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Drug target prediction through deep
learning functional representation of gene
signatures

Hao Chen 1,2,3 , Frederick J. King 1, Bin Zhou1, Yu Wang1, Carter J. Canedy1,
Joel Hayashi1, Yang Zhong1, Max W. Chang 4, Lars Pache 5, Julian L. Wong1,
Yong Jia1, John Joslin1, Tao Jiang 2, Christopher Benner 4,
Sumit K. Chanda 6 & Yingyao Zhou 1

Many machine learning applications in bioinformatics currently rely on
matching gene identities when analyzing input gene signatures and fail to take
advantage of preexisting knowledge about gene functions. To further enable
comparative analysis of OMICS datasets, including target deconvolution and
mechanism of action studies, we develop an approach that represents gene
signatures projected onto their biological functions, instead of their identities,
similar to how the word2vec technique works in natural language processing.
We develop the Functional Representation of Gene Signatures (FRoGS)
approach by training a deep learning model and demonstrate that its appli-
cation to the Broad Institute’s L1000 datasets results in more effective
compound-target predictions than models based on gene identities alone.
By integrating additional pharmacological activity data sources, FRoGS sig-
nificantly increases the number of high-quality compound-target predictions
relative to existing approaches, many of which are supported by in silico and/
or experimental evidence. These results underscore the general utility of
FRoGS in machine learning-based bioinformatics applications. Prediction
networks pre-equipped with the knowledge of gene functions may help
uncover new relationships among gene signatures acquired by large-scale
OMICs studies on compounds, cell types, diseasemodels, and patient cohorts.

Large-scale OMICs investigations of biological systems can produce
“gene signatures” represented as lists of gene candidates that are sur-
mised to be relevant to the biological activity under interrogation.
Similarity comparisons between gene signatures derived from related
biological assays or technology platforms are used to predict functional
relationships between compounds, genes, and proteins. For example,
the Library of Integrated Network-Based Cellular Signatures (LINCS)

L1000 program systematically generated 1.3 million gene expression
profiles in human cell lines with ~22,000 genomic and 20,000 phar-
macological perturbations1. As compounds and short hairpin RNAs
(shRNA)/complementary DNAs (cDNA) perturbing the same target are
expected to generate correlated modulations in downstream gene
expression, similar L1000 transcriptional signatures can offer an
unbiased data-driven mechanism to identify compound-target pairs2–6.
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The underlying molecular governance for a single gene signature
can be extracted using well-established statistical frameworks known
as pathway enrichment analyses, where the calculations are based on
the number of gene members that overlap with known pathways
curated by bioinformatics knowledgebases7,8. Unfortunately, adopting
similar statisticalmetrics to compare two experimentally derived gene
signatures are ineffective in many cases: influenza host dependency
factors identified by eight published studies only shared a modest
overlap9; very few genetic interactions are replicated across multiple
studies measuring synthetic lethality10; and cell type-specific gene
signatures identified from two mouse embryonic single cell studies
showed little overlap11. According to studies comparing the perfor-
mance of compound target predictions using multiple data types12–14,
predictions based on transcriptional response alone tended to
underperform when compared to models using structural or phar-
macological features12. This challenge occurred regardless of whether
the L1000 landmark genes or their extrapolated whole-transcription
counterparts are used. Therefore, understanding and addressing the
limitations in existing gene signature comparison algorithms can
enhance our understanding of how transcriptional data can be
employed to predict the mechanism of action of small molecules. As
target identification of these chemical leads in cell-based assays pre-
sents a major impediment to their progression in drug discovery,
effective elucidation of their efficacy and potential side effects will
accelerate the drug discovery and development process15.

We hypothesized that the difficulty of comparing experimentally
derived signatures originates from the fact that each signature consists
of only a sparse sampling of the genes underlying regulated pathways.
For example, if we randomly sample 10 genes from a hypothetical

100-gene pathway twice, the chance of having three ormore common
genes is only 6%, despite representing the same pathway. Such spar-
seness is intrinsic to all experimental signatures, as it can arise fromthe
technical alterations of signal in RNA-seq studies16, read dropouts with
lower gene expression levels17, the regulatory variations in transcrip-
tional factor binding sites18, the stochastic gene expression in single
cell studies19, or the rare variants in genome-wide association studies20.
In most popular gene-signature-similarity calculations, genes are
treated as identifiers and their underlying functional roles are ignored.
For example, the Connectivity Map (CMap) score used in the LINCS
workflow evaluates similarities based on the weighted Kolmogorov-
Smirnov enrichment statistic21. Likewise, BANDIT12 uses the Pearson
correlation to measure the degree of similarity for two gene sig-
natures. These methods, along with other recent machine-learning-
based models5,21, compute gene signature similarities purely by
matching gene identities (Fig. 1a), e.g., TLR7 and MYD88 are treated
independently even though they play remarkably similar biological
roles in innate immune signaling.

The weakness in extracting functional relationships from gene
signatures by gene identity counting has a strong analogy in the nat-
ural language processing (NLP) field. Early NLP analyses used one-hot
encoding of words: each word was encoded by its identity and two
words such as “cat” and “kitty” were considered as equally distant as
“cat” and “rock” (Fig. 1a). This limitation has been addressed by excit-
ing breakthroughs in various NLP machine-learning applications fol-
lowing the introduction of word-embedding technologies, such as
word2vec22. The semantic meanings of words can now be accounted
for in word vectors leading to “cat” and “kitty” being correctly recog-
nized as synonyms.

Cellular Process
Immune System Process
Metabolic Process
Reproduction

FRoGS
clusDCA
OPA2Vec GO
OPA2Vec Gene
Gene2Vec
Fisher’s exact test

-lo
g(
P

)

a

c

b

Compound 
Signature

shRNA/cDNA 
Signature

A B C D

Pathway W Non-pathway Genes

A B E F

Overlap defined 
by gene identity

Overlap defined 
by gene function

cat

kitty rock

cat

kitty
rock

One-hot Encoding Word2vec Encoding

Fig. 1 | FRoGS can extract weak pathway signals. a Comparison between two
hypothetical gene signatures. Only gene A and B in Pathway W are considered
overlapped based on gene identity (top), similar to the use of one-hot encoding in
NLP. Genes A-F contribute to signature overlap if all genes of the same functionsW
are considered (bottom), similar to the use ofword2vec.b t-SNE projection of gene
embedding vectors, where each marker represents a gene. Markers are colored by
their top-level functions annotated in GO. c Each of the 460 Reactome41 pathways
was used to simulate foreground gene signatures generated under varying signal

