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Abstract

Properties of the process obtained by rescaling a homogeneous Poisson process by
the maximum likelihood estimate of its intensity are investigated. Formulas for the
conditional intensity and moments of the rescaled Poisson process are derived, and its
behavior is demonstrated using simulations. Relationships to the Brownian Bridge are

explored, and implications for point process residual analysis are discussed.



1 Introduction.

The random time change theorem dictates how one may rescale a point process NV in order
to obtain a Poisson process with unit intensity (Meyer, 1971; Papangelou, 1972; Brémaud,
1972). The procedure amounts to stretching or compressing the point process according to
its conditional intensity process, A. For instance if NV is a stationary Poisson process with

constant intensity A > 0, the rescaled process M defined via
M(a,b) i= N(a/,b/) 1)

is a Poisson process of unit rate. The random time change theorem applies to any simple
point process on the line (Meyer, 1971), and has been extended to wide classes of point

processes in higher dimensions (Merzbach and Nualart, 1986; Nair, 1990; Schoenberg, 1999).

The above results all require that the conditional intensity A of the point process be
known. Thus one may question whether the rescaled process is similar to a Poisson process
when A is estimated rather than known. The present paper investigates the behavior of
the rescaled process My obtained by rescaling N according to 5\T, the maximum likelihood
estimate of A, for the case where V is a stationary Poisson process on the line observed from
time 0 to time T'. In such cases, the rescaled process is found to be quite different from the

Poisson process with unit rate.

In practice, analysis of the rescaled process My is often used in so-called point process
residual analysis; applications include model evaluation (Schoenberg, 1997) and point pro-
cess prediction (Ogata, 1988). The fact that My is not a Poisson process, or equivalently
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that N(0,t) — Art is not a martingale, has been observed by several authors (Aalen and
Hoem, 1978; Brown and Nair, 1988; Heinrich, 1991; Solow, 1993). It has been argued that
the difference between My and a unit-rate Poisson process is negligible, since Ar converges
a.s. to A, or because certain statistics, such as the Kolmogorov-Smirnov statistic, when
applied to My have asymptotically the same distribution as the statistics corresponding to
the Poisson process (Saw, 1975; Davies, 1977; Kutoyants, 1984; Ogata and Vere-Jones, 1984;
Lisek and Lisek, 1985; Lee, 1986; Arsham, 1987; Karr, 1991; Heinrich, 1991; Yokoyama et
al., 1993). Therefore until now the properties distinguishing My from the unit-rate Poisson

process have not been extensively investigated.

However, when 7' is small, the asymptotic arguments above are less relevant, and the ex-
act properties of My may be important. The current paper demonstrates the self-correcting
nature of My and its highly fluctuating conditional intensity process. This suggests that
extreme caution should be used in assuming that My is similar to the Poisson process, par-
ticularly when the original point process N is observed over a short time scale. Further,
although certain functionals of My may asymptotically approach those of a Poisson process,

the asymptotic behavior of My may alternatively be chacterized in relation to the Brownian

Bridge.

The structure of this paper is as follows. Section 2 lists a few definitions and conventions
dealing with notation. Finite-sample properties of rescaled Poisson processes are investi-

gated in Section 3. Section 4 presents results related to the asymptotic properties of Mr. In



Section 5, the extent of the self-correcting behavior of My is demonstrated using simulations.

2 Preliminaries

Throughout this paper we will let N refer to a homogeneous Poisson process on the real
half-line Ry with intensity A > 0, observed from time 0 to time 7', and M will denote the
rescaled Poisson process defined by relation (1). Thus N has points at times 7, 7,...,7,

iff. M has points at times 71 /X, 72 /A, ..., 7,/

The definitions that follow relate to an arbitrary point process P on the real half-line

R,. Wessay P is self-correcting if, for 0 < a < b < ¢,
cov{P(a,b), P(b,c)} <0,

and P is called self-exciting if this covariance is positive.

