UCLA UCLA Electronic Theses and Dissertations

Title

Defining the Chromatin Signatures at Regulatory Regions of Tissue Specific Genes

Permalink https://escholarship.org/uc/item/9d65s4q6

Author Edwards, Miguel

Publication Date 2014

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA

Los Angeles

Defining the Chromatin Signatures at Regulatory Regions of Tissue Specific Genes

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Biology

by

Miguel Edwards

ABSTRACT OF THE DISSERTATION

Defining the Chromatin Signatures at Regulatory Regions of Tissue Specific Genes

by

Miguel Edwards Doctor of Philosophy in Molecular Biology University of California, Los Angeles, 2014 Professor Stephen T. Smale, Chair

The activation of tissue specific genes relies upon the precise orchestration of a number of events that result in the initiation of transcription upon lineage specification. This process is heavily dictated by the chromatin environment both at the promoter and distal sequences, as well as by the availability of transcription factors necessary for activation. A critical role is played at distal regulatory sequences, which often are the first sites to be engaged by key regulatory proteins. This interaction often promotes a chromatin environment that is necessary for the activation of the gene and results in the recruitment of additional sequence specific factors and a direct interaction with the promoter to initiate transcription. Understanding the properties of enhancer elements for tissue specific genes is important for a clear understanding of the mechanisms of activation. A number of studies have shown that enhancers are marked long before the activation of the gene takes place, in some cases as early as the embryonic stem cell stage. A detailed study described an unmethylated window within the enhancer of the Ptcra locus. Further analysis showed the enhancer mark to be regulated by sequence specific binding factors. These studies lacked the appropriate chromatin environment, which we know to be important. Here we use a bacterial artificial chromosome containing the Ptcra locus to demonstrate that the enhancer mark persists in a chromatin context but is not regulated in the manner described in a non-native chromatin context.

We then expand our studies to global tissue specific gene expression in order to understand more broadly the regulatory properties the define tissue specific genes. Parsing the mechanisms that drive tissue specific gene expression is critical for an understanding of pluripotency and tissue specificity. Here we use deep chromatin RNA-sequencing to accurately quantify the transcriptome of pluripotent stem cells and four primary differentiated cell types – E14.5 cortical neurons, CD4⁺ CD8⁺ thymocytes, bone marrow-derived macrophages and hepatocytes, in mouse. We define tissue specific genes with the broadest dynamic range in expression and define the chromatin properties at their promoters. Separating tissue specific genes with the largest dynamic range in expression allowed us to uncover cell type specific differences in the fundamental promoter properties. The dissertation of Miguel Edwards is approved by:

Arnold J. Berk

Guoping Fan

William Lowry

Kathrin Plath

Stephen T. Smale, Committee Chair

University of California, Los Angeles

In dedication to my wife, Janel

TABLE OF CONTENTS

Abstract of the Dissertation		ii
Acknowledgements		
Vita		viii
Chapter 1	Introduction – Pluripotency, Tissue Specificity and the Transcriptome	1
	References	25
Chapter 2	The Tissue Specific Enhancer of pTCR α Persists in an	35
	Unmethylated State in a Chromatinized Context	
	In Embryonic Stem Cells	
	References	74
Chapter 3	Quantitative Analysis of Transcriptional Dynamics in	77
	Pluripotent and Differentiated Cells	
	References	158
Chapter 4	Concluding Remarks	162

Acknowledgements

I would like to thank my advisor, Stephen Smale, for his continued support and guidance throughout my time as a graduate student. I would like to thank the members of my thesis committee Arnold J. Berk, Guoping Fan, William Lowry, and Kathrin Plath for their help, guidance and support. I would also like to thank all past and present members who have been a part of my graduate journey, particularly Jian Xu, Scott Pope, Abe Chang, Kevin Doty, Justin Langerman and Prabhat Purbey. I am fortunate to have made lasting friendships with so many of you.

I would like to thank my wife and family for their continued love and support

2007	Bachelor of Arts, Biology Hunter College - City University New York
2005-2007	MARC Fellowship Hunter College - City University New York
2005-2007	Undergraduate Research Internship Hunter College - City University New York
2006	HHMI Exrop Undergraduate Research Scholar University of California, Berkeley
2007-2008	ACCESS Program University of California, Los Angeles
2008-present	Molecular Biology Institute University of California, Los Angeles
2009-2010	Teaching Assistant Department of Microbiology, Immunology and Molecular Genetics University of California, Los Angeles
2008-2011	Cellular and Molecular Training Grant University of California, Los Angeles

Vita

Presentations

Miguel Edwards, Constantinos Chronis, Jessica Grindheim, Kenneth Zaret, Matteo Pellegrini, Kathrin Plath, and Stephen Smale. **2014**. Quantitative Analysis of Transcription Dynamics in Pluripotent and Differentiated Cells. Maryland NIH

Chapter 1

Introduction

Pluripotency, Tissue Specificity and the Transcriptome

A. Transcriptome Profiling

One of the most fundamental questions in biology is based on our understanding that in complex multicellular organisms, all cells contain identical DNA content, yet, they have hundreds of different cell types, with distinct functions. The variations in cell types are based on differences in gene expression. The full complement of transcribed RNA in a given cell, i.e. the transcriptome, determines the proteins to be translated that will collectively impart both the form and function of a cell. To understand what drives functional outcomes and phenotypic differences is one of the most fundamental aspects of biology. Interrogating not only what genes are expressed but also the level of their expression is critical in order to continue making strides in our understanding of cellular identity. The importance of defining and quantifying transcriptomes is clear. We can study a variety of fundamental biological phenomena from development to disease, and infer the roles of single genes or groups of genes in these processes.

The earliest attempts to characterize mammalian transcriptomes began with the publication of the human expressed sequence tags (EST) database. In this study 609 human brain complementary DNA (cDNA) clones were used to generate ESTs. Sanger sequencing of those clones resulted in the identification of 337 novel genes (Mark D. Adams, 1991). The utility of ESTs at this early stage was in discovery. It was not until the serial analysis of gene expression (SAGE) method was developed, that transcriptomes began to be interrogated in a somewhat global manner. SAGE allowed for the analysis of thousands of transcripts with relative abundancies, which simply could not be achieved cost effectively by sequencing of ESTs (Victor E. Velculescu, 1995). Almost

concurrently a new and powerful high-throughput method to quantify gene expression arose, microarrays.

A 1. Microarray Technology

The expansion of cDNA databases with sequences from a number of organisms precipitated the opportunity for microarray technology. Knowing some or many of the sequences expressed in a cell type or organism, one could use this information to quantify the expression of those corresponding genes. By amplifying cDNA sequences from Arabidopsis thaliana and depositing individual clones into single wells of a 96well plate, Schena et. al., had created a library which could be used to quantify the expression of those Arabidopsis genes (Schena M., 1995). Using robotics, samples from the plate were printed on glass slides. Chemical and heat treatment attached the DNA to the slide and denatured the DNA making it accessible for complementary hybridization. The mRNA to be interrogated was then reverse transcribed with the incorporation of fluorescent dyes. After hybridization of the labeled cDNA with the slide and subsequent washing, a laser scanned the slide. The intensity of the light was then used as a measure of expression. Over the next decade and through many iterations of the microarray, a vast amount of valuable information has been gathered. There are over 520,000 individual microarray experiments archived in the Gene Expression Omnibus (GEO) repository (John H Malone, 2011). Despite this success there are still a number of limitations associated with microarrays, some have been overcome but many remain. One of the most glaring deficiencies of microarrays is the reliance upon the knowledge of existing sequences. With the invention of tiling arrays, the reliance on existing knowledge of genome

structure was mitigated. However, limitations due to cross-hybridization, normalization and saturation have remained. These issues cause high background, difficulties in comparing across experiments and a limited dynamic range, respectively.

A 2. RNA Sequencing

The arrival of Next-Generation Sequencing (NGS) impacted the study of the transcriptome in an unprecedented manner. With this novel method of high-throughput DNA sequencing, it became possible to sequence millions of short sequences simultaneously i.e. in a massively parallel fashion. Out of this innovation sprung the method RNA sequencing (RNA-Seq), which now provides us with an unparalleled opportunity to identify and accurately quantify transcripts. One of the first demonstrations of the utility of RNA-Seq was the analysis of the LNCaP transcriptome, a prostate cancer cell line (Bainbridge et al., 2006). In this study expression was detected from over 10,000 gene loci, 25 novel splicing events were detected, 1,500 single nucleotide polymorphisms were detected, and thousands of sequences were mapped to regions of the genome where transcription was not previously predicted. Two years later more evidence for the utility of RNA-Seq emerged with the sequencing of tens of millions of ~30bp reads, compared with only 200,000 110bp reads in the LNCaP study. Three papers using RNA-Seq and Illumina sequencing technology demonstrated a high reproducibility of technical replicates, r = 0.96, higher sensitivity than microarrays, a broader dynamic range than microarrays, the ability to identify splice junctions and the capability to identify novel transcripts without prior knowledge of sequence. (Mortazavi

et al., 2008; Sultan et al., 2008; Wilhelm et al., 2008). RNA-Seq was poised to supplant microarray technology and accelerate our understanding of complex eukaryotic genomes.

Although RNA-Seq overcame many of the challenges associated with microarray technologies, it brought a number of new challenges of its own, namely bioinformatic analysis. It took almost ten years for some type of consensus to be reached for microarray analysis methods (David B. Allison, 2006). Eight years on from the invention of RNA-Seq new analysis methods continue to arise, with no clear consensus in sight. Moreover, the technology continues to evolve rapidly with increased read lengths, paired-end sequencing, strand-specific sequencing and single cell sequencing, compounding the ability to reach a consensus (Ozsolak and Milos, 2011; Parkhomchuk et al., 2009; Tang et al., 2009). The most significant issues revolve around the massive amounts of data; strategies must be devised to process, manage and store that data. Mapping millions of sequences back to a reference genome is no small task. As the number of reads has continued to increase the fastest and most efficient methods for alignment have risen to the top e.g. Bowtie (Langmead et al., 2009). Those methods continue to be revised and updated.

Despite the addition of new challenges, RNA-Seq still provides the best opportunity to date for the scientific community to fully grasp the complexity of the eukaryotic genome. Ultimately the goal of defining transcriptomes is to understand phenotype and phenotypic differences. An accurate and quantifiable assessment of transcriptomes in different cell types, developmental stages and disease states, will be indispensable in our efforts to further our understanding of gene regulation. One cell type of great interest is the embryonic stem (ES) cell.

B. Embryonic Stem Cells

Embryonic Stem (ES) cells, derived from the inner cell mass (ICM) of the preimplantation blastocyst, are characterized by their ability to self-renew while retaining the capacity to differentiate into a multitude of distinct cell types. The establishment of ES cell lines demonstrated, that under the appropriate conditions, ES cells have the capacity to proliferate indefinitely, i.e. self-renewal. Germline transmission and *in vitro* differentiation demonstrated the ability of mouse and human ES cells respectively, to differentiate into cells from all three germ layers, i.e. pluripotency (M. J. Evans, 1981; Martin, 1981; Thomson, 1998). These fundamental properties are the reason ES cells hold such promise as a model for developmental regulation, different ion and therapeutic application.

Fusion of ES cells with somatic cells results in the conversion of the somatic cells to a pluripotent state (Cowan et al., 2005; Jaenisch et al., 2004). Overexpression of defined transcription factors (Oct3/4, Sox2, Klf4, and c-Myc) in both mouse and human fibroblasts also results in a conversion to an induced pluripotent state (Takahashi et al., 2007; Takahashi and Yamanaka, 2006). Defining the genes that represent the ES cell phenotype will undoubtedly facilitate our understanding of the pluripotent state and reprogramming. Moreover, a quantitative understanding of the ES cell transcriptome will bring further insight. This perspective will allow for genes to be classified based on their levels of expression. A careful quantitative delineation of gene classes will provide an opportunity to examine their regulatory properties, including the prevalence of different

promoter classes, their DNA methylation and histone modification signatures, and their interactions with key transcription factors.

C. Pluripotency

Substantial progress has been made in understanding the key determinants of pluripotency. These molecular mechanisms consist of complex signaling pathways, genetics and epigenetics all intertwined. The aforementioned are regulated during development allowing for the appropriate transitions between cellular states (Chambers and Tomlinson, 2009; Chen et al., 2008b; Marks et al., 2012; Marks and Stunnenberg, 2014; Ying et al., 2008). The transcription factors that regulate gene expression in ES cells are critical to ES cell identity. Oct4, Sox2 and Nanog have been termed the "core pluripotency network" for their roles in both establishment and maintenance of pluripotency, with null mutations in each unable to maintain pluripotency (Avilion et al., 2003; Dejosez and Zwaka, 2012; Jennifer Nichols et al., 1998; Kaoru Mitsui et al., 2003). These transcription factors bind to regulatory DNA sequences and control the transcription of many downstream genes necessary for the maintenance of pluripotency. These transcription factors also bind their own regulatory sequences and regulating their own expression (Boyer et al., 2005; Chen et al., 2008a; Chen et al., 2008b; Loh et al., 2006). This in effect creates a complex regulatory network sensitive to a number of stimuli.

Oct4, a homeodomain transcription factor encoded for by the gene *Pou5f1*, has an expression pattern restricted to totipotent, pluripotent and germ cells (Dejosez and Zwaka, 2012). Oct4 has been shown to be required for pluripotency both *in vivo* (Hitoshi

Niwa, 2000; Jennifer Nichols et al., 1998), and *in vitro* (Thomson et al., 2011). Silencing of Oct4 leads to the differentiation of ES cells and the ICM into trophoblast-like cells (Jennifer Nichols et al., 1998), while overexpression results in differentiation of ES cells into primitive endoderm and mesoderm (Hitoshi Niwa, 2000).

Sox2, the high mobility group (HMG) box containing transcription factor, appears to play a more nuanced role based on the evidence that inducible Sox2 null ES cells resemble the loss of Oct4 phenotype, differentiation into trophectoderm like cells (Masui et al., 2007). Furthermore, overexpression of Oct4 can rescue Sox2 null ES cells from differentiation but interestingly, Nanog cannot (Masui et al., 2007). The loss of Sox2 leads to the aberrant expression of both positive and negative regulators of Oct4, resulting in the eventual decrease in Oct4 expression and differentiation to trophectoderm (Masui et al., 2007). Sox2 has also been shown to act cooperatively with Oct4, co-occupying numerous promoters (Avilion et al., 2003). Thus, it appears the role of Sox2 is in maintaining the expression of transcription factors that are necessary for the precise expression of Oct4.

Nanog, a homeodomain containing transcription factor, has a similar expression pattern to Oct4 (Ian Chambers et al., 2003; Kaoru Mitsui et al., 2003). However, Nanog null ES cells differentiate into parietal endoderm-like cells (Ian Chambers et al., 2003; Kaoru Mitsui et al., 2003). Overexpression of Nanog bypasses the requirement of the signaling pathway downstream effector Stat3, for maintenance of ES cells *in vitro* (Kaoru Mitsui et al., 2003). These phenotypes define a distinct role of Nanog in the prevention of differentiation into extraembryonic endodermal lineages. The precise role of Nanog has become more complicated with the finding that Nanog ^{-/-} cells are able to self-renew and

also contribute to lineages outside of endoderm. (Chambers et al., 2007). Chambers et. al., posit Nanog may function to stabilize pluripotency of ES cells, instead of being absolutely required for maintenance. Oct4, Sox2 and Nanog lay the transcriptional foundation for the autoregulatory feedback mechanism necessary to maintain pluripotency.

C 1. Genetic Control of Pluripotency

Aside from these key transcription factors, a plethora of interacting partners have been described and our knowledge of the roles of these interacting partners continues to expand (Dejosez and Zwaka, 2012; Marks and Stunnenberg, 2014). Employing various genome-wide profiling techniques, from ChIP-chip to ChIP-Seq, a number of groups defined the binding sites of the core factors in both mouse and human ES cell genomes (Apostolou et al., 2013; Boyer et al., 2005; Hammachi et al., 2012; Jerabek et al., 2014; Kim et al., 2010; Loh et al., 2006; Ng and Surani, 2011; Orkin et al., 2008; van den Berg et al., 2010; Wang et al., 2006). From these studies hundreds of target genes were revealed and a number of important insights arose. Firstly, Oct4, Sox2 and Nanog appear to act co-operatively based on the high degree of overlap in their binding sites, particularly in human, 90% (Boyer et al., 2005; Loh et al., 2006). Secondly, the targets include actively transcribed genes known to be necessary for the prevention of differentiation. This list also includes genes that require repression in order to maintain an undifferentiated state. Other key targets include chromatin modifying enzymes and signal transduction pathway components (Boyer et al., 2005; Kim et al., 2008; Loh et al., 2006). Thirdly, there is a correlation between the presence of the core pluripotency transcription

factors and gene activity. In the studies performed Kim et. al., the binding of nine transcription factors (Nanog, Oct4, Sox2, Klf4 and MycDax1, Nac1, Zfp281 and Rex1) was assessed using biotinylation mediated ChIP-chip, in mouse ES cells. Two major categories emerged from their studies: (1) genes bound by greater than four factors that were largely active, and (2) those bound by only a few factors that were largely inactive. Furthermore those active genes undergo repression upon differentiation (Kim et al., 2008). Taken together, Oct4, Sox2 and Nanog bind and activate genes necessary for the maintenance of pluripotency and self-renewal, while repressing genes involved in lineage specification.

After these initial findings, and with the development of induced pluripotency, a number of other key transcriptional regulators established their position within the pluripotency hierarchy, including the Myc transcription factors (Smith et al., 2011). c-Myc was implicated in cell cycle control, DNA replication/repair and metabolism based on genome-wide binding profiles (Kim et al., 2008). However, the roles of N and c-Myc in pluripotency remained unclear due to their phenotypes only becoming apparent at later stages in development (Charron et al., 1992; Stanton et al., 1992). In addition N or c-Myc deficient ES cells remain pluripotent and replicate indefinitely (Malynn et al., 2000). Using a double knockout strategy (dKO) to circumvent the redundancies, Varlakhanova et. al, showed N and c-Myc to be critical for pluripotency and self-renewal (Varlakhanova et al., 2010). These findings were corroborated in a separate study with the addition of a mechanism for the maintenance of pluripotency. Smith et. al, showed the dKO resulted in differentiation to primitive endoderm due to the upregulation of Gata6 (Smith et al., 2010). It also became apparent that Myc has the potential to regulate

a completely different group of genes from that of the core pluripotency factors, based on its binding profile (Chen et al., 2008b; Kim et al., 2010; Smith et al., 2011). In conjunction with the finding that the exclusion of c-Myc drastically reduces the efficiency of reprogramming somatic cells to induced pluripotent stem cells, c-Myc has planted itself firmly within the pluripotency network (Wernig et al., 2008).

C 2. Epigenetic Control of Pluripotency

There is an ever-expanding role for epigenetic mechanisms in pluripotency. These mechanisms have continued to be refined as our understanding of the complex transcriptional networks involved in pluripotency deepens. Chromatin structure, histone modifications and DNA methylation are among these mechanisms.

One of the early implications of epigenetic mechanisms was the finding that ES cell chromatin is fundamentally different from that of differentiated cells (Meshorer et al., 2006). ES cells were determined to have an "open" chromatin configuration with a more dynamic exchange of chromatin components compared with that of differentiated cells. Heterochromatin protein HP1- α , involved in chromatin compaction, shows fewer and more diffuse foci in ES cells compared to lineage committed cells. This so called "hyperdynamic" state is considered important for the maintenance of plasticity, and thus critical to the undifferentiated ES cell state (Meshorer and Misteli, 2006; Meshorer et al., 2006).

Further support for epigenetic mechanisms arose with the finding that genes encoding developmental regulators appeared to be poised for activation upon lineage commitment based on modifications at the histone level. (reviwed by Voigt et al., 2013a).

Genome-wide ChIP-chip analyses in ES cells identified a class of genes whose promoters were marked by histone modifications associated with both activation and repression, simultaneously. These "bivalent" domains consist of histone H3 Lysine 4 trimethylation (H3K4me3), and histone H3 Lysine 27 trimethylation (H3K27me3). Upon differentiation many of these genes resolve to either the active or repressive mark. (Bernstein et al., 2006; Boyer et al., 2006a). The sum of these findings led to the hypothesis that this poised state allows for the appropriate expression of these developmental regulators in a timely manner. Much has been learnt about the mechanisms involved in the establishment of these marks but the lack of functional evidence for their role in development leaves this subject in somewhat of a controversy.

The polycomb group proteins (PcG) were identified in *Drosophila* as mediators of repression for the developmental Hox genes (Lewis, 1978). These highly conserved proteins act in two multi-subunit complexes termed polycomb repressive complexes (PRC) 1 and 2, modifying histone tails (Di Croce and Helin, 2013). PRC2 is comprised of the core PcG proteins Ezh1/2, Eed and Suz12. Ezh1/2 is the catalytic component responsible for mono-, di- and trimethylation of H3K27. H3K27me3 serves at the binding surface for CBX, a chromodomain containing subunit of PRC1 and binds along with family members of PCGF, HPH and Ring1A/1B. Ring1A/1B catalyzes the monoubiquitination of histone 2A at Lysine 119 (H2AK119Ub). Together these proteins mediate repression in a multiplayer fashion including chromatin compaction and blocking of polymerase II (Pol II) elongation (Di Croce and Helin, 2013).

Defining the PcG proteins specific role in maintenance of pluripotency has been somewhat hampered by the existence of many homologus proteins with overlapping

function. Currently one of the few pieces of evidence for the direct implication of PcG proteins in pluripotency is the Ring1A/1B dKO phenotype. The dKO results in loss of ES cell morphology and the inability to proliferate indefinitely due to the derepression of a many PRC 1 targets (Endoh et al., 2008). Although the direct evidence for the requirement of PRC1 and 2 in pluripotency and self-renewal is lacking, it is evident that PcG proteins play a key role in the ES cell differentiation program.

