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We re-derive the R symmetries for the Z6–II orbifold with non-trivial Wilson lines and find expressions
for the R charges which differ from those in the literature.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

R symmetries play a key role in understanding supersymmet-
ric field theories and in model building. It is well known that R
symmetries do arise from the Lorentz symmetry of compact di-
mensions. In many cases the compact dimensions only have dis-
crete isometries, leading to discrete R symmetries in the effective
four-dimensional (4D) theory. This is, in particular, true for orbifold
compactifications [1,2].

In the past, R symmetries have been derived for the case of
Z6–II orbifold compactifications of the heterotic string [3]. Later it
was observed in [4] that, unlike all other continuous and discrete
symmetries of the effective 4D description of these settings, the
Z

R
M symmetries have non-universal anomalies. This already sug-

gested that there might be something wrong with the R charges.
And, indeed, more recently it was pointed out in [5] that the R
charges have to be amended by contributions from so-called γ
phases. The purpose of this Letter is to re-derive the R symme-
tries and charges for the Z6–II orbifold, and to clarify the situation.
Moreover, our re-derivation allows us to determine the R charges
also in settings with non-trivial Wilson lines.

This Letter is organized as follows. Section 2 contains our re-
derivation of R symmetries and charges. Finally, Section 3 contains
our conclusions, including a brief discussion of the implications of
the correct charges for model building.
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2. Discrete R symmetries in ZZZ6–II orbifolds

After a brief introduction to the Z6–II orbifold in Section 2.1
we discuss the origin of discrete R symmetries in Section 2.2. In
Section 2.3 we derive previously unknown contributions to the
R charges, which turn out to be essential in order to make the
corresponding discrete anomalies universal, such that they can be
cancelled by the dilaton via the Green–Schwarz mechanism.

2.1. The Z6–II orbifold

The Z6–II orbifold is defined as the quotient space of the six-
dimensional torus T

6 by the point group P = Z6,

O = T
6/P =C

3/S. (1)

The generator of Z6 is denoted as θ with θ6 = 1. For Z6–II it is
represented by the so-called twist vector

v =
(

0,
1

6
,

1

3
,−1

2

)
, (2)

which specifies the rotational angles as fractions of 2π in the
three complex planes, i.e. the three complex torus-coordinates zi

get mapped to e2π ivi
zi for i = 1,2,3 and v0 = 0 for later con-

venience. The twist acts on the factorized six-torus T
6 = T

2
G2

×
T

2
SU(3) × T

2
SU(2)×SU(2) (see Fig. 1), whose defining six-dimensional

lattice Λ is given by the root lattice of G2 × SU(3) × SU(2)2.
Equivalently, one can define the orbifold O as the quotient

space of C
3 by the so-called space group S, see Eq. (1). Ele-

ments of S are of the form g = (θk,nαeα) with summation over
α = 1, . . . ,6, k = 0, . . . ,5, nα ∈ Z and eα denote six basis vectors
of the torus-lattice Λ. g acts on z ∈ C

3 as z �→ gz = θk z + nαeα

and the equivalence relation
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Fig. 1. The factorized lattice Λ of the six-torus is chosen to be spanned by the roots of G2 × SU(3) × SU(2)2. The six vectors eα denote a basis. For later convenience, we
show also the fixed points in the SU(3) and SU(2) × SU(2) planes.
z ∼ gz for g ∈ S and z ∈C
3 (3)

defines the orbifold. For a consistent compactification of the het-
erotic string on O one has to embed the action of g ∈ S into the 16
gauge degrees of freedom of E8 × E8 or SO(32), which we denote
by X I with I = 1, . . . ,16: the twist θ acts as a shift V I and lattice
translations by eα are accompanied by Wilson lines W I

α , both re-
stricted by modular invariance. g acts simultaneously on z and X
as

z
g�→ θkz + nαeα and X

g�→ X + π(kV + nαWα). (4)

As usual, one associates to g = (θk,nαeα) the local twist v g = kv
and the local shift V g = kV + nα Wα .