When it exists, the conditional intensity process A associated with P is defined by

.1 ~
At) = lim < FLPIL -+ A0,

where H; is the filtration generated by P[0,¢) from time 0 to time ¢. It is well known
that when it exists, the conditional intensity is unique a.e. and determines all the finite-
dimensional distributions of P (Daley and Vere-Jones, 1988). Therefore a natural way to
characterize a point process is via its conditional intensity. Note that for the Poisson process

N, the conditional intensity A is constant a.e., and N is neither self-correcting nor self-



exciting.

Following convention, we abbreviate the random variable P[0,¢] by P(t). Thus P(t) is
the P-measure of the interval [0,¢]; it is important to distinguish this from P({t}), i.e. the

measure P assigns to the point {¢}.

Let n denote the total number of observed points N(T'). A = n/T, the maximum

likelihood estimate of A\. Assuming Ar > 0, let My denote the point process defined via:
MT(av b) = N(a/;\Ta b/:\T)a (2)

for 0 < a < b<n. That is, Mr is the process with points at times Tl/:\T, TQ/:\T, . ,Tn/;\T.
In the case that Ay = 0, let MT(a,b) = 0 for all a,b > 0. Similarly, set MT(a,b) = 0 if

n<a<hb.

The following function arises repeatedly in calculations of finite-sample properties of M.

Let

[t] i

otet) = G | i) =y~ tnte) = 3 |

where S(z,t) is the survivor function for a Poisson random variable with mean x:

1
S(z,t) :=1—exp(—z)>_ '[!,
=0

Fi(x) is the standard exponential integral, defined as the Cauchy principal value of the

integral

T

Fi(x) := ]{ exp(u)/u du,
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and ~ is Euler’s constant:

J
v = }EEO{; 1/ —In(J)} = .5772...

Finally, let T denote the indicator function.

3 Finite-sample characteristics of My

The support of My is the subset [0,n], which is random. In residual analysis of point pro-
cesses, one is interested only in the behavior of My within this support. Thus, of particular
concern are the conditional moments of MT(a,b), given that n > b. Such properties are

given in Theorem 3.1 below.
THEOREM 3.1. For 0 <a <b<e¢,

(i) E[Mg(a,b)|n > bl = b— a.
(i) Cov{Mr(a,b) , Mr(b,¢)|ln > ¢} = —(b— a)(c — b)d(AT, ¢).

(i) Var{Mg(a,b)|n > b} = b—a — (b— a)2(\T,b).

PROOF. (i) Given that n = k, the unordered points {7, 7, ..., 7%} of N are iid uniform

random variables on [0,7]. Hence

E[Mg(a,b)|n >b] = fj E[Mz(a,b)|n = k] P{n = k|n > b}
k=Tb]



= " EIN(aT [k, BT/k)n = k] P{n = kin > b}
k=b]

- i k(T [k —aT/k)]T P{n = k|n > b}
k=[5]

o0

= (b—a) Z P{n = kln > b}

k=[b]
= b—a.

(ii) Note that

[e.e]

_Z[;] P{n =kln > c}/k
exp(=AT) & (AT)F

P{n > ¢} kg[:c] (k x k)

= (M, c) (3)

the last relation following from equation (5.1.10) of Abromowitz and Stegun [1].

Conditioning again on n we may write

E[Mrg(a,b) My(b,c)|n > c]
— S E[Nr(a,b)Mr(b, &)|n = K] P{n = kln > ¢}
k=Jc]

— S E[N(aT/k,bT/R)NGT [k, T/k)n = k] P{n = kln > ¢}
k=[c]

— S B[ U € (T kTR S iy € (BT/k, T/k)}n = k] P{n = kin > ¢}
k:fc] =1 7=1

S B[ U € (T k, 6T JR) i, € (5T /k, T k)Y n = K] P{n = kln > ¢}
k=[c] 1#]

S (K = KB € (aT/k,bT k)Y L{ry € (b [k, ¢T/k)}n = k] P{n = kln > ¢}
k=[c]



= i (kQ—k)(b;a) (c;b)P{n:Mn > c}
k=[c]

[o.e]

= (b—a)(c—0b) |1 — _z[;] P{n =kln > c}/k| ,

which along with (i) and (3) establishes (ii).

