the analysis was 20
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Figure 4.1: The plot of physical activity time series Aij of one representative participant

(one chosen i) in the NHANES 2011-2014 study monitored during 8 days are plotted over the

observed time intervalsmij , when the physical activity measurements are counted as described

in the section 4.1.
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Figure 4.2: (Left panel) The empirical quantile representation Q̂i (described in 4.1), of

the activity profile of the participant (chosen i) in figure 4.1. (Right panel) The estimated

empirical quantiles of the physical activity profiles are computed for all the 4616 participants

in the study and plotted here. This helps to visualize the quantile representation of the

participant i in comparison with the rest of the participants in our study.
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to 80 years. The BMI (Kg/m2) was restricted to 18.5− 40 to study individuals ranging

from healthy to highly overweight/obese. The variable (HEI) was utilized, indicating a

global score about the diet quality. The ethnicity variable reported the racial origin of

the participants divided into the following seven categories: Mexican American, Other

Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian, and Other

Races, including Multi-Racial. To understand the distribution of the covariates between

the levels of the Sex variable, we constructed Table 4.1.

Table 4.1: Summaries of the predictor variables Age, BMI (Body Mass Index), HEI (Healthy

Eating Index) and Ethnicity used in the regression analysis, separated by the Sex. In the

first column we distinguish the levels of the categorical variable ethnicity from the numerical

covariates Age, BMI, HEI which are designated in the second column. In the third and fourth

columns, the first four rows present the means and, in brackets, the standard deviations of

the continuous variables (Age, BMI, HEI) for Men and Women respectively. The percentage

breakdown of the sub-populations of Men and Women into their respective ethnicities is also

provided. The description of the covariates are found in Section 4.1.1.

Covariates Men Women
Age 47.45 (16.45) 48.082 (16.50)

Numeric Body Mass Index 28.72 (5.73) 29.18 (7.41)
Variables Healthy Eating Index 53.013 (14.13) 56.63 (14.75)

Mexican American 8.55 % 6.42 %
Other Hispanic 5.42 % 5.28 %

Ethnicities Non-Hispanic White 70.65 % 72.3 %
Non-Hispanic Black 8.82 % 10.29 %
Non-Hispanic Asian 3.77 % 3.37 %

Other Races Including Multi-racial 2.79 % 2.35 %

This paper aims to create a parsimonious and straightforward regression model to

interpret the several central aspects of energetic expenditure captured by the Age and

BMI variables that are expected to behave in a non-linear way with the response. At

the same time, we are interested in assessing the diet’s effect on physical exercise. We

have observed that sex and ethnicity differences in the U.S. population tend to interact

concerning physical activity; e.g., women tend to be physically less active than men for

the White, Black, Asian, Other races including multi-racial ethnicities, however, for his-
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panic population, men and women show similar levels of physical activity. Hence, we

considered an interaction between sex and ethnicity to obtain reliable population-based

conclusions about the relationships between these predictors and physical activity. The

sampling design of NHANES provides essential advantages to obtaining reliable popu-

lation measurements that we cannot guarantee due to selection bias with observational

cohorts such as the UK-Biobank. In order to properly exploit this advantage, however, we

must incorporate survey design in the estimation procedure, as described in Section 4.3

below.

4.2 The partially linear Fréchet single-index Regres-

sion model

Let Yi be the quantile function of daily activity levels corresponding to the i-th par-

ticipant. In what follows, we will build the regression by directly modeling the pointwise

mean function of Yi(t), t ∈ [0, 1] on the covariates. Using the quantile function to char-

acterize the physical activity distribution can be explained as follows. First, a density

representation that ignores inactivity time is inappropriate because the distributions rep-

resented by the Yi are a mixture of a mass at 0 and a continuous distribution for positive

values. Moreover, the quantile function is practically less restrictive than, for example,

the cumulative distribution function, which must take values between 0 and 1. Finally,

and perhaps most importantly, the quantile function is known to be intimately connected

to the well-established Wasserstein geometry on the space of distributions [82, 83, 84].

As a consequence, under L2-Wasserstein metric 1.3 1, the Fréchet mean [1] measure of

1We don’t need them to be absolutely continuous. It is true that, if both are discrete, there may
be uniqueness issues for the optimal transport map, but the optimal cost is unique and the quantile
distance is still equivalent.
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a random measure is characterized by the pointwise mean of the corresponding random

quantile process. Hence, by proposing a regression model for the random quantile func-

tion Yi, we are implicitly constructing a model for the conditional (Wasserstein-)Fréchet

mean of the underlying random physical activity distribution measure [7].

Hence, we formally define the partially linear Fréchet single index model. For con-

venience of description, the model shall be denoted as PL-FSI for the remainder of the

paper. Let Xi ∈ Rp denote the p-dimensional covariate vector that will appear in the

single index part of the model, while Zi ∈ Rq is the covariate vector considered for the

linear part. The PL-FSI model is

E(Yi(t)|X i,Zi) = α(t) + β(t)TZi + g(θT
0X i, t), t ∈ [0, 1], (4.1)

where the vector θ0 ∈ Rp, intercept function α, coefficient function β and link function

g are the unknown parameters.