Consider a massless, closed (twisted) string with boundary con-
dition given by g = (θk,nαeα) ∈ S, i.e. Z(τ ,σ + π) = g Z(τ ,σ ) for
the three complex world-sheet bosons Z on O. After canonical
quantization this string can be described schematically by a state
of the form

∣∣psh,qsh, Ñ, Ñ∗, g
〉

= |qsh〉R ⊗ (
α̃i−ωi

)Ñ i (
α̃ı̄

−1+ωi

)Ñ∗i |psh〉L ⊗ |g〉, (5)

where R and L denote the right- and left-movers with shifted
momenta qsh and psh, respectively. Here qsh = q + v g with q
from either the vectorial or spinorial weight lattice of SO(8), and
psh = p + V g with p from the E8 × E8 weight lattice. We use the
convention that the number of − 1

2 in the spinorial weight lat-
tice is even. Then, qsh(boson) = qsh(fermion) + ( 1

2 ,− 1
2 ,− 1

2 ,− 1
2 ).

As usual, fermions with q0
sh = − 1

2 are left-chiral. Further, |g〉 spec-
ifies the localization of the string as follows. If k 	= 0, a string
twisted by g = (θk,nαeα) is localized at some fixed point or fixed
torus f g ∈ C

3, i.e. g f g = f g with f g being the coordinates of the
fixed point or fixed torus. We will refer to g as “constructing el-
ement” for the corresponding massless mode. Furthermore, the
left-moving ground state |psh〉L can be excited by oscillators: in
each (complex) direction i = 1,2,3 and ı̄ = 1̄, 2̄, 3̄ there are Ñ i ex-
citations with α̃i−ωi

and Ñ∗ i excitations with α̃ı̄
−1+ωi

. In the −1
ghost picture, this state is created by the vertex operator

V (g)
−1 = e−φe2iqsh·H e2ipsh·X

3∏
i=1

(
∂ Z i)Ñ i (

∂ Z∗i)Ñ∗i

σ g . (6)

In particular, the state |g〉 is created by the twist field σ g .
Selection rules are derived from correlators of vertex opera-

tors [6,7],

A = 〈
V (g1)

−1/2V (g2)
−1/2V (g3)

−1 V (g4)
0 . . . V (gL)

0

〉
. (7)

The correlation function (7) factorizes into correlators involving
separately the fields φ, X I , σg , H and Z i [6–11]. This leads to the
condition of gauge invariance, the so-called space group selection
rules and to discrete R symmetries as we explain in what follows.
2.2. Discrete R symmetries and sublattice rotations

Discrete R symmetries are intimately connected with so-called
sublattice rotations. Since O is factorized, O respects symmetries
beyond the elements of S, given by the sublattice rotations θ( j) for
j = 1,2,3, i.e. separate rotations in each two-torus, corresponding
to the three twist vectors

r1 =
(

0,
1

6
,0,0

)
, r2 =

(
0,0,

1

3
,0

)
and

r3 =
(

0,0,0,
1

2

)
, (8)

of order N = (6,3,2), respectively. These rotations act on the
world-sheet bosons Z ∈ C

3 as

Z i θ(i)�−→ e2π i(ri)
i
Z i for i = 1,2,3. (9)

Hence, they induce a transformation of the oscillators of equa-
tion (5), i.e.

(
α̃i−ωi

)Ñ i (
α̃ı̄

−1+ωi

)Ñ∗i θ( j)�−→ e−2π i�Ñ·r j
(
α̃i−ωi

)Ñ i (
α̃ı̄

−1+ωi

)Ñ∗i

, (10)

where �Ñ i = Ñ∗i − Ñ i counts the number of anti-holomorphic
(Ñ∗) minus holomorphic (Ñ) left-moving excitations in the ith
two-torus. The sublattice rotations (8) are accompanied by an anal-
ogous action on the world-sheet fermions of the right-movers, i.e.
on |qsh〉R of Eq. (5). This action reads

|qsh〉R �→ e−2π iqsh·r j |qsh〉R and equivalently H �→ H − πr j . (11)

Since qi
sh differs by 1

2 for space–time fermions and bosons, these
transformations act differently on space–time fermions and bosons
and hence describe discrete R symmetries in the four-dimensional
effective theory.