levels with λ at 5, 10, 15, and 20. The separation between foreground-foreground
and foreground-background pairs is defined as -log10(p) based on the one-sided
Wilcoxon signed-rank test (n = 200 simulations). The larger the value, the more
sensitive the method can separate the two types of signature pairs. Each pathway
contributes to one data point in each box plot. Box-and-whisker plots show the
median (center line), 25th, and 75th percentile (lower and upper boundary), with
1.5 × inter-quartile range indicated by whiskers and outliers shown as individual
data points. Source data are provided as a Source Data file.
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Inspired by how NLP captures word semantics, we hypothesized
that capturing functional instead of identity overlap between two gene
signatures could overcome the sparseness limitation of identity overlap
and lead to greater sensitivity in extracting common pathways induced
by co-targeting compound-shRNA/cDNA pairs (Fig. 1a). Although
methods were previously proposed for the representation learning of
individual genes23–28 and some of them were applied to drug target
predictions3,26,29,30, they either do not directly encode genes’ functions
or do not embed signatures involving multiple functionally related
genes. A critical advance of this study is to introduce a form of
“word2vec” for bioinformatics named Functional Representation of
Gene Signature (FRoGS), where FRoGS vectors encode known human
genes’ functions based on hypergraphs formed by Gene Ontology
(GO)31, as well as their empirical functions proxied by experimental
expression profiles from ARCHS432. The machine-learning utility of
FRoGS is demonstrated in the L1000-based compound target predic-
tion application introduced above. Different from previous protein-
network-based methods4,33, we used a neural network that takes the
FRoGS vector representations as input to directly compute the simi-
larity between the signatures of compound perturbation and target
gene modulation. Compared to multiple L1000-based transcriptional
models, our FRoGS-based model significantly outperformed identity-
basedmethods andmethodsbasedonothergene-embedding schemes.
When existing models based on other data sources were augmented
with our model, consistent performance boosts were observed, sug-
gesting the broad utility of FRoGS to enhance comparative analysis of
gene-signatures in large-scale datasets34–38.

In this study, we present the FRoGS vector, which is a functional
embedding of human genes. We showcase its potential with an
example machine learning application, where FRoGS substantially
improves the success rate of discovering compound targets.

Results
FRoGS extracts weak pathway signals from gene signatures
FRoGS vectors were trained such that individual human genes are
mapped into high dimensional coordinates encoding their functions.
Our deep learning model aimed to assign coordinates so that neigh-
boring genes tend to share similarGO annotations aswell as correlated
experimental expression profiles as defined in ARCHS432. During gene
set analysis, vectors associated with individual genemembers are then
aggregated into a single vector encoding the whole gene set signature
(see Methods).

For the purpose of visually confirming the validity of the FRoGS
vectors, weused a 2-dimensional t-SNEprojection39 (Fig. 1b) to confirm
whether individual genes were grouped based on their functions in the
embedding space, in amanner similar to how synonyms are co-located
in the word2vec embedding. Genes closely positioned in the same
clusters tend to share the same biological function (i.e., node color in
Fig. 1b) with p < 10−100, indicating that similarities among FRoGS
embeddings indeed proximate their functional closeness. To further
validate our hypothesis that functional gene-set embedding could
boost sensitivity in detecting shared functionality between two per-
turbation signatures, we simulated experimentally derived signature
pairs. Specifically, we randomly generated two foreground gene sets
and a background gene set, each with 100 genes, for a given pathway
W . The foreground gene sets simulated experimentally derived gene
signatures from two perturbations co-targeting W . Both were seeded
with λ random genes within W and 100 - λ random genes outside W ,
while the background gene set contains no gene inW . More sensitive
methods were expected to find the proper foreground gene signature
pair (Sf g , S

0
f g ) to bemore similar than the foreground-background pair

(Sf g , Sbg). Parameter λ, the number of pathway genes, modulates the
strength of the pathway signals in foregroundgene sets (seeMethods).

We compared the performance of multiple state-of-the-art
gene and GO embedding methods, including OPA2Vec24, Gene2vec23,

clusDCA25, and Fisher’s exact test (SupplementaryNote 1). Comparison
with Fisher’s exact testwasparticularly informative, as it represents the
popular gene identity-based similarity measurement that is currently
adopted by most bioinformatics algorithms, and is conceptually
similar to the principles underlying the CMap score1,40. The above-
described sampling process was repeated 200 times and the resulting
similarity score distributions were compared using one-sided Wil-
coxon signed-rank test to characterize if the (Sf g , S

0
f g) similarity scores

were larger than the (Sf g , Sbg) similarity scores, where higher -log(p)
values are more desirable. We considered all 460 human pathways
with numbers of associated genes in the range of 50–200 as captured
in the Reactome database41 and summarized the results in Fig. 1c. We
observed most embedding methods outperformed Fisher’s exact test
when challenged with weak signals (λ = 5) (Fig. 1c), while Fisher’s exact
test performedwell only under strong signals (λ ≥ 15). FRoGS remained
superior across the whole range of λ values. More detailed analyses
using pathway R-HSA-5576891 (cardiac conduction) as an example are
provided in Supplementary Fig. 1a, further supporting the conclusion
presented in Fig. 1c, even as the size of gene lists vary (Supplementary
Fig. 1b–c). These observations not only explain the difficulty encoun-
tered by current gene identity-based algorithms in extracting weak
molecular signals, but also demonstrate that FRoGS provided a
more sensitive approach to gene signature overlap analysis, providing
the foundation for its application in bioinformatics gene signature
comparisons.

FRoGS recalls more known compound targets
With each compound and genomic perturbation represented by an
aggregated FRoGS signature vector corresponding to their extra-
polated whole-transcriptome L1000 profiles1 (seeMethods), we trained
a Siamese neural networkmodel that applies the samenetwork to a pair
of signature vector inputs representing the transcriptional landscape
after compoundperturbation or shRNA/cDNAmodulation (knockdown
or overexpression of a target gene, respectively) (Fig. 2a). Each com-
pound signature c was paired with every genomic signature g acquired
within the same cell line to predict the probability of a (c, g) pair sharing
the same target within the given biological context. Our positive train-
ing dataset consisted of 2340 (c, g) pairs formed between 1438 com-
pounds and499 targets annotated in the L1000database42; compounds
with more than five targets were excluded from the training to reduce
the impact of polypharmacology. Importantly, we adopted a balanced
data sampling strategy for model training, in which each target occur-
red in equal frequency in both positive and negative training pairs, to
avoid bias towards popular known targets (Supplementary Fig. 2 and
Supplementary Note 2).

The multiple predictions obtained for the same (c, g) pair across
different cell lines and perturbagen typeswere further aggregated into
a consensus target ranking, and then mapped into a probability score
using an adjusted logistic regression (LR) model (see Methods), which
is referred to as Model L hereafter, where L stands for L1000. A well-
adopted convention for comparing transcriptional models is to cal-
culate the recall3,5, i.e., the percentage of compounds having their
Broad-annotated known targets42 predicted among the top N% of the
candidate list, with N set to 5 here (see Methods). For comparison, we
trained the same Siamese networks using gene signatures represented
by other state-of-the-art gene andGO embeddings as input. The recall-
rank plot in Fig. 2b demonstrated a significant performance boost in
our FRoGS-based model compared to other approaches. With the
baseline recall value estimated to be 8.0 ± 2.7% based on 100 random
permutations, CMap1,40 and OPA2Vec GO24 methods performed simi-
larly to random models with recalls at 9.6% and 9.5%, respectively.
Fisher’s exact test, another identify-based model, performed poorly at
12.3%. The other three methods, OPA2Vec gene24, Gene2Vec23, and
clusDCA25, obtained recalls of 15.9%, 20.7%, and 24.9%, respectively.
Our FRoGSembedding-empoweredpredictionmodel achieved a recall
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of 36.3%, marking a significant advancement in the application of
L1000-based gene signatures for compound target prediction.We also
compared our FRoGS model with additional state-of-the-art L1000-
based compound target prediction models3–5 and demonstrated our
model could achieve higher top-30 and top-100 accuracy scores4

(Supplementary Fig. 3, Supplementary Note 2).