4.3 Model Estimation

For estimating the parameter θ0, consider the parameter space Θp defined in 3.1. To

facilitate estimation of the smooth bivariate function g, we will use the expansion

g(u, t) ≈
K+ϱ∑
k=1

γk(t)ϕk(u), (4.2)

where {ϕk}K+ϱ
k=1 are the basis functions of the B-spline of order ϱ on degrees of freedom

K, and γk(t) are the coefficients of the basis as a function of t. Hence, the knot sequence

is of length K + ϱ− 2. For your clarification, a more detailed explanation of the B-spline

is provided in the Appendix A. With this discussion, the approximation to (4.1) that
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will motivate our estimator is

E(Yi(t)|X i,Zi) ≈ α(t) + β(t)TZi + γ(t)TU i(θ0), t ∈ [0, 1], (4.3)

where γ(t) = (γ1(t), . . . , γK+ϱ(t))
T and, for any θ ∈ Θp,U i(θ) = (ϕ1(θ

TX i), . . . , ϕK+ϱ(θ
TX i))

T .

The linear form of (4.3) suggests a semi-parametric least-squares approach for estima-

tion. However, one must remember that the individuals we analyze from the NHANES

database do not represent a simple random sample of the US population. Instead, they

are the result of a structured sample of a complex survey design from a finite population

of individuals. Therefore, in order to perform inference correctly and obtain reliable re-

sults according to the specific sample design of the NHANES data set [43], it is necessary

to adapt the usual estimation approach.

Assume that a sample D = {(Yi,X i,Zi) : i ∈ S} is available, where Yi is a response

variable, and X i,Zi are vectors of covariates taking values in a finite-dimensional space.

The index set S represents a sample of n units from a finite population. To account for

this sampling, each individual i ∈ S will be associated with a positive weight wi. In our

analyses, these weights were taken to be the inverse of the probability πi > 0 of being

selected into the sample, i.e. wi = 1/πi [85, 86]. These weights are used to construct an

estimator of Horvitz-Thompson type [87, 88], by constructing a weighted least squares

criterion.

The full procedure can be broken down into two steps. In the first step, for any

unit-norm vector θ ∈ Θp and any t ∈ [0, 1], we can readily compute

(
α̂θ(t), β̂θ(t), γ̂θ(t)

)
= argmin

a∈R,b∈Rq ,c∈RK+s

n∑
i=1

wi

[
Yi(t)− a− bT zi − cTU i(θ)

]2
. (4.4)
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These estimates lead to initial fitted quantile functions

Y ∗
i (θ, t) = α̂θ(t) + β̂

T

θ (t)Zi + γ̂T
θ (t)U i(θ), t ∈ [0, 1]. (4.5)

However, as a function of t, it may happen that Y ∗
i (θ, t) is not monotonically increasing,

and hence is not a valid quantile function. The typical solution for this is to project, in

the L2[0, 1] sense, this fitted value onto the nearest monotonic function [19, 7], yielding

valid fitted quantile functions Ŷi(θ, t). Once these initial quantities are formed for any θ

and t, one can proceed to the estimation of θ0 as justified in [21], one can use a generalized

version of the residual sums of squares to obtain the estimate. In the current context,

we propose the survey-weighted criterion

Wn(θ) =
n∑

i=1

wi

∫ 1

0

{
Yi(t)− Ŷi(θ, t)

}2

dt (4.6)

that constitutes a weighted average of the squared L2 norms of the quantile residuals (or,

equivalently, of the squared Wasserstein distances between observed and fitted physical

activity distributions). Then the estimated parameter is

θ̂ = argmin
θ∈Θp

Wn(θ). (4.7)

From this estimate of the index parameter, given any covariate pair (z,x), we can

estimate the conditional Wasserstein-Fréchet mean quantile function as follows. First,

the basis functions are evaluated at the relevant input by computing û = (ϕ1(θ̂
T
x), . . . ,

ϕK+ϱ(θ̂
T
x))T . Then, as in (4.5), we construct the preliminary estimate

Y ∗(t; z,x) = α̂θ̂(t) + β̂
T

θ̂ (t)z + γ̂T
θ̂
(t)û. (4.8)
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Finally, the estimated quantile function Ŷ (t; z,x) is obtained by projecting, in the L2

sense, Y ∗(t; z,x) onto the space of quantile functions, meaning the nearest monotonically

increasing function. In particular, for any set of observed covariates (Zi,Xi), we obtain

fitted values Ŷi(t) = Ŷ (t;Zi,Xi).