At this step, Kobayashi et al. [3] combined the transformation
phases (10) and (11) and defined three R charges such that they
are invariant under picture changing, i.e.

RKRZ, j = q j
sh + �Ñ j . (12)

For an allowed term in the superpotential these charges have
to sum up to −1 modulo the orders of the sublattice rotation
N j ∈ {6,3,2}. Note that in this normalization the three R charges
(12) are fractional, i.e. they are multiples of 1

6 , 1
6 and 1

2 , respec-
tively. In order to normalize them to integers, one has to multiply
them by −6, −6 and −2. Then the superspace coordinate has R
charges (3,3,1) and allowed terms in the superpotential have R
charges (6,6,2) modulo (36,18,4). The orders of the sublattice
rotations N j are different from the orders M j of the resulting Z

R
M j

symmetries, which are given by

Z
R
36 ×Z

R
18 ×Z

R
4 . (13)

However, as first pointed out in [5] in the context of orbifolds
without Wilson lines, also |g〉 in Eq. (5) transforms in general
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under sublattice rotations. Hence, the R charges (12) have to be
amended by contributions from so-called γ phases. In the next
subsection, we present an alternative derivation, which also in-
cludes the case of non-trivial Wilson lines.

Let us close this subsection with a brief discussion on T mod-
uli. The massless spectrum of all Abelian orbifolds contains three
diagonal T moduli, denoted by T j with j = 1,2,3, associated with
the size of the jth two-torus. The corresponding string states are

T j ∼ |q〉R ⊗ α̃
j̄

−1|0〉L ⊗ ∣∣(1,0)
〉
, (14)

with qsh = (0,−1,0,0), (0,0,−1,0), (0,0,0,−1) for j̄ = 1̄, 2̄, 3̄. In
the effective field theory description, the T moduli are chiral su-
perfields. They are gauge singlets (since psh = 0) and transform
trivially under the space group selection rule (since |g〉 = |(1,0)〉).
Thus, one can expect Eq. (12) to be the exact form of their R
charges which turn out to vanish, RKRZ,i(T j) = δi

j − δi
j = 0. In a

physical vacuum, the T j modulus needs to be stabilized at some
non-trivial value. Hence, (the scalar component of) T j develops a
VEV 〈T j〉. So we see that the R charges (12) can alternatively be
motivated as the unique combination (up to an overall factor) of
qsh and �Ñ , such that the VEVs of the T moduli do not break the
corresponding R symmetries.

2.3. R charges for twisted fields

As explained above, the geometrical properties of the massless
strings are encoded in |g〉, where we identify the fixed point f g

with the constructing element g ∈ S. While g transforms, in gen-
eral, non-trivially under the action of h ∈ S,

g
h�→ h · g · h−1 = g′, (15)

the conjugacy class

[g] = {
h · g · h−1

∣∣ h ∈ S
}

(16)

is by definition invariant under conjugation. We now construct
the corresponding “geometrical eigenstate” |[g]〉, which is, up to
a phase, invariant under all space-group transformations such that
the full physical state (5) is invariant under the action of every
h ∈ S. This is achieved by building infinite linear combinations of
orbifold-equivalent fixed points, or, equivalently, by summing over
all elements of the conjugacy class,

∣∣[g]〉 = ∑
h

e−2π iγ (g,h)
∣∣h · g · h−1〉. (17)