FRoGS predicts compound targets supported by structure and
activity data sources
The applicationofModel L to all compound-genepairs, captured in the
full L1000 dataset regardless of whether target annotations were
available, resulted in the prediction of 780,438 compound-target pairs
with probability values above 0.8. The predictions on the training
dataset were carried out by fivefold cross validation without data leak.
Predicted compound-target pairs found in the Broad annotation were
flagged as “known”42. We inspected relevant Novartis historical pIC50

data for experimental support of a target prediction; those pairs with
pIC50 (measure of compound potency)≤ 1 µM against the relevant
target in enzymatic or cellular assays are flagged as “pIC50”. Queried
compounds with a structure–activity relationship (SAR) probability
above 0.95 to a reference compound of the same predicted target are
flagged as “structure sure”, and those with SAR probability between
0.8 and 0.95 are flagged as “structure likely” (Supplementary Note 3).

A compound’s pharmacological activities are useful for target
prediction in the knowledge-based framework13. They rely on the
guilt-by-association (GBA) principle that compound pairs sharing
similar activity patterns across a large assay panel tend to interact
with the same targets or perturb the same underlying pathway43. We
therefore trained several activity-based models using compound
activities for validation purposes in biological assays, including a
profile-quantitative structure-activity relationship (pQSAR) dataset44,
Promotor Signature Profiling (PSP) dataset45, and NCI60 growth
inhibition dataset46, covering 1601, 93, and 321 Broad compounds,
respectively (see Methods, Supplementary Note 4).

Due to their orthogonal nature (Supplementary Note 5, Supple-
mentary Fig. 4), predictions from structural and activity models can
serve as in silico validations for Model L predictions. Predictions flag-
ged as “known”, “pIC50”, or “structure sure”were considered as “super-
confident” predictions that were either validated or expected to be

validated. Predictions labeled “structure likely” were the “high-con-
fident” SAR extrapolations of existing target annotations. Candidates
predictable by one of the activity models were considered “medium-
confident”. In total, 2491 predictions fall into the three categories
assigned based on their best supporting evidence (Fig. 3a). Below we
enumerate a few “known” cases thatotherwisewouldhave beenplaced
into different categories, as they provide an initial validation of suc-
cessful target deconvolution for orphan compounds solely based on
transcriptional signatures.

17 (0.7%) predictions are “structure sure”. Examples include afi-
moxifene (BRD-K93754473), which was correctly predicted to target
estrogen receptor 1 (ESR1) (score 0.91) and confirmed by its structural
similarity with tamoxifen (BRD-K04210847) (SAR probability 0.97).
Next, 88 predictions (3.5%) are considered “structure likely”. For
example, nitrendipine (BRD-A02006392) was predicted to block cho-
linergic receptor muscarinic 3 (CHRM3) (score 0.95), where its SAR
probability against the reference compound, nicardipine (Fig. 3b), was
0.85. A total of 383 predictions (15%) with SAR probability above
0.8 endorse the assumption that Model L can recover true compound-
target associations as judged by SAR. The other 85% of the predictions
cannot be inferred by SAR but are supported by other lines of evi-
dence, which suggests the unique advantage of FRoGS-based tran-
scriptional models in recalling novel targets without relying on
chemical structure features.

For “medium-confident” predictions, 1756 (70%) were supported
by the pQSAR activity matrix spanning 1003 unique gene targets. The
prediction that perphenazine (BRD-K10995081) targets the dopamine
receptor D1 (DRD1) (score 0.88, Fig. 3c) was supported by the high
pQSAR model score (0.94) shared between perphenazine as the
query and prochlorperazine (BRD-K19352500) as the reference. Simi-
lar high confidence values were obtained for mephentermine (BRD-
K18194590) targeting histamine receptor H1(HRH1), supported by
pQSAR (0.94) with respect to the reference compound pseudoephe-
drine (BRD-K91315211) (Fig. 3d). These functional similarities align with
mephentermine’s ability to indirectly induce noreprinehrine47,48.
Similarly, 23 (0.9%) predictions are supported in the public NCI60
dataset46. Examples include trametinib (BRD-K12343256), which was
predicted to be a MEK1/2 allosteric inhibitor (score > 0.82), as it
demonstrated similar biological activity profiles in reported NCI60

Compound perturbation shRNA/cDNA modulation
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Fig. 2 | FRoGS model predicts compound-target associations. a The neural
network architecture predicting the probability of a compound binding to a target
based on their L1000 gene set signature embeddings. b The comparison of

multiple L1000-based prediction models. The FRoGS model performed the best
and CMap score, OPA2Vec GO performed similarly to randommodels. Source data
are provided as a Source Data file.
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dataset (r2 = 0.78) against selumetinib (BRD-K57080016) despite their
low structural similarity (0.13) (Fig. 3e). Both molecules interact with
the same allosteric pocket onMEK1/2 but contact different amino acid
residues49. Lastly 8 (0.3%) predictions are supported in the PSP
database40 across a panel of 41 reporter gene assays. An example is
bortezomib (BRD-K88510285) as the query and MG132 (BRD-
K60230970) as the reference. These molecules share low structural
similarity (0.6), yet the PSP correlation (r2 = 0.78) suggests both target
the proteasome 20S subunit beta 1 (PSMB1)50 (Fig. 3f).

FRoGS-based model augments compound activity models to
predict a high-quality compound-target network
Model L outperforms activity-based target prediction models based
on NCI60 (recall 17.2%) and PSP (recall 9.6%) datasets, marking a sig-
nificant improvement compared to previous studies12–14 (Supplemen-
tary Table 1). Comparing Model L against the strongest model, pQSAR-
activity-based target prediction, Metascape enrichment analyses51 sug-
gest that outside the broad overlap in predictions between twomodels,
Model L predicts distinct targets that are not recoverable by Model
pQSAR and vice versa, indicating the unique strength of each model
(Supplementary Fig. 5–6, Supplementary Note 6). As Model L relies on
transcriptional responses, while Model pQSAR is influenced by the
enrichment of target classes covered by in-house assays and by focused
compound screening libraries, the implicit bias of each approach to
identify different targets is likely inherited from their data sources.

Given unique capabilities of Model L, we next demonstrated that
our FRoGS-based Model L can be combined with existing activity-
based models to boost compound target prediction performance. For
that, we integrated Model L with the Model pQSAR into a multi-
modality LR predictor (Supplementary Note 7). The combined model
significantly improved the performance of Model pQSAR from
0.70–0.74 (p = 2 × 10−4) (Supplementary Fig. 5a). Activitymodels based
on NCI60 and PSP datasets were also tested and showed consistent
results (Supplementary Fig. 7, Supplementary Table 1). Multiple viable
options of combining Model L with the activity models were also
evaluated as (Supplementary Note 8, Supplementary Fig. 8–9).