4.4 Computational Details

We now provide details regarding our implementation of our estimator for the NHANES

data base. In the models implemented below in chapter 4.5, the non-linear covariate Xi

for the i-th individual consists of their BMI and age, so the dimension for this component

of the model is q = 2, i.e., θ0 ∈ Θ2. For the spline basis in (4.2), computations were

internally performed using the dbs function in the package splines2 [89]. Knot place-

ment was determined internally by the default option of the dbs function, and varied

with the value of θ. Specifically, for any K, equally spaced values rk, k = 1, . . . , K,

were computed, where r0 = 0 < r1 < · · · < rK < rK+1 = 1; the k-th interior knot was

then taken as the rk-th empirical quantile of the values {θTX i; i = 1, . . . , n}. In our

experiments, we set ϱ = 4 and K = 5, so the number of spline regression parameters is

K + ϱ = 9. The covariates in the linear component Zi consist of HEI (continuous) and

indicator variables for sex and ethnicity, as well as the interaction between these. The

total number of covariates in this component is thus p = 12. For the the i-th participant,

let Zi1 be the continuous variable denoting the HEI, let Sexi,Ethnicityi be the categorical
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variables for Sex and Ethnicity of the i-th participant respectively, that is,

Sexi =


1, Male,

2, Female,

Ethnicityi =



1, Mexican American,

2, Other Hispanic,

3, Non-Hispanic White,

4, Non-Hispanic Black,

5, Non-Hispanic Asian,

6, Other Races including Multi-Racial.

Then define the variables Zi2 = 1{Sexi=Female}, Zir = 1{Ethnicityi=r−1} for r = 3, 4, 5, 6, 7;

corresponding to the ethnicities Mexican American, Other Hispanic, Non-Hispanic White,

Non-Hispanic Black, Non-Hispanic Asian, Other Races including Multi-Racial respec-

tively. Then, define Zi = (Zi1, Zi2, Zi3, . . . , Zi7, Zi2 ∗ Zi3, . . . , Zi2 ∗ Zi7) and finally the

covariate set (X i,Zi).

(4.3) can be rewritten as follows:

E(Yi(t)|X i,Zi) ≈ α(t) + β1(t)Zi1 + β2(t)Zi2 +
6∑

r=2

β3r(t)Zi,(r+1)+

6∑
r=2

β4r(t)Zi,(r+1) ∗ Zi2 + γ(t)TU i(θ0), t ∈ [0, 1]. (4.9)

The estimates of parameters in (4.4) can be efficiently computed as a weighted least

squares problem for any fixed θ and t ∈ [0, 1], but in practice this can only be done for a

finite ordered grid of values t ∈ Tm = {t1, . . . , tm} ⊂ [0, 1]. Let D be the design matrix of

order n×22 and the parameterφ(t) = (α(t), β1(t), β2(t), β32(t), . . . , β36(t), β42(t), . . . , β46(t),
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γ1(t), . . . , γ9(t))
T . Hence, the equation (4.4) can be reframed as follows:

φ̂(t) = argmin
φ(t)∈R22

n∑
i=1

wi

(
Yi(t)−DT

i φ(t)
)2

(4.10)

where DT
i is the i-th row of the design matrix D. These initial survey-weighted least

squares computations were done using R package survey [86, 43, 90], that allows us

to introduce splines into the regression model while simultaneously incorporating the

weights wi that are necessitated by the complex sampling designs of NHANES.

For any given θ and grid point t, computation of (4.5) is straightforward. To exe-

cute the projection step, observe that monotonicity can only be achieved in the discrete

sense in dependence on the chosen grid Tm. We refer to [7] for a simple description of

this projection algorithm, which can be done using any basic quadratic program solver.

Consequently, for a given θ, (4.6) is approximated by numerical integration. Finally, to

perform the optimization in (4.7), we use the function optim in R with the L-BFGS-B

algorithm by repeatedly performing the above steps to evaluateWn(θ) for different values

of θ across iterations. To deal with the possibility of local minima, four different starting

values (taken to be equally spaced in their angular representation) in Θ2 were used for

this optimization step, yielding (potentially) four local minimizers. The final estimator

was taken as the one among these yielding the smallest value of Wn. The algorithm 1 is

provided in the Appendix B to demonstrate the flow of the computation.

Due to the characteristic of the index parameter θ (i.e. ||θ||E = 1 and first non-zero

element being positive), for convenience of estimation, we considered the transformation

θ → (1, η), for η ∈ [π/2, π/2] to leverage the advantages of the polar coordinate.

The following are some examples of intercepts in different cases are as follows for

t ∈ [0, 1]:

• α(t) for Male, ethnicity: Mexican American.
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• α(t) + β2(t) for Female, ethnicity: Mexican American.

• α(t) + β32(t) for Male, ethnicity: Other Hispanic.

• α(t) + β2(t) + β32(t) + β42(t) for Female, ethnicity: Other Hispanic.

• α(t) + β33(t) for Male, ethnicity: Non-Hispanic White.

• α(t) + β2(t) + β33(t) + β43(t) for Female, ethnicity: Non-Hispanic White.

• α(t) + β34(t) for Male, ethnicity: Non-Hispanic Black.

• α(t) + β2(t) + β34(t) + β44(t) for Female, ethnicity: Non-Hispanic Black.

• α(t) + β35(t) for Male, ethnicity: Non-Hispanic Asian.

• α(t) + β2(t) + β35(t) + β45(t) for Female, ethnicity: Non-Hispanic Asian.

• α(t) + β36(t) for Male, ethnicity: Other races, including Multi-racial.

• α(t) + β2(t) + β36(t) + β46(t) for Female, ethnicity: Other races, including Multi-

racial.

However, it was interesting to study the differences in the intercepts among these

combinations of sex and ethnicities considered above. Hence, we computed the pairwise

differences of these intercepts and their pointwise confidence intervals as function of t.