Here the γ (g,h) denote phases that are crucial for rendering |[g]〉
an eigenstate w.r.t. all space-group transformations, h ∈ S is chosen
such that each term |h · g · h−1〉 appears once in the summation
and we suppress the normalization. This is a natural extension of
the usual linear combination of fixed points that are mapped to
each other via the twist, e.g. in the second twisted sector of Z6–II
the G2 torus contains three fixed points, two of them are identified
on the orbifold (cf. the discussion in [2,3,12]), see Fig. 2. However,
in contrast to the traditional linear combinations, the new geomet-
rical eigenstates are eigenstates of the full space group as we will
see in more detail later, i.e. for any h ∈ S one obtains

∣∣[g]〉 h�→ e2π iγ (g,h)
∣∣[g]〉, (18)

where γ (g,h) ≡ 0 if g · h = h · g . Here and in what follows “≡”
means equal modulo 1. Note that (17) also implies a redefini-
tion of the twist fields σ g , which can be expressed as an anal-
ogous sum. For fixed g ∈ S the geometrical phase γ (g,h) is a
Fig. 2. The second twisted sector in the G2 two-torus has three fixed points (black
dots) with corresponding constructing elements ga , a = 1,2,3. Under θ the fixed
point of g2 is mapped to g′

2, which is equivalent to g3 by a lattice translation +e1.
Hence, the constructing elements g2 and g3 belong to the same conjugacy class.

homomorphism from the space group S to Z6, i.e. γ (g,h1 · h2) ≡
γ (g,h1) + γ (g,h2). Thus, for h = (θ�,mαeα) one has

γ (g,h) ≡ �γ (g, θ) + mαγ (g, eα), (19)

where we define γ (g, θ) := γ (g, (θ,0)) and γ (g, eα) :=
γ (g, (1, eα)). We demand that the full physical state
|psh,qsh, Ñ, Ñ∗, g〉 of Eq. (5) be invariant under a transformation
with h. This translates to the condition

psh · Vh − (qsh + �Ñ) · vh − 1

2
(V g · Vh − v g · vh) + γ (g,h)

!≡ 0,

(20)

allowing us to compute γ (g, θ) and γ (g, eα) by choosing appro-
priate h.

The crucial observation is now that the geometrical eigenstates
|[g]〉 are eigenstates with respect to a sublattice rotation θ( j) ,
which is not an element but an automorphism of S. Acting with
θ( j) on |[g]〉 yields a phase,

∣∣[g]〉 θ( j)�−→ e2π iγ (g,θ( j))
∣∣[g]〉. (21)

This is because, as we will show explicitly below, in its action
on |[g]〉, θ( j) is equivalent to an appropriate space-group trans-
formation h ∈ S. In other words, θ( j) is a conjugacy class preserv-
ing automorphism of S (at least for Z6–II). Therefore, the phase
γ (g, θ( j)) can be expressed in terms of γ (g, θ) and γ (g, eα).

As we have discussed above Eq. (12), sublattice rotations also
imply a transformation of the shifted SO(8) momenta qsh and the
oscillator numbers �Ñ j . Taking into account all transformations
under sublattice rotations and using that (r j)

j = 1/N j , the proper
R charges are thus defined as

R j = q j
sh + �Ñ j − N jγ

(
g, θ( j)), (22)

whose sum must equal −1 (modulo the order N j of the cor-
responding discrete sublattice rotation) in order for the correla-
tor equation (7) to be invariant, i.e.

∑L
a=1 R j

a = −1 mod N j for
j = 1,2,3. As in Eq. (13), these charges need to be multiplied
by (−6,−6,−2) in order to make the charges of all fields and
of the superspace coordinate integer. This charge assignment is
valid in the general case including non-trivial Wilson lines. In the
simplified case without Wilson lines it differs by a sign from the
previously derived expression in [5].

In what follows, we discuss this in detail starting with sublat-
tice rotations first in the SU(3) and second in the SU(2)2 two-
torus. In these cases, it is sufficient to construct the infinite linear
combinations for the geometrical eigenstates for each two-torus
separately. Finally, we perform the sublattice rotation in the G2
two-torus.