D. Reprogramming of Somatic Cells to an Embryonic like State

The landmark paper from Takahashi and Yamanaka in 2006 fundamentally changed our understanding of the pluripotent state. Using the viral overexpression of four transcription factors, Oct4, Sox2, Klf4 and c-Myc (OSKM), Takahashi and Yamanaka were able to convert mouse embryonic fibroblasts (MEFs) and adult human fibroblasts into induced pluripotent stem (iPS) cells (Takahashi et al., 2007; Takahashi and Yamanaka, 2006). Independently the Thompson group generated human iPS cells using OS and two other key contributors to ES cell identity, NANOG and LIN28 (Yu et al., 2007). Since that time researchers have devised many methods to achieve reprogramming, including the substitution of each of the original factors by other proteins, micro-RNAs, chromatin modifiers and small molecules (Anokye-Danso et al., 2011; Hussein and Nagy, 2012; Ma et al., 2013; Papp and Plath, 2013). Most recently, Oct4, in the OSKM cocktail, was replaced by mesodermal lineage specifier GATA3 in both mouse and human (G3SKM) (Montserrat et al., 2013; Shu et al., 2013). Not only are we capable of converting multiple somatic cell types into iPS cells, but also converting fibroblasts into numerous other lineages i.e. transdifferentiation (Hussein and Nagy, 2012; Vierbuchen and Wernig, 2012).

By most accounts iPS cells are similar to their embryonic equivalent in terms of functionality, gene expression, DNA methylation and the distribution of chromatin modifications (Lowry, 2012; Plath and Lowry, 2011). Much of the focus remains on understanding and overcoming the inefficiency of the process in an effort to gain insights into the molecular mechanisms that drive reprogramming. The widely accepted model is that the factors activate the core pluripotency transcriptional network. This autoregulatory network establishes the pluripotent state, which is then maintained by endogenous factors. Simultaneously the overexpressed factors modify the expression of the genes controlling the differentiated cell type in order to facilitate and solidify the pluripotency network (Chou and Cheng, 2013). This remarkable finding presents a wonderful opportunity for the modeling of diseases and the generation patient specific iPS cells for personalized regenerative medicine.

E. Epigenetic Regulation of Gene Expression

The regulation of gene expression is predominantly controlled by the intrinsic properties of the DNA and the transcription factors that bind regulatory sequences. There are additional layers of heritable regulation that can occur without any changes in DNA sequence. These covalent modifications, added to both DNA and histones, have become widely accepted as a major contributing factor in gene regulation and now encompass the field of epigenetics.

E 1. DNA Methylation

DNA methylation is one of the most well studied epigenetic modifications. It is a critical modification involved in a wide range of cellular processes including development, transcription, X chromosome inactivation, chromosome stability, suppression of mobile genetic elements and genomic imprinting (Jones, 2012; Smith and Meissner, 2013). In mammals DNA methylation, the addition of a methyl group, most often occurs on the fifth carbon of cytosines (5mC), in the context of CpG dinucleotides. Genome-wide methylation patterns remain mostly static once established in early embryogenesis. The establishment of this covalent modification is initiated by *de novo* methyltransferases and then propagated throughout somatic differentiation by maintenance methyltransferases. In mammals approximately 70-80% of CpGs are methylated (Kohli and Zhang, 2013; Smith and Meissner, 2013; Wu and Zhang, 2014) While the majority of the genome is methylated there are specific regions which tend to be refractory to DNA methylation, CpG Islands (CGI). These regions contain a high density of CG dinucleotides and are often found at transcriptional start sites. This bimodal distribution shapes of our understanding of DNA methylation (Kohli and Zhang, 2013; Smith and Meissner, 2013).

E 1.1 CpG Islands

Methylated cytosines spontaneously deaminate to thymine. This mutagenic property has resulted in the underrepresentation of CG dinucleotides throughout

mammalian genomes (Deaton and Bird, 2011; Illingworth and Bird, 2009). This property suggests remaining CpGs have been preserved because they are important for function and or these CGI are rarely methylated and avoid mutagenesis. CGI's were first identified in mouse genomic DNA using a methyl specific restriction enzyme. This cleavage resulted in a fraction of the genome that was highly fragmented. Those fragments were dense clusters of unmethylated CpG dinucleotides (Bird et al., 1985; Cooper et al., 1983). Quantification and sequence analysis determined these fragments to encompass ~26,000 distinct CGIs (Antequera and Bird, 1993). Characterization of these sequences resulted in the original definition of a CGI; regions greater than 200bp with a G + C content greater than 50% and a ratio of observed CpG frequency to expected CpG frequency of 0.6 (Gardiner-Garden and Frommer, 1987). This definition continues to be refined with advances in computational analysis methods.

CGIs are the most common promoter type with more ~70% of annotated promoters associated with a CGI (Blackledge et al., 2013; Deaton and Bird, 2011). CGIs are most often associated with housekeeping genes and to a lesser extent tissue-specific and developmental regulator genes (Larsen et al., 1992; Zhu et al., 2008). There are CGIs located in intergenic regions separate from annotated genes but many also have the ability to initiate transcription (Illingworth et al., 2010; Maunakea et al., 2010). Many studies provide evidence supporting the relationship between CGIs and the initiation of transcription.

E 1.2 DNA Methylation Enzymes

Three conserved enzymes catalyze DNA methylation, DNA methyltransferase (DNMT) 1, DNMT3A and DNMT3B. DNMT1, which is expressed ubiquitously, is associated with replication foci in replicating cells (Bestor et al., 1988; Leonhardt et al., 1992). DNMT1 knock out ES cells result in wide spread demethylation. The preference of DNMT1 for hemi-methylated CpGs in combination with the previous study indicated DNMT1 functioned as a maintenance methyltransferase (Lei et al., 1996; Smith and Meissner, 2013). DNMT3a and DNMT3b, however function as *de novo* methyltransferases, i.e. the introduction of 5mC at unmethylated and not hemimethylated sites. Evidence supporting this notion included knock out studies in mice showing both 3a and 3b are required for *de novo* methylation in ES cells and imprinting in germ cells (Hata et al., 2002; Okano et al., 1999). More recently evidence suggests DNMT1 alone is not sufficient for the long-term maintenance of methylation complicating our initial understanding (Jones and Liang, 2009).

The three essential enzymes mentioned above are not the only methyltransferases. DNMT2 and DNMT3L exist in mammalian cells. DNMT2 knock out ES cells have no effect on global methylation levels suggesting no involvement in propagation of DNA methylation patterns *in vivo* (Li et al., 1992; Okano et al., 1999). DNMT3L is related but lacks DNA methyltransferase activity. It does however form complexes with DNMT3a and 3b and has been shown to modulate their activity (Goll and Bestor, 2005). A number of additional roles have begun to emerge for DNMT3L and the extent of its involvement in the maintenance and establishment of DNA methylation patterns continues to be explored (Hata et al., 2002).

E 1.3 Functions of DNA Methylation

DNA methylation is most commonly known for its functions in long term silencing of gene transcription. Advances in genome wide mapping of this epigenetic feature have added a much broader view of the contexts in which DNA methylation acts. We are beginning to understand functional differences based on observations in these different contexts, from transcriptional start sites, gene bodies, regulatory sequences to repeat elements. The role of DNA methylation is expanding and subtle differences based on context must be integrated into our existing knowledge (Jones, 2012).

Methylated cytocines can prevent certain transcription factors from accessing their target sequences thus preventing key steps necessary for the initiation of transcription. Specific chromatin modifying enzymes can recognize methylated CpGs, and recruit co-repressors resulting in silencing (Han et al., 2011; Jones, 2012; Jones and Liang, 2009). For example, the methyl-CpG-binding protein 2 (MeCP2) recognizes symmetrically methylated CpGs and recruits a co-repressor complex, Sin3a, to cause chromatin compaction (Klose and Bird, 2006).

E 1.4. DNA Demethylation

Although DNA methylation is considered a relatively stable epigenetic modification there are specific times in early mammalian development when these patterns are very dynamic. Genome wide demethylation of both maternal and paternal genomes takes place in early embryogenesis (Howlett and Reik, 1991; Mayer et al., 2000; Monk et al., 1987). Genome wide demethylation also occurs in primordial germ cells as they migrate (Hajkova et al., 2002). There are also instances of site-specific DNA

demethylation of tissue specific genes resulting in activation upon lineage specification (Frank et al., 1991; Warnecke and Clark, 1999; Xu et al., 2007).

There are two mechanisms of demethylation: passive and active demethylation. Passive demethylation occurs through a lack of maintenance methylation after replication. This replication dependent mechanism results in the gradual loss of methylation after multiple rounds of division (Howlett and Reik, 1991). The exclusion of the maternal DNMT1 from the nucleus, in conjunction with the timing of the demethylation of the maternal genome points to a passive mechanism (Carlson et al., 1992). In contrast, both the paternal and primordial genomes are demethylated in a rapid manner. In the case of the paternal genome global demethylation takes place without undergoing one cell division making passive demethylation highly unlikely (Mayer et al., 2000; Oswald et al., 2000). Loci specific active demethylation has also been reported in somatic cells in the absence of replication (Bruniquel and Schwartz, 2003; Martinowich et al., 2003). This evidence suggests an active mechanism for the removal of 5mC in the absence of cell division.

Although a specific demethylase has not been identified there are a number of proposed multistep mechanisms for demethylation, of which a few have gained traction (reviewed by Kohli and Zhang, 2013; Wu and Zhang, 2010). These mechanisms include: (1) Direct enzymatic removal of the methyl group by methyl-CpG-binding proteins such as MDB2. (2) Removal of 5mC by the base excision repair (BER) pathway mediated by DNA glycosylases such as T DNA glycosylase. (3) Deamination of 5mC to thymine by cytidine deaminases such as activation-induced deaminase (AID), followed by BER of the mismatch. (4) Direct removal of the 5mC by the nucleotide excision repair (NER)

pathway mediated by GADD45A. (5) The conversion of 5mC to 5-hydroxymethyl cytosine (5hmC) by the ten-eleven translocation (TET) family proteins followed by BER.

E 2. Histone Modifications

The nucleosome is the core structural unit into which eukaryotic genomes are packaged. The nucleosome is an octamer of four core histone proteins, H2A, H2B, H3 and H4 (two copies of each). Approximately 147bp of DNA are wrapped around each nucleosome. Histones contain flexible N- and C-terminal domains, which are subject to a bevy of dynamic posttranslational modifications from methylation, acetylation, ubiquitination, sumolyation and ADP-ribosylation of lysine (K) residues, to methylation and citrullination of arginine (R) residues, and phosphorylation, acetylation and glycosylation of serine (S), threonine (T), and tyrosine (Y) residues (Campos and Reinberg, 2009; Patel and Wang, 2013; Rothbart and Strahl, 2014). The ability of these posttranslational modifications to impact chromatin structure has added a new layer of complexity to the regulation of key processes from transcription to DNA repair. Great strides have been taken in our understanding of how these modifications affect chromatin, exert specific changes in response to stimuli, and interact with each other as well as other epigenetic modifications, such as DNA methylation. Posttranslational modifications are deposited and erased in a histone and sequence specific manner. Enzymes recognize these modifications, which serve as a platform for further recruitment of proteins with chromatin remodeling activity. The ordered recruitment of chromatin modifying proteins results in dynamic changes and thus affects chromatin dependent processes, such as the accessibility or inaccessibility to a transcriptional start site

(reviewed by Patel and Wang, 2013; Rose and Klose, 2014; Suganuma and Workman, 2011; Swygert and Peterson, 2014).

ChIP-seq has enabled us to determine the genome-wide distribution of a number of these marks. One of the most well characterized histone modifications is lysine methylation (Wozniak and Strahl, 2014). Histone lysine methylation predominantly occurs on histone H3 at K4, K9, K14, K18, K23, K27, K36 and K79 and on histone H4 K20. Histone methylation of lysine results in different effects depending on which residue is modified. Direct links to transcriptional regulation have been observed for a number of these residues including transcriptional activation, H3K4, K36 and K79, and transcriptional repression, H3K9 and H3K27 (Wozniak and Strahl, 2014). Lysine methylation does not change the charge of histones like acetylation does, so, regulation of chromatin state is based on recruitment of additional proteins to facilitate the modulation of chromatin. To add to the complexity of gene regulation, lysine residues can be modified with up to three methyl groups, mono- di- and trimethyl. Moreover, mono-, di-, and trimethylation can be specifically recognized by different modulatory proteins and thus instruct distinct outcomes (Rose and Klose, 2014; Swygert and Peterson, 2014; Wozniak and Strahl, 2014).

Lysine acetylation is highly correlated with chromatin accessibility and transcriptional activation. The addition of an acetyl group can occur on a plethora of lysine residues and has been reported on the tails of each of the core histones H2A, H2B, H3 and H4 (Kimura et al., 2005; Shahbazian and Grunstein, 2007). The acetylation of lysine neutralizes its positive charge. This fact provided a simple explanation for the alteration of chromatin properties. Upon neutralization of the lysine, the electrostatic

interactions between the histone and DNA would become weaker, allowing access to the underlying DNA. Although attractive more evidence has accumulated for another method to regulate chromatin properties, the recognition of acetylated lysines by chromatin remodeling enzymes containing domains that "read" acetyl marks (Rothbart and Strahl, 2014; Swygert and Peterson, 2014).

In the case of both methylation and acetylation a number of protein domains have been discovered that can specifically recognize these modifications. Bromodomain containing proteins can recognize and bind acetylated lysines. Chromodomain containing proteins can recognize and bind methylated lysines. To complicate matters further, some domains are capable of reading multiple modifications as well as unmodified residues e.g. Plant homeodomain (PHD) fingers, which can bind unmodified, methylated and acetylated lysines. To complicate matters even further, a number of individual proteins and large protein complexes contain multiple distinct domains (Rothbart and Strahl, 2014). With the plethora of existing modifications and the multitude of domains that can read them, the potential combinations, which could lead to different functional outcomes, are staggering.

E 3. Chromatin Remodeling

The nucleosome has a high affinity for DNA and so presents a substantial barrier for enzymes that require accessibility to the DNA. Higher order chromatin compaction can also serve as a further impediment for such processes. Several mechanisms exist to alter the position, stability and compaction of chromatin. Posttranslational modifications as previously discussed are one such way. Another method is the incorporation of histone

variants, such as H2AZ and H3.3, which can alter stability and provide additional residues for modification. A third mechanism is the use of ATP-dependent chromatin remodeling enzymes. Using the energy garnered from ATP hydrolysis, chromatin remodelers can position, evict or exchange nucleosomes (Swygert and Peterson, 2014).

Much has been learned about the interplay between posttranslational modifications and the action of ATP-dependent chromatin remodelers. Remodelers fall into four main families which all contain the characteristic ATPase domain: SWI/SNF, INO80, ISWI and CHD. Collectively these remodelers can cause transcriptional activation and repression. Many of these enzymes can also directly modulate histone modifications and are often part of larger protein complexes. SWI/SNF contains a bromodomain that recognizes acetylated lysines residues. It has been shown in both yeast and humans that acetylation is necessary for the recruitment of SWI/SNF (Swygert and Peterson, 2014). CHD3/4 (Mi-2 β) contains tandem chromodomains as well as multiple PHD fingers that interact with H3K9 of K36. CHD3/4 is a core component of the nucleosome remodeling and deacetylation (NuRD) complex, which also contains proteins that remove acetyl groups, HDACs. Also belonging to this complex are the methyl-CpGbinding proteins MB2 and 3. The NuRD complex exerts a multifaceted approach, it can recognize acetylated lysines and deacetylate them, it can slide and reposition nucleosomes, and it can bind methylated CpG dinucleotides, resulting in the rapid formation of heterochromatin and the silencing of transcription (Allen et al., 2013; Swygert and Peterson, 2014). Complex mechanisms have evolved to interpret multiple epigenetic inputs. How these different signals are coordinated to result in a specific output continues to be a focus of intense research.

F. Tissue Specificity

The development of multicellular organisms requires the orchestration of a multitude of molecular processes. During differentiation cells progressively lose their developmental potential. This continued restriction in lineage potential results in the specification of cell types that carry out distinct cellular functions. These developmental transitions depend on the correct timing and appropriate expression of a cohort of genes controlled by both genetic and epigenetic mechanisms previously mentioned. Ultimately, mature cell types exhibit a characteristic gene expression profile. Within any give cell the expression profile can be divided into two main categories; genes required for basic cellular functions, and genes required for specialized cellular functions. The former are generally expressed in a wide variety of cell types, if not all, while the latter are expressed in a limited number of cell types or tissues. Genes that are restricted in such a manner are described as tissue specific. Understanding tissue specific gene expression patterns is critical for our understanding of the molecular mechanisms underlying cellular states, development, and disease (Meister et al., 2010; Ong and Corces, 2011; Song et al., 2013).

REFERENCES

Allen, H.F., Wade, P.A., and Kutateladze, T.G. (2013). The NuRD architecture. Cellular and molecular life sciences : CMLS *70*, 3513-3524.

Anokye-Danso, F., Trivedi, C.M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., Zhang, Y., Yang, W., Gruber, P.J., Epstein, J.A., *et al.* (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell stem cell *8*, 376-388.

Antequera, F., and Bird, A. (1993). Number of CpG islands and genes in human and mouse. Proceedings of the National Academy of Sciences of the United States of America *90*, 11995-11999.

Apostolou, E., Ferrari, F., Walsh, R.M., Bar-Nur, O., Stadtfeld, M., Cheloufi, S., Stuart, H.T., Polo, J.M., Ohsumi, T.K., Borowsky, M.L., *et al.* (2013). Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming. Cell stem cell *12*, 699-712.

Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes & development *17*, 126-140.

Bainbridge, M.N., Warren, R.L., Hirst, M., Romanuik, T., Zeng, T., Go, A., Delaney, A., Griffith, M., Hickenbotham, M., Magrini, V., *et al.* (2006). Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC genomics 7, 246.

Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., *et al.* (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell *125*, 315-326.

Bestor, T., Laudano, A., Mattaliano, R., and Ingram, V. (1988). Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. Journal of molecular biology *203*, 971-983.

Bird, A., Taggart, M., Frommer, M., Miller, O.J., and Macleod, D. (1985). A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell *40*, 91-99.

Blackledge, N.P., Thomson, J.P., and Skene, P.J. (2013). CpG island chromatin is shaped by recruitment of ZF-CxxC proteins. Cold Spring Harbor perspectives in biology *5*, a018648.

Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., *et al.* (2005). Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells. Cell *122*, 947-956.

Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L.A., Lee, T.I., Levine, S.S., Wernig, M., Tajonar, A., Ray, M.K., *et al.* (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature *441*, 349-353.

Bruniquel, D., and Schwartz, R.H. (2003). Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nature immunology *4*, 235-240.

Campos, E.I., and Reinberg, D. (2009). Histones: annotating chromatin. Annual review of genetics 43, 559-599.

Carlson, L.L., Page, A.W., and Bestor, T.H. (1992). Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting. Genes & development *6*, 2536-2541.

Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M., Vrana, J., Jones, K., Grotewold, L., and Smith, A. (2007). Nanog safeguards pluripotency and mediates germline development. Nature *450*, 1230-1234.

Chambers, I., and Tomlinson, S.R. (2009). The transcriptional foundation of pluripotency. Development *136*, 2311-2322.

Charron, J., Malynn, B.A., Fisher, P., Stewart, V., Jeannotte, L., Goff, S.P., Robertson, E.J., and Alt, F.W. (1992). Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes & development *6*, 2248-2257.

Chen, X., Vega, V.B., and Ng, H.H. (2008a). Transcriptional regulatory networks in embryonic stem cells. Cold Spring Harbor symposia on quantitative biology *73*, 203-209.

Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V.B., Wong, E., Orlov, Y.L., Zhang, W., Jiang, J., *et al.* (2008b). Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell *133*, 1106-1117.

Chou, B.K., and Cheng, L. (2013). And then there were none: no need for pluripotency factors to induce reprogramming. Cell stem cell *13*, 261-262.

Cooper, D.N., Taggart, M.H., and Bird, A.P. (1983). Unmethylated domains in vertebrate DNA. Nucleic acids research *11*, 647-658.

Cowan, C.A., Atienza, J., Melton, D.A., and Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science *309*, 1369-1373.

David B. Allison, X.C., Grier P. Page, Mahyar Sabripour (2006). Microarray data analysis- from disarray to consolidation and consensus. Nature Reviews Genetics 7.

Deaton, A.M., and Bird, A. (2011). CpG islands and the regulation of transcription. Genes & development 25, 1010-1022.

Dejosez, M., and Zwaka, T.P. (2012). Pluripotency and nuclear reprogramming. Annual review of biochemistry *81*, 737-765.

Di Croce, L., and Helin, K. (2013). Transcriptional regulation by Polycomb group proteins. Nature structural & molecular biology *20*, 1147-1155.

Endoh, M., Endo, T.A., Endoh, T., Fujimura, Y., Ohara, O., Toyoda, T., Otte, A.P., Okano, M., Brockdorff, N., Vidal, M., *et al.* (2008). Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development *135*, 1513-1524.

Frank, D., Keshet, I., Shani, M., Levine, A., Razin, A., and Cedar, H. (1991). Demethylation of CpG islands in embryonic cells. Nature *351*, 239-241.

Gardiner-Garden, M., and Frommer, M. (1987). CpG islands in vertebrate genomes. Journal of molecular biology *196*, 261-282.

Goll, M.G., and Bestor, T.H. (2005). Eukaryotic cytosine methyltransferases. Annual review of biochemistry 74, 481-514.

Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., Walter, J., and Surani, M.A. (2002). Epigenetic reprogramming in mouse primordial germ cells. Mechanisms of development *117*, 15-23.

Hammachi, F., Morrison, G.M., Sharov, A.A., Livigni, A., Narayan, S., Papapetrou, E.P., O'Malley, J., Kaji, K., Ko, M.S., Ptashne, M., *et al.* (2012). Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency. Cell reports *1*, 99-109.

Han, H., Cortez, C.C., Yang, X., Nichols, P.W., Jones, P.A., and Liang, G. (2011). DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Human molecular genetics *20*, 4299-4310.

Hata, K., Okano, M., Lei, H., and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development *129*, 1983-1993.

Hitoshi Niwa, J.M., & Austin G. Smith (2000). Quantitative expression of Oct4/3 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics 24, 372-376.

Howlett, S.K., and Reik, W. (1991). Methylation levels of maternal and paternal genomes during preimplantation development. Development *113*, 119-127.

Hussein, S.M., and Nagy, A.A. (2012). Progress made in the reprogramming field: new factors, new strategies and a new outlook. Current opinion in genetics & development 22, 435-443.

Ian Chambers, D.C., Morag Robertson, J.N., Sonia Lee, and Susan Tweedie, a.A.S. (2003). Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells. Cell *113*, 643-655.

Illingworth, R.S., and Bird, A.P. (2009). CpG islands--'a rough guide'. FEBS letters 583, 1713-1720.