Let us introduce key results to derive the asymptotic point-wise confidence intervals

for the previous linear combinations of the variables that constitute the the different

intercepts. Consider the intercept part for the Female, ethnicity: Other Races, including

Multi-Racial: α(t)+β2(t)+β36(t)+β46(t). We obtain it by the linear combination cTφ(t)

where c = (1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0). Hence,

cT φ̂(t) ∼ N(cTφ(t), cTΦ(t)c) (4.11)
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where Φ(t) is the variance-covariance matrix of the estimate φ̂(t). It was computed using

the internal functions of the svyglm package.

To understand the interaction of sex and ethnicity in physical activity levels, we

computed the model estimates of the intercept for the different cases and have taken

their respective differences in 4.5.2. The findings we got were crucial to the Figures 4.3,

4.4, 4.5.

4.5 Experimental Results on the PL-FSI model

In order to examine the advantages of the newly proposed PL-FSI model, we compare

it with the global Fréchet (GF) model of [19] which we slightly modify by introducing the

specific survey weights in the estimation criterion. The covariates used were the same

in each model. In fact, the global Fréchet model can be considered as a special case

of the PL-FSI model in which all covariates are included in the linear component. To

begin, we evaluate the capacity of the models to explain differences in physical activity

distributions across individuals using the survey-weighted Fréchet R2, denoted as R2
⊕ in

contrast to (3.15), given by,

R2
⊕ = 1−

∑n
i=1wi

∫ 1

0
(Yi(t)− Ŷi(t))

2dt∑n
i=1wi

∫ 1

0
(Yi(t)− Y (t))2dt

(4.12)

where wi is the survey weight corresponding to i-th observation and

Y (t) =

(
n∑

i=1

wi

)−1 n∑
i=1

wiYi(t)

is the weighted sample Wasserstein-Fréchet mean of the observed physical activity distri-

butions. To compare models with different numbers of predictors, we define the adjusted
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Fréchet R2 as

R̄2
⊕ = R2

⊕ −
(
1−R2

⊕
) q

n− q − 1
(4.13)

where n is the number of observations and q is the number of unknown parameters in

the model [19].

4.5.1 Regression results

We first fitted a global Fréchet model with linear terms for all covariates, and then

compared its performance with that of the PL-FSI regression model that included non-

linear terms for BMI and Age. To facilitate comparison, we centered and standardized

all numerical covariates before analysis.

We evaluated the goodness-of-fit of each model using R
2

⊕ (4.13). The PL-FSI model

had a higher value of 0.146, which is 24% higher relative to the 0.118 value obtained by

the global Fréchet model. This suggests that although the predictive capacity of both

models is moderate, the additional parameters introduced by the single index and spline

representation improved the variance explained.

The PL-FSI model was used to estimate the index parameter, resulting in θ̂ =

(0.2661, 0.9639) for the variables BMI and Age respectively. This indicates that Age

had a greater influence than BMI on the physical activity levels of each individual. To

examine the interaction of sex and ethnicity in physical activity levels, we computed the

model estimates of the intercept for different cases.

4.5.2 Interpretation of the categorical covariates

To tackle significant epidemiological and public health inquiries, we leveraged the lin-

ear as well as the semi-parametric nature of our model to examine variations in physical
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activity patterns across diverse populations in the United States. Our focus was on inves-

tigating how physical activity varies across various population groups, encompassing all

ranges of physical activity intensities measured by the physical activity quantile function.

Hence the inclusion of the covariates sex, ethnicity and their interactions into the linear

part of the PL-FSI model. Specifically, we aimed to address the following queries:

1. Are there differences in levels of physical activity between men and women, and

how do these differences vary among different ethnicities?

2. Do women of different ethnicities exhibit variations in physical activity levels, and

if so, how do these differences differ within ethnicities?

3. Do men of different ethnicities demonstrate discrepancies in physical activity levels,

and if so, how do these differences vary within ethnicities?

To answer these questions, we estimated the regression parameters α̂θ̂(t) and β̂θ̂(t)

(4.8) and their 95% confidence interval for each t ∈ [0, 0.98]. This restriction in t was

necessary due to boundary effects of B-spline basis functions in estimating the quantiles

in the far right tail.

If the order of splines of the non-linear component is fixed and assuming no bias, the

asymptotic distribution of the estimator β̂θ(t) has been shown to be Gaussian in the

settings similar to [91, 7]. We can then use the standard outputs of the survey package,

which adjusts for the survey weights, to construct pointwise confidence bands for the

functional coefficients in (4.8). corresponding to the covariates in the linear part. Notice

that the standard re-sampling strategies like a naive bootstrap do not work here with

the two-step-sampling design of the NHANES because the observational units are not

exchangeable. We emphasize that these confidence intervals merely guide our qualitative

assessment of uncertainty. However, their asymptotic precision has not been theoretically
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guaranteed due to the different sources of variability, which include the effects of spline

parameters and the estimation of θ0, for which this procedure does not provide concrete

inference.