2.3.1. T2
SU(3)

/Z3 sublattice rotation
Let us consider the second two-torus, where Z6–II acts as

Z3. In the first (k = 1) and fourth (k = 4) twisted sectors there
are three fixed points. Their constructing elements read ga =
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Fig. 3. Visualization of the geometrical eigenstate |[g2]〉 of Eq. (23). One performs a
sum over all equivalent fixed points in covering space weighted by appropriate γ
phase factors. The sublattice rotation θ(2) is, for g2, geometrically equivalent to a
lattice translation by −e3 up to three times a lattice translation.

(θk,n3e3 + n4e4), where k = 1,4 and a = 1,2,3 for (n3,n4) =
(0,0), (1,0), (1,1), respectively, see Fig. 1(b). The associated ge-
ometrical eigenstates |[ga]〉 are obtained by taking infinite linear
combinations, i.e.
∣∣[ga]

〉 = ∑
m3,m4

e−2π i(m3+m4)γ (ga,e3)
∣∣(θk, (n3 + m3 + m4)e3

+ (n4 + 2m4 − m3)e4
)〉
, (23)

with γ (g, e3) ∈ {0, 1
3 , 2

3 }. Here we sum over all equivalent fixed
points in the covering space, see Fig. 3. We can verify that these
three states |[ga]〉 are eigenstates of the full space group by let-
ting some arbitrary space group element h act on |[ga]〉. Then
each constructing element g in the linear combination is mapped
to h · g · h−1 and, consequently, |[ga]〉 is mapped to itself times a
phase. For example, under a general translation h = (1, s3e3 + s4e4)

the geometrical eigenstate |[ga]〉 picks up a phase

∣∣[ga]
〉 h=(1,s3e3+s4e4)

e2π i(s3+s4)γ (ga,e3)
∣∣[ga]

〉
. (24)

The crucial observation is now that, under a sublattice rotation
(θ(2),0), |[ga]〉 also gets mapped to itself up to a phase,

∣∣[ga]
〉 (

θ(2),0
)

�−→ e−2π i(n3+n4)γ (ga,e3)
∣∣[ga]

〉
. (25)

For the case of |[g2]〉, this is illustrated in Fig. 3, where we
see that any g2-equivalent fixed point gets shifted by −e3 up
to three times a lattice translation. The shift by −e3 induces, in
the presence of a Wilson line, a non-trivial phase while, due to
the Wilson line quantization and modular invariance conditions,
three times a lattice translation does not lead to a phase. Thus,
we find that γ (ga, θ

(2)) = −(n3 + n4)γ (ga, e3) is the contribu-
tion to the R charge under a rotation r2 = (0,0, 1

3 ,0) for a state
from the k = 1,4 sectors. For a state from the k = 2,5 sector we
get γ (ga, θ

(2)) = (n3 + n4)γ (ga, e3). Finally, for k = 0,3 we have
γ (ga, θ

(2)) = 0. Combining these results we obtain

γ
(

ga, θ
(2)

) ≡ −k(n3 + n4)γ (ga, e3) (26)

for a state with constructing element ga = (θk,n3e3 + n4e4).
Altogether we have seen that the sublattice rotation θ(2) ,

whose gauge embedding is not defined (because θ(2) /∈ S), can be
traded against a translation, for which we know the gauge em-
bedding. From this we can infer the transformation properties
of the full state |psh,qsh, Ñ, Ñ∗, g〉 (see Eq. (5)). Demanding that
|psh,qsh, Ñ, Ñ∗, g〉 be invariant under all space group transforma-
tions allowed us then to compute via equation (20) the γ phases,
which enter the R charges (22).
2.3.2. T2
SU(2)×SU(2)

/Z2 sublattice rotation

Next, consider the two-torus T
2
SU(2)×SU(2) , where θ acts as Z2.