Illingworth, R.S., Gruenewald-Schneider, U., Webb, S., Kerr, A.R., James, K.D., Turner, D.J., Smith, C., Harrison, D.J., Andrews, R., and Bird, A.P. (2010). Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS genetics *6*, e1001134.

Jaenisch, R., Hochedlinger, K., Blelloch, R., Yamada, Y., Baldwin, K., and Eggan, K. (2004). Nuclear cloning, epigenetic reprogramming, and cellular differentiation. Cold Spring Harbor symposia on quantitative biology *69*, 19-27.

Jennifer Nichols, B.Z., Konstantinos Anastassiadis, Hitoshi Niwa, Daniela Klewe-Nebenius, I.C., Hans Scholer, and Smith, a.A. (1998). Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4 1998. Cell *95*, 379-391.

Jerabek, S., Merino, F., Scholer, H.R., and Cojocaru, V. (2014). OCT4: dynamic DNA binding pioneers stem cell pluripotency. Biochimica et biophysica acta *1839*, 138-154.

John H Malone, B.O. (2011). Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biology.

Jones, P.A. (2012). Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature reviews Genetics *13*, 484-492.

Jones, P.A., and Liang, G. (2009). Rethinking how DNA methylation patterns are maintained. Nature reviews Genetics *10*, 805-811.

Kaoru Mitsui, Y.T., Hiroaki Itoh,, Kohichi Segawa, M.M., Kazutoshi Takahashi, M.M., and Mitsuyo Maeda, a.S.Y. (2003). The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells. Cell *113*, 631-642.

Kim, J., Chu, J., Shen, X., Wang, J., and Orkin, S.H. (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell *132*, 1049-1061.

Kim, J., Woo, A.J., Chu, J., Snow, J.W., Fujiwara, Y., Kim, C.G., Cantor, A.B., and Orkin, S.H. (2010). A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell *143*, 313-324.

Kimura, A., Matsubara, K., and Horikoshi, M. (2005). A Decade of Histone Acetylation: Marking Eukaryotic Chromosomes with Specific Codes. Journal of Biochemistry *138*, 647-662.

Klose, R.J., and Bird, A.P. (2006). Genomic DNA methylation: the mark and its mediators. Trends in biochemical sciences *31*, 89-97.

Kohli, R.M., and Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature *502*, 472-479.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biology *10*, R25.

Larsen, F., Gundersen, G., Lopez, R., and Prydz, H. (1992). CpG islands as gene markers in the human genome. Genomics *13*, 1095-1107.

Lei, H., Oh, S.P., Okano, M., Juttermann, R., Goss, K.A., Jaenisch, R., and Li, E. (1996). De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development *122*, 3195-3205.

Leonhardt, H., Page, A.W., Weier, H.U., and Bestor, T.H. (1992). A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell *71*, 865-873.

Lewis, E.B. (1978). A gene complex controlling segmentation in Drosophila. Nature 276, 565-570.

Li, E., Bestor, T.H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell *69*, 915-926.

Loh, Y.-H., Wu, Q., Chew, J.-L., Vega, V.B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., *et al.* (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet *38*, 431-440.

Lowry, W.E. (2012). Does transcription factor induced pluripotency accurately mimic embryo derived pluripotency? Current opinion in genetics & development *22*, 429-434.

M. J. Evans, M.H.K. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292.

Ma, T., Xie, M., Laurent, T., and Ding, S. (2013). Progress in the reprogramming of somatic cells. Circulation research *112*, 562-574.

Malynn, B.A., de Alboran, I.M., O'Hagan, R.C., Bronson, R., Davidson, L., DePinho, R.A., and Alt, F.W. (2000). N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation. Genes & development *14*, 1390-1399.

Mark D. Adams, J.M.K., Jeannine D. Gocayne, J. Craig Venter (1991). Complementary DNA Sequencing- Expressed Sequence Tags and Human Genome Project. Science 252, 1651-1656.

Marks, H., Kalkan, T., Menafra, R., Denissov, S., Jones, K., Hofemeister, H., Nichols, J., Kranz, A., Stewart, A.F., Smith, A., *et al.* (2012). The transcriptional and epigenomic foundations of ground state pluripotency. Cell *149*, 590-604.

Marks, H., and Stunnenberg, H.G. (2014). Transcription regulation and chromatin structure in the pluripotent ground state. Biochimica et biophysica acta *1839*, 129-137.

Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. PNAS.

Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., Fan, G., and Sun, Y.E. (2003). DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science *302*, 890-893.

Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., Okochi, H., Okuda, A., Matoba, R., Sharov, A.A., *et al.* (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature cell biology *9*, 625-635.

Maunakea, A.K., Nagarajan, R.P., Bilenky, M., Ballinger, T.J., D'Souza, C., Fouse, S.D., Johnson, B.E., Hong, C., Nielsen, C., Zhao, Y., *et al.* (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature *466*, 253-257.

Mayer, W., Niveleau, A., Walter, J., Fundele, R., and Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature *403*, 501-502.

Meister, P., Towbin, B.D., Pike, B.L., Ponti, A., and Gasser, S.M. (2010). The spatial dynamics of tissue-specific promoters during C. elegans development. Genes & development 24, 766-782.

Meshorer, E., and Misteli, T. (2006). Chromatin in pluripotent embryonic stem cells and differentiation. Nature reviews Molecular cell biology *7*, 540-546.

Meshorer, E., Yellajoshula, D., George, E., Scambler, P.J., Brown, D.T., and Misteli, T. (2006). Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Developmental cell *10*, 105-116.

Monk, M., Boubelik, M., and Lehnert, S. (1987). Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development *99*, 371-382.

Montserrat, N., Nivet, E., Sancho-Martinez, I., Hishida, T., Kumar, S., Miquel, L., Cortina, C., Hishida, Y., Xia, Y., Esteban, C.R., *et al.* (2013). Reprogramming of human fibroblasts to pluripotency with lineage specifiers. Cell stem cell *13*, 341-350.

Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods *5*, 621-628.

Ng, H.-H., and Surani, M.A. (2011). The transcriptional and signalling networks of pluripotency. Nature cell biology *13*, 490-496.

Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell *99*, 247-257.

Ong, C.T., and Corces, V.G. (2011). Enhancer function: new insights into the regulation of tissue-specific gene expression. Nature reviews Genetics *12*, 283-293.

Orkin, S.H., Wang, J., Kim, J., Chu, J., Rao, S., Theunissen, T.W., Shen, X., and Levasseur, D.N. (2008). The transcriptional network controlling pluripotency in ES cells. Cold Spring Harbor symposia on quantitative biology *73*, 195-202.

Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., Dean, W., Reik, W., and Walter, J. (2000). Active demethylation of the paternal genome in the mouse zygote. Current biology : CB *10*, 475-478.

Ozsolak, F., and Milos, P.M. (2011). RNA sequencing: advances, challenges and opportunities. Nature reviews Genetics *12*, 87-98.

Papp, B., and Plath, K. (2013). Epigenetics of reprogramming to induced pluripotency. Cell 152, 1324-1343.

Parkhomchuk, D., Borodina, T., Amstislavskiy, V., Banaru, M., Hallen, L., Krobitsch, S., Lehrach, H., and Soldatov, A. (2009). Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic acids research *37*, e123.

Patel, D.J., and Wang, Z. (2013). Readout of epigenetic modifications. Annual review of biochemistry 82, 81-118.

Plath, K., and Lowry, W.E. (2011). Progress in understanding reprogramming to the induced pluripotent state. Nature reviews Genetics *12*, 253-265.

Reizis, B., and Leder, P. (1999). Expression of the mouse pre-T cell receptor alpha gene is controlled by an upstream region containing a transcriptional enhancer. The Journal of experimental medicine *189*, 1669-1678.

Rose, N.R., and Klose, R.J. (2014). Understanding the relationship between DNA methylation and histone lysine methylation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms.

Rothbart, S.B., and Strahl, B.D. (2014). Interpreting the language of histone and DNA modifications. Biochimica et biophysica acta.

Rothenberg, E.V. (2014). The chromatin landscape and transcription factors in T cell programming. Trends in immunology *35*, 195-204.

Schena M., S.D., Davis R. W., Brown P. O. (1995). Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science *270*.

Shahbazian, M.D., and Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annual review of biochemistry *76*, 75-100.

Shu, J., Wu, C., Wu, Y., Li, Z., Shao, S., Zhao, W., Tang, X., Yang, H., Shen, L., Zuo, X., *et al.* (2013). Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell *153*, 963-975.

Smith, K.N., Lim, J.-M., Wells, L., and Dalton, S. (2011). Myc orchestrates a regulatory network required for the establishment and maintenance of pluripotency. Cell Cycle *10*, 592-597.

Smith, K.N., Singh, A.M., and Dalton, S. (2010). Myc represses primitive endoderm differentiation in pluripotent stem cells. Cell stem cell 7, 343-354.

Smith, Z.D., and Meissner, A. (2013). DNA methylation: roles in mammalian development. Nature reviews Genetics 14, 204-220.

Song, Y., Ahn, J., Suh, Y., Davis, M.E., and Lee, K. (2013). Identification of novel tissuespecific genes by analysis of microarray databases: a human and mouse model. PloS one *8*, e64483.

Stanton, B.R., Perkins, A.S., Tessarollo, L., Sassoon, D.A., and Parada, L.F. (1992). Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes & development *6*, 2235-2247.

Suganuma, T., and Workman, J.L. (2011). Signals and combinatorial functions of histone modifications. Annual review of biochemistry *80*, 473-499.

Sultan, M., Schulz, M.H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M., Borodina, T., Soldatov, A., Parkhomchuk, D., *et al.* (2008). A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science *321*, 956-960.

Swygert, S.G., and Peterson, C.L. (2014). Chromatin dynamics: Interplay between remodeling enzymes and histone modifications. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms.

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell *131*, 861-872.

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell *126*, 663-676.

Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., *et al.* (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nature methods *6*, 377-382.

Thomson, J.A. (1998). Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 282, 1145-1147.

Thomson, M., Liu, S.J., Zou, L.N., Smith, Z., Meissner, A., and Ramanathan, S. (2011). Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell *145*, 875-889.

van den Berg, D.L., Snoek, T., Mullin, N.P., Yates, A., Bezstarosti, K., Demmers, J., Chambers, I., and Poot, R.A. (2010). An Oct4-centered protein interaction network in embryonic stem cells. Cell stem cell *6*, 369-381.

Varlakhanova, N.V., Cotterman, R.F., deVries, W.N., Morgan, J., Donahue, L.R., Murray, S., Knowles, B.B., and Knoepfler, P.S. (2010). myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation; research in biological diversity *80*, 9-19.

Victor E. Velculescu, L.Z., Bert Volgelstein, Kenneth W. Kinzler (1995). Serial Analysis of Gene Expression. Science 270, 484-487.

Vierbuchen, T., and Wernig, M. (2012). Molecular roadblocks for cellular reprogramming. Molecular cell 47, 827-838.

Voigt, P., Tee, W.-W., and Reinberg, D. (2013). A double take on bivalent promoters. Genes & development 27, 1318-1338.

Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D.N., Theunissen, T.W., and Orkin, S.H. (2006). A protein interaction network for pluripotency of embryonic stem cells. Nature *444*, 364-368.

Warnecke, P.M., and Clark, S.J. (1999). DNA methylation profile of the mouse skeletal alphaactin promoter during development and differentiation. Molecular and cellular biology *19*, 164-172.

Wernig, M., Meissner, A., Cassady, J.P., and Jaenisch, R. (2008). c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell stem cell 2, 10-12.

Wilhelm, B.T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C.J., Rogers, J., and Bahler, J. (2008). Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature *453*, 1239-1243.

Wozniak, G.G., and Strahl, B.D. (2014). Hitting the 'mark': Interpreting lysine methylation in the context of active transcription. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms.

Wu, H., and Zhang, Y. (2014). Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions. Cell *156*, 45-68.

Wu, S.C., and Zhang, Y. (2010). Active DNA demethylation: many roads lead to Rome. Nature reviews Molecular cell biology *11*, 607-620.

Xu, J., Pope, S.D., Jazirehi, A.R., Attema, J.L., Papathanasiou, P., Watts, J.A., Zaret, K.S., Weissman, I.L., and Smale, S.T. (2007). Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America *104*, 12377-12382.

Ying, Q.L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature 453, 519-523.

Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., *et al.* (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science *318*, 1917-1920.

Zhu, J., He, F., Hu, S., and Yu, J. (2008). On the nature of human housekeeping genes. Trends in genetics : TIG 24, 481-484.

Chapter 2

The Tissue Specific Enhancer of pTCRα Persists in an Unmethylated State in a Chromatinized Context in Embryonic Stem Cells

ABSTRACT

Tissue specific gene activation is the result of a number of highly coordinated events that culminate in the initiation of transcription upon lineage commitment. The chromatin environment and availability of transcription factors dictate this process. There is clear evidence for the role of tissue specific enhancers in these highly orchestrated events. Often distal regulatory sequences provide a platform for the recruitment of sequence specific activators to the promoters of their genes. It is often these distal elements that first engage with sequence specific factors and provide a permissible chromatin context for activation. It has come to light the some tissue specific enhancers are marked at the embryonic stem cell stage. In this study we interrogate the finding that the Ptcra enhancer is marked in ES cells and is subject to regulation by both positive and negative mechanisms. We employ the use of a 200kb bacterial artificial chromosome encompassing the pTa locus in order to represent the endogenous chromatin context. We monitor the methylation status of the enhancer by bisulfite sequencing, giving us single nucleotide resolution. Here we report that the pTa enhancer mark consistently reappears in the context of a BAC after premethylation and stable integration into ES cells. However mutations that caused the disappearance or spreading of the unmethylated window in a plasmid reporter are not recapitulated in the BAC. The observation that the enhancer mark consistently reappears suggests that ES cells posses the necessary factors to gain access to and cause demethylation either by an active or passive mechanism. This marking may represent an additional property of pluripotent ES cells, the ability to potentiate tissue specific genes for the appropriate and timely activation upon lineage specification.

INTRODUCTION

The recent advances in technology have lead to waves of genome-wide studies to identify chromatin signatures and patterns associated with different gene classes, to further our understanding of the regulatory mechanisms that contribute to gene expression. Key findings arose in embryonic stem cells, in which, developmental regulators and lineage determinants were simultaneously marked, at their promoters, by positive and negative histone modifications (Bernstein et al., 2006; Sachs et al., 2013; Vastenhouw and Schier, 2012; Voigt et al., 2013a). Although important much focus and effort continues to be placed genome-wide characterizations of gene classes. While critical, there is still a need for detailed mechanistic studies in specific gene classes. Tissue specific genes are thought to be primarily regulated by the availability of lineage specifying transcription factors, which are often expressed in a temporal manner (Heinz and Glass, 2012). Tissue specific genes are not typically marked by histone modifications at their promoters in ES cells, long before they will be expressed. However, recent findings suggest that tissue specific enhancers are marked as early as the ES cell stage and these marks may be functionally relevant (Liber et al., 2010; Szutorisz et al., 2005; Xu et al., 2009). In light of this new evidence, further characterization of tissue specific enhancer marks in ES cells is of high priority.

A number of tissue specific genes have been used as a model to study gene expression programs during development. The thymocyte specific pre T-cell receptor alpha (*Ptcra*) is one of them. T lymphocyte development involves four key processes, which mirror that of many development transitions: (1) The activation of lineage specific genes. (2) The silencing of non T lymphocyte lineage genes. (3) The use of prior and

newly expressed regulatory proteins. (4) Changes in chromatin structure at cis regulatory sequences for the binding of transcription factors (Rothenberg, 2014). Ptcra encodes for the pre-T cell receptor α chain (pT α) whose expression is restricted to immature thymocytes (Reizis and Leder, 1999; Xu et al., 2007).

The paradigm for our understanding of the regulation of tissue specific genes during early development comes from DNA methylation studies. After the widespread demethylation in early embryogenesis, there is a wave of *de novo* methylation, which persists through somatic cell divisions (Hajkova et al., 2002; Monk et al., 1987; Wu and Zhang, 2010). Early evidence showed many tissue-specific genes become heavily methylated during this *de novo* methylation (Kafri et al., 1992). The resulting model was that tissue-specific genes are methylated during this time and assembled into silent chromatin until the appropriate developmental cues are received (Jones and Takai, 2001; Kafri et al., 1992). Further evidence that non-CpG island tissue specific promoters remain methylated in non-expressing lineages adds to this foundation (Miranda and Jones, 2007).

Early and emerging evidence indicates critical roles for enhancer elements regulating tissue specific expression (Ong and Corces, 2011). This has been demonstrated with pT α whose enhancer, located 4kb upstream, is necessary for the stage specific expression of pT α in transgenic mice (Reizis and Leder, 1999, 2001, 2002). The core 149bp enhancer, which is DNase hypersensitive in a thymocyte specific manner, possesses highly conserved transcription factor binding sites (Reizis and Leder, 1999, 2001; Takeuchi et al., 2001). These transcription factors have been shown to be essential for thymocyte development; c-Myb, E2A, HEB and CSL (Reizis and Leder, 1999; Takeuchi et al., 2001; Tremblay et al., 2003).

Evidence has also emerged that tissue specific genes are epigenetically marked prior to activation, in some cases as early as the embryonic stem cell stage (Dillon, 2012; Liber et al., 2010; Smale, 2010; Szutorisz et al., 2005; Xu et al., 2007). This priming, so to speak, appears to occur through site-specific transcription factor binding and in some cases histone acetylation (Szutorisz et al., 2005; Xu et al., 2007; Xu et al., 2009). The pT α core enhancer was shown to be bound by key transcription factors and marked by histone acetylation. Furthermore, this enhancer mark was reestablished in ES cell clones after a premethylated reporter construct was stably integrated (Xu et al., 2009).

A classical example of this type of regulation comes from the liver specific albumin (*Alb1*) gene, whose enhancer, 10kb upstream, contributes to the liver restricted expression of *Alb1* (Liu et al., 1991; Pinkert et al., 1987). In a similar fashion to the pT α enhancer, the albumin enhancer contains binding sites for key transcription factors involved in liver development such as GATA-4, C/EBP, FoxA1 and NF1 (Liu et al., 1991; McPherson et al., 1993). Careful analysis of the enhancer showed sequential binding and suggested priming of the enhancer in cells prior to which activation of albumin occurs (Bossard and Zaret, 1998; Gualdi et al., 1996). Detailed studies performed by Xu et. al., showed the presence of an unmethylated CpG dinucleotide within the albumin enhancer in ES cells, indicating the albumin enhancer may be marked even earlier than previously reported. This CpG dinucleotide lies directly within the FoxA1 binding site. Further categorization determined FoxD3, a close family member, to be responsible for the unmethylated state at the CpG (Xu et al., 2007; Xu et al., 2009). These data lead to the hypothesis that initial binding events by 'pioneer' factors

potentiate the locus in such a manner that it becomes permissible to activation upon lineage specification. This can be thought of as epigenetic priming.

Xu et. al., also showed the regulation of the pT α unmethylated enhancer mark by both positive and negative factors. Deletion of specific transcription factor binding sites altered the methylation state. For example, the deletion of Sp1 and E-box sites caused the reporter plasmid to be refractory to demethylation in ES cells after premethylation (Xu et al., 2009). Although intriguing these studies were performed in the context of a reporter plasmid. In order to fully understand the mechanisms in play, the roles of these transcription factor binding sites must be addressed in an endogenous context. This will provide a fuller understanding of the establishment of enhancer marks in ES cells and contribute to the knowledge of the properties of ES cells and their mechanisms to achieve appropriate epigenetic profiles at lineage specific genes.

In this study we characterize the contributions of the transcription factor binding sites in the establishment of an unmethylated state in embryonic stem cells using bacterial artificial chromosomes (BAC) and bisulfite sequencing. At 200 kilobases, the BAC has more than 50kb flanking both the 5' and 3' prime end of the pT α locus. Thus, we likely include all cis-regulatory elements necessary for the appropriate chromatin context of pT α . Consequently we provide a near ideal context, aside from directly modifying the endogenous locus, to perform these studies.

RESULTS

BAC Modification

In order to study the methylation status of the pTa enhancer in an endogenous chromatin context we took the approach of using a bacterial artificial chromosome (BAC). We used a 203,589bp BAC (RP23-288F21) containing the *Ptcra* mouse locus. The pTa locus was flanked by approximately 60kb of upstream genomic sequences from transcriptional start site and approximately 140kb of downstream genomic sequences from the transcriptional termination site (Figure 2-1). A BAC this large we hypothesize would likely contain all the necessary sequences for the formation of an endogenous chromatin environment at the pTa locus. We also hypothesize that the flanking sequences of the BAC will provide insulation of the pTa locus from the flanking endogenous chromatin at the integration site.

The Ptcra BAC was modified using homologus recombination in a two-step selection/counterselection process i.e. Recombineering (recombination-mediated genetic engineering). The system revolves around λ Red-encoded genes exo, bet and gam, whose protein products execute the recombination reactions. These lambda genes are present in a specialized E. coli strain SW102. In order for the recombination reaction to proceed, exo, a 5'-3' exonuclease, creates single stranded 3' overhangs in the double stranded linear DNA-targeting cassette introduced into the bacteria. Bet binds the 3' overhangs and anneals with the complementary sequences within the BAC to complete the homologous recombination. While the reaction proceeds, gam, a protein that inhibits the E. coli exonuclease, RecBCD, protects the linear targeting cassette from degradation. These proteins are expressed from defective lambda prophage that is stably integrated

into the E. coli strain. All three proteins are controlled by a temperature sensitive promoter, which is induced at 42°C, resulting in rapid expression and the accumulation of high levels of each protein necessary for recombination (Warming et al., 2005).

In order to introduce the mutations the BAC was electroporated into SW102s, followed by a two-step process of recombination. The first selection step takes place as a result of a non-functional galactokinase (galK) gene in the SW102 strain. In this first round of recombination, a targeting cassette containing galK was generated with 50bp of homology to the Ptcra enhancer region. After the induction of the expression of the lambda proteins at 42°C, the galK + Ptcra homology arms cassette was electroporated into the SW102 cells. The successful integration and expression of galK permits the growth of bacteria on minimal media plates containing galactose. Colonies were selected after plating and incubation at 32°C for 3-8 days.