The combined model (Model L with Model pQSAR) predicted a
compound-target network comprising 1598compounds, 682genes, and
146,749associations,where theprobabilitywas above0.8 and the target
was in the top 5% (Fig. 4a). We extracted subnetworks formed by com-
pounds and their top candidate targets for each separate anatomical
therapeutic chemical (ATC) classification according to DrugBank52.
Ontology enrichment analyses51 on the targets within each subnetwork
showed clear biological agreements between the enriched pathways/
processes and the ATC labels. For example, targets predicted for the
“other antineoplastic agents” network (ATC code L01X) (Fig. 4b) are
highly enriched in “protein phosphorylation” processes (Fig. 4c) and
depict associations between kinase targets and small molecules that are
both well-established modulators of cancer biology. These include
“rapalogues,” which target mTOR, EGFR, and CDK4/6 inhibitors. These
different mechanisms of action have related but distinct networks.
Within this 129-edge subnetwork, 19%of edges are predictable byModel
L alone. 19% of the predicted edges are either “known” or “pIC50” and
54%are supportedbypQSARevidence, implying highpredictive quality.

Among all the network edges, 2183 (1.5%) are supported by all
three models: Model L, Model pQSAR, and the combined model. Fur-
thermore, 4566 (3.1%) edges found support in orthogonal data sources
(not counting pQSAR), including 113 by NCI60, 58 by PSP, 502 by
structure similarity, 1271 by experimental pIC50 data, and 2622 are
“known” interactions. Combining these two subsets, we obtained a
total of 6296 (4.5%) conceptually higher-quality predictions between
1406 compounds and 448 targets. This subset is released as a com-
munity resource that proposes valuable hypotheses for the target
deconvolution of L1000 compounds, as well as supplies tool com-
pounds for perturbing proteins of interest (Supplementary Data 1). Of
note, 57% of the network edges from the combined model and 24% of
the higher-quality subset would have been missed without the con-
tribution of FRoGS-based Model L.

Experimental validation of kinase inhibitors predicted by FRoGS
Kinases comprise 27% of compound targets in the Broad annotation,
which is consistent with kinases accounting for over 30% of drug
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discovery efforts worldwide53. Evaluation of predictions within our
released network from molecules that interact with this target class is
of primary importance. We selected all 1,116 compounds that were
predicted to bind any of a set of 19 kinases and carried out experi-
mental profiling to further validate these predictions (see Method).
Figure 5a shows that in 18 out of 19 assays, predicted kinase binders
have a significantly higher confirmation rate than those not predicted
to bind (Supplementary Table 2). In the case of KDR, 70 out of 403
(17%) predictions were confirmed versus 9 out of 713 (1.9%) for nega-
tive predictions, signifying a 14-fold enrichment (p = 1.2 × 10−23). Pri-
mary hits active in no more than three assays were subjected to
secondary dose-response profiling against nine kinases that had the
largest number of target-specific primary hits, including PDGFRA, KIT,
and EGFR. Dose-response profiling validated the single-dose profiling
results (Fig. 5b, Supplementary Fig. 10, Supplementary Table 3).

Figure 5c shows the IC50 binding heatmap of 191 compounds across
the 9 assays, where 96 compounds bind to three or fewer kinases
(Supplementary Data 2). Kinase targets clustered based on compound
activity patterns generally reflect their functional lineage relationship,
which implies the biochemical validity of the data. Among the 479 true
positive (TP) predictions, 213 (44.5%) thatwere not predictedbyModel
pQSAR alone were rescued by Model L or the combined model, which
demonstrates the important contributions of FRoGS-enabledModel L.

Commonly accepted target annotation for a compound is often
incomplete. An example of this is A-443644 (BRD-K38615104), which is
generally referred to as an AKT inhibitor. We predicted and demon-
strated that this compound has activity against GSK3b, which also has
been described by others54. Among its six predicted kinase targets,
four were not predicted without the contribution of Model L (Sup-
plementary Data 2). The approach also provided additional insights to
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the mechanism of action of phloretin (BRD-K15563106), a compound
with notable cell-based activity (e.g., differential cytotoxicity across
the NCI60 panel) yet a poorly definedmechanism of action55. Phloretin
is commonly referred to as an inhibitor of a sodium/glucose trans-
porter, yet others have suggested it also may act as a kinase
inhibitor55,56. The kinase screening data confirmed this latter activity
against EGFR and other receptor tyrosine kinases, which provides
insight into Phloretin’s cytotoxicity.

The discovery of ligands for aryl hydrocarbon receptor
We also investigated the use of the predictive model for non-kinase
targets. The aryl hydrocarbon receptor (AhR) is implicated in many
diseases that are driven by immune/inflammatory processes,

including major depressive disorder, multiple sclerosis, rheumatoid
arthritis, asthma, and allergic responses57. AhR antagonists can
expand human hematopoietic stem cells (HSC) ex vivo and can
facilitate clinical HSC therapy58. Our model predicted 369 com-
pounds potentially targeting AhR, of which 333 were available for
profiling. AhR agonist, AhR antagonist, and CellTiter-Glo toxicity
assays were utilized to screen these compounds. Initial testing at
50 µM, in quadruplicates, identified 128 compounds that are active in
at least one of the AhR assays. Follow-up dose-response screens led
to 76 compounds that were confirmed to be either AhR agonists or
antagonists (IC50 < 50 µM) without apparent cytotoxicity (Fig. 6a,
Supplementary Data 3), which corresponds to a 23% confirmation
rate for our model predictions.
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Among the confirmed binders, 3 known AhR agonists were
recalled by our analysis, including ITE59, diindolylmethane60, and
leflunomide61 (Fig. 6b–d). Consistent with their observed antagonist
activities, curcumin, resveratrol, and quercetin were previously shown
to indirectly activate AhR by interfering with an endogenous AhR
ligand FICZ62 (Fig. 6e–g). Furthermore, publications report resveratrol
as an antagonist63, menadione to transcriptionally downregulate AhR
in vivo64 (Fig. 6h), taxifolin suppresses gastric cancer by regulating
AhR/CYP1A165 (Fig. 6i), and isoliquiritigenin reduces the DNA-binding
activity of AhR66 (Fig. 6j).

In total, 38 compounds within this set were supported by Model
pQSAR, while the other 38 (50%) compounds were predicted only with
the contribution ofModel L. This further underscores howModel L can
be effectively integratedwith other OMICs data to improve compound
target predictions. None of these compounds could have been dis-
covered based on their chemical features as they are not structurally
similar to any of the annotated AhR binders. AhR represents a difficult
target class for prediction, as there are only 6 reference compounds
among the 369 predictions (1.6%) and 45% of the predictions have no
additional supporting evidence other than the combined model itself.
The high confirmation rate implies our compound-target network is
expected to contain rich biochemical associations that can be an
invaluable resource for the biomedical research community to boot-
strap drug discovery projects.

Discussion
A significant contribution of our study lies in the transfer of the
word2vec22 concept from the NLP domain to bioinformatics pro-
blems, wherein genes are embedded into vectors representing
diverse biological information, including their known functions in
GO31 and empirical functions in ARCHS432. This has two significant
implications. First, we validated that casting gene identities into their
functional roles, via FRoGS, resulted in weak pathway signals within
large-scale data becoming much more readily extractable (Fig. 1c).