To answer the question (1) above, Figure 4.3 shows the estimated model intercepts for

male participants subtracted from the estimated intercepts for female participants within

each ethnic group. The computations were performed using the various functionalities of

the survey package [86, 43, 90]. The difference as a function of t for each ethnicity were

plotted along with their 95% pointwise confidence intervals also as functions of t. For the

lower quantiles of physical activity, the plots are not informative due to the responses

having positive mass at 0. For sufficiently high t ∈ [0.30, 0.98] pointwise results indicate

that men are more physically active than women across the ethnicities White, Black,

Asian, Other Races including Multi-Racial such that the poitwise confidence intervals

exclude 0 for in moderate to high physical activity ranges. However, in the Mexican

American and Other Hispanic categories, men and women show similar levels of physical

activity.

In response to the question (2) above, in figure (4.4), the estimated model intercepts

for females were computed as a function of t for each ethnicity and their pairwise differ-

ences were computed along with their 95% pointwise confidence intervals. Due to similar

reasoning in figure (4.3), the plot is informative for only t ∈ [0.30, 0.98], where Mexican

American and Other Hispanic women show higher levels of physical activity compared

to other races, for each t on the chosen grid. Women of White, Black, Asian, and Other

Races, including Multi-Racial individuals, exhibit similar levels of physical activity. Mex-

ican American and Other Hispanic women show similar levels of physical activity but

higher than the rest of the ethnicities.
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Figure 4.3: The intercepts for the PL-FSI regression model (4.3), are considered for male and

female participants of different ethnic backgrounds. The intercepts for the males are subtracted

from the intercepts of the females for each ethnicity, considering the numeric variables HEI,

Age and BMI are fixed. The respective parameter combinations are computed along with

their 95% Confidence Intervals and plotted as solid red lines and grey shade respectively.

The dotted red line at 0 is for reference. The differences are considered for the ethnicities:

Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic

Asian, Other races including Multi-Racial.

In response to the question (3) above, in figure (4.5) shows the corresponding results

of Figure 4.4 but for the male participants. The results indicate that for moderate to high

physical activity levels, i.e. t ∈ [0.30, 0.98] male participants of Mexican American and

Other Hispanic ethnicities are more physically active than the males of of Black, White,

Asian, and Other Races, including Multi-Racial ethnicities, since the pointwise confidence

intervals exclude 0 in many activity levels. Mexican American and Other Hispanic men
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exhibit similar physical activity levels and they remain more active individuals than the

rest of the male participants of other ethnicities. There is some evidence that show men

of White and Black ethnicities show higher levels of physical activity compared to Asian

men in higher ranges of t. Men of Other Races, including Multi-Racial individuals,

exhibit slightly lower levels of physical activity compared to men of Black and White

ethnicities, but are similar to Asian men.

From a public health perspective, this suggests that specific interventions for pro-

moting physical activity must be tailored differently based on accelerometer intensities

of various sexes and ethnicities. Hence, different strategies may be required to address

the diverse physical activity patterns exhibited by individuals, distinguished by sex and

ethnicities.

In Figure 4.6, we conducted an examination of the influence of the HEI variable,

which serves as a measure of diet quality, on physical activity. Our analysis revealed

notable distinctions primarily in large quantile probabilities that are associated with

high-intensity exercise areas. For instance, individuals engaging in high-intensity cardio

and/or resistance training were found to more frequently adhere to a strictly healthy

diet. These findings highlight the connection between diet quality and physical activity,

especially in contexts where intense exercise regimens are prevalent.
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Figure 4.4: The intercepts for the PL-FSI regression model (4.3) are considered for females

of different ethnic backgrounds. The pairwise differences of such intercepts are computed

along with their 95% Confidence Intervals and plotted here as solid red lines and grey shade

respectively, considering the numeric variables HEI, Age and BMI are fixed. The dotted red

line at 0 is for reference. The title for each panel indicates the order of the differences of

the intercepts. The abbreviations for the ethnicities are, OH: Other Hispanic, MA: Mexican

American, NHW: Non-Hispanic White, NHB: Non-Hispanic Black, NHA: Non-Hispanic Asian,

and ORIMR: Other Races Including Multi-Racial. The the title, e.g. ’OH - MA’ indicates that

the estimated intercepts for females of Mexican American was subtracted from the estimated

intercepts for females of Other Hispanic ethnicity.

58
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Figure 4.5: The intercepts for the PL-FSI regression model (4.3) are considered for males

of different ethnic backgrounds. The pairwise differences of such intercepts are computed

along with their 95% Confidence Intervals and plotted here as solid red lines and grey shade

respectively, considering the numeric variables HEI, Age and BMI are fixed. The dotted red

line at 0 is for reference. The abbreviations for ethnicities as well as the order of the differences

are same as in the Figure 4.4.
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Figure 4.6: The estimated functional coefficients for the covariate HEI in the model (4.3)

is computed and plotted here as the solid red line and its 95% pointwise confidence band is

given by the grey shade. The dotted red line at 0 is for reference.