In the second stage of recombination, a targeting cassette was generated using overlapping HPLC purified oligos containing each mutation, followed by amplification to include up to 500bp in homology surrounding the enhancer. The core pTa enhancer is only 149bp, which allowed us to generate mutations directly from synthesized oligos. The cassette was then electroporated into the SW102 strain with the galK containing BAC, after induction of the recombination proteins at 42°C. The targeting construct recombines with the BAC forcing out the galK cassette allowing for counterselection on a galK negative media. Correct clones were selected by PCR screening for the integrated cassette followed by BAC fingerprinting with selected restriction enzymes (EcorI 55 cuts). To allow for selection and stable integration in ES cells, the modified BAC was retrofitted to contain a Neomycin selection cassette (Wang et al., 2001).

Due to sequence similarity we devised a method to distinguish between the endogenous pTa locus and the stably integrated BAC pTa locus. We inserted an 8bp PmeI restriction site, GTTTAAAC, 110bp upstream of the core enhancer. By designing primers upstream of the tag and downstream of the enhancer we were able to assess both the endogenous and BAC modified pTa locus simultaneously.

DNA Methylation Analysis

We performed bisulfite-sequencing analysis to determine whether or not the Ptcra enhancer mark is reestablished in an endogenous chromatin context in ES cells. BACs were premethylated *in vitro* with the SssI CpG methylase and were consistently methylated at the enhancer locus (Figure 2-2). We confirmed the efficiency of methylation upstream and downstream of the enhancer, as well as the enhancer and promoter. In all cases the BAC was heavily methylated (Figure 2-3). After in vitro methylation the BAC was linearized with the unique restriction enzyme PI-SceI and the integrity checked by pulsed-field gel electrophoresis. We confirmed that the inclusion of the tag upstream of the enhancer did not alter the methylation state of the pTa locus. Upon premethylation and integration of the pTa BAC in to mouse ES cells, the enhancer mark faithfully reappeared in multiple clones (Figure 2-4). Moreover, the modified enhancer mirrored the endogenous enhancer, again showing clear demethylation particularly at the core enhancer, -4080bp to -3965bp, in which the CpG dinucleotides directly overlap with key transcription factor binding sites (Figure 2-5, 2-6). Interestingly, the demethylation is broader in the endogenous context compared to the reporter plasmid

context, where the only consistently unmethylated CpG coincides with the Myb site located at -4,080bp.

Individual Mutations in the Ebox2 or Sp1 site Do Not Cause Resistance to Demethylation

In prior studies two key mutations resulted in the pTa enhancer remaining methylated after stable transfection in ES cells. Individual mutations in the upstream Sp1 site and the E-box 2 site prevented the reappearance of the enhancer mark (Xu et al., 2009). We recapitulated the exact mutations in the context of the BAC and assessed the methylation status of the enhancer in the endogenous chromatin context (Figure 2-7). After stable integration of the BAC into ES cells, the enhancer mark reappeared consistently in multiple clones with a methylation status similar to the WT pTa Tag BAC (compare to the premethylated controls) (Figure 2-2, 2-8). It does appear in some instances that the Sp1 mutation causes the reduction in the unmethylated window (Figure 2-8). However, the breadth of the unmethylated window appears to be variable even in the WT Tag BAC limiting any interpretations (Figure 2-8). In the chromatin context the CpG dinucleotide within the Myb site reliably remains unmethylated, consistent with the studies in the reporter plasmid (Figure 2-8).

Another key mutation that prevented the premethylated enhancer-promoter reporter plasmid from becoming demethylated was a deletion encompassing the Myb, Ebox2 and upstream Sp1 site. We generated the same deletion and stably transfected the mutant BAC into ES cells. We found that the deletion did not recapitulate the results seen

in the plasmid context. The enhancer deletion was still able to undergo demethylation resulting in an unmethylated window spanning the core enhancer (Figure 2-8C). The control was efficiently methylated and upon transfection the deletion mutant and pTa TAG BAC show similar patterns.

Individual Mutations in the Myb, Ebox4 or CSL site Do Not Cause Widespread Demethylation

Again in previous studies performed by Xu et. al., the pTa enhancer mark was shown to be regulated in both positive and negative manner depending upon the mutation. In the context of the enhancer reporter plasmid, mutations in the Myb, Ebox4 or CSL site caused the spreading of the unmethylated window. This indicated the possibility that transcription factors bound to those sequences restricted the spread of methylation into the surrounding regions (Xu et al., 2009). To determine if any negative regulatory mechanism exists in the endogenous context we constructed the same mutations in the pTa BAC (Figure 2-7).

All of the mutations mirror that of the wild type enhancer with the core enhancer consistently showing the lowest levels of methylation particularly at the -4,080bp Myb site (Figure 2-9A). In order to assess the spreading of the unmethylated window we analyzed both upstream and downstream regions of the enhancer. Mutations in the CSL and E-box4 site closely match the methylation status of the pTa TAG BAC. In one of the clones of the Myb mutation there is a trend towards lower levels of methylation in the upstream but not downstream region, however the spreading of the unmethylated window

into this region can be seen in one of the wild type clones complicating any potential interpretations (Figure 2-9B).

The pTa Enhancer Mark is Reestablished in an Sp1 Double Mutant BAC

As none of the individual mutations led to a consistent change in the methylation status of the pTa BAC enhancer, we moved to double mutations. Sp1 has been shown to play a key role in the prevention of de novo methylation at the mouse APRT gene (Brandeis et al., 1994; Macleod et al., 1994). In these studies the Sp1 site flanked a CpG island. The pTa enhancer contains two Sp1 sites, one of which was previously shown to be crucial for the unmethylated window in ES cells. Given the aforementioned and the fact the upstream Sp1 mutation did not prevent the pTa BAC enhancer from becoming unmethylated, we chose to mutate both upstream and downstream Sp1 sites simultaneously.

Double mutations in the Sp1 sites in the endogenous context of the pTa BAC still resulted in the reappearance of the unmethylated window (Figure 2-10). The double mutant BAC was efficiently premethylated prior to transfection (Figure 2-10). We simultaneously compared the Sp1 BAC double mutant to the endogenous pTa enhancer locus. The mutant and endogenous enhancer show very consistent methylation patterns with the core enhancer showing the lowest levels of methylation (Figure 2-10B).

Although the single upstream mutation and the double mutant showed methylation patterns similar to wild type we moved forward with a single downstream Sp1 mutant. Not surprisingly the single downstream mutant showed the reappearance of the unmethylated window after premethylation and stable transfection in ES cells (Figure 2-11).

DISCUSSION

A number of studies, using ChIP-seq analysis, have focused on developmentally regulated genes that are marked by active and repressive histone marks simultaneously. Here we focus on non-regulatory tissue specific genes and the mechanisms by which they are regulated. This class of gene does not always appear to be marked by histone modifications in ES cells and thus escapes identification in genome wide ChIP-seq studies (Smale, 2010). Evidence is mounting that this class of genes if often marked by unmethylated CpG dinucleotides at their enhancers and possibly potentiated prior to activation (Bossard and Zaret, 1998; Dillon, 2012; Liber et al., 2010; McPherson et al., 1993; Smale, 2010; Szutorisz et al., 2005; Xu et al., 2007; Xu et al., 2009). Understanding how these marks are maintained and whether or not they are functionally significanct is an important and unanswered question.

In this study we explored the previous findings that an unmethylated CpG dinucleotide window marks the Ptcra enhancer in ES cells, a long time prior to activation. The loss of methylation at non-regulatory tissue specific enhancers was an interesting finding, adding to the potential mechanisms that may regulate tissue specific genes. If this is in fact of functional relevance, it adds another level of complexity to the embryonic stem cell state. That is, the need for the correct potentiation of tissue specific genes, in order for the appropriate expression upon lineage specification.

Here we interrogated the methods by which the unmethylated window is established at the Ptcra enhancer in ES cells. Previous studies defined a potential role for transcription factors, which by binding to sites containing CpG dinucleotides, occlude *de novo* methylation (Xu et al., 2009). Those prior studies directly implicated sequence

specific binding by c-Myb, Sp1, CSL and E-box protein E47, as the cause of the unmethylated window. Furthermore each transcription factor binding site played either a positive or negative role in the establishment of the unmethylated window. Specifically mutations in the upstream Sp1 site, Ebox2 site, or the deletion of these sites with the inclusion of Myb, prevented the reappearance of the unmethylated window at the pTa enhancer after premethylation and stable integration into ES cells. These factors are thus thought to be critical for the establishment of the unmethylated window. Mutations in the Myb, Ebox4 or CSL site resulted in the opposite effect, the spreading of the unmethylated window (Xu et al., 2009). These results indicated that factors present in ES cells can gain access to the methylated enhancer and cause demethylation either by the prevention of maintenance methylation or by active demethylation.

Although intriguing these studies lack one critical component, chromatin context. These experiments in an enhancer-promoter reporter plasmid while important are highly subject to the surrounding chromatin of the integration site. We sought to circumvent this issue with the use of bacterial artificial chromosomes. Using a BAC that contained more than 50kb of flanking sequences gave us confidence that the pTa locus would assemble into an endogenous state. We confirmed that the BAC could be premethylated efficiently and then repeated the mutations made in the plasmid setting to ascertain the effect of chromatin context. The insertion of a PmeI site allowed us to differentiate between the BAC and endogenous loci.

Our first findings were somewhat surprising but confirmed that context is important and must be taken into consideration for further studies. The same mutations that remained methylated at the enhancer in the plasmid context resulted in a clear

unmethylated window at the enhancer in the BAC context. This raises a number of possibilities; the BAC really does recapitulate the endogenous chromatin context of the locus and thus encapsulates the true requirements for the existence of the unmethylated window. If that is true the binding of transcription factors to the Myb, Ebox2 and upstream Sp1 sites are not an absolute requirement for the unmethylated window. This prompts the question of whether additional factors outside of direct binding influence the enhancer environment. It is well known that histone modification of nucleosomes can alter the local chromatin environment. Interestingly the endogenous pTa enhancer is clearly marked by H3K4me1, H3K27 and K9Ac in deep sequencing ChIP-seq studies in ES cells (Chronis unpublished). K27Ac is thought to distinguish active enhancers from poised enhancers, marked by H3K4me1 alone, yet no transcription is detectable at the pTa locus in ES cells (Creyghton et al., 2010).

Our secondary findings determined that mutations causing the spreading of the unmethylated window in the plasmid context did not do so in the BAC context. These mutations in sites for Myb, Ebox4 and CSL do not appear to regulate the size of the unmethylated window as they did in the plasmid context. It is somewhat intriguing that the single mutation in the Myb site resulted in widespread demethylation while deletion of the Myb site in conjunction with Ebox2 and Sp1 resulted in resistance to demethylation. It is of note that the Myb binding site differs from the consensus and although it was shown to bind did so at a lower affinity (Reizis and Leder, 2001). It is therefore quite possible that a different transcription factor binds in this region and the mutational analysis although abrogating the binding of Myb may not have prevented the binding of a different factor. Redundancy is a clear consideration for the differences we

see in the status to the pTa enhancer. As it was determined early on which factors bind and promote expression of pTa, focus remained on those specific transcription factors. As we are now addressing the binding events at much earlier stages in development, biases based on previous knowledge must be eliminated.

With the understanding that Sp1 can protect from de novo methylation we went after both Sp1 sites simultaneously. Again the unmethylated window reappeared in the context of the BAC. Even a sizeable deletion resulted in the reappearance of the unmethylated window. Again this adds to the credence that the BAC more likely forms an endogenous like chromatin environment with added cues that shape and develop the pTa enhancer landscape. We must also consider the possibility that the BAC is also subject to integration specific effects, issues that we have not addressed here. In unpublished work it was demonstrated the BACs often did not integrate in their full entirety, leaving the possibility for variability between integrations.

One thing is clear; the unmethylated window at the pTa enhancer is present at the endogenous locus in ES cells and consistently reappears in the context of a stably integrated BAC that is premethylated prior to transfection. Although we believe the BAC is more suitable than a plasmid, it is not optimal. The most poignant issue is functional relevance. Although we describe a consistent unmethylated state we have no evidence of the functional relevance of this mark at the endogenous locus. To what degree the histone modification and nucleosomal context influence the enhancer state in ES cells is unclear. Advances in methodologies to manipulate endogenous loci will be critical in order to understand of the relevance of these marks in ES cells.

MATERIALS AND METHODS

Cell Culture

CCE ES cells were maintained in standard ES growth media. Cells were maintained in Knockout DMEM plus 1% L-glutamine, 1% pen/strep, 1% non-essential amino acids, 15% ES certified FBS (Omega Scientific), and 1,000 units/ml ESGRO (Lif, Millipore). The CCE ES cell line was maintained on gelatin-coated tissue culture flasks.

Generation of Mutations

pTa mutations were generated using HPLC purified oliogos followed by SOEing PCR and the addition of homology arms.

BAC Premethylation

BACs were methylated after linearization with PI-SceI using excess units of M.SssI methylase and 2ul 32nM SAM as a substrate then phenol chloroform extracted for electroporation.

ES Cell Electroporation

BAC DNA was isolated using the Large Construct Kit (Qiagen) and linearized with PI-SceI then ethanol precipitated. 25-40ug of BAC DNA was electroporation into CCE ES cells in a 0.4cm cuvette. Electroporation was done using Bio-Rad GenePulserII at 500uFD, 0.24kV with an optimal time constant of 7.2. Electroporation was done when ES cells reached 80% confluency. ES cells were given fresh media 4 hours prior to the electroporation. CCEs recover on ice before dilution. G418 selection media was added after 24 hours without antibiotic selection 350-150ug/mL. Media was changed everyday until individual colonies appear (10-14 days)

Bisulfite Sequencing and PCR Amplification

1-2ug of isolated DNA was diluted in 50ul TE. DNA was denatured with 5ul of freshly prepared 3M NaOH at 37°C for 15-30 minutes. Denatured DNA was added to 510ul of 40.5% sodium bisulfite, 30ul 10mM hydroquinone and the total volume brought up to 610ul. Mixture was incubated protected from light overnight at 55°C. DNA was purified using a PCR purification kit (Qiagen) and eluted in 50ul TE. To prepare for PCR amplification Sample is again denatured with 5ul 3M NaOH. Sample is neutralized with 32ul 8M ammonium acetate and precipitated. 2ul of precipitated DNA was used for nested PCR for amplification. PCR amplification products were TA cloned and selected on Xgal Amp plates. Individual colonies were picked, grown overnight, mini-prepped and the resulting DNA sequenced. Sequencing results were aligned to the original sequence and ratio of C/T was calculated to generate methylation percentages.

FIGURE LEGENDS

Figure 2-1. Bacterial Artificial Chromosome Genomic Context

UCSC browser depiction of the bacterial artificial chromosome used containing the Ptcra locus. BAC clone RP23-288F21

Figure 2-2. Premethylated BAC Controls

DNA methylation levels throughout the enhancer in the premethylated BACs prior to transfection. Genomic location listed is relative to the transcriptional start site of pTa. Methylation percentage is determined by the ratio of C/T in bisulfite treated clones. Ratio and number of clones sequenced shown. Methylation levels are colored based on the following scale. Green 0-20%, dark green 21-40%, yellow 41-60%, orange 61-80, red 81-100.

Figure 2-3. Premethylation of the Ptcra BAC is Efficient Throughout the Locus

DNA methylation levels ascertained after bisulfite sequencing. Location of the CpG is relative to the pTa start site. Regions assessed include both upstream and downstream of the enhancer as well as the promoter. Methylation levels categorized as in figure 2-2.

Figure 2-4. The Ptcra Enhancer Mark is Reestablished in the Context of a BAC in Embryonic Stem Cells

DNA methylation levels of the pTa BAC with an enhancer TAG for four independent clones determined by bisulfite sequencing.

Figure 2-5. The Ptcra BAC Locus Recapitulates the Methylation Status of the Endogenous Locus

DNA methylation levels of the premethylated control, pTa TAG BAC and the endogenous pTa locus.

Figure 2-6. Ptcra Core Enhancer Transcription Factor Binding Sites Relative to CpG Dinucleotides

Depiction of the pTa core enhancer with transcription factor binding sites relative to the CpG dinucleotides.

Figure 2-7. Ptcra Enhancer Mutations

Shows the transcription factor binding sites in which mutations were made with the pTa core enhancer in the BAC.

Figure 2-8. Individual Mutations in the Ebox2 or Sp1 site Do Not Cause Resistance to Demethylation

DNA methylation levels at the enhancer of pTa in clones after premethylation and transfection into ES cells (A) BAC clones TAG BAC, mEbox2, mSp1 enhancer methylation. Both ration and percentages shown (B) DNA methylation analysis extended to span the entire locus BAC clones TAG BAC, mEbox2, mSp1. Percentages shown (C)

Methylation levels in a pTa deletion spanning the Myb through Sp1 site. Premethylated control and endogenous levels included

Figure 2-9. Mutations in the Myb, Ebox4 or CSL site Do Not Cause Consistent Widespread Demethylation

DNA methylation levels of pTa enhancer mutations after premethylation and stable integration in ES cells. (A) Mutations Myb, Ebox4 and CSL. Percentages and ratios shown (B) DNA methylation analysis extended to span the entire locus BAC clones Myb, Ebox4 and CSL. Percentages shown.

Figure 2-10. The pTa Enhancer Mark is Reestablished in an Sp1 Double Mutant BAC

DNA methylation levels of pTa BAC determined by bisulfite sequencing after premethylation and stable integration in ES cells (A) Premethylated control – CH3, TAG BAC – WT, and three double Sp1 mutant ES cell clones. (B) DNA methylation levels of double Sp1 mutations spanning the enhancer. Premethylated control – CH3, TAG BAC – WT.

Figure 2-11. The pTa Enhancer Mark is Reestablished in an Sp1 Single

Downstream Mutant BAC

DNA methylation levels of pTa BAC determined by bisulfite sequencing after premethylation and stable integration in ES cells. Premethylated control – CH3, TAG

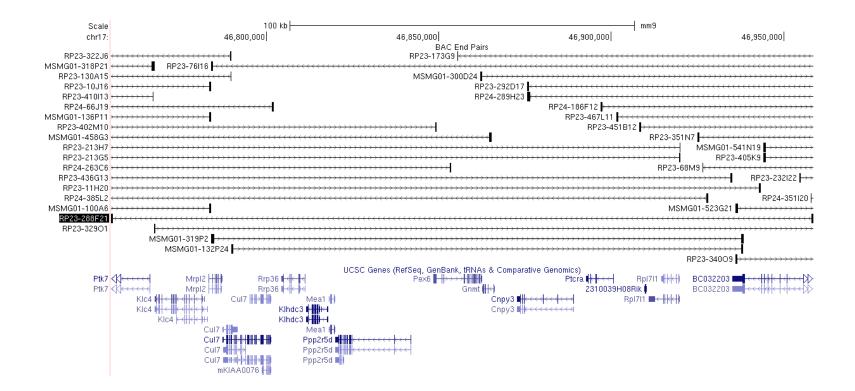

BAC – WT, and one ES cell clone. Percentages shown for all clones. Percentages and ratios shown for mutant

Figure 2-12. pTa BAC Mutants Methylation Data Summarized

DNA methylation levels of pTa BAC determined by bisulfite sequencing after premethylation and stable integration in ES cells. Summary of mutant clones. TAG, Myb, CSL, Ebox4, Ebox2, Sp1, Dsp1, Sp1DO

FIGURES

Figure 2-1 Bacterial Artificial Chromosome Genomic Context

Premethylated BAC Controls

						Р	remethyl	ated BA	Cs					
Location		TAG mMyb		mEbox2		m	mSp1		mCSL		box4	% of		
		%	Ratio	%	Ratio	%	Ratio	%	Ratio	%	Ratio	%	Ratio	Methylated
	-4130	100	17/17	96	51/53	97	30/31	96	31/32	100	13/13	90	38/43	CpG
	-4080	76	13/17	92	49/53	100	31/31	93	28/30	92	12/13	95	41/43	0-20
т	-4042	100	16/17	84	45/53	97	30/31	84	27/32	100	13/13	86	37/43	21-40
ENH	-3997	100	17/17	98	52/53	94	29/31	100	31/31	85	11/13	95	41/43	41-60
	-3965	90	17/17	92	49/53	84	26/31	77	24/31	100	13/13	98	42/43	61-80
Ptcra	-3947	100	17/17	96	51/53	94	29/31	90	28/31	100	13/13	90	38/42	81-100
	-3900	82	14/17	96	51/53	93	25/27	91	21/23	100	13/13	93	39/42	
	-3818	70	12/17	98	52/53	96	26/27	96	25/26	100	13/13	98	41/42	
	-3806	100	17/17	100	53/53	100	27/27	96	24/25	92	12/13	96	40/42	
	-3800	100	17/17	98	52/53	92	24/26	96	24/25	92	12/13	98	41/42	

Premethylation of the Ptcra BAC is Efficient Throughout the Locus

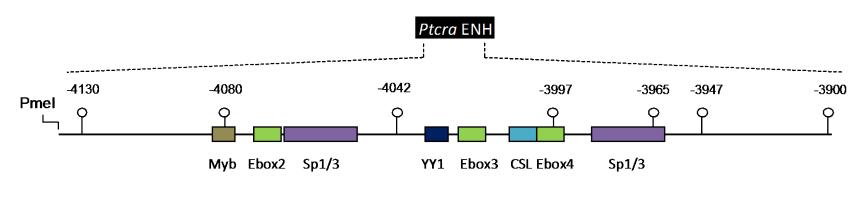
		СНЗ
	ocation	%
	-5118	100
	-4965	100
	-4943	80
A P	-4912	100
4.8kb	-4831	80
•	-4807	100
	-4717	100
	-4700	100
	-4621	100
	-4616	100
	-4603	80
<u>e</u>	-4541	100
4.3kb	-4520	100
4	-4362	100
	-4318	80
	-4292	100
	-4220	100
	-4130	100
	-4080	100
	-4042	100
ENH	-3997	100
Ξ	-3965	100
otcra	-3947	83
۴,	-3900	100
	-3818	100
	-3806	100
	-3800	100
	-2765	100
	-2734	100
	-2663	100
k P	-2642	100
-2.6kb	-2616 -2581	100
l '		100
	-2555 -2538	100 100
	-2538 -2452	75
ا ہ ا	-451 -441	100 100
0.3kb	-441	100
9	-304 -241	100
H		
PRO	+111 +153	100 60
L T	+155	60
	T24J	00