The challenge of the weak overlap signals between two experimen-
tally derived gene signatures is not due to the sparseness of the
L1000 gene signatures, as we further tested Model L based on 1000
Landmark genes alone1 without seeing qualitative differences with
respect to the extrapolatedwhole-transcriptome signatures. FRoGS’s
representation of a gene or a gene list as a numerical vector incor-
porating the genes’ prior knowledge (Fig. 1b) is conceptually much
more empowering compared to a one-hot encoding representation.
Another explanation for the significantly better performance of
FRoGS (Fig. 2b) is that other representations do not model GO,
embed GO indirectly via text annotations, or do not utilize a GO
hypergraph (Supplementary Note 1).We demonstrated byworking in
the biological functional space, Model L outperformed the model
based on NCI60 dataset and boosted the performance of activity-
based models. This highlights the benefit of both extending FRoGS
vectors to incorporate knowledge derived fromdata sources beyond
ARCHS4 and integrating Model L with other experimentally gener-
ated datasets. Such sources include the plethora of gene signatures
collected in The Cancer Genome Atlas, Gene Expression Omnibus,
Human Protein Atlas, Functional Annotation of Mammalian Genome,
Single Cell Expression Atlas, etc. Secondly, pre-trained gene func-
tional embedding enabled transfer learning. Knowledge of genes’
functions are conceptually advantageous for gene signature-based
analyses, such as those that identify disease-causal genes. However,
identity-based machine learning models must gain such knowledge
de novo, and thus require large-scale training data that are not
readily available. Using FRoGS vectors as a starting point to encode
genes or gene signatures, application-specific model training
requires much fewer deep-learning model parameters or can lever-
age non-deep-learning approaches, such as SVM67, random forest68,
and XGBoost69 to achieve higher performance. The ability to use
small training sets is a desirable property for most bioinformatics
machine-learning applications. Thus, FRoGS vectors are widely
applicable to biomedical problems beyond drug target identification

Fig. 6 | Validation of AhR binders. a The confirmation results of 333 compounds
predicted to target AhR. b–j Dose-response data for selected AhR binders. Assays
are color coded as blue for agonist, red for antagonist, and green for toxicity. X axes

are concentrations in µM and Y axes are normalized response, with the agonist
signals scaled for the ease of visual comparison.
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including identifying risk genes of diseases27, uncovering disease-
disease relationships70, and single cell clustering and classification71.

We hypothesize one reason that preventing deep learningmodels
from further enhancing the target recall relates to the fact that both
transcriptional profiling data and compound activity profiles generally
capture the downstream effect of a compound/shRNA/cDNA on its
target pathway. When a protein target is modulated, downstream
proteins are affected. Models based on gene expression levels cannot
easily distinguish the target itself from its downstream neighbors as
they show similar differential expression patterns. That is a common
challenge for all transcription-based models including our Model L
and other activity-based models, and it contributes to the poly-
pharmacology of the target predictions. While the target count in the
positive training dataset is 1.6 genes/compound, the count in the
predicted network is 4.5 genes/compound, even when only consider-
ing the high-quality subset. To overcome this, models need to further
distinguish the regulation inflection point along the affected pathways
by either incorporating structure-based docking simulation or nar-
rowing the candidate pool by focusing on the densely connected
protein nodeswithin the gene signatures. Therefore, a future direction
is to scale the FRoGS framework to extract protein-protein interaction
(PPI) signals in gene signatures by leveraging graph neural networks72,
similar to some recent reports3,29.

Lastly, we demonstrated FRoGS helped predict and rescue che-
mical probes, as 57% of the network edges from the combined model,
45% kinase inhibitors, and 50% of AhR ligands would have beenmissed
by using Model pQSAR alone. Going beyond the application of target
deconvolution for chemical hits identified through cellular drug dis-
covery screens, we anticipate the conceptual advance of FRoGS can
replicate some of the success word2vec generated in NLP and con-
tribute to effective bioinformaticsmachine learningmodeling across a
broad range of applications.

Methods
Datasets
pQSAR compound activitymatrix isNovartis’ internal in silico activity
dataset for 5.5 million compounds over ~12,000 assays. Only assays
with prediction quality exceeding the standard success threshold,
r2ext ≥0.3 were retained for this study, and the predicted Z-scores
were used to represent compound activities. Among all the pertur-
bagens and reference compounds, 1601 have pQSAR activity profiles
across 4420 assaysmapped into 1003 unique gene targets. Promoter
Signature Profiling (PSP) dataset consists of 18 GR50 activity data
profiles aggregated across 41 original reporter gene assays45. Among
all the perturbagens and reference compounds, 93 have PSP profiles
with at least one GR50 value greater than 0.3, and 321 have NCI60
profiles.

The sources of the public datasets used in this study are described
inData Availability. The L1000ConnectivityMapdataset includes both
the original gene expression data for the landmark genes as well as
extrapolated data for the whole transcriptome consisting of 10174
genes. 238,522 human RNA-seq samples were collected by the
ARCHS432 database as of December 2020. Gene counts for each sam-
ple were quantified by ARCHS4 against the GRCh38 human reference
genome using Kallisto73. Following the ARCHS4workflow, gene counts
were processed by log2 transformation and quantile normalization.
The resultant gene counts were Z-score-normalized across samples.
Genes were ranked based on their Z-scores within each sample and a
set of differentially expressed genes were defined as genes ranked in
the top 100 or bottom 100 and with |Z| ≥ 2.

Embeddings of individual genes encoding functional
information
Two d-dimensional vector representations (embeddings) were cre-
ated for each gene, one for GO and one for RNA-seq information. In

the embedding space, functionally similar genes are embedded clo-
sely together. The same algorithm was used to learn both embed-
dings. Specifically, given a gene u, we sample a set of neighbor genes
that commonly appear in the same GO processes (or RNA-seq sam-
ples) with u, denoted as NðuÞ, and encourage gene u to have similar
embeddings with its neighbor genes. To efficiently sample NðuÞ, we
convert gene-GO (gene-sample) associations into a hypergraph in
which, each gene is represented as a node and each GO term
(RNA-seq sample) is represented as a hyperedge e that connects all
the genes associated with the GO term (regulated gene set of the
RNA-seq sample).We then performa randomwalkwith restart (RWR)
in the hypergraph to identify genes that lie close to each other in
the graph.

For the GO graph, we assign each hyperedge e a weight by the
information content of the corresponding GO term30, where more
specific terms get higher weights:

wðeÞ= � log2

P
c2CðeÞjcjP
e02E je0j

: ð1Þ

P
c2CðeÞ jcjP
e02E e0j j is the frequency of the GO term e, where E is the set of all the

GO terms included in the hypergraph, jej is the number of genes
associated with the GO term e, and CðeÞ is the set of all the child terms
of e included in the graph and e itself.

For consistency,we define theweight of a hyperedge e in theRNA-
seq graph as:

wðeÞ= � log2
jejP
e02E je0j

, ð2Þ

where E is the set of all the RNA-seq samples, and jej is the number of
differentially regulated genes within sample e.