The analysis is analogous to the one above. In this torus there are
four fixed points (if k is odd) with constructing elements

ga = (
θk,n5e5 + n6e6

)
, (27)

where (n5,n6) = (0,0), (0,1), (1,0) or (1,1) for a = 1,2,3,4, re-
spectively, see Fig. 1(c). Again, the associated geometrical eigen-
states |[ga]〉 are obtained by taking infinite linear combinations,
i.e.∣∣[ga]

〉 = ∑
m5,m6

e−2π i(m5γ (ga,e5)+m6γ (ga,e6))
∣∣(θk, (n5 + 2m5)e5

+ (n6 + 2m6)e6
)〉
, (28)

with γ (ga, e5) ∈ {0, 1
2 } and γ (ga, e6) ∈ {0, 1

2 }. As before, under a
general translation h = (1, s5e5 + s6e6) the geometrical eigenstate
|[ga]〉 picks up a phase∣∣[ga]

〉 �→ e2π i(s5γ (ga,e5)+s6γ (ga,e6))
∣∣[ga]

〉
. (29)

Furthermore, under a sublattice rotation (θ(3),0), |[ga]〉 transforms
with a phase,∣∣[ga]

〉 �→ e2π i(n5γ (ga,e5)+n6γ (ga,e6))
∣∣[ga]

〉
. (30)

If k is even, the sublattice rotation θ(3) acts on a fixed torus (with
n5 = n6 = 0) and hence γ (ga, θ

(3)) = 0. Combining these results
we obtain

γ
(

ga, θ
(3)

) ≡ n5γ (ga, e5) + n6γ (ga, e6), (31)

for a state with constructing element ga = (θk,n5e5 + n6e6).
Let us stress that our analysis in 2.3.1 and 2.3.2 can be applied

to any orbifold with a Z3 sublattice rotation in an SU(3) plane
and/or Z2 sublattice rotation in an SU(2) × SU(2) plane, thus al-
lowing us to compute the proper R charges for many other orbifold
geometries.

2.3.3. T2
G2

/Z6 sublattice rotation
Last, we consider the first complex plane, where Z6–II acts as

Z6. There are two ways to derive γ (g, θ(1)) in this case. First, we
know that

θ(1) = θ · (θ(2)
)−1 · (θ(3)

)−1
. (32)

Hence, the phase of the geometrical eigenstate with constructing
element g = (θk,nαeα) under a θ(1) sublattice rotation is given by

γ
(

g, θ(1)
) ≡ γ (g, θ) − γ

(
g, θ(2)

) − γ
(

g, θ(3)
)

(33)

≡ γ (g, θ) + k(n3 + n4)γ (g, e3)

− (
n5γ (g, e5) + n6γ (g, e6)

)
. (34)

The second possibility is the explicit construction of the full geo-
metrical eigenstate, which yields the same result for γ (g, θ(1)), as
expected.

2.3.4. Summary of R charges
In summary, the three R charges of the Z

R
36 × Z

R
18 × Z

R
4 sym-

metry for a (twisted) state of the Z6–II orbifold with constructing
element g = (θk,nαeα) read

R1 = −6
[
q1

sh + �Ñ1 − 6γ (g, θ) − 6k(n3 + n4)γ (g, e3)

+ 6
(
n5γ (g, e5) + n6γ (g, e6)

)]
, (35a)

R2 = −6
[
q2

sh + �Ñ2 + 3k(n3 + n4)γ (g, e3)
]
, (35b)

R3 = −2
[
q3 + �Ñ3 − 2

(
n5γ (g, e5) + n6γ (g, e6)

)]
, (35c)
sh
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where the superspace coordinate has R charges (3,3,1) and all R
charges are normalized to be integer. Note that the γ charges van-
ish for untwisted fields. We have “tested” these R charges for a
huge set of randomly generated Z6–II orbifold models with non-
trivial Wilson lines [13] and found that the anomalies are always
universal, i.e. can be cancelled by the dilaton. On the other hand,
restricting to Wα = 0 and using the R charges from [5], where the
N jγ (g, θ( j)) term appears with the opposite sign, leads to non-
universal R1 anomalies.