0

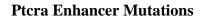
The Ptcra Enhancer Mark is Reestablished in the Context of a BAC in Embryonic

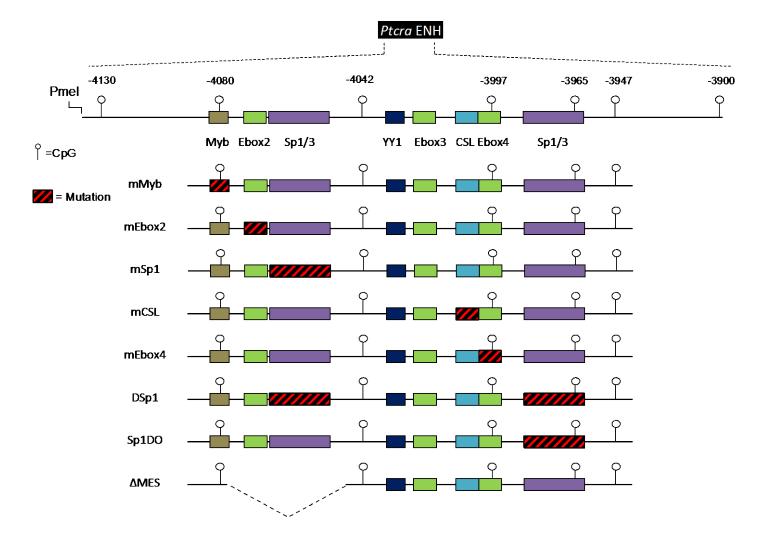
Stem Cells

		TAG						
		3	2	4	5			
Lo	ocation		9	6				
	-5118	88	76	100	79			
	-4965	75	81	89	71			
4.8kb	-4943	62	86	78	77			
	-4912	62	95	78	93			
	-4831	75	90	100	79			
•	-4807	88	100	44	93			
	-4717	88	80	100	86			
	-4700	88	90	89	71			
	-4621	86	84	95	50			
	-4616	79	71	63	55			
	-4603	89	71	66	55			
÷	-4541	82	86	60	53			
- 4.3kb	-4520	86	90	68	50			
4	-4362	64	74	63	43			
	-4318	71	71	63	37			
	-4292	57	40	58	18			
	-4220	36	40	35	24			
	-4130	40	33	63	52			
	-4080	10	8	11	24			
	-4042	0	19	19	29			
포	-3997	15	12	26	29			
ENH	-3965	11	32	60	64			
Ptcra	-3947	50	72	85	64			
Å	-3900	33	35	50	32			
	-3818	22	12	25	17			
	-3806	33	70	62	42			
	-3800	40	32	76	56			
	-2765	71	74	63	79			
	-2734	90	82	96	90			
	-2663	68	87	76	79			
٩	-2642	81	94	84	92			
-2.6kb	-2616	86	77	84	88			
Ŕ	-2581	86	90	88	96			
	-2555	90	90	96	100			
	-2538	81	81	92	88			
	-2452	65	68	48	65			
	-451	100						
-0.3kb	-441	100						
	-384	67						
Ŷ	-241	67						
			E 0	40	24			
Q	+111	33	53	43	31			
PRO	+153	67	59	86	83			
	+249	100	76	57	92			


0

The Ptcra BAC Locus Recapitulates the Methylation Status of the Endogenous


Locus


		СНЗ	TAG	₩Т
Lo	cation	%	%	%
	-5118	100	84	83
	-4965	100	75	78
	-4943	80	62	89
- 4.8kb	-4912	100	62	94
4	-4831	80	75	100
	-4807	100	88	94
	-4717	100	88	78
	-4700	100	88	72
	-4621	100	79	
	-4616	100	67	
	-4603	80	70	
å	-4541	100	70	
- 4.3kb	-4520	100	74	
i	-4362	100	61	
	-4318	80	61	
	-4292 -4220	100	43	
		100	34	
	-4130	100	40	44
	-4080	100	10	22
-	-4042	100	0	40
ENH	-3997	100	15	27
	-3965 -3947	100 83	11 50	0 41
Ptcra	-3947 -3900	100	33	33
•	-3818	100	22	0
	-3806	100	33	26
	-3800	100	40	0
	-2765	100	72	
	-2734	100	90	
	-2663	100	78	
ا م ا	-2642	100	88	
-2.6kb	-2616	100	84	
Ņ	-2581	100	90	
	-2555	100	94	
	-2538	100	86	
	-2452	75	62	
	-451	100	100	64
-0.3kb	-441	100	100	86
Ö	-384	100	67	64
'	-241	100	67	71
	+111	100	100	80
PRO	+153	60	67	72
		40	33	48

Ptcra Core Enhancer Transcription Factor Binding Sites Relative to CpG Dinucleotides

° ∣=CpG

Individual Mutations in the Ebox2 or Sp1 site Do Not Cause Resistance to

Demethylation

Α

					N	/T TA	G clone	s			
Loc	ation		1	2			3	4		5	
		%	Ratio	%	Ratio	%	Ratio	%	Ratio	%	Ratio
	-4130	27	7/26	33	5/15	63	12/19	63	12/19	52	14/27
	-4080	13	4/31	8	1/13	11	2/19	11	2/19	24	5/21
l T	-4042	3	1/30	19	3/16	19	4/21	19	4/21	29	7/24
H N H	-3997	10	3/29	12	2/17	21	4/18	26	5/19	29	7/24
	-3965	36	11/31	32	6/19	52	11/21	60	12/20	64	14/22
Ptcra	-3947	53	16/30	72	13/18	86	18/21	85	17/20	64	14/22
	-3900	29	8/28	35	6/17	52	11/21	50	10/20	32	7/22
	-3818	10	3/29	12	2/17	24	5/21	25	5/20	17	4/24
	-3806	44	14/32	70	14/20	64	14/22	62	13/21	42	10/24
	-3800	44	14/32	32	6/19	77	17/22	76	16/21	56	13/23

			m	Ebox	2 Clone	es.	
Loca	ation		5		6		7
		%	Ratio	%	Ratio	%	Ratio
	-4130	7	1/15	22	4/18	0	0/31
	-4080	0	0/15	6	1/18	0	0/31
т	-4042	13	2/15	22	4/18	0	0/31
H N U	-3997	27	4/15	0	0/18	3	1/29
	-3965	7	1/15	33	6/18	55	17/31
Ptcra	-3947	53	8/15	59	10/17	52	16/31
ם ו	-3900	40	6/15	7	1/15	30	9/30
	-3818	0	0/15	17	3/18	3	1/31
	-3806	13	2/15	28	5/18	32	10/31
	-3800	27	4/15	33	6/18	23	7/30

0
100

					I	nSp1	Clones	;			
Loc	ation		4	6			7	9		12	
		%	Ratio	%	Ratio	%	Ratio	%	Ratio	%	Ratio
	-4130	37	8/22	57	12/21	46	6/13	40	6/15	68	13/19
	-4080	14	3/23	14	3/22	13	2/16	13	2/16	9	2/23
l I	-4042	14	3/21	30	6/20	67	10/15	19	3/16	67	14/21
H N H	-3997	18	4/22	26	6/19	44	7/16	0	0/15	29	6/21
	-3965	22	5/23	55	12/22	63	10/16	66	10/15	52	12/23
Ptcra	-3947	73	16/22	86	18/21	73	11/15	71	12/17	87	20/23
L U	-3900	59	13/22	43	9/21	53	8/15	50	8/16	62	13/21
	-3818	9	2/22	14	3/22	44	7/16	29	5/17	39	9/23
	-3806	36	8/22	41	9/22	73	11/15	59	10/17	70	16/23
	-3800	36	8/23	43	9/21	73	11/15	44	7/16	73	16/22

Individual Mutations in the Ebox2 or Sp1 site Do Not Cause Resistance to Demethylation

			Т	G			nEbox	2		mSp1	
		3	2	4	5	5	6	7	6	7	12
Lo	cation		9	6			%	-	<u> </u>	%	
	-5118	88	76	100	79	100	100	80	87	94	100
	-4965	75	81	89	71	100	100	100	80	87	91
_	-4943	62	86	78	77	0	100	67	100	94	90
8 Rb	-4912	62	95	78	93	100	100	100	93	88	91
4.8kb	-4831	75	90	100	79	100	67	67	80	92	100
•	-4807	88	100	44	93	100	100	100	100	75	82
	-4717	88	80	100	86	100	100	100	87	94	100
	-4700	88	90	89	71	0	100	83	80	81	82
	-4621	86	84	95	50	93	100	85	80	97	86
	-4616	79	71	63	55	93	54	92	60	93	86
	-4603	89	71	66	55	100	15	85	80	93	82
٩	-4541	82	86	60	53	67	46	62	80	93	89
4.3kb	-4520	86	90	68	50	87	15	85	67	87	86
4	-4362	64	74	63	43	67	54	54	80	77	82
	-4318	71	71	63	37	47	100	62	90	80	56
	-4292	57	40	58	18	33	0	31	50	77	54
	-4220	36	40	35	24	20	69	54	56	47	62
	-4130	40	33	63	52	40	40	17	50	69	25
	-4080	10	8	11	24	0	0	0	17	31	0
	-4042	0	19	19	29	20	0	50	9	75	11
Т	-3997	15	12	26	29	0	0	0	33	38	0
ENH	-3965	11	32	60	64	67	10	0	33	69	67
Ptcra I	-3947	50	72	85	64	80	40	67	55	69	100
상	-3900	33	35	50	32	33	20	60	44	69	44
_	-3818	22	12	25	17	0	30	0	17	7	11
	-3806	33	70	62	42	60	60	33	58	85	67
	-3800	40	32	76	56	33	40	25	33	69	33
	-2765	71	74	63	79	86	75		100	82	45
	-2734	90	82	96	90	71	100		100	86	82
	-2663	68	87	76	79	71	100		100	86	82
٩	-2642	81	94	84	92	86	75		100	100	100
-2.6kb	-2616	86	77	84	88	86	100		100	86	80
4	-2581	86	90	88	96	93	100		100	100	73
	-2555	90	90	96	100	86	75		100	95	80
	-2538	81	81	92	88	62	75		100	86	73
	-2452	65	68	48	65	43	50		0	68	82
	-451	100				0		50	100	86	67
<u>s</u>	-441	100				100		100	100	86	67
-0.3kb	-384	67				100		75	0	100	100
Y	-241	67				100		100	Ő	86	100
	+111	33	53	43	31	17	14	78	29	50	55
PRO	+153	67	59	86	83	50	57	67	71	92	82
Å	+153 +249	100	76	57	92	83	57 14	56	64	92 83	82 82
	+249	100	76	57	92	63	14	96	64	63	62

B

0

Individual Mutations in the Ebox2 or Sp1 site Do Not Cause Resistance to

Demethylation

		-0	:H3	AMES	c 6 BAC	ΔME Endog	ES c6 enous	
	-4130	93	13/14	0	0/9	0	0/9	
	-4080	93	13/14	0	0/9	0	0/9	
	-4042	77	10/13	0	0/9	0	0/9	
ENH	-3997	100	14/14	0	0/9	0	0/9	
	-3965	93	13/14	0	0/9	38	3/8	0
Ptcra	-3947	93	13/14	44	4/9	38	3/8	
H H	-3900	93	13/14	56	5/9	100	9/9	
	-3818	93	13/14	38	3/8	38	3/8	
	-3806	93	13/14	38	3/8	100	9/9	100
	-3800	93	13/14	0	0/8	0	0/9	•

С

Mutations in the Myb, Ebox4 or CSL site Do Not Cause Consistent Widespread

Demethylation

					I	NT TA	G dones	5			
Loc	ation	1		2			3	4		5	
		%	Ratio	%	Ratio	%	Ratio	%	Ratio	%	Ratio
	-4130	27	7/26	33	5/15	63	12/19	63	12/19	52	14/27
	-4080	13	4/31	8	1/13	11	2/19	11	2/19	24	5/21
т	-4042	3	1/30	19	3/16	19	4/21	19	4/21	29	7/24
N N N	-3997	10	3/29	12	2/17	21	4/18	26	5/19	29	7/24
	-3965	36	11/31	32	6/19	52	11/21	60	12/20	64	14/22
Ptcra	-3947	53	16/30	72	13/18	86	18/21	85	17/20	64	14/22
α.	-3900	29	8/28	35	6/17	52	11/21	50	10/20	32	7/22
	-3818	10	3/29	12	2/17	24	5/21	25	5/20	17	4/24
	-3806	44	14/32	70	14/20	64	14/22	62	13/21	42	10/24
	-3800	44	14/32	32	6/19	77	17/22	76	16/21	56	13/23

٨	
A	

						mMyb	clones				
			1		2		3		4		5
		%	Ratio	%	Ratio	%	Ratio	%	Ratio	%	Ratio
	-4130	55	16/29	36	5/14	46	19/41	33	7/21	22	2/9
	-4080	7	1/15	7	3/44	12	5/42	5	1/20	10	1/10
	-4042	23	7/30	19	8/43	19	8/43	11	2/19	21	3/14
ENH	-3997	21	6/29	16	7/43	10	2/21	0	0/21	8	1/13
	-3965	55	17/31	28	12/43	33	1/3	23	5/21	15	2/13
l a	-3947	87	13/15	73	8/11	61	25/41	38	8/21	38	5/13
Ptcra	-3900	61	19/31	55	6/11	31	13/42	38	7/18	33	5/15
	-3818	40	2/5	19	8/43	10	2/21	9	2/21	13	2/15
	-3806	52	16/31	52	23/44	51	22/43	23	5/21	47	7/25
	-3800	63	19/30	43	19/44	31	13/42	20	4/20	20	3/15

					mEbox4	l Clone	s		
Loca	ation		2		3		5	-	10
		%	Ratio	%	Ratio	%	Ratio	%	Ratio
	-4130	63	5/8	33	3/9	100	20/20	27	3/11
	-4080	11	1/9	0	0/8	0	0/20	0	0/11
т	-4042	18	2/11	40	4/10	0	0/20	18	2/11
ENH	-3997	44	4/9	20	2/10	21	4/19	27	3/11
	-3965	22	2/9	22	2/9	95	18/19	72	8/11
Ptcra	-3947	100	10/10	88	7/8	100	20/20	81	9/11
Δ.	-3900	45	5/11	70	7/10	0	0/20	27	3/11
	-3818	36	4/11	30	3/10	0	0/20	18	2/11
	-3806	73	8/11	60	6/10	0	0/20	72	8/11
	-3800	82	9/11	80	8/10	0	0/20	81	9/11

					mCSL	Clones	5		
Loc	ation		1		2		3	9	
		%	Ratio	%	Ratio	%	Ratio	%	Ratio
	-4130	- 33	5/15	50	9/18	36	8/22	59	10/17
	-4080	7	1/15	5	1/19	5	1/22	11	2/18
<u>-</u>	-4042	13	2/15	25	5/20	40	8/20	53	9/17
EN H	-3997	0	0/15	0	0/20	0	0/22	18	3/17
	-3965	43	6/14	75	15/20	36	8/22	78	14/18
Ptcra	-3947	80	12/15	80	16/20	55	12/22	88	15/17
<u>م</u>	-3900	47	7/15	70	14/20	50	11/22	55	10/18
	-3818	7	1/15	20	4/20	36	8/22	17	3/18
	-3806	13	2/15	65	13/20	45	10/22	67	12/18
	-3800	20	3/15	65	13/20	73	16/22	56	10/18

Mutations in the Myb, Ebox4 or CSL site Do Not Cause Consistent Widespread

Demethylation

B

			T/	١G			mMyb		mCSL			mEbox4
		3	2	4	5	1	4	7	1	2	3	4
Lo	ocation			6			%			%		%
	-5118	88	76	100	79	83	92	80	92	56	92	76
	-4965	75	81	89	71	78	92	78	77	78	100	76
	-4943	62	86	78	77	72	67	75	69	67	75	82
SKL	-4912	62	95	78	93	93	100	90	85	89	92	100
4.8kb	-4831	75	90	100	79	100	100	100	92	70	92	94
·	-4807	88	100	44	93	89	83	100	77	100	83	94
	-4717	88	80	100	86	78	100	100	77	89	92	76
	-4700	88	90	89	71	78	92	60	85	78	83	65
	-4621	86	84	95	50	93	7	50	77	83	100	91
	-4616	79	71	63	55	93	36	50	87	83	86	75
	-4603	89	71	66	55	93	15	60	84	61	86	75
- ê	-4541	82	86	60	53	80	21	70	68	61	88	81
- 4.3kb	-4520	86	90	68	50	93	36	70	77	61	75	84
4	-4362	64	74	63	43	87	29	30	61	61	75	66
	-4318	71	71	63	37	73	29	20	65	61	63	63
	-4292	57	40	58	18	67	14	20	26	28	63	34
	-4220	36	40	35	24	73	29	20	19	22	25	38
	-4130	40	33	63	52	50	25	18	10	54	0	64
	-4080	10	8	11	24	100	63	0	0	15	20	9
	-4042	0	19	19	29	50	25	27	0	38	0	9
ENH	-3997	15	12	26	29	0	25	9	22	15	20	18
ω.	-3965	11	32	60	64	100	0	22	30	43	0	27
Ptcra	-3947	50	72	85	64	50	75	45	40	50	60	27
ă	-3900	33	35	50	32	0	38	18	20	50	66	55
	-3818	22	12	25	17	0	13	0	22	23	33	27
	-3806	33	70	62	42	100	75	27	30	54	33	36
	-3800	40	32	76	56	50	63	18	20	50	33	36
	-2765	71	74	63	79	86	100	55	63		80	61
	-2734	90	82	96	90	100	78	82	100		93	94
	-2663	68	87	76	79	80	67	91	63		93	61
<u>e</u>	-2642	81	94	84	92	100	100	82	88		100	82
-2.6kb	-2616	86	77	84	88	100	67	82	75		80	82
	-2581	86	90	88	96	86	88	82	88		87	83
	-2555	90	90	96	100	86	100	90	100		100	89
	-2538	81	81	92	88	86	67	78	88		87	67
	-2452	65	68	48	65	86	86	50	63		47	59
	-451	100				100	100	83	75	67	50	50
X	-441	100				100	100	100	50	100	75	50
-0.3kb	-384	67				100	100	83	100	100	100	25
	-241	67				0	100	100	100	100	75	75
	+111	33	53	43	31	62	36	67	17	11	45	67
PRO	+153	67	59	86	83	85	72	100	43	78	91	83
•	+249	100	76	57	92	85	82	87	100	89	82	83
L												