The randomwalk in a hypergraph can be interpreted as: given the
current node u 2 V (all the genes), first choose a hyperedge e over all
the hyperedges incident to uwith the probability proportional towðeÞ,
and then randomly choose a node v 2 e uniformly74. Let B denotes the
transition probability matrix of random walk in the hypergraph, each
entry of B is thus computed as:

Bðu,vÞ=
X
e2E

wðeÞHðu, eÞ
dðuÞ

Hðv,eÞ
jej , ð3Þ

where H is a jV j× jEj matrix with entries H u,eð Þ = 1 if u 2 e and 0
otherwise, dðuÞ is the degree of gene u in the hypergraph, defined as
dðuÞ= Pfe2Eju2eg wðeÞ. The RWR from a node u is then defined as fol-

lows in matrix notation:

st + 1u = 1� qð ÞBstu +qau, ð4Þ

where q is the probability of restart, au represents the initial state, which
is a jV j-dimensional vector with one on the u-th element and zeros
elsewhere, stu is a jV j-dimensional distribution vector that holds the
probability of eachnodebeing visited after t steps starting fromnode u.
The distribution vectors of all the nodes form amatrix St . After iterative
updates, we get the stationary distribution matrix S=S1 when the
Frobenius norm of the difference between St + 1 and St is smaller than a
predefined threshold (10−6). A higher probability in the stationary dis-
tribution matrix indicates two corresponding genes lie closer in the
hypergraph, which suggests that they share specific functionswith each
other compared to other genes in the graph.

For training, we adopt the contrastive learning idea, which has
also been applied to learning enzyme function embeddings75. For each
gene u, we sample NðuÞ from other genes in the genome with prob-
abilities proportional to the stationary distribution su. We also sample
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a set of negative samples RðuÞwith probabilities inversely proportional
to its stationary distribution su. In our experiment, the ratio between
the sizes ofNðuÞ and RðuÞ is 1:5. Then the overall learning objective is to
minimize the following negative loglikelihood:

�
X
u2V

X
v2N uð Þ

logσ xT
vxu

� �� X
z2R uð Þ

logσ xT
zxu

� � !
, ð5Þ

where σ is the sigmoid function. The task is thus formulated as dis-
tinguishing the functionally similar gene pairs ðu,vÞ from functionally
dissimilar gene pairs ðu,zÞ through optimizing their embeddings x.

The method is applied to two kinds of functional information to
get two 256-dimension embeddings of each gene. For a gene u, we
concatenate its two embeddings, xGO

u and xRNA�seq
u , as a joint vector

representation xu = [x
GO
u ,xRNA�seq

u ].

Embeddings of gene signatures
Due to stochastics in biological signals and different choices of
parameters in data preprocessing steps1, “noise genes,” which are
genes that do not directly associate with the pathways underlying the
phenotype of interest, may be included in the discovered gene set
(non-pathway genes in Fig. 1a). We thus compute the consensus
embedding by a linear combination of the embeddings of genes in
the set, which are assigned different weights. Specifically, for a given
gene u in an input gene setG, we compute its average similaritieswith
other genes within the set based on two kinds of embeddings,
denoted as:

rGOu =
1
jGj
X
v2G

cos xGO
u ,xGO

v

� �
, ð6Þ

rRNA�seq
u =

1
jGj
X
v2G

cos xRNA�seq
u ,xRNA�seq

v

� �
, ð7Þ

where cos is the cosine similarity. rGOu and rRNA�seq
u are then Z-score-

normalized against the similarity distribution observed between the
gene u and all the other genes in the genome, denoted as zGOu and
zRNA�seq
u . The weight of gene u in the gene set G is then limited to the

range [0, 1], determined by wu = minðmaxðzGOu ,zRNA�seq
u ,0Þ,1Þ, and

the consensus embedding is computed as xG =
1
jGj
P

u2G wu*xu, by
which the impact of outlier genes in the set will be reduced. This
aggregation scheme is conceptually similar to the self-attention idea
that recently gained popularity in deep learning76; however, we used
rule-based aggregation instead of a transformer neural network here
because the trained transformer will only be specific to the particular
training set whereas the rules crafted here can be generalized to other
bioinformatics applications relying on gene set signatures.

The weight values of genes in most gene signatures of L1000
come from two types of information, while in a small portion of gene
signatures, the geneweights are dominatedby one type of information
(Supplementary Table 4), which illustrates the complementary role of
the two types of information. Intriguingly, gene signatures where RNA-
seq representation dominates the weight values may suggest pertur-
bations in pathways that are not yet discovered and captured by Gene
Ontology (GO).

Statistical analysis
t-SNE projection. Given a gene associated with a GO process G, we
compute the mean µ and the standard error δ for its one-nearest
neighbor (1-NN) to share the same GO process. Z-score is defined as
(µ − µ0)/δ, where µ0 is the percentage of genes in the genome that
associatedwithG. For example, among the 2476 genes associatedwith
“immune system process”, the average fraction of their 1-NNs to be
also associated with the same process is 0.57 ± 0.01, which is higher

than the probability that the “immune system process” occurs by
chance (µ0 = 0.14)with aZ- scoreof 43. All fourGOprocesses examined
in Fig. 1b have p-values < 1−100.

Confirmation rates. If a confirmation rateRcwas calculated basedonn
samples, its standard error is estimates as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rcð1� RcÞ=n

p
. This applies

to Fig. 5a–b and Supplementary Fig. 10.

The simulation of experimental gene signatures
For a given pathway, we generated three gene sets, Sf g , S

0
f g , and Sbg ,

each with 100 genes. Sfg and S0f g were independently generated fore-
ground gene sets, both containing λ genes randomly sampled from
pathway-associated genes and the remaining geneswere uncorrelated.
Thus Sf g and S0f g simulated experimentally derived gene sets that
resulted from two perturbagens co-targeting a common underlying
pathway, where λ controlled the level of pathway enrichment, with
smaller λ representing weaker pathway signals (pathwayW in Fig. 1a).
Sbg was a randomly generated background gene set. The distributions
of cosine similarity between gene set embeddings were computed
between the foreground-foreground pairs (Sf g , S

0
f g) and foreground-

background pairs (Sf g , Sbg).

Siamese neural network architecture and balanced training
The Siamese neural network is a binary classifier that takes com-
pound gene set embedding and shRNA/cDNA gene set embedding as
a paired input and outputs the probability that the input pair are co-
targeting. Theneural network contains two components described as
follows:

Siamese feature extraction component. Due to the symmetric roles
of two gene sets, we designed a Siamese neural network component77

that uses the same weights to process and extract hidden features
from the compound gene signature embedding and shRNA/cDNA
gene signature embedding by a single layer fully connected neural
network:

D xð Þ=Dense1 xð Þ, ð8Þ

where x is the input FRoGS gene signature embedding. Following a
standard operation for modeling the symmetric relations of two
inputs78–80, the outputs are element-wise multiplied as DðxcpdÞ �
DðxgeneÞ and fed into the classification component, which is a binary
operation that takes in two vectorsof the samedimensions and returns
a vector of the multiplied corresponding elements.

Classificationcomponent.Webuilt a two-layer fully connectedneural
network as the classifier. The sigmoid activation function is applied in
the last layer, which produces a scalar output in the range [0, 1]:

o = Dense3ðDense2ðDðxcpdÞ � DðxgeneÞÞÞ, ð9Þ
We use the cross-entropy loss for the training of the neural net-

work:

�
X

i
yi log oi + 1� yi

� �
log 1� oi
� �� �

, ð10Þ

where the binary label yi indicates whether the input gene is the true
target of the input compound.