(iii) Similarly,

E[Mg(a,b)? |n > b

— " E[N(aT/k, BT/R)N (T kBT [R)In = K] P{n = k|n > b}
k=[b]

= _i?:] E[Z:I{TZ € (CLT/[{?,])T/]C)}Z:I{T] € (aT/k,bT/k)Hn = k] P{n — k|n > b}

= i E[ZI{TZ- € (aT/k, Tk {1 € (aT/k,bT/K)} + zk:I{n € (aT/k,bT[Ek)}n = K]
k=[b]  i#i i=1

x P{n = k|n > b}

< b—a\® k(b—a)
= [(k* — k) + | P{n = k|n > b}
Slw-n () -1

o0

= b—a+(b—a) [1— > P{n=kln>0b}/k
k=51

= b—a+ (b—a)’[l —$(A\T,b)].

REMARK 3.2. It is evident from (3) that ¢(AT,c) is positive. Thus equation (ii) of

Theorem 3.1 implies that
Cov{Mr(a,b), My(b,c)|n > ¢} <0,

i.e. Mr is a self-correcting point process.



Although no closed form is available for the conditional intensity of MT, a formula which

is useful in practice for calculating an approximation is given in Theorem 3.3 below.

Fix t > 0. Let m denote MT(t). Let z := [tt V m], i.e. the least integer strictly greater

than ¢ and greater than or equal to m. Let 2’ := [t V (m + 1)].

THEOREM 3.3. The conditional intensity process Ay, corresponding to the point process

MT satisfies:

L ARk = pF & ATk — 1)k
Ma(t) =) (k—m — 1)k > (k — m)lkF

k=z' k=z
PROOF.

Let H, denote the history of My from time 0 to ¢, i.e. the o-field generated by {MT(:C), 0<

x <t}

. 1 - .
Mglt) = lim = B[Vt t+ Av)| )

At10

= lim é ki::zE {MT[t,t + At)|]:]t;n = k} P {n = k‘|[:[t}

Atl0
I - . .
= lim kz:j E[N[T/k, (& + AT /k) [ Hyn = k| P {n = k| H,} (5)

Conditional on H, and on n = k, there are kK —m points left to be distributed by the point
process N between time ¢{1T'/k and time 7. Since N is a Poisson process, these additional

points are uniformly distributed on [¢tT'/k,T]. Thus

ATk

E[N[T/k, (t+ AT /k) | Hiyn = k] = (k- m)m

10



=~ (6)
Putting together (5) and (6) yields:
“k—m N
A0 = 3 5= i = ki, )
k==z

Note that P{n = k | H,} = P{n =k | M(t)}. This relation follows from the fact that
N is a Poisson process and therefore for any k, conditional on {n = k; MT(t) = m}, the m

points falling between time 0 and time t7'/k of the process N are uniformly distributed on

[0,¢T'/k]. Using Bayes’ formula,

P{n=k|H} = P{n=Fk|Mp(t)=m}

P{MT(t) = m|n = k}P{n = k}
Xk:P{MT(t) =mln =k} P{n =k}

= (@ (-0 TR W@ ) e

(T)H(k Ty —

=S (A
(k — m)lkk T; (k—m)kk

which together with (7) yields the desired result.

4 Asymptotic properties of M

It is well known that the asymptotic behavior of the normalized Poisson process can be ex-
pressed in terms of Brownian Motion and the Brownian Bridge. For instance, the following

result dates back to Kac (1949).
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LEMMA 4.1. Let B(s) denote the standard Brownian Motion on [0, 1].