0

The pTa Enhancer Mark is Reestablished in an Sp1 Double Mutant BAC

A

Location % % Ratio % Ratio % Ratio -5118 100 84 67 4/6 100 1/1 75 3/4 -4965 100 75 83 5/6 100 1/1 100 4/4 -4943 100 62 50 3/6 100 1/1 100 4/4 -4912 100 62 83 5/6 0 0/1 100 4/4 -4831 100 75 67 4/6 100 1/1 100 4/4 -4807 100 88 67 4/6 100 1/1 100 4/4 -4700 80 88 17 1/6 100 1/1 25 1/4 -4621 100 79 22 2/9 91 10/11 86 6/7 -4616 100 70 44 4/9 64 7/11 86 6/7 <th>%</th> <th></th>	%	
-4965 100 75 83 5/6 100 1/1 100 4/4 -4943 100 62 50 3/6 100 1/1 100 4/4 -4912 100 62 83 5/6 0 0/1 100 4/4 -4817 100 75 67 4/6 100 1/1 100 4/4 -4807 100 88 67 4/6 100 1/1 100 4/4 -4700 80 88 33 2/6 100 1/1 75 3/4 -4700 80 88 17 1/6 100 1/1 25 1/4 -4616 100 79 22 2/9 91 10/11 86 6/7 -4616 100 79 22 2/9 91 10/11 86 6/7 -4603 100 70 444 4/9 6/4 7/11 86		Ratio
-4943 100 62 50 3/6 100 1/1 100 4/4 -4912 100 62 83 5/6 0 0/1 100 4/4 -4831 100 75 67 4/6 100 1/1 100 4/4 -4807 100 88 67 4/6 100 1/1 100 4/4 -4707 60 88 33 2/6 100 1/1 75 3/4 -4700 80 88 17 1/6 100 1/1 25 1/4 -4616 100 79 22 2/9 91 10/11 86 6/7 -4616 100 67 444 4/9 644 7/11 86 6/7 -4616 100 70 67 6/9 73 8/11 86 6/7 -4541 100 70 67 6/9 91 10/11 80 4/5 -4318 100 61 67 6/9 37 4/11 <th>50</th> <th>1/2</th>	50	1/2
A -4912 100 62 83 5/6 0 0/1 100 4/4 -4831 100 75 67 4/6 100 1/1 100 4/4 -4807 100 88 67 4/6 100 1/1 100 4/4 -4717 60 88 33 2/6 100 1/1 25 3/4 -4700 80 88 17 1/6 100 1/1 25 1/4 -4621 100 79 22 2/9 91 10/11 86 6/7 -4616 100 67 444 4/9 64 7/11 86 6/7 -4613 100 70 67 6/9 73 8/11 86 6/7 -4520 100 74 89 8/9 91 10/11 80 4/5 -4318 100 61 67 6/9 82 9/11	50	1/2
-4807 100 88 67 4/6 100 1/1 100 4/4 -4717 60 88 33 2/6 100 1/1 75 3/4 -4700 80 88 17 1/6 100 1/1 25 1/4 -4700 80 88 17 1/6 100 1/1 25 1/4 -4621 100 79 22 2/9 91 10/11 86 6/7 -4616 100 67 44 4/9 64 7/11 86 6/7 -4603 100 70 67 6/9 73 8/11 86 6/7 -4520 100 74 89 8/9 91 10/11 86 6/7 -4320 100 74 89 8/9 91 10/11 80 4/5 -4318 100 61 67 6/9 82 9/11 80 4/5 -4220 80 34 11 1/9 80 8/10	50	1/2
-4807 100 88 67 4/6 100 1/1 100 4/4 -4717 60 88 33 2/6 100 1/1 75 3/4 -4700 80 88 17 1/6 100 1/1 25 1/4 -4700 80 88 17 1/6 100 1/1 25 1/4 -4621 100 79 22 2/9 91 10/11 86 6/7 -4616 100 67 44 4/9 64 7/11 86 6/7 -4603 100 70 67 6/9 73 8/11 86 6/7 -4520 100 74 89 8/9 91 10/11 86 6/7 -4320 100 74 89 8/9 91 10/11 80 4/5 -4318 100 61 67 6/9 82 9/11 80 4/5 -4220 80 34 11 1/9 80 8/10	100	3/3
-4717 60 88 33 2/6 100 1/1 75 3/4 -4700 80 88 17 1/6 100 1/1 25 1/4 -4621 100 79 22 2/9 91 10/11 86 6/7 -4616 100 67 44 4/9 64 7/11 86 6/7 -4603 100 70 44 4/9 64 7/11 86 6/7 -4541 100 70 67 6/9 73 8/11 86 6/7 -4520 100 74 89 8/9 91 10/11 80 4/5 -4362 80 61 44 4/9 91 10/11 80 4/5 -4318 100 61 67 6/9 82 9/11 80 4/5 -4220 80 34 11 1/9 80 8/10 33 4/12 -4130 100 40 50 3/6 100 5/5	100	3/3
-4700 80 88 17 1/6 100 1/1 25 1/4 -4621 100 79 22 2/9 91 10/11 86 6/7 -4616 100 67 44 4/9 64 7/11 86 6/7 -4603 100 70 44 4/9 64 7/11 86 6/7 -4603 100 70 67 6/9 73 8/11 86 6/7 -4541 100 70 67 6/9 73 8/11 86 6/7 -4520 100 74 89 8/9 91 10/11 80 4/5 -4362 80 61 44 4/9 91 10/11 80 4/5 -4318 100 61 67 6/9 82 9/11 80 4/5 -4220 80 34 11 1/9 80 8/10 33 4/12	50	1/2
-4621 100 79 22 2/9 91 10/11 86 6/7 -4616 100 67 44 4/9 64 7/11 86 6/7 -4603 100 70 44 4/9 64 7/11 86 6/7 -4603 100 70 67 6/9 73 8/11 86 6/7 -4541 100 70 67 6/9 73 8/11 86 6/7 -4520 100 74 89 8/9 91 10/11 80 4/5 -4362 80 61 44 4/9 91 10/11 80 4/5 -4318 100 61 67 6/9 82 9/11 80 4/5 -4220 80 34 11 1/9 80 8/10 33 4/12 -4130 100 40 50 3/6 100 50 5/0	50	1/2
-4616 100 67 44 4/9 64 7/11 86 6/7 -4603 100 70 44 4/9 64 7/11 86 6/7 86 6/7 86 6/7 86 6/7 86 6/7 86 6/7 86 6/7 86 6/7 86 6/7 86 6/7 73 8/11 86 6/7 8 9 91 10/11 100 7/7 8 8 9 91 10/11 80 4/5 9 43 4/4 4/9 91 10/11 80 4/5 <th>100</th> <th>2/2</th>	100	2/2
-4603 100 70 44 4/9 64 7/11 86 6/7 -4541 100 70 67 6/9 73 8/11 86 6/7 -4520 100 74 89 8/9 91 10/11 100 7/7 -4362 80 61 44 4/9 91 10/11 80 4/5 -4318 100 61 67 6/9 82 9/11 80 4/5 -4292 100 43 44 4/9 37 4/11 80 4/5 -4220 80 34 11 1/9 80 8/10 33 4/12	100	8/8
a -4541 100 70 67 6/9 73 8/11 86 6/7 -4520 100 74 89 8/9 91 10/11 100 7/7 -4362 80 61 44 4/9 91 10/11 80 4/5 -4318 100 61 67 6/9 82 9/11 80 4/5 -4292 100 43 44 4/9 37 4/11 80 4/5 -4220 80 34 11 1/9 80 8/10 33 4/12	88	7/8
-4520 100 74 89 8/9 91 10/11 100 7/7 -4362 80 61 44 4/9 91 10/11 80 4/5 -4318 100 61 67 6/9 82 9/11 80 4/5 -4292 100 43 44 4/9 37 4/11 80 4/5 -4220 80 34 11 1/9 80 8/10 33 4/12	63	5/8
-4362 -4362 -40 -61 -444 -4/9 -91 -10/11 -60 -4/5 -4318 100 61 67 6/9 -82 9/11 80 4/5 -4292 100 43 44 4/9 37 4/11 80 4/5 -4220 80 34 11 1/9 80 8/10 33 4/12	75	6/8
-4362 -4362 -40 -61 -444 -4/9 -91 -10/11 -60 -4/5 -4318 100 61 67 6/9 -82 9/11 80 4/5 -4292 100 43 44 4/9 37 4/11 80 4/5 -4220 80 34 11 1/9 80 8/10 33 4/12	75	6/8
-4292 100 43 44 4/9 37 4/11 80 4/5 -4220 80 34 11 1/9 80 8/10 33 4/12 -4130 100 40 50 3/6 100 5/5 5/0 5/10	88	7/8
-4220 80 34 11 1/9 80 8/10 33 4/12 -4130 100 40 50 3/6 100 50 5/10 50 5/10	75 50	6/8 4/8
-4130 100 40 50 3/6 100 5/5 50 5/10	50 44	4/8 8/18
	60	6/10
	10	1/10
	60 10	6/10
-3997 100 15 0 0/6 40 2/5 57 4/7 ш -3965 80 11 67 4/6 60 3/5 43 3/7	30	1/10 3/10
50 11 11	70	7/10
Solution Solution	60	6/10
-3818 100 22 0 0/5 40 2/5 29 2/7	22	2/9
- 3806 100 33 60 3/5 60 3/5 71 5/7	44	4/9
-3800 100 40 40 2/5 40 2/5 71 5/7	67	6/9
-2765 80 72 67 8/12 88 7/8 70 7/10	100	6/6
-2734 100 90 83 10/12 75 6/8 100 10/10	100	6/6
- 2663 100 78 58 7/12 63 5/8 40 4/10	86	6/7
	86	6/7
<th< t<="" th=""><th>43</th><th>3/7</th></th<>	43	3/7
	100	7/7
-2555 100 94 92 11/12 100 8/8 100 10/10	100	7/7
-2538 100 86 92 11/12 100 8/8 80 8/10	86	6/7
- 2452 100 62 17 2/12 13 1/8 30 3/10	29	2/7
-451 100 100 1/1 75 3/4 71 5/7	40	2/5
Q -441 100 100 50 1/2 100 4/4 86 6/7 Q -384 100 67 100 1/1 75 3/4 100 77	80	4/5
🔆 -384 100 67 100 1/1 75 3/4 100 7/7	80	4/5
-241 100 67 100 1/1 100 4/4 83 5/6	100	5/5
+111 100 40 67 2/3 50 2/4 71 5/7	22	4/12
0 +153 100 74 100 3/3 75 3/4 86 6/7 m +153 100 74 100 3/3 75 3/4 86 6/7	33	4/12
• +249 100 81 67 2/3 25 1/4 86 6/7		9/12

The pTa Enhancer	Mark is	Reestablished in an S	Sp1 Double Mutant BAC

12	n
	к
	D

СНЗ		СНЗ		DSp)1 c1	DSp	1 c2	DSp	1 c4	DSp	1 c5	
			WT	BAC	END	BAC	END	BAC	END	BAC	END	
	-4130	100	40	50	22	100	17	50	50	60	67	
	-4080	100	10	17	0	20	0	71	10	10	17	
	-4042	100	0	33	11	60	17	14	10	60	33	
Ξ	-3997	100	15	0	0	40	6	57	30	10	0	
ш	-3965	80	11	67	11	60	50	43	60	30	50	0
cra	-3947	80	50	67	56	40	67	100	78	70	67	
Ptc	-3900	100	33	67	22	20	22	71	38	60	33	
	-3818	100	22	0	11	40	6	29	25	22	17	
	-3806	100	33	60	33	60	44	71	13	44	50	100
	-3800	100	40	40	22	40	39	71	13	67	17	

		СНЗ	wr	Sp1DO c1		
L	ocation	%	%	%	Ratio	
	-5118	100	84	80	8/10	
	-4965	100	75	80	8/10	
~	-4943	80	62	90	9/10	
4.8kb	-4912	100	62	90	9/10	
4	-4831	80	75	90	9/10	
	-4807	100	88	80	8/10	
	-4717	100	88	100	10/10	
	-4700	100	88	50	5/10	
	-4621	100	79	71	10/14	
	-4616	100	67	79	11/14	
	-4603	80	70	79	11/14	
Å B	-4541	100	70	64	9/14	
4.3kb	-4520	100	74	86	12/14	
•	-4362	100	61	56	5/9	
	-4318	80	61	44	4/9	
	-4292	100	43	56	5/9	
	-4220	100	34	44	4/9	
	-4130	100	40	40	2/5	
	-4080	100	10	0	0/5	
	-4042	100	0	0	0/5	
ENH	-3997	100	15	0	0/5	
ы Ш	-3965	100	11	20	1/5	
Ptcra	-3947	83	50	60	3/5	
a .	-3900 -3818	100	33	0	0/5 0/5	
	-3816 -3806	100 100	22 33	0 60	0/5 3/5	
	-3800	100	40	20	1/5	
	-2765 -2734	100 100	72 90	67 83	4/6 5/6	
	-2734 -2663	100	78	33	2/6	
	-2642	100	88	83	5/6	
-2.6kb	-2642 -2616	100	84	67	4/6	
ġ	-2581	100	90	50	3/6	
	-2555	100	94	100	6/6	
	-2538	100	86	100	6/6	
	-2452	75	62	33	2/6	
	-451	100	100	40	4/10	
å	-441	100	100	56	5/9	
-0.3kb	-384	100	67	56	5/9	
•	-241	100	67	44	4/9	
	+111	100	40			
PRO	+153	60	74			
•	+249	40	81			
	- 10					

The pTa Enhancer Mark is Reestablished in an Sp1 Double Mutant BAC

pTa BAC Mutants Methylation Data Summarized

		TAG	щУр	mcSL	mEbox4	mEbox2	mSp1	DSp1	Sp1D0	
	.ocation	%	%	%	%	%	%	%	%	
	-5118	84	85	80	76	93	85	73	80	
	-4965	75	83	85	76	100	79	83	80	
	-4943	62	71	70	82	56	67	75	90	
1 ਨੂੰ	-4912	62	94	89	100	100	78	71	90	
4.8kb	-4831	75	100	85	94	78	88	92	90	
· ·	-4807	88	91	87	94	100	89	79	80	
	-4717	88	93	86	76	100	90	65	100	
	-4700	88	77	82	65	61	82	61	50	
	-4621	79	50	87	91	93	64	75	71	
	-4616	67	60	85	75	80	63	71	79	
	-4603	70	56	77	75	67	63	64	79	
l ê	-4541	70	57	72	81	58	64	75	64	
4.3kb	-4520	74	66	71	84	62	70	89	86	
	-4362	61	49	66	66	58	55	76	56	
	-4318	61	41	63	63	70	51	76	44	
	-4292	43	34	39	34	21	- 38	53	56	
	-4220	34	41	22	38	48	37	42	44	
	-4130	40	31	21	64	32	36	65	40	
	-4080	10	54	12	9	0	32	30	0	
	-4042	0	34	13	9	23	17	42	0	
ENH	-3997	15	11	19	18	0	13	27	0	
Шщ	-3965	11	41	24	27	26	26	50	20	
Ptcra	-3947	50	57	50	27	62	53	69	60	
Γ	-3900	33	19	45	55	38	26	55	0	
	-3818	22	4	26	27	10	13	23	0	
	-3806 -3800	33 40	67 44	39 34	36 36	51 33	50 42	59 55	60 20	
	-3000	40	44	- 34	- 30	- 33	42	- 55	20	
_	-2765	70	80	70	61	01	76	01	67	
	-2765	72 90	80 87	72 97	61 94	81 86	76 88	81 90	67 83	
	-2663	78	79	78	61	86	78	62	33	
	-2642	88	94	94	82	81	91	78	83	0
-2.6kb	-2616	84	83	78	82	93	83	63	67	Ū
N	-2581	90	85	88	83	97	88	97	50	
	-2555	94	92	100	89	81	93	98	100	
	-2538	86	77	88	67	69	81	90	100	100
	-2452	62	74	55	59	47	68	22	33	_
L										
	-451	100	94	64	50	25	97	72	40	
문	-441	100	100	75	50	100	100	79	56	
-0.3kb	-384	67	94	100	25	88	81	89	56	
1.	-241	67	67	92	75	100	67	96	44	
	+111	40	55	24	67	36	48	55		
PR0	+153	74	86	71	83	58	80	84		
	+249	81	85	90	83	<mark>51</mark>	83	61		

REFERENCES

Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., *et al.* (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell *125*, 315-326.

Bossard, P., and Zaret, K.S. (1998). GATA transcription factors as potentiators of gut endoderm differentiation. Development *125*, 4909-4917.

Brandeis, M., Frank, D., Keshet, I., Siegfried, Z., Mendelsohn, M., Nemes, A., Temper, V., Razin, A., and Cedar, H. (1994). Sp1 elements protect a CpG island from de novo methylation. Nature *371*, 435-438.

Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., *et al.* (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences of the United States of America *107*, 21931-21936.

Dillon, N. (2012). Factor mediated gene priming in pluripotent stem cells sets the stage for lineage specification. BioEssays : news and reviews in molecular, cellular and developmental biology *34*, 194-204.

Gualdi, R., Bossard, P., Zheng, M., Hamada, Y., Coleman, J.R., and Zaret, K.S. (1996). Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes & development *10*, 1670-1682.

Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., Walter, J., and Surani, M.A. (2002). Epigenetic reprogramming in mouse primordial germ cells. Mechanisms of development *117*, 15-23.

Heinz, S., and Glass, C.K. (2012). Roles of lineage-determining transcription factors in establishing open chromatin: lessons from high-throughput studies. Current topics in microbiology and immunology *356*, 1-15.

Jones, P.A., and Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science *293*, 1068-1070.

Kafri, T., Ariel, M., Brandeis, M., Shemer, R., Urven, L., McCarrey, J., Cedar, H., and Razin, A. (1992). Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes & development *6*, 705-714.

Liber, D., Domaschenz, R., Holmqvist, P.H., Mazzarella, L., Georgiou, A., Leleu, M., Fisher, A.G., Labosky, P.A., and Dillon, N. (2010). Epigenetic priming of a pre-B cell-specific enhancer through binding of Sox2 and Foxd3 at the ESC stage. Cell stem cell *7*, 114-126.

Liu, J.K., DiPersio, C.M., and Zaret, K.S. (1991). Extracellular signals that regulate liver transcription factors during hepatic differentiation in vitro. Molecular and cellular biology *11*, 773-784.

Macleod, D., Charlton, J., Mullins, J., and Bird, A.P. (1994). Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes & development 8, 2282-2292.

McPherson, C.E., Shim, E.Y., Friedman, D.S., and Zaret, K.S. (1993). An active tissuespecific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell *75*, 387-398.

Miranda, T.B., and Jones, P.A. (2007). DNA methylation: the nuts and bolts of repression. Journal of cellular physiology *213*, 384-390.

Monk, M., Boubelik, M., and Lehnert, S. (1987). Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development *99*, 371-382.

Ong, C.T., and Corces, V.G. (2011). Enhancer function: new insights into the regulation of tissue-specific gene expression. Nature reviews Genetics *12*, 283-293.

Pinkert, C.A., Ornitz, D.M., Brinster, R.L., and Palmiter, R.D. (1987). An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes & development *1*, 268-276.

Reizis, B., and Leder, P. (1999). Expression of the mouse pre-T cell receptor alpha gene is controlled by an upstream region containing a transcriptional enhancer. The Journal of experimental medicine *189*, 1669-1678.

Reizis, B., and Leder, P. (2001). The upstream enhancer is necessary and sufficient for the expression of the pre-T cell receptor alpha gene in immature T lymphocytes. The Journal of experimental medicine *194*, 979-990.

Reizis, B., and Leder, P. (2002). Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes & development *16*, 295-300.

Rothenberg, E.V. (2014). The chromatin landscape and transcription factors in T cell programming. Trends in immunology *35*, 195-204.

Sachs, M., Onodera, C., Blaschke, K., Ebata, K.T., Song, J.S., and Ramalho-Santos, M. (2013). Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline in vivo. Cell reports *3*, 1777-1784.

Smale, S.T. (2010). Pioneer factors in embryonic stem cells and differentiation. Current opinion in genetics & development 20, 519-526.

Szutorisz, H., Canzonetta, C., Georgiou, A., Chow, C.M., Tora, L., and Dillon, N. (2005). Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Molecular and cellular biology *25*, 1804-1820.

Takeuchi, A., Yamasaki, S., Takase, K., Nakatsu, F., Arase, H., Onodera, M., and Saito, T. (2001). E2A and HEB activate the pre-TCR alpha promoter during immature T cell development. Journal of immunology (Baltimore, Md : 1950) *167*, 2157-2163.

Tremblay, M., Herblot, S., Lecuyer, E., and Hoang, T. (2003). Regulation of pT alpha gene expression by a dosage of E2A, HEB, and SCL. The Journal of biological chemistry 278, 12680-12687.

Vastenhouw, N.L., and Schier, A.F. (2012). Bivalent histone modifications in early embryogenesis. Current opinion in cell biology *24*, 374-386.

Voigt, P., Tee, W.-W., and Reinberg, D. (2013). A double take on bivalent promoters. Genes & development 27, 1318-1338.

Wang, Z., Engler, P., Longacre, A., and Storb, U. (2001). An efficient method for high-fidelity BAC/PAC retrofitting with a selectable marker for mammalian cell transfection. Genome research *11*, 137-142.

Warming, S., Costantino, N., Court, D.L., Jenkins, N.A., and Copeland, N.G. (2005). Simple and highly efficient BAC recombineering using galK selection. Nucleic acids research *33*, e36.

Wu, S.C., and Zhang, Y. (2010). Active DNA demethylation: many roads lead to Rome. Nature reviews Molecular cell biology *11*, 607-620.

Xu, J., Pope, S.D., Jazirehi, A.R., Attema, J.L., Papathanasiou, P., Watts, J.A., Zaret, K.S., Weissman, I.L., and Smale, S.T. (2007). Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America *104*, 12377-12382.

Xu, J., Watts, J.A., Pope, S.D., Gadue, P., Kamps, M., Plath, K., Zaret, K.S., and Smale, S.T. (2009). Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes & development *23*, 2824-2838.

Chapter 3

Quantitative Analysis of Transcription Dynamics in Pluripotent and

Differentiated Cells

ABSTRACT

Cellular identity is a direct consequence of the transcriptional output for any given cell type. Understanding the regulatory properties of the genes that define each cell type is of fundamental importance for understanding pluripotency and tissue specificity. In this study, a detailed characterization of the promoter properties for tissue-specific genes in embryonic stem cells (ESC) and four terminally differentiated cell types was performed. The primary differentiated cell types, cortical neurons, double positive thymocytes, bone marrow-derived macrophages and hepatocytes are representative of all germ layers. Using deep chromatin RNA sequencing (~500 million mapped reads), allowed for accurate quantification of transcripts for genes expressed at very low levels. This provides us with the ability to distinguish genes that exhibit a broad dynamic range among cell types from those whose dynamic range of expression is more limited. We carefully analyzed the DNA and histone methylation patterns at the promoters of the most dynamically regulated genes. Our findings show striking cell type-specific differences in the fundamental promoter properties (CpG-island versus low CpG promoters) of dynamically regulated genes. Furthermore, in contrast to the mechanistic trends that have been described in studies that group the most dynamically regulated genes with those whose expression levels fluctuate only modestly, consistent properties can be attributed to specific gene classes, thereby adding clarity to our knowledge of the strategies used for the dynamic regulation of cell type-specific gene expression.

INTRODUCTION

The full complement of transcribed RNA in a given cell, i.e. the transcriptome, determines the proteins to be translated that will collectively impart both the form and function of a cell. To understand what drives functional outcomes and phenotypic differences is one of the most fundamental aspects of biology. Interrogating not only what genes are expressed but also the level of their expression is critical in order to continue making strides in our understanding of cellular identity.

Much effort has been focused on understanding the epigenetic profiles of key developmental regulators in both mouse and human (Gifford et al., 2013; Sachs et al., 2013; Varley et al., 2013; Vastenhouw and Schier, 2012; Xie et al., 2013). The advances in sequencing technology coupled with chromatin immunoprecipitation have led to the genome wide characterization of a host of histone modifications. A major finding was the presence of H3K4me3 and H3K27me3 at the promoters of developmental regulators (Bernstein et al., 2006; Voigt et al., 2013b). These marks, active and repressive, were shown to resolve to one or the other, H3K4me3 persisting at active genes and H3K27me3 at inactive ones (Voigt et al., 2013b). This lead to the hypothesis that developmental regulators are poised in order to allow for their appropriate activation or repression upon differentiation.

Efforts have also been focused on identifying and understanding tissue specific genes and their regulation during development (Carninci et al., 2006; Efroni et al., 2008; Ernst et al., 2011; Meister et al., 2010; Song et al., 2013; Zhu et al., 2008). Studies defining tissue specific or tissue 'restricted' genes often use limited fold differences, resulting in thousands of tissue specific genes and thus grouping genes with different degrees of dynamic expression into the same

category (Carninci et al., 2006; Efroni et al., 2008; Meister et al., 2010; Song et al., 2013). Subsequent analysis performed on these gene sets does not account for possible differences in the regulatory mechanisms necessary for such dynamic regulation. Many of these tissue specific studies have been performed using microarray technology, which imposes a number of limitations (Barrera et al., 2008; Carninci et al., 2006; Okazaki et al., 2002; Song et al., 2013; Su et al., 2004; Wei et al., 2005). Microarrays are subject to cross-hybridization, normalization and saturation issues that result in high background, difficulties in comparing across experiments and a limited dynamic range of expression.

With the recent advances in sequencing technology we can revisit these fundamental questions and refine our understanding of tissue specificity. RNA sequencing not only provides an opportunity to capture the complexity of the mammalian transcriptome but also allows us to more accurately quantify transcripts (Mutz et al., 2013). A clear separation between tissue specific genes that show modest fluctuations in gene expression and genes that exhibit a much broader range of expression, will provide a more nuanced approach and a better understanding of cell type specific expression patterns and the mechanisms that govern them.