The quantities of neurons in the hidden layers are hyperpara-
meters. In our experiment, we used 2048 and 512 neurons for the
Dense1 and Dense2 layers, respectively. A balanced training strategy
was applied to train a model that is not biased towards popularly
known targets. Specifically, if a gene appears in a positive pair, we
sample a compound that is not annotated to target this gene to form a
negative pair with it. That is, for each gene, the ratio of positive to
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negative pairs is 1:1. This is critical for ensuring the generalization of
the model as detailed in Supplementary Note 2.

The training and test set were split by compounds, where com-
pounds with known targets were placed into the training set while the
other compounds profiled in L1000 were placed into the test set.
Neural networkmodelswere trained for pairsof compoundand shRNA
signatures, as well as pairs of compound and cDNA signatures. In the
model involving compoundand shRNAsignatures, the positivedataset
comprised 2308 compound-target pairs for 1424 compounds in 12 cell
lines, resulting in 12,332 positive gene signature pairs when consider-
ing the different combinations of compounds, targets, and cell lines. In
the case of the model with compound and cDNA signatures, the
positive dataset consisted of 1473 compound-target pairs for 1061
compounds in 10 cell lines, resulting in 9800 positive gene signature
pairs across different combinations. The number of negative gene
signature pairs was sampled to match the number of positive pairs for
each model. With the trained models, we performed inference for
compound-target gene pairs using cDNA gene signatures and shRNA
gene signatures respectively for 20,306 compounds and 4784 genes
across 13 cell lines, resulting in predictions for a total of 393,525,524
combinations, which contains 73,380,830 unique compound-target
gene pairs. Performance of the different models was evaluated using
fivefold cross-validation on the training set. For each evaluation, we
trained three models on the same data, and the average value of the
predicted probabilities from the three models was computed for each
c, gð Þ pair and used for target ranking. Each model underwent training
for 60 epochs. For models using shRNA signatures, the average
training time for each model was 93 s across five models. For models
using cDNA signatures, the average training time was 82 s across five
models. A K80 GPU was used for model training and inference.

Similarity calculation
The structure similarity score of a compound pair, s, was calculated
basedon theTanimoto score using their ECFP4chemicalfingerprints81.
Themapping between s and SARprobability value, p(s), was computed
based on how often compound pairs with the given similarity were
found co-active in the same biological assay according to Novartis’ in-
house database (Supplementary Note 4). This mapping is also labeled
as Model SSAR. For compounds with activity profiles including pQSAR,
NCI60, and PSP, the Pearson correlation coefficient across their profile
vectors, q, was used as the similarity score.

Consensus input gene set signatures
The expansive collection of gene signatures associated with the
L1000 dataset is based on treatments using genomic reagents (both
loss-of-function shRNA and gain-of-function cDNA treatments for
each gene g) and compounds c dosed at multiple concentrations and
durations screened across multiple cell lines. Therefore, given a
specific compound-target pair, (c, g), multiple choices of input sig-
natures exist for c and g, individually as well as combinatorically. We
reduced this ambiguity by first consolidating all versions of com-
pound signatures, retaining only one exemplar gene set signature
per cell line that had the highest Transcriptional Activity Score
(TAS)1. For model input, only the shRNA/cDNA signature g acquired
under the same cell line was paired with each compound to form a (c,
g) vector pair.

Consensus predicted target ranking
For L1000-based target prediction, an established convention in the
field for algorithm performance comparison is to calculate the per-
centage of compounds having their known target recalled, when a
certain top percentage of target candidates is considered. We thus
chose to combine multiple target prediction lists in a way that best
reflected this practice. A target list for a given compound contained n
candidate genes that were first sorted based on their decreasing

probability scores, and then their rank order Og was identified and
normalized asOg/n. All target candidates for the same compoundwere
then pooled, genes were sorted based on their normalized ranks, and
the first occurrence of a candidate g was retained yielding a unique
consensus target list for compound c. This rank-based multi-list
aggregation method was found to be more effective in target recall
with value 0.36 at the top 5% compared to 0.12 obtained by pooling
and sorting gene candidates based on their model-predicted prob-
ability scores.

Logistic regression modeling
Given a feature vector xi, logistic regression (LR) model estimates the
probability of the record being positive as:

p xi

� �
=

1
1 + exp �b�wxi

� � , ð11Þ

where w is a weight vector and b is a bias. Feature definition depends
on the data source. For compound-target associations predicted by
our deep learning model, r(c, g) is the normalized consensus rank of
gene g in the compound’s putative target list, and feature x is defined
as the odd ratio:

x =
1� r
r

: ð12Þ

For the compound activity profile matrix, q was the Pearson cor-
relation coefficient of the pharmacological profiles between a query
compound c and a reference compound c0. Considering multiple
reference compounds {c0i} may exist for a target g, the maximum value
of q was used as the feature:

x = max
i

q c,c0i
� �

: ð13Þ

When NCI60 or PSP activity profiles were used for modeling, q
refers to the Pearson correlations in the corresponding activity
matrices. In the combined Model, xi consists of two logits computed
from Model L and Model pQSAR, respectively. Distinct from the
standard LR model, we require weightw to be non-negative to ensure
the monotonic relationship between p and x, ensuring compliance
with the biological guilt-by-association (GBA) principle.

The LR cost is defined as the combination of cross entropy and an
L2 regularization term with sampling weighting:

L=
1
np

Xnp

i = 1

logðpðxiÞÞ+
1
nn

Xnn

i = 1

logð1� pðxiÞÞ+ λkwk2, ð14Þ

where λ is the only regularization hyperparameter.
Model training used a standard nested cross-validation loop,

where the inner loop searched for the optimal λ and the outer loop
evaluated model performance with five-fold cross validations.

The positive training dataset consisted of 2340 (c, g) pairs formed
between 1438 compounds and 499 targets. A total of 5,614,766 (c, g)
combinations of the 1438 compounds with genes that are not anno-
tated as targets formed the negative training dataset. During the
training, we randomly sampled 231,660 negative pairs, so that the final
training set consists of 1% positive labels and 99% negative labels. The
positive and negative labels made equal contributions to the model
training after weighting. The test dataset consisted of 67,763,724 (c, g)
pairs formed between 18,855 compounds and 4784 targets, which
included 2433 (c, g) pairs formed by 509 polypharmacological com-
pounds ( > 5 targets/compound) and 507 targets. As Model L, Model
pQSAR, and Model LQ contained only 2, 2, and 3 parameters, respec-
tively, model training were robust against random seeds and only cost
a few seconds.
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Imbalanced dataset correction for logistic regression models
Broad’s compound-gene dataset was highly imbalanced during the
logistic regression model training, as only a small fraction was
annotated as a known association and assigned positive labels, while
the majority had no curation and were assigned negative labels.
Performance metrics such as accuracy and area under the curve
(AUC) for receiver operating characteristic (ROC) can be excessively
optimistic for such imbalanced domains82. Precision-recall curves
reduce but do not eliminate the effect of sample imbalance. When
models relying on different features were trained, the size and
composition of training datasets varied due to different number of
records containing missing features required by different models.
Performance metrics for different models were therefore associated
with different sample sizes and needed to be normalized for com-
parison. In model training, we always assigned sample weights, so
that positive and negative labels were normalized into an effectively
balanced (1:1) dataset.