{N(ST) — AT

AT ;Oﬁsgl}é{B(s);Ogsgl}. (8)

The convergence in (8) is in terms of the finite-dimensional distributions of the process,
as T'— oo. Kac (1949) proved this result for the case T' = 1; the extension to general T' is

immediate.

Kac (1949) also established a connection between the conditional distribution of N and

the Brownian Bridge process B%(s) := B(s) — sB(1). His result may be written as follows.

LEMMA 4.2. Suppose n = N(T) is fixed. Conditional on n, the finite-dimensional

distributions of the process
converge to those of

Of concern in the present work is the asymptotic behavior of MT, observed from time 0

to time n. Let

— (9)

The connection between My and the Brownian Bridge is summarized in the following result.
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THEOREM 4.3.

{Xr(s);0<s <1} = {B%s);0<s<1}. (10)
PROOF. Let
_ N(sT)—sAT
YT(S) = ﬁ .
Since

N(sT)—sAT  sn —sAT
Vn Vn
N(sT) — sn

NG
= XT(S),

YT(S) — SYT(l) =

it is sufficient to prove that {Y7(s)} converges to Brownian Motion on [0, 1]. From Lemma
4.1, the process {(N(ST) —sAT) /v /\T} converges to { B(s)}. In order to establish that the

same is true of {Y7(s)} and hence complete the proof of Theorem 4.3, all that is required is

Lemma 4.4 below.

LEMMA 4.4.

N(sT)—sAT  N(sT) — sAT .
su —
ogs£1 VAT Vn p

PROOF. Let

dr = sup |N(sT) — sAT].

0<s<1
Choose any positive € and d. From Lemma 4.1, d;/vV AT ~ sup |B(s)|. It follows that
0<s<1

we may find constants ¢ and T, so that for 7' > T",

P (dr/VAT > ¢) < §/3.
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Let k=c¢/(c—¢)—1>0.

For T > T,

IN

P(dr > ¢VAT)+ P (Cm VAT )

AT vm €
§/3+ P(e n—C\/ﬁ>e\/ﬁ)

Vi >1+ 6\/5)

P( dr dr . )
——= > €
VT n

IN

VAN
[N™]
o)

T~
w

for sufficiently large T, since n — AT ~ VAT x, where x is the standard normal.

A nearly identical argument shows that for large 7',

(-t oo

and the proof is complete.

REMARK 4.5. In view of the similarities between B and M, one may call the process M
a stepping-stone process, in analogy with the term Brownian Bridge. Not only are the two
processes related asymptotically by (10), but both display similar self-correcting behavior.
Further, B® and M may be viewed as “tied down” versions of Brownian Motion and the
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Poisson process, respectively: B°(0) = B%(1) = 0; MT(O) = My (n) —n =0.

The relation between Lemma 4.2 and Theorem 4.3 is also worth mentioning. Since
Xr(t) = [N(sT) — sn]/+/n, the former result describes the conditional behavior of Xt while

the latter establishes its unconditional behavior.

Theorem 4.3 suggests that the asymptotics of residual point processes may be described
in relation to the Brownian Bridge. However the proof in Theorem 4.3 is given only for
residuals of the Poisson process. The extension to more general point processes is given in

the following conjecture.

CONJECTURE 4.6. Given certain restrictions on the parameterization of the conditional
intensity of NV, such as those in Ogata (1977), the result of Theorem 4.3 extends to the case

where N is an arbitrary simple point process.

5 Simulations of M

The self-correcting behavior of My can be seen from simulations. Given the complexity of
the conditional intensity of the process in (4), the simplicity with which one may simulate

My is striking. The procedure is as follows:

e Generate n, a Poisson random variable with mean AT
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e Distribute n points uniformly on [0, n].

The conditional intensity of My may also readily be simulated, using equation (4). Both
the numerator and denominator in (4) generally converge rapidly for typical values of A, T

m and {.