It is instructive to apply the three discrete R transformations
consecutively to some field Ψg . This results in a Z36 phase R g

given by

1

36
R g = − 1

36

(
R1 + 2R2 − 9R3)

≡ psh · V − 1

2
(V g · V − v g · v), (36)

where we used the invariance condition equation (20). Now
consider a coupling between states with constructing elements
g1 . . . gL . One can see that the total R transformation is trivial, i.e.
1

36

∑
g R g ≡ 0 by using gauge invariance, the point group selection

rule, the space group selection rule in the second and third two-
torus and finally modular invariance. Hence, the string selection
rules are not independent and one could trade off, for example,
one of the R symmetries. That is, as also observed in [14], some
of the symmetries are redundant; these redundancies can be elim-
inated with the methods discussed in [15].

One may also wonder if one could separate off the γ contribu-
tions from the R charges. At first glance, one may think the space-
group selection rule implies that the γ -phases sum up to 0 mod 1
since the product of the respective constructing elements has to
yield the identity (1,0), and γ ((1,0),h) ≡ 0 for all h ∈ S. How-
ever, for each constructing element g ∈ S the sublattice rotations
θ(i) are, in general, equivalent to different space-group operations
such that it is not generally possible to separate the γ contribu-
tions.

3. Summary

We have re-derived the R symmetries and charges for the Z6–II
orbifold with Wilson lines. As we have seen, the discrete R sym-
metries originate from sublattice rotations of the orbifold accom-
panied by an analogous action on the right-mover. This yields the
well-known contributions to the R charges. By constructing states
that are invariant under the full space group S we were able to de-
termine the transformation behavior of the twist fields under sub-
lattice rotations, which are automorphisms but not elements of S.
Separating the correlator of the vertex operators into a gauge part
and a rest allowed us to determine necessary conditions for the
correlators to be non-trivial, which can be rewritten as discrete R
symmetries. With our derivation, we confirm the statement of [5]
that the R charges have to be amended by appropriate γ phases,
disagree, however, in a sign. Further, our derivation allowed us to
treat also the case of non-vanishing Wilson lines.

Using the correct definition of R charges, Eq. (22), has impor-
tant consequences for orbifold model building. First, ZR

M anoma-
lies are now universal, as we have explicitly verified in thousands
of Z6–II orbifold models (including up to three non-trivial Wil-
son lines). In particular, the non-universal anomalies found in [4]
are a consequence of the incorrect R charges used in the anal-
ysis. Repeating the analysis with proper R charges leads to uni-
versal anomalies, which can be cancelled by the dilaton. Further,
the fact that [16] did find universal anomalies ignoring the γ
phases is, in particular, related to the simplicity of their models
which is characterized by the absence of Wilson lines, such that
the massless twisted states appear with degeneracy factors, thus
rendering the anomaly coefficients universal “by accident”. Using
proper R charges has also important implications for heterotic orb-
ifold phenomenology. In particular, if one compares couplings that
are allowed by the incorrect vs. correct R charges, one finds that
many more couplings are allowed if one imposes the proper R
symmetries. As a consequence, vector-like exotics of MSSM-like
constructions, such as those of [17–19], decouple at low orders
and Yukawa textures are changed. At the same time, discrete R
symmetries (such as the Z

R
4 symmetry [20]) remain instrumental

for suppressing the μ term and dangerous proton decay operators.
Yet, clearly, the construction of vacua with residual discrete and/or
approximate R symmetries has to be revisited. This will be done
elsewhere.

Although our presentation was focused on the Z6–II orbifold
based on factorizable tori, our derivation is general and can be ex-
tended to all symmetric (or geometric) orbifolds [21]. In particular,
our analysis in Sections 2.3.1 and 2.3.2 can be applied to any orb-
ifold with a Z3 sublattice rotation in an SU(3) plane and/or Z2
sublattice rotation in an SU(2) × SU(2) plane, thus allowing us to
compute the proper R charges for many other orbifold geometries.
This analysis will be carried out elsewhere.
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