Specifically, if there were np positive samples and nn negative
samples, sample weights were 1/np and 1/nn, respectively. Sample
counts for true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) were also corrected with the sample weights
by multiplying 1/np, 1/nn, 1/nn and 1/np, respectively. Performance
metrics-such as precision, recall, F1, Matthews Correlation Coeffi-
cient (MCC), AUC of ROC or precision-recall (PR) curve, etc., were
adjusted accordingly by the same sample weighting scheme so that
they characterize the model as if all training datasets were in bal-
ance. Metrics for all models studied are provided in Supplementary
Table 1.

Biochemical HTRF kinase activity inhibition assays
All biochemical kinase activity assays were carried out using the TR-
FRET method as described by Yong et al.83. Kinase reactions were
conducted in white or black 1536-well untreated microplates (Greiner
Bio-One; Monroe, NC) with conditions for each reaction listed in
Supplementary Data 4. ATP concentrations used were around the
apparent ATP Km value for each enzyme. The enzymes were first pre-
incubated in the presence of compounds for 15min prior to the
addition of the appropriate substrate and ATP to reach a final reaction
volume of 4 μL and a final DMSO concentration of 0.5%. At a desig-
nated time point for each assay, the reactions were quenched by
additional of equal volumes of a 200 mM EDTA solution and a HTRF
detection solution, consisting of a Europium-cryptate-conjugated
antibody and SA-XL665 (610SAXLB) (both from PerkinElmer; Beford,
MA) diluted in a detection buffer (400 mM KF, 50 mM HEPES, pH 7.0,
0.1% BSA, 0.01% Tween20), bringing the final volume to 8μL. For
reactions using KinEASE kit and LANCE Ultra kit, the detections were
done following manufacturer’s protocols. After addition of the
detection reagents, the plates were incubated at RT for 1 h, then read
using a PHERAstar FSX equipped with a compatible TR-FRET module
(BMG Labtech; Cary, NC).

Compound activity was initially assayed with a single final con-
centration of 50 µM in triplicate, and the percentage of inhibition of
each compound was calculated. Hits were selected for confirmation in
8-point dose-response assays in duplicate, with a top concentration of
50 µMand a 1:3 serial dilution. IC50 values were defined as the inhibitor
concentration at which 50% of the enzyme activity is inhibited. All
compound dispensing was performed using an Echo 555 acoustic
liquid handler (Beckman Coulter Life Sciences; Indianapolis, IN).

AhR reporter gene assays and CellTiter-Glo cytotoxicity assay
HepG2-Lucia AhR (a human HepG2 hepatoma-derived cell line
stably expressing the secreted Lucia luciferase reporter gene under
the control of a minimal promoter coupled with the human Cyp1a1
gene’s entire regulatory sequence) was purchased from InvivoGen

(San Diego, CA) with catalog code hpgl-ahr. The cell line was main-
tained inGibcoMinimumEssentialMedium (MEM) supplementedwith
10% fetal bovine serum (FBS) (Avantor; Radnor Township, PA), 1%
Cytiva HyCloneMEMnon-essential amino acids (NEAA) 100X Solution,
1% Gibco antibiotic-antimycotic (Anti-Anti) 100X and 100µg/mL of
Zeocin. All incubations were conducted at 37 °C with 5% CO2 unless
otherwise stated. Medium and other supplements were purchased
from Thermo Fisher Scientific (Waltham, MA).

All assays were conducted in custom 1536-well, white, solid-
bottom, tissue culture-treated assay plates (#789173-A, Greiner Bio-
One; Monroe, NC). For the single-point primary screens, the wells
were pre-spotted with 25nL of compounds in DMSO (50 µM final
concentration) using an Echo 555 acoustic liquid handler (Beckman
Coulter Life Sciences; Indianapolis, IN). A total of 2500 cells in a final
5 µL were seeded in each well in above described medium and sup-
plements, except the Zeocin. The AhR reporter gene assays were
carried out as both agonist and antagonist assays. For the agonist
assay, plates were incubated for 24 h. For the antagonist and the
cytotoxicity assay, plates were first incubated for 30min, after which
a final concentration of 15 nMof 2,3,7,8-Tetrachlorodibenzo-p-dioxin
(TCDD) (AccuStandard; New Haven, CT) was added to induce
reporter gene expression followed by an incubation of 24 h and 48 h,
respectively. After incubation, 2.5 µL per well of a coelenterazine-
based luminescence assay reagent QUANTI-Luc (InvivoGen; San
Diego, CA) or CellTiter-Glo (Promega; Madison, WI) was dispensed
into the plates for both reporter gene assays and the cytotoxicity
assay, respectively. Luminescence signals were read on the Lumi-
nescence Plate Reader (LPR) (#1222-9001X1, GNF Systems; San
Diego, CA) immediately following theQUANTI-Luc addition or after a
10min incubation at room temperature following the CellTiter-Glo
addition. Hit compounds from the single-point primary screens were
selected for dose-response characterizations using the same assays
and conditions described above. Compoundhits were re-arrayed and
pre-spotted in the format of 8-point, 1:3 serial dilution with a top final
concentration of 50 µM.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
pQSAR activity dataset and PSP dataset are large-scale proprietary
Novartis in-house resources, which cannot be released due to con-
fidentiality restrictions. All other datasets were from the public
domain. The level-5 perturbagen profiles for the L1000 Connectivity
Map dataset were downloaded from the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo) under Accession IDs GSE92742
and GSE70138. The Broad’s compound-target annotations were
extracted from the Connectivity Map website (https://clue.io) using
the developer API. The Reactome pathway data were downloaded
from https://reactome.org. Gene Ontology data were downloaded
from http://geneontology.org and processed by Metascape (https://
metascape.org). ARCHS4 gene expression profiles were obtained from
https://maayanlab.cloud/archs4 with the data file link https://s3.
amazonaws.com/mssm-seq-matrix/human_matrix.h5. The US
National Cancer Institute 60 human tumor cell line anticancer drug
screen (NCI60) dataset weredownloaded fromhttps://discover.nci.nih.
gov/cellminer. The experimental data for kinase binders and AhR
binders can be found in Supplementary Table 2–3 and Supplementary
Data 2–3. After removing 1163 compound-target pairs that are vali-
dated only according to in-house activity database, 5133 out of the
6296 predictions with multiple lines of additional validation evidence
are made available as a community resource in Supplementary
Data 1. Source data are provided with this paper.

Article https://doi.org/10.1038/s41467-024-46089-y

Nature Communications |         (2024) 15:1853 12

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92742
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70138
https://clue.io
https://reactome.org
http://geneontology.org
https://metascape.org
https://metascape.org
https://maayanlab.cloud/archs4
https://s3.amazonaws.com/mssm-seq-matrix/human_matrix.h5
https://s3.amazonaws.com/mssm-seq-matrix/human_matrix.h5
https://discover.nci.nih.gov/cellminer
https://discover.nci.nih.gov/cellminer


Code availability
Custom Python code and the trained gene embedding vectors are
made available at https://github.com/chenhcs/FRoGS.
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