For all the simulations which follow, the product AT is chosen to be 10. This choice is

arbitrary; however the results are similar for other relatively small values of AT

Figure 1 shows ten simulations of M; each row of points in Figure 1 represents one sim-
ulation. The regularity of the simulations in Figure 1 is of note: if M is observed from time

0 to 7, then M is guaranteed to have exactly 7 points in this interval.

The self-correcting behavior of M may be demonstrated graphically. Suppose we look
at the processes in Figure 1 and focus on a certain interval ({1, ¢3] of transformed time, e.g.
(4,5]. If M is indeed self-correcting, then we would expect to see relatively few points in (4, 5]
among processes that have many points in [3,4], and more points in (4,5] among processes

with few points in [3,4].

Figure 2 shows how M(4, 5] relates to M[3,4], for 1500 simulations. The data are per-

turbed slightly so that all the points can be seen. The dashed line is fit by least squares, the
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[ * * * L 2 I ]

0 5 10 15
transformed time

Figure 1: Ten simulations of M

solid line by loess. The downward slope is readily apparent, confirming the self-correcting

nature of M.

The behavior of M can also be inspected by examining its conditional intensity A, (%)
in (4). Figure 3 shows the conditional intensity process A;; for the bottom-most simulated
Poisson process shown in Figure 1. The points of M are depicted at the bottom of Figure 3.
The volatility of Ay, is evident: note that if M were a unit-rate Poisson process, Ay, would

be 1 everywhere. Instead, Ay (t) ranges from .4 to more than 3.
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Figure 2: Plot of M(4,5] versus M[3,4], for 1500 Simulations

From equation (4), given AT and ¢, the random variable A,;(¢) depends only on m, the
number of points M has between 0 and {. In particular, if m < ¢, then A;(¢) > 1, and if
m > t, then Ay (t) < 1. Again, this verifies self-correcting behavior: when m is low (i.e. few

points have occurred), Ay, is high, and vice versa.

Figure 4 shows how Ay (?) decays with m, when ¢ = 4.5. Although the general trend seen
in Figure 4 appears to hold for various ¢, the rate of decay depends on t. When ¢ is large,
Ay (t) decays very rapidly with m for m near ¢. This can be seen by comparing Figure 4 with

Figure 5, which shows A, (%) as a function of m as in Figure 4, but with ¢t = 12.5 instead of 4.5.
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conditional intensity
00 05 10 15 20 25 3.0

Figure 3: Simulation of Ay,

A perspective plot summarizing the general dependence of Ay;(t) on m and ¢ is given in
Figure 6. One sees that, for a given value of ¢, A;;(¢) decreases quickly as m exceeds ¢, and

again that this decay is faster for larger t.

6 Summary and Conclusions

The rescaled or stepping stone process M investigated here appears to be a natural point
process analog of the Brownian Bridge. Both processes are constrained at the bounds of

their support, and they are closely related asymptotically as shown in Section 4.
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o s 10 15 20 25 30
m

Figure 4: Ay (t) vs. m, for t = 4.5

conditional intensity
00 05 10 15 20 25 30 35

o s 10 15 20 25 30
m

Figure 5: Ay (¢) vs. m, for t = 12.5

The process M, arising from such simple and basic premises, is shown to have a very
complex, self-correcting nature. This stems from the fact that M is guaranteed to average
exactly one point per unit of transformed time. The situation is similar to the case of linear

regression, where the residuals are guaranteed to have mean zero.

As demonstrated from both simulations and direct calculation, the self-correcting behav-

jor in M is quite substantial. The conditional intensity of M is seen to vary wildly, rather
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Figure 6: Perspective plot of A;(¢) vs. t and m

than remain constant

The conclusion that M is essentially similar to a Poisson process
therefore appears not to be justified

The present work shows that even in the simplest case, where the original process NV
is a stationary Poisson process on the line, the residual process is far from Poisson when

AT is small. Preliminary investigation suggests that the present results extend to the case

where N is a more complicated point process, e.g. a non-stationary, non-Poissonian, and/or
multi-dimensional point process
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