Our understanding of tissue specific gene regulation comes from studies in DNA methylation in early embryogenesis. During the wave of de novo methylation tissue specific genes are thought to be methylated and assembled into silent chromatin, where they await decondensation by lineage specific factors (Jones and Takai, 2001; Kafri et al., 1992). Identification of tissue specific genes will allow us to interrogate the associated promoter properties and provide mechanistic insights into their regulation. Although tissue specificity inversely correlates with CpG island promoter content, this has been shown to vary from cell type to cell type (Deaton and Bird, 2011; Zhu et al., 2008). Again, with the separation of tissue

specific genes that are most dynamically regulated, we can refine our understanding of these concepts.

The embryonic stem cell transcriptome is of great importance because of the fundamental properties of ES cells. They can self renew indefinitely and differentiate into all embryonic tissues, making ES cells attractive for regenerative medicine. Moreover, with the capability to convert somatic cells to an ES like state, there is a possibility for personalized stem cell therapies (Dejosez and Zwaka, 2012; Hanna et al., 2010; Jones and Takai, 2001; Kafri et al., 1992; Thomson et al., 2011). So, a clear and highly quantitative analysis of the genes necessary for the ES cell state is critical. ES cells can give rise to many distinct cells types, and thus retain developmental plasticity making them a clear choice in any tissue specific analyses. In addition, it has been reported that ES cells show basal levels of expression, even at tissue specific genes and that specification is a result of the restriction in this widespread transcription (Efroni et al., 2008). Understanding the mechanisms that regulate tissue specific genes in ES cells will contribute to our understanding of the pluripotent state.

Here we use chromatin RNA-Seq to quantify the transcriptomes of embryonic stem cells, E14.5 cortical neurons, CD4⁺ CD8⁺ thymocytes, bone marrow-derived macrophages and hepatocytes in order to define tissue specific genes with a broad dynamic range in expression. We assess the promoter properties of these genes in embryonic stem cells and define the chromatin signatures associated with these genes.

RESULTS

Analysis of Chromatin RNA-Sequencing

We studied tissue specific gene transcription in cells representative of all germ layers. Using the mouse embryonic stem cell line CCE and four primary differentiated mouse cell types – cortical neurons, double positive thymocytes, bone marrow-derived macrophages and hepatocytes – we defined genes that are highly specific to each cell type. In order to define the actively transcribed portions of the genome in each cell type, we employed cellular fractionation (Wuarin and Schibler, 1994) to isolate chromatin-associated transcripts, previously shown to be suitable for the analysis of nascent transcription (Bhatt et al., 2012; Pandya-Jones and Black, 2009). The purity of the chromatin fraction was assessed by Western blot analysis of Histone H3 (figure 3-1A). Strand-specific cDNA libraries were prepared from the isolated chromatin RNA and subjected to high-throughput sequencing. We performed deep sequencing, ~500 million reads, across 2-3 biological replicates for each cell type. The distribution of reads throughout the whole gene structure, introns and exons, is indicative of active transcription (figure 3-1B). In this instance (figure 3-1B), exonic peaks are consistently higher than intronic peaks, which in part, is likely due to splicing events taking place on the chromatin.

RPKM Distribution of Coding Genes

We calculated RPKM values as described in (Mortazavi et al., 2008) for all Refseq coding genes in each cell type and binned expression values for comparison across cell types. All cell types show a similar distribution of expression with the exception of hepatocytes (figure 3-

2A). At the lower end of the expression spectrum, between 5000 and 8000 genes had an RPKM lower than 0.01 in all five cell types. 615 genes showed no reads within their transcriptional unit in all cell types (figure 3-2A). Of those genes expressed at lower than 0.01 RPKM, almost 3000 were common to all cell types. Interestingly, ES cells and the differentiated cell types show similar numbers of non-expressed genes (figure 3-2A), arguing against a low level of basal transcription in ES cells as previously described (Efroni et al., 2008; Lienert et al., 2011). Between 30-40% of all genes have an RPKM greater than 1 in all cell types except hepatocytes, where it is 20% (figure 3-2A). Highly expressed genes follow a similar pattern, with genes with an RPKM of at least 5 accounting for ~15% of all genes in four cell types, but only 4% in hepatocytes (figure 3-2B).

Defining Tissue Specificity

To characterize the extent to which genes are specific to a cell type, we calculated minimum fold differences between one cell type and all other cell types, with a minimum RPKM of 1 or 5 in the expressing cell type. The high depth of sequencing provided us with confidence in genes expressed at low levels, an RPKM as low as 0.01. Genes which are considered 100-fold specific are expressed at a minimum of 1 or 5 RPKM in the expressing cell type, while being expressed at 0.01 or 0.05 RPKM, respectively, in all other cell types. The majority of genes expressed exhibit a limited dynamic range of expression, with greater than 50% of all genes (>1 or >5 RPKM) falling between a range of 2-5 fold in either direction for all cell types. The same holds true for greater than 75% in embryonic stem cells, cortical neurons, double positive thymocytes, and bone marrow-derived macrophages in the same range (figure 3-3A). We

employed the same strategy to assess if there are genes that are specifically repressed in one cell type. Only a handful of genes are expressed highly (>1 or >5 RPKM) in four cell types while having less than 20% expression in the fifth cell type with no clear pattern or insights emerging based on function (figure 3-3B).

100 Fold Tissue Specific Genes

In order to define the promoter properties associated with tissue specific genes, we selected genes that were expressed 100 fold higher in one cell type compared to all other cell types, with a minimum RPKM of 5 in the expressing cell type. In contrast with studies that use less stringent criteria for tissue specificity, often thousands of genes per cell type, we isolated genes with a much broader dynamic range of expression (Barrera et al., 2008). Here we define 39 embryonic stem cell specific genes, 100 E14.5 cortical neuronal specific genes, 56 CD4⁺ $CD8^+$ thymocyte specific genes, 68 bone marrow derived macrophage specific genes and 215 hepatocyte specific genes (Figure 3-4, Table 3-1 - 3-5). Despite our stringent criteria, genes critical for the function of each cell type were included in our selection such as Pou5f1, Fgf4 and Dppa4 in embryonic stem cells, Cd8a, Cd4, Rag1 and Ikzf3 in CD4⁺ CD8⁺ thymocytes and Alb in hepatocytes (figure 3-4). Moreover, gene ontology analysis of these limited gene sets still resulted in biological processes highly specific to each cell type: In utero embryonic development, synaptic transmission, T-cell activation, inflammatory response, and organic acid metabolic process, for embryonic stem cells, E14.5 cortical neurons, CD4⁺ CD8⁺ thymocytes, bone marrow derived macrophages and hepatocytes, respectively (Table 3-11 - 3-15).

100 fold was the minimum criteria for inclusion in our tissue specific genes. We analyzed the absolute fold changes to better understand the nature of their expression. The median fold differences for tissue specificity range from 200-500 fold and the maximum fold differences range from 2000 – 80,000 (Figure 3-5, Table 3-1 – 3-5). These absolute fold changes are conservative estimate as we considered 0.05 as the lower end of expression in this analysis. Tissue specificity based on our criteria can be attained either by having little to no expression in all other cell types, or, by being expressed at a much higher level in one cell type compared to all other cell types. To identify which categories our tissue specific genes fall into, we plotted the expression in the tissue specific genes fall into the former category with little to no expression in all other cell types (Figure 3-6). There are a limited number of genes which show elevated levels of expression in one or more of the non-expressing cell types, but of these only 1 gene has an RPKM greater than 1 (Figure 3-6).

Embryonic Stem Cells are More Closely Correlated with Cortical Neurons

To determine the relationship between the expression profile of the pluripotent embryonic stem cells and our differentiated cells, we calculated the fold differences between our ES cells and each individual cell type for all genes >5 RPKM. When comparing ES cells to all other cell types, the total number of 100 fold ES cell specific genes is 39 (Figure 3-7A). When comparing ES cells directly to neuronal cells, this number increases to 84, compared to thymocytes 165, to macrophages 132 and to hepatocytes 330 (Figure 3-7A). This indicates that the expression profiles of ES cells and neuronal cells are more closely related than ES cells and the other cell types analyzed, as fewer ES cell specific genes arise when comparing directly with neuronal cells than any other cell type. This also indicates ES cells are most distantly related to hepatocytes, as this direct comparison results in many more ES cell specific genes than with any other cell type.

Although these statements hold true for a fraction of the expressed genomes, it does not address global similarities in expression profiles. To this end we calculated the correlation in expression profiles for all cell types using all refseq coding genes. Interestingly the previous observations hold true. Embryonic stem cells are most closely related to cortical neurons in their overall expression profile, while hepatocytes show the largest dissimilarity among all cell types. CD4⁺ CD8⁺ thymocytes and bone marrow derived macrophages cluster together but separately from ES cells and neurons, which cluster together (Figure 3-7B).

Striking Cell Type Specific Differences Observed in Promoter Properties

To characterize to the promoter properties of our tissue specific genes we calculated the percentage of genes that have a CpG island promoter. Chromatin RNA-Seq allowed us to accurately define the transcription start sites for each tissue specific gene (Table 3-6-3-10). As previously reported there is an inverse relationship between CpG island promoter content and tissue specificity (Barrera et al., 2008; Carninci et al., 2006; Saxonov et al., 2006). The vast majority of housekeeping genes have a CGI promoter (Deaton and Bird, 2011; Saxonov et al., 2006). For CD4⁺ CD8⁺ thymocyte, bone marrow derived macrophage, and hepatocyte specific genes we observe the same phenomenon with less than 20%, 12% and 9% of genes having a CGI promoter, respectively (Figure 3-8). In contrast E14.5 cortical neuronal specific genes, with the

broadest dynamic range in expression, show a much higher percentage of genes with a CGI promoter, 84%, which is comparable to that of housekeeping genes (Figure 3-8). Embryonic stem cell specific genes fall in between with just over 60% having a CGI promoter (Figure 3-8).

Tissue Specific Genes Show Two Distinct DNA Methylation Promoter Patterns in Non-Expressing Cells

Given the bimodal distribution of CGI promoter content, we examined the DNA methylation at the promoters of tissue specific genes in embryonic stem cells, neural progenitor cells and 6-week frontal cortex neuronal cells. This allowed us to interrogate the methylation status of tissue specific gene promoters in both expressing and a non-expressing cell types. We have previously shown that the overwhelming majority of our tissue specific genes show little to no expression in all other cell types. Using promoter coordinates for CD4⁺ CD8⁺ thymocyte and bone marrow derived macrophage specific genes we calculated the average DNA methylation profile for each gene in the aforementioned non-expressing cell types. A clear pattern emerged: tissue specific genes that harbor a CpG island promoter, although not expressed, remain unmethylated, while those without a CGI promoter remain heavily methylated (Figure 3-9).

Tissue Specific CGI Genes are Marked by Both H3K4me3 and H3K27me3 in Non-Expressing Cell Types

Given the strict rule between CGI promoter containing genes and the lack of DNA methylation for tissue specific genes in non-expressing cell types, we assessed the presence of

histone modifications at CD4⁺ CD8⁺ thymocyte and bone marrow derived macrophage specific genes in ES cells. The presence of an H3K4me3 or H3K27me3 ChIP-Seq peak overlapping with our tissue specific promoters was determined and again a clear rule emerged. Tissue specific genes with CGI promoters are concomitantly marked with H3K4me3 and H3K27me3 in nonexpressing cell types (Figure 3-10, 3-11). We took advantage of H3K4me2 and H3K27me3 ChIP-Seq data sets for thymocytes to see if these same rules applied in another differentiated cell type. We identified bone marrow derived macrophage specific promoters with the presence of these epigenetic modifications and again a clear pattern emerged. CGI promoter containing bone marrow derived macrophage specific genes are marked concomitantly by both active and repressive histone marks in thymocytes. Although these macrophage genes show no expression in thymocytes they are clearly marked by H3K4me2 and H3K27me3 (Figure 3-13).

Tissue Specific Genes with a Limited Dynamic Range Lack a Clear Epigenetic Profile in Non-Expressing Cell Types

In order to determine if these rules hold true for all tissue specific genes, we categorized these same histone modifications in CD4⁺ CD8⁺ thymocytes specific genes that show a more limited dynamic range of gene expression. We took the promoters of genes whose expression ranged from 10-20 fold and 5-10 and found a breakdown in the rules previously observed at genes with a much higher dynamic range in gene expression (Figure 3-12). That is, CGI promoter genes are not consistently marked with H3K4me3 and H3K27me3 in non-expressing cell types. Moreover, this rule appears to break down even further, as we reduce the dynamic range of expression from 10-20 fold to 5-10 fold (Figure 3-12).

Embryonic Stem Cell Specific Genes Show Unique Phases of Activation

To assess the role of our embryonic stem cell specific genes in reprogramming, we used chromatin RNA-Seq expression data from a time course of reprogramming (Chronis unpublished). We identified which of our ES cell specific genes are induced and at what stage of reprogramming, MEFs, 48hrs post induction, preiPS and ES. The majority of our defined ES cell specific genes are not expressed until an ES cell state is reached (Figure 3-14C). One third of our ES specific genes have some level of expression at the preiPS stage (Figure 3-14B). Two genes Fgf4 and L1td1, are expressed at very early stages, 48 hours post induction (Figure 3-14A).

DISCUSSION

Using chromatin RNA-sequencing we categorized the transcriptome of mouse embryonic stem cells, E14.5 cortical neurons, CD4⁺ CD8⁺ thymocytes, bone marrow-derived macrophages and hepatocytes. The four latter cell types are primary mouse tissues representing all three germ layers. Chromatin RNA-seq gave us confidence in genes expressed at lower levels of expression resulting in a broad dynamic range of gene expression for a thorough quantitation. We then defined tissue specific genes with the largest dynamic range in gene expression for each cell type. Our analysis while stringent, still resulted in tissue specific genes highly related to cellular function. Although limited in number, these tissue specific genes contribute heavily to the overall function of each cell type. We characterized 39 embryonic stem cell specific genes, 100 E14.5 cortical neuronal specific genes, 56 CD4⁺ CD8⁺ thymocyte specific genes, 68 bone marrow derived macrophage specific genes and 215 hepatocyte specific genes. We assessed the overall expression profiles of all refseq coding genes and found a similar distribution of expression for all cell types apart from hepatocytes. Hepatocytes as an outlier appear to be a consistent trend and likely reflect the diversity and complexity of the cell type specific functional requirements (Kmiec, 2001; Schwartz et al., 2014; Sun et al., 2013). It has previously been proposed the there is a basal level of gene expression in mouse ES cells and through differentiation there is a restriction in the expression repertoire (Efroni et al., 2008). However, even with deep sequencing, we do not observe this phenomenon in mouse ES cells, which show comparable number of genes expressed to all four differentiated cell types.

We addressed the relationship between the transcriptome of ES cells and the differentiated cell types. Analyzing genes with an expression greater than 5 RPKM we found ES cells to be most similar to cortical neurons while most dissimilar to hepatocytes. Upon

hierarchical clustering of the global transcriptomes we observed the same pattern. ES cells cluster together with and are more closely related to cortical neurons, while being most dissimilar to hepatocytes. This similarity in expression profile aligns with the 'default model' of neural induction, which states without extrinsic signals ectoderm and neuronal differentiation is the default pathway (Hemmati-Brivanlou and Melton, 1997; Munoz-Sanjuan and Brivanlou, 2002; Tropepe et al., 2001).

Chromatin RNA-Seq allowed us to accurately define transcriptional start sites and manually curate of all our tissue specific genes. After careful designation of promoters we observed striking cell type specific differences in CpG island promoter content in the most dynamically regulated genes. In line with previous studies tissue specificity is inversely correlated with CGI promoter content in most of our cell types. However, cortical neurons display a very high percentage of genes with a CGI promoter, 84%. We speculate this may be due to the need for neuronal specific genes to be both induced and shut off rapidly. Previous work has shown that CpG islands cause destabilization of nucleosomes and can provide a constitutively active chromatin environment facilitating rapid induction of transcription in response to external stimuli (Bhatt et al., 2012; Ramirez-Carrozzi et al., 2009).

Using available and unpublished genome wide DNA methylation and histone ChIP-Seq data sets we categorized the epigenetic profile of tissue specific genes. In our analysis we chose to focus on tissue specific genes with the largest dynamic range in expression. This resulted in a clear and consistent epigenetic profile for tissue specific genes in non-expressing cell types. Tissue specific genes with CpG island promoters are consistently unmethylated and marked by H3K4me3 and H3K27me3 in non-expressing cell types. This rule breaks down when considering tissue specific genes with a more narrow dynamic range in expression. There is a vast amount of interest in bivalency and the contexts in which it exists. The marking of our tissue specific genes in ES cells with H3K4me3 and H3K27me3 is reminiscent of the bivalent domains at developmental regulators. In fact Gata3, a thymocyte specific gene in our data set, was shown to be upregulated in Eed knockout ES cells (Boyer et al., 2006b). However, the majority of our tissue specific genes are just that, highly specific to the cell type and show no enrichment for lineage determining characteristics. In this sense our tissue specific bivalent genes are not developmental regulators.

Key findings early on suggested that bivalency primarily occurred in ES cells but it has also been observed in non pluripotent cells (Voigt et al., 2013b). Here we report that the bivalent mark H3K4me2 and H3K27me3 is present at CpG island containing bone marrow macrophage specific genes in CD4⁺ CD8⁺ thymocytes. In this sense it is unlikely to represent a poised state, as the bone marrow macrophage gene is unlikely to be expressed in a lineage committed double positive thymocyte. For instance, Emilin2, a BMDM specific CGI promoter gene is marked by K4me3/K27me3 in ES cells and shows no expression. Emilin2 is marked by K4me2/K27me3 in thymocytes and is also silent. Although we cannot rule out that Emilin2 may be expressed at a later time in thymocyte development and thus be poised.

Consistent with existing data H3K4me3 is highly correlated with the presence of a CpG island (Voigt et al., 2013b). In almost all cases our tissue specific genes with a CpG island promoter are also marked with H3K4me3. Interestingly we see just as high a correlation with CGI promoter containing tissue specific genes and H3K27me3. Data shows the H3K27me3 marks only a subset of CGIs (Voigt et al., 2013b). It is posited this is due to the transcriptional state of a given gene. For instance, if H3K4me3 marks a CGI gene but the transcriptional activator(s) necessary for productive transcription are absent, PRC2 can be recruited to the

unmethylated CpG island and catalyze H3K27me3. Our observations provide support for this hypothesis. H3K4me3 and H3K27me3 consistently mark tissue specific CGI genes in non-expressing cell types. It is likely the lack of lineage specific transcriptional activators and the presence of the polycomb complexes the lead to silencing of these tissue specific CGI genes. Additional studies of our tissue specific genes in polycomb knockouts would yield added insight to these hypotheses.

We also assessed the timing of the activation of our ES cell specific genes during reprogramming. Interestingly there is a trend towards CGI containing genes to be activated early. Both genes, L1td1 and Fgf4, which are activated within 48hrs of induction, have a CGI promoter. 85% of genes showing expression in preiPS cells contain CGI promoters and 50% of the remaining genes that show expression in ES cells have a CpG island. The presence of a CGI, which has been previously shown to result in destabilization of nucleosomes and a permissive chromatin environment (Ramirez-Carrozzi et al., 2009), may facilitate the efficient activation of the genes thereby permitting rapid activation.

In summary, we used deep chromatin RNA-seq to provide a highly quantitative view of the transcriptome in mouse ES cells and four primary differentiated cell types. We then defined tissue specific genes with the broadest dynamic range in gene expression. With manual curation of transcriptional start sites we identified striking cell type differences in CpG island promoter content. Selecting the most dynamically regulated genes allowed us to uncover clear chromatin signatures of tissue specific genes in non-expressing cells, specifically the presence of H3K4me3 and H3K27me3. This provides additional evidence for the transcriptional state of CGI genes as a key determinant of the ability of H3K4me3 and H3K27me3 to coexist.

MATERIALS AND METHODS

Cell Culture

CCE ES cells were maintained in standard ES growth media. Cells were maintained in Knockout DMEM plus 1% L-glutamine, 1% pen/strep, 1% non-essential amino acids, 15% ES certified FBS (Omega Scientific), and 1,000 units/ml ESGRO (Lif, Millipore). The CCE ES cell line was maintained on gelatin-coated tissue culture flasks.

Cortical neurons were isolated from a pregnant mouse at E14.5. Embryo brains were isolated, lobes separated and meninges removed. The cortices were then dissected and trypsinized washed, counted and plated in order for projections to extend. Cells were harvested after 5 days.

CD4+ CD8+ thymocytes were isolated from the thymus of 6-8 week old mice. Thymus was isolated, minced into a single cell suspension in PBS and passed through a 70-micron filter. Cells were pelleted for 5 minutes at 1100rpm resuspended in PBS + 1% FBS and filtered again at 70 microns. Cells were counted and 1 million cells were used for each staining control. No Ab Stain, CD4-PE (1:500), CD8-APC (1:200) and CD4-PE, CD8-APC. The remaining cells were double stained for CD4-PE CD8-APC (Stain in 500uL for every $50x10^6$ cells). Cells were incubated in Ab cocktails for 20min at 4°C in the dark. Cells were then washed twice with MAC buffers (PBS + 1% FBS). To sort cells were resuspended in PBS + 5% FBS. Cells were sorted on CD4⁺ CD8⁺ gating according to controls.

Bone marrow derived macrophages were isolated from the femur of 6-8 week old mice. Femur was flushed to push bone marrow into a petri dish with PBS. Liquid was transferred to a falcon tube and spun for 10 minutes at 1500rpm. Cells were resuspended in RBC lysis buffer for 5

minutes at room temperature. Cells were pelleted, washed with PBS and spun down 10minutes 1500rpm. Cells were then resuspended in bone marrow conditioning media. 10-25 million cells were plated. Cells were culture for 6-8 days and harvested at confluency.

Hepatocytes were isolated from 6-8week old mice by perfusion. Perfuse vena cava with 45ml Perfusion Media and 45mL Digest Media, 8ml/min transferred to 10cm dish of cold WE/PS/FBS. The liver was minced between cell scrapers and filtered through 100um cell filter into 50ml falcon. Then resuspend in 45 ml RT WE/FBS/PS, spun 5min/50g/4°C and resuspend in 10ml cold RSB+, quickly spun down 50g/3min/4°C then resuspend in 40ml cold RSB+ dounce. 25 strokes on spinning drill press and checked for nuclei.