4.5.3 Association with the non-linear covariates

In this section, we focus on exploring the modeling advantages of the new semi-

parametric models to gain more detailed insights into non-linear relationships, while

retaining the information from the linear components of the models. We examined the

behavior of fitted quantiles for unstandardized values of the covariates (Age and BMI)

within the respective ranges of [20, 80] and [18.5, 40]. To achieve this, we used the formula

in (4.8), where the covariates were utilized after being scaled and centered for any t ∈

[0, 0.98]. This analysis allows us to uncover the dynamics of the relationship of Age

and BMI with the fitted quantiles and provides valuable insights into the non-linear

aspects of the model fits. As discussed earlier, for given values of the covariates x, z,

Y ∗(t, z,x) may not be a valid quantile function in t. Hence, we project to obtain the

nearest quantile function Ŷ (t, z,x). But the latter is not amenable to further computation

exercises. Therefore, for the next few exercises we will consider the response Y ∗, prior to
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Figure 4.7: Heatmap plot of Ŷ (θ̂, t) across different quantiles, t = 0.50 (top left), 0.75 (top

right), 0.90 (second row left), 0.97 (second row right) respectively. A 2-dimensional grid was

considered for the covariates BMI (in range [18.5,40]) and age (in range [20,80]) for the single

index component of the PL-FSI regression model. The categorical covariates in the linear

component were fixed at their baseline levels (i.e. sex male, ethnicity Mexican American)

while the numerical covariate HEI was fixed at median level.

the transformation.

To create the four panels of Figure 4.7, we considered equidistant grids of length

500 each, over the standardized ranges for BMI (for horizontal axis) and Age (for ver-

tical axis). Let x̃ be the 2-dimensional vectors on the grid. The fitted quantile values

Y ∗(t, z, x̃) across the aforementioned region of standardized values, with z being the co-

variates in the linear part fixed to represent the reference groups and HEI. The four pan-

els are for t = 0.50, 0.75, 0.90, 0.97; lower values of t were omitted because the nonlinear

component had a negligible effect. These panels indicate that the non-linear relationship
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Figure 4.8: (Left) Plot of (∂ĝ/∂u)(u, t), the derivative of the spline-based estimate of the

nonlinear component defined in (4.14), for u across the empirical range of observed index

values θ̂
T
Xi, i = 1, . . . , n, and for quantile levels t = 0.50 (black), 0.75 (red), 0.90(green),and

0.97 (blue). Knot locations are shown as vertical dotted red lines, and the derivative curves

are depicted as solid (respectively, dotted) within (resp., outside of) the interior knot range.

(Right) Histogram of observed index values θ̂
T
Xi, i = 1, . . . , n.

between age and BMI is more pronounced for larger values of t.

At the lowest level of BMI (< 20), the people in age range 55−70 perform the highest

median to 75th (i.e. t = 0.50, 0.75) quantile level of physical activity, but for the same

lowest BMI range, people in the age range 25− 35 perform the highest physical activity

in the quantiles t = 0.90, 0.97. In each of the panels (or, quantiles) the age range for

highest physical activity linearly decreases with increase in BMI. For the highest BMI in

our study (≈ 40), the highest physical activity in the quantiles t = 0.50, 0.75 are shown

by the age range 40 − 55. However, for the highest physical activity in the quantiles

t = 0.90, 0.97 are shown by the BMI range 25− 30 in the age range 20− 25.

As an additional visualization of the nonlinear effect of these covariates in the model,
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we directly analyze the derivative of the nonlinear fit, namely

∂ĝ

∂u
(u, t) =

K+ϱ∑
k=1

γ̂θ̂,k(t)

[
d

du
ϕk(u)

]
. (4.14)

To compute the derivative estimates, we utilized the R package splines2’s dbs func-

tion, which computes derivatives of B-spline functions. The left panel of Figure 4.8

displays the behavior of (4.14) across the relevant range of values θ̂
T
X i (whose distri-

bution is depicted via a histogram in the right panel of the figure) that were used to

generate the estimates, for t = 0.5, 0.75, 0.9, 0.97. To facilitate reliable interpretation,

we focus on the behavior of the curves within the interior knots, indicated by the solid

portion of each curve in the figure. The various derivative curves suggest that, given the

covariates in the linear term, there is little to no association between the BMI and age

index and the physical activity quantile response until the single index value becomes

positive, at which point the association becomes negative. Since both elements of θ̂

are positive, these findings imply that the model reflects a negative association between

physical activity quantiles and BMI/Age when at least one of these is large. Further-

more, the strength of this negative association increases as the quantile level t becomes

larger, as evidenced by the increasingly negative derivative estimates in the left panel as t

increases. For instance, the derivative for t = 0.5 (the median physical activity quantile)

is only slightly negative for values of u near zero, whereas it steadily decreases as one

examines the curves for t = 0.75, 0.9, 0.97.

4.6 Discussion

The core contribution of this chapter is to propose a new PL-FSI regression model

to analyze responses of distributional functional nature. This new methods have been
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implemented to analyze the physical activity data from the NHANES database 2011-

2014, for participants in Age group 20− 80 and BMI range 18.5− 40. We incorporated

the NHANES survey weights within the new PL-FSI algorithm according to the sam-

pling mechanism introduced by the Horvitz-Thompson type estimator [85] to construct

a weighted least square criterion to estimate the model parameters.

Our new findings in through this literature are summarized below:

1. We examine the discrepancies in the physical activity levels between men and

women of different ethnicities in the American population. We also attempted

to understand the impact of the continuous variables HEI, BMI, and Age, in all

ranges of human physical activity intensities thanks to the new quantile distri-

butional representations of physical activity. For example, we show that diet is

important only in the high-intensity levels of physical activity range; a better diet,

according to the HEI score, is related to more exercise. We also show that the

Mexican American and Other Hispanic groups are the most active individuals in

the American population for both men and women. We discover a non-linear in-

teraction between Age and BMI in the energetic expenditure, specifically in the

higher quantiles of physical activity profiles.

2. We show the modeling advantages of the new PL-FSI algorithm over the classical

global Fréchet regression model in terms of adjusted Fréchet R-squared as well as

in terms of interpretability with the new tools introduced, e.g., the gradient of a

conditional mean function.

From a methodological point of view, we propose the first PL-FSI regression model in

the context of Object data analysis to bridge the gap between the global Fréchet regres-

sion [19] and the Fréchet single index model [21], while preserving the interpretability of

the predictors and parameter estimates. To the best of our knowledge, this is also the
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first regression model to incorporate survey data in the context of Object data analysis

and the first work that computes the gradient of the Fréchet regression function in order

to interpret each predictor in the model.

The most popular approach to analyzing accelerometer data is through finite dimen-

sional compositional metrics. Here we used their functional extension [28] to capture

more information about physical activity from an individual by adopting the mathe-

matical framework of the L2-Wasserstein space endowed with the Wasserstein metric.

To overcome the problem of the positive probability at zero physical activity level, we

used compositional data. In addition, the range of values measured by the accelerometer

varies widely among individuals and groups, which can present difficulties when try-

ing to apply the standard distributional data analysis methods in our setting [28]. For

example, functional compositional transformations can be an alternative strategy to cre-

ating a regression model about physical activity in a linear space [92, 93, 94]. However,

the distributional physical activity representation arises from a mixed-stochastic process

(see Figures 4.1, 4.2 for more details) that prevents the use of the linear functional data

methods based on considering a basis of functions due to the discontinuity of the quantile

function in the transition of the inactivity to activity in the physical exercise.

The analysis of complex statistical objects in biomedical science provides an excellent

opportunity to create new clinical biomarkers that enrich the information more than

the existing variables that monitor the health and evolution of diseases. For example,

distributional representations are a significant advancement in digital medicine [95] as

a digital biomarker [96, 29]. However, the generality of techniques introduced provides

users the opportunity to use the methods developed here with other complex statistical

objects such as connectivity graphs, shape, and directional objects that can introduce

new clinical findings in a broad list of clinical situations, for example in the brain and

phylogenetic tree analysis [97, 98, 99, 100, 5].
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Furthermore, with the increasing analysis of large cohorts with richer designs, such

as complex survey design, the methods provided here will gain more popularity among

practitioners. The use of complex statistical objects will undoubtedly be a daily statistical

practice in biomedical applications.
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Appendix A

B-Spline and its application in the

partially linear Fréchet regression

model

This section discusses in somewhat selective detail the fundamental concepts of the Basis

spline and how it was applied in the estimation and inference process of the PL-FSI

model. More specifically, in 4.1, the single index portion g(θT
0X i, t), t ∈ [0, 1] is estimated

in 4.2 for an arbitrary θ and an arbitrary covariate point x, with the single index u =

θTx. The reason to choose B-splines for the estimation over other competitor non-

parametric methods e.g. kernel regression or wavelet regression is simplicity; B-splines

are easier and faster to compute, allowing the estimation of all the relevant parameters

simultaneously. Many softwares and packages perform spline computation that provide

user-friendly interface. The kernel regression has a multistage estimation process where a

smoothing bandwidth has to be chosen first, the rest of the model estimated subsequently.

The wavelets regression allow for simultaneous estimation of its parameters but are easy

to pick up on local patterns in the data and it is usually good for noisy or volatile data.
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The relevant software for wavelet computation are not well-developed either.

A.0.1 Definition of B-splines

In the rest of the discussion we try to lay out the definitions and theoretical treatment

of the B-splines that is relevant to the PL-FSI model. The treatment closely follows the

description of [101]. Let ξ0 < ξ1 ≤ ξ2 ≤ . . . ≤ ξM1 < ξM1+1 be a sequence of numbers

such that ξ0, ξM1+1 are called the boundary knots which typically define the domain over

which we want to define the spline regression. And ξ1 ≤ ξ2 ≤ . . . ≤ ξM1 are called the

interior knots corresponding to the spline regression. Then, define the augmented knot

sequence ϑ such that

• ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑM2 ≤ ξ0;

• ϑj+M2 = ξj, for j = 1, 2, ...,M1

• ξM1+1 ≤ ϑM1+M2+1 ≤ ϑM1+M2+2 ≤ · · · ≤ ϑM1+2M2

The actual values of these additional knots beyond the boundary knots are arbitrary

and it is customary to make them all the same and equal to ξ0 and ξM1+1 respectively.

Let Bi,ϱ(x) the ith B-spline basis function of order ϱ for the knot-sequence ϑ, ϱ ≤M2.