Cellular Fractionation and RNA Isolation

Fractionation was performed as in (Bhatt et al., 2012). Briefly, 2.0 x 10⁷ cells were isolated, washed with 1mL cold PBS/1mM EDTA and spun for 10mins, 1K, 4°C. The pellet was resuspended in 200ul cold cytoplasmic lysis buffer and placed on ice for 10 mins. The lysate was then layered onto 500ul sucrose buffer and pelleted, 10mins, 14K, 4°C. The nuclei pellet was resuspend in 200ul glycerol buffer before adding 200ul cold nuclei lysis buffer and vortexing thoroughly. The mixture was then incubated on ice for 2mins then spun for 2mins, 14K, 4°C. The remaining chromatin pellet as resuspended in 50ul 1X PBS and added to TRIzol and resuspended thoroughly before purification by RNeasy column. All samples were resuspended in 30-50ul RNase-free water. Chromatin RNA was subjected to rRNA removal with the Mouse/Human Ribominus kit (Invitrogen, Catalog No. K1550-02) concentrated using glycogen and resuspended in 14ul RNase-free water. RNA quality was checked via Bioanalyzer.

Library Preparation and Sequencing

200ng of rRNA depleted RNA was used to generate strand specific cDNA libraries using the Illumina TruSeq RNA Sample Prep Kit v2 with the inclusion of "deoxyuridine triphosphate (dUTP)" method (Levin et al., 2010). Sequencing was performed on Illumina HiSeq 2000 as single-end 50base pair runs.

RNA-Sequence Mapping and Analysis

Reads were aligned to the mouse mm9 reference genome with Tophat (Trapnell et al., 2010) by using most default parameters. Alignments were restricted to uniquely mapping reads, with two possible mismatches permitted. RPKM values were calculated as described by (Mortazavi et al., 2008) for mm9 RefSeq genes (Pruitt et al., 2007). Seqmonk was used to sum reads within each transcriptional unit and Excel used to calculate final RPKM values. Genome tracks were generated with BEDTools genomeCoverageBed tool and visualized in the UCSC genome browser.

DNA methylation ChIP-seq and Histone Modification Datasets

Published DNA methylation data sets and ChIP-seq histone modification data sets were obtained from GEO, GSE44092 (Vincent et al., 2013), GSE30206 (Stadler et al., 2011), GSE47966 (Lister et al., 2013), and GSE31235 (Zhang et al., 2012). Average DNA methylation

profiles were calculated using BEDTools intersectBed to return DNA methylation values for individual CpGs within tissue specific promoter regions after filtering for a minimum of 3 sequencing reads for each individual CpG dinucleotide.

FIGURE LEGENDS

Figure 3-1. Chromatin Associated Transcripts.

(A) A diagram of the cellular fractionation process resulting in the isolation of chromatin associated transcripts. Transcripts include a variety of species from unspliced to fully spliced. A representative western blot of ~ 20 million E14.5 cortical neurons fractionated into its cellular components displayed in the diagram. Cytoplasmic lysis was performed using 0.15% NP40. Nuclear lysis was performed with 1M Urea and 1% NP40. The nuclear lysate is separated from the precipitated chromatin pellet. Each fraction is verified by the presence of proteins known to localize to each fraction. From left to right: lane 1 – Cytoplasm β -actin, lane 2 – Nucleoplasm SNRP70, and lane 3 – Chromatin histone H3. (B) A visualization of chromatin RNA-sequencing for each cell type for the mitogen-activated protein kinase associated protein 1 gene, mapkap1. The direction of transcription is indicated by blue chevron marks throughout the transcript. Visualization was performed using bioinformatics tool genomeCoverageBed from bedtools. Reads are present along the length of the gene including introns, indicative of the chromatinized nature of the transcript.

Figure 3-2. RPKM Distribution of All Refseq Coding Genes.

(A) RPKMs were calculated, as described in the materials and methods above, for all refseq coding genes. The genes were then binned based on those values. (B) The RPKM distribution of the most highly expressed genes, RPKM of 5 - >50.

Figure 3-3. The Majority of Genes Lie Within a Limited Dynamic Range of Expression.

(A) Tissue specificity based on fold differences was determined at two thresholds, a minimum RPKM of 1 (Red) or 5 (Blue), in the expressing cell type. For each gene the minimum fold change was calculated between the expressing cell type and all other cell types. For example, embryonic stem cell genes that are in the 100-fold category must be expressed at least 100 fold more in ES cells than all other cell types. (B) Tissue specificity based on genes that are selectively repressed in one cell type compared to all other cell types. Tissue specificity was calculated based on the same RPKM thresholds but in the non-expressing cell types. For example, embryonic stem cell genes in the 100-fold category must be expressed at least 100 fold lower in ES cells compared to all other cell types.

Figure 3-4. 100 Fold Specific Genes Include Genes Known to be Important for Function.

Diagram depicts a cluster analysis of all genes that are 100 fold specific in each of the cell types. Expression values for the tissue specific genes are shown along side the expression values for the same genes in all other cell types. Values were log₁₀ transformed and clustered by cell type and descending expression values. Values are color-coded based on expression percentile. For each cell type genes known to be critical for the function were found e.g. Pou5f1 essential for pluripotency in ES cells, Rag1 critical in thymocytes and Alb key in hepatocytes.

Figure 3-5. Absolute Fold Changes for Tissue Specific Genes.

Box and whisker plots showing absolute fold differences for all 100-fold tissue specific genes in each cell type.

Figure 3-6. Absolute Expression Values for 100-Fold Tissue Specific Genes.

(A) The absolute expression values of all 100 fold embryonic specific genes. The graph shows the average value of each ES specific gene in all other cell types. ES specific RPKM is on the yaxis and an average RPKM value for the same gene in all other cell types is on the x-axis. An RPKM threshold is set at 0.06, slightly above that of the minimum believable expression value of 0.05. In red are genes with an RPKM above the minimum threshold. In black are genes that do no exceed the minimum threshold. Percent of genes above and below the threshold is shown. (B) The absolute expression values of all 100 fold E14.5 cortical neuronal genes. The graph shows the average value of each E14.5 cortical neuronal gene in all other cell types. E14.5 cortical neuronal specific RPKM is on the y-axis and an average RPKM value for the same gene in all other cell types is on the x-axis. (C) The absolute expression values of all 100 fold CD4⁺ CD8⁺ thymocyte specific genes. The graph shows the average value of each CD4⁺ CD8⁺ thymocyte specific gene in all other cell types. CD4⁺ CD8⁺ thymocyte specific RPKM is on the y-axis and an average RPKM value for the same gene in all other cell types is on the x-axis. (D) The absolute expression values of all 100 fold bone marrow derived macrophage specific genes. The graph shows the average value of each bone marrow derived macrophage specific gene in all other cell types. Bone marrow derived macrophage specific RPKM is on the y-axis and an average RPKM value for the same gene in all other cell types is on the x-axis. (E) The absolute

expression values of all 100 fold hepatocyte specific genes. The graph shows the average value of each hepatocyte specific gene in all other cell types. Hepatocyte specific RPKM is on the y-axis and an average RPKM value for the same gene in all other cell types is on the x-axis.

Figure 3-7. Embryonic Stem Cell Specificity in Individual Cell Types Versus All Cell Types

(A) Tissue specificity was calculated based on fold at a minimum expression threshold of 5 RPKM in embryonic stem cells. The graph shows a comparison of tissue specificity when comparing ES cells to all cell types and ES cells to individual cell types. For example the left most blue bar shows genes which are expressed 100 fold more in ES cells compared to all other cell types. The left most red bar shows genes that are expressed 100 fold more in ES cells compared to E14.5 cortical neurons alone. Blue: ES cells vs. all other cell types. Red: ES cells vs. E14.5 cortical neurons. Green: ES cells vs. CD4⁺ CD8⁺ thymocytes. Purple: ES cells vs. Bone marrow derived macrophages. Orange: ES cells vs. Hepatocytes. (B) Hierarchical clustering of all refseq coding genes shown as a dendrogram.

Figure 3-8. Striking Difference in CpG Island Promoter Content.

CpG island promoters are determined based on 1 base pair overlap between a CGI and the promoter (-500bp to +50bp) for all 100 fold specific genes in each cell type. Housekeeping genes are defined as genes that are expressed within 2-5 fold in all cell types.

Figure 3-9. Tissue Specific Genes Show Two Distinct DNA Methylation Promoter Patterns in Non Expressing Cells.

Average DNA methylation profiles were determined at promoters (-500bp to +50bp) for 100 fold CD4⁺ CD8⁺ thymocyte and 100 fold bone marrow macrophage specific genes. DNA methylation averages were calculated in embryonic stem cells, neural progenitor cells and 6-week frontal cortex neuronal cells (min 3 reads/CpG). Methylation levels are represented in a gradation of colors: Light green (0-20%), dark green (21-40), yellow (41-60%), orange (61-80%) and red (81-100%). Alongside the presence (blue) or absence of a CGI promoter is shown.

Figure 3-10. Tissue Specific CGI Genes Have Active Histone Marks in Embryonic Stem Cells.

The H3K4me3 profile in ES cells is shown for 100 fold CD4⁺ CD8⁺ thymocyte and 100 fold bone marrow macrophage specific gene promoters. Overlap of 1 bp required with an H3K4me3 peak to be considered positive. Average DNA methylation profile and CGI content shown alongside as in figure 3-9.

Figure 3-11. Unmethylated Tissue Specific Genes are Associated with H3K27me3 in Embryonic Stem Cells.

The H3K27me3 profile in ES cells is shown for 100 fold CD4⁺ CD8⁺ thymocyte and 100 fold bone marrow macrophage specific gene promoters. Overlap of 1 bp required with an H3K4me3 peak to be considered positive. Average DNA methylation profile and CGI content shown alongside as in figure 3-9.

Figure 3-12. Tissue Specific Genes with a Limited Dynamic Range Lack a Clear Epigenetic Profile.

DNA methylation in Embryonic Stem Cells, neural progenitor cells and 6-week frontal cortex neuronal cells, H3K4me3 and H3K27me3 profiles in Embryonic Stem Cells is shown for CD4⁺ CD8⁺ thymocyte genes 10-20 fold and 5-10 fold. Presence or absence of CGI is shown as in figure 3-9.

Figure 3-13. Unmethylated Tissue Specific Genes are Associated with H3K4me3 and H3K27me3 in Other Non-Expressing Cell Types

As in figure 3-11. Includes H3K4me2 and H3K27me3 profiles for 100 fold CD4⁺ CD8⁺ thymocyte and 100 fold bone marrow macrophage specific gene promoters in thymocytes alongside.

Figure 3-14. Embryonic Stem Cell Specific Genes Show Unique Phases of Activation in Reprogramming.

Chromatin RNA-Seq expression levels of 100 fold Embryonic Stem Cell specific genes through reprogramming from MEFs to iPS. (A) ES cell specific genes with expression at 48hrs after induction of reprogramming. (B) ES cell specific genes with expression at the preiPS stage. (C) ES cell specific genes with expression at the ES cell stage.

Table 3-1. 100 Fold Embryonic Stem Cell Specific Genes.

Gene lists containing refseq ID, gene name, RPKM value in all cell types, minimum fold and the associated p-value.

Table 3-2. 100 Fold E 14.5 Cortical Neuron Specific Genes

Gene lists containing refseq ID, gene name, RPKM value in all cell types, minimum fold and the associated p-value.

Table 3-3. 100 Fold CD4⁺ CD8⁺ Thymocyte Specific Genes

Gene lists containing refseq ID, gene name, RPKM value in all cell types, minimum fold and the associated p-value.

Table 3-4. 100 Fold Bone Marrow Derived Macrophage Specific Genes

Gene lists containing refseq ID, gene name, RPKM value in all cell types, minimum fold and the associated p-value.

Table 3-5. 100 Fold Hepatocyte Specific Genes

Gene lists containing refseq ID, gene name, RPKM value in all cell types, minimum fold and the associated p-value.

Table 3.6. 100 Fold Embryonic Stem Cell Specific Promoter Coordinates

Gene lists containing refseq ID, gene name, chromosome, genomic start, end and strand. Genomic start and end are promoter coordinates used to determine DNA methylation profiles and overlaps with histone modifications.

Table 3-7. 100 Fold E14.5 Cortical Neuron Specific Promoter Coordinates

Gene lists containing refseq ID, gene name, chromosome, genomic start, end and strand. Genomic start and end are promoter coordinates used to determine DNA methylation profiles and overlaps with histone modifications.

Table 3-8. 100 Fold CD4⁺ CD8⁺ Thymocyte Specific Promoter Coordinates

Gene lists containing refseq ID, gene name, chromosome, genomic start, end and strand. Genomic start and end are promoter coordinates used to determine DNA methylation profiles and overlaps with histone modifications.

Table 3-9. 100 Fold Bone Marrow Derived Macrophage Specific Promoter Coordinates

Gene lists containing refseq ID, gene name, chromosome, genomic start, end and strand. Genomic start and end are promoter coordinates used to determine DNA methylation profiles and overlaps with histone modifications.

Table 3-10. 100 Fold Hepatocyte Specific Promoter Coordinates

Gene lists containing refseq ID, gene name, chromosome, genomic start, end and strand. Genomic start and end are promoter coordinates used to determine DNA methylation profiles and overlaps with histone modifications.

Table 3-11. 100 Fold Embryonic Stem Cell Specific Gene Ontology

Go terms associated with Embryonic Stem Cell specific genes. Top 10 highest p-values selected.

Table 3-12. 100 Fold E14.5 Cortical Neuron Specific Gene Ontology

Go terms associated with E14.5 Cortical Neuron specific genes. Top 10 highest p-values selected.

Table 3-13. 100 Fold CD4⁺ CD8⁺ Thymocyte Specific Gene Ontology

Go terms associated with CD4+ CD8+ Thymocyte specific genes. Top 10 highest p-values selected.

Table 3-14. 100 Fold Bone Marrow Derived Macrophage Specific Gene Ontology

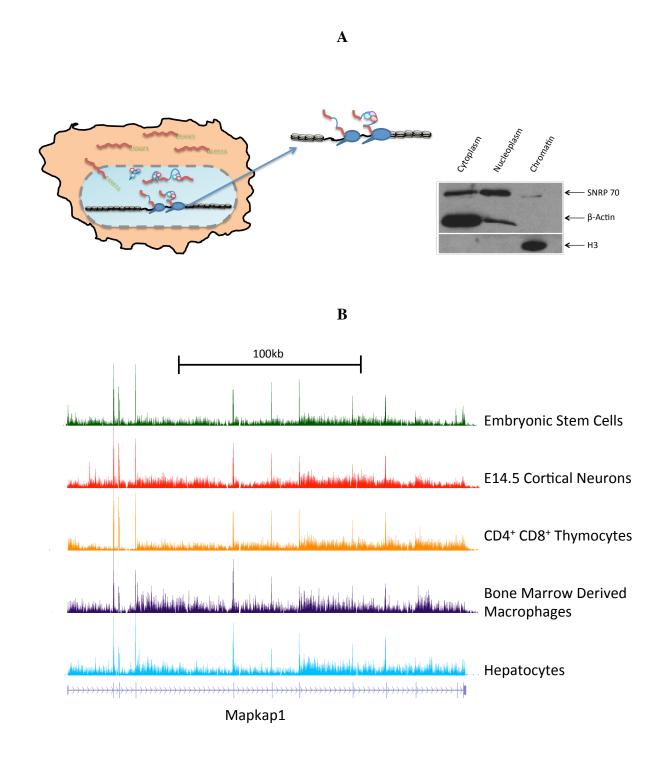
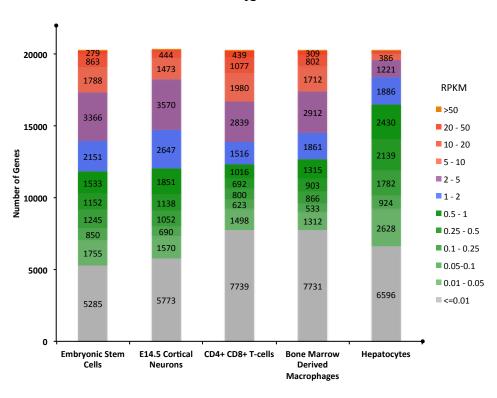
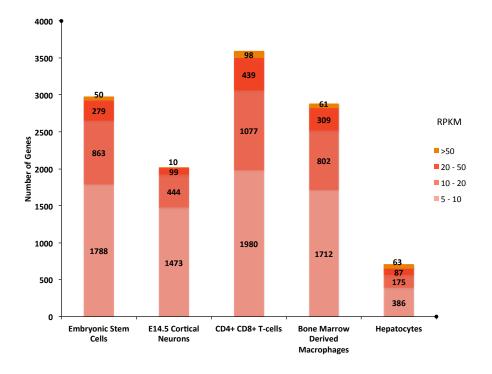
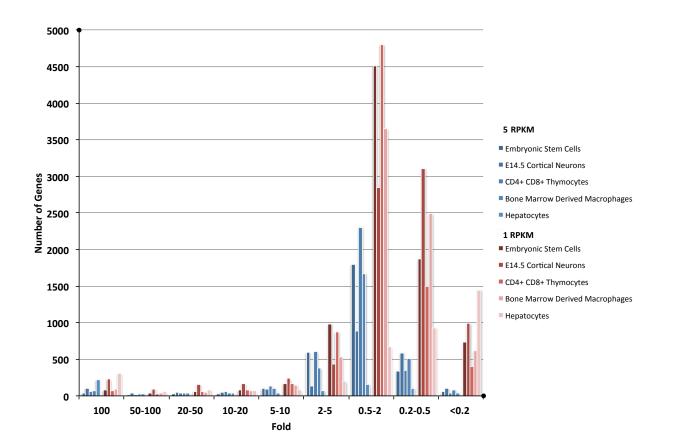

Go terms associated with Bone Marrow Derived Macrophage specific genes. Top 10 highest p-values selected.

Table 3-15. 100 Fold Hepatocyte Specific Gene Ontology


Go terms associated with Hepatocyte specific genes. Top 10 highest p-values selected.

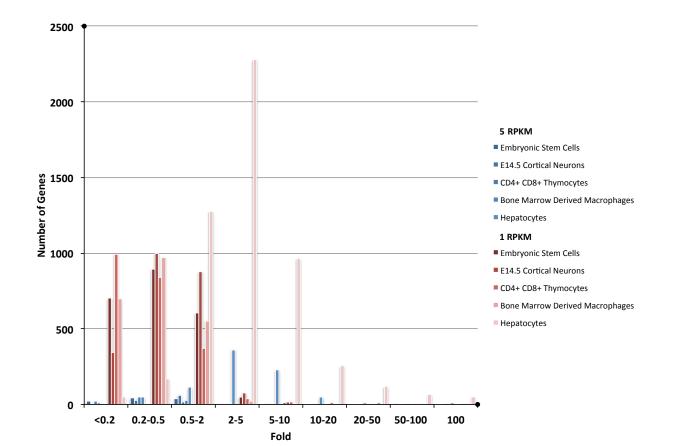


RPKM Distribution of All Refseq Coding Genes

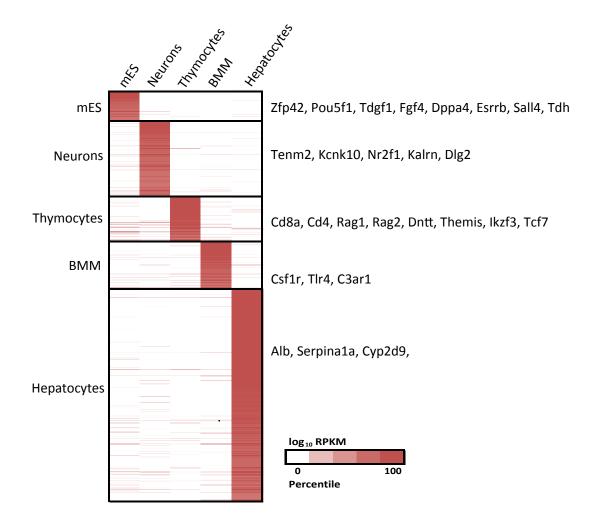


Α

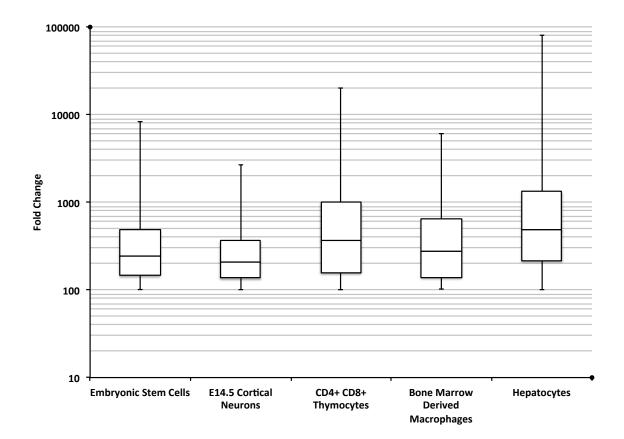
B



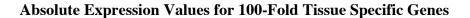
Tissue Specificity Based on Fold Changes

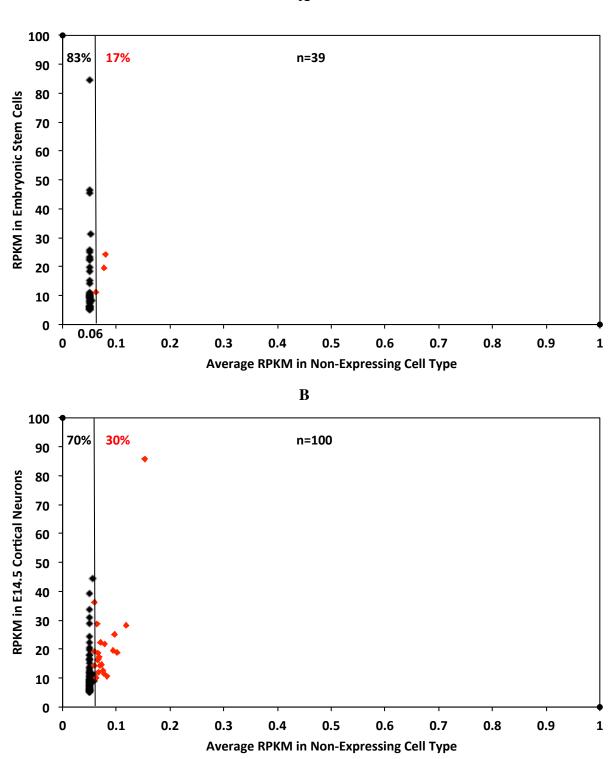

A

Tissue Specificity Based on Fold Changes

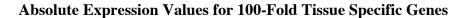