They are defined recursively as follows:

Bi,1(x) =


1 if ϑi ≤ x < ϑi+1

0 otherwise

(A.1)

for i = 1, . . . ,M1 + 2M2 − 1. These are also known as the Haar basis functions.

Hence, the B-spline basis functions of order ϱ are defined as;

Bi,ϱ(x) =
x− ϑi

ϑi+ϱ−1 − ϑi

Bi,ϱ−1(x) +
τi+ϱ − x

ϑi+ϱ − ϑi+1

Bi+1,ϱ−1(x) (A.2)
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for i = 1, 2, ...,M1 + 2M2 − ϱ.

Thus with M2 = 5, Bi,4, i = 1, 2, ...,M1 + 6 are the M1 + 6 cubic B-spline basis

functions for the knot sequence {ξ0, ξ1, ..., ξM1 , ξM1+1}. In fact notice that with these

knots only the subset Bi,ϱ, i = M1 − ϱ + 1, . . . ,M1 + M2 are required for the B-spline

basis of order ϱ < M1. To generate B-spline basis functions of any order this recursion

can be used and they do span the space of cubic splines for the knot sequence.

To avoid division by zeros in (A.2) due to duplicated knots, we adopt the convension

that Bi,1 = 0 if ϑi = ϑi+1, then by induction Bi,ϱ = 0 if ϑi = ϑi+1 = · · · = ϑi+ϱ.

As mentioned earlier, for the PL-FSI model (4.2), ϱ = 4 and M1 = 5 and M2 = 4

the B-splines bases Bi,4 for i = 1, 2, ..., 9 are respectively denoted by ϕ1, ϕ2, ..., ϕ9. Hence,

for every order of quantile, t, the coefficients of the B-spline basis are estimated by the

weighted generalized linear regression.
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Appendix B

Algorithms of the partially linear

Fréchet single index regression

model.

Here we present the algorithm of the computation flow for the PL-FSI model between the

equations (4.1) to (4.8), given in sections 4.2 and 4.3. It is meant to provide the reader

more details of every step of computation of the locally estimated single index parameter

θ̂ ∈ Θp from a starting value θst ∈ Θp. To get a global estimate we consider a grid of

starting values spanning Θp, each yielding an estimate θ̂(θst). We choose the estimate

which minimizes the M-estimation criterion Wn(θ̂(θst)) in (4.6). After obtaining the

globally optimized θ̂, we get the fitted response Y ∗(t;Zi,X i) in (4.8) and project to the

nearest quantile function Ŷi = Ŷi(t,Zi,X i) into the L2-Wasserstein space.

70



Algorithm 1: Estimation of θ̂(θst) from a starting value θst ∈ Θp.

Inputs:
- ϱ← 4 (order of B-spline basis), K ← 5 (number of internal knots), n be the
number of participants.
- tol← 10−12, miter ← 1000;
- The equidistant grid {0 = t0, t1, t2, ..., t500 = 1}.
- Let Yi(tj) be the tj-th quantile of the physical activity representation of the
i-th participant, j = 1, 2, ..., 500, i = 1, 2, ..., n.
- Let X i ∈ Rp and Zi ∈ Rq for i = 1, 2, ..., n be the n observations in the
non-linear and the linear part of the PL-FSI model.
- NHANES survey weights w = {w1, w2, ..., wn} for the participants in PL-FSI
model.

Computation:

1. Set θ ←θst.

2. Set iter = 1.

3. Consider ui = θTX i, for i = 1, 2, ..., n.

For the smooth and unknown function g, compute the expansion
g(ui, tj) ≈

∑K+ϱ
k=1 γk(tj)ϕk(ui) = γ(tj)

TU i (θ) in (4.2).
Consider the parameters α(tj), β(tj) in the regression
E(Yi(tj)|X i,Zi) ≈ α(tj) + β(tj)

TZi + γ(tj)
TU i(θ), j = 1, 2, ..., 500 in (4.3)

4. Estimate the parameters α̂θst(tj), β̂θ(tj), γ̂θ(tj) in (4.4) and with that compute

Y ∗
i (θ, tj) = α̂θ(tj) + β̂

T

θ (tj)Zi + γ̂T
θ (tj)U i(θ) in (4.5) for j = 1, 2, ..., 500.

5. {Y ∗
i (θ, tj) : j = 1, 2, ..., 500} has to be a valid quantile function for every

i = 1, 2, ..., n. Otherwise, project
{Y ∗

i (θ, tj) : j = 1, 2, ..., 500} → {Ŷi (θ, tj) : j = 1, 2, ..., 500} in L2[0, 1] sense to the
nearby monotonic function.

6. Compute the Wn(θ) in (4.6). Set Witer ←Wn(θ).

7. Obtain θ̂iter from (4.7) using the L-BFGS-B algorithm.

while iter < miter and Witer > tol do

θ ← θ̂iter;
iter ← iter + 1;
repeat steps 3 - 7.

end

Outputs: θ̂(θst) = θ̂iter, iter, Witer.
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distancié, in Annales de l’institut Henri Poincaré, vol. 10(4), pp. 215–310, 1948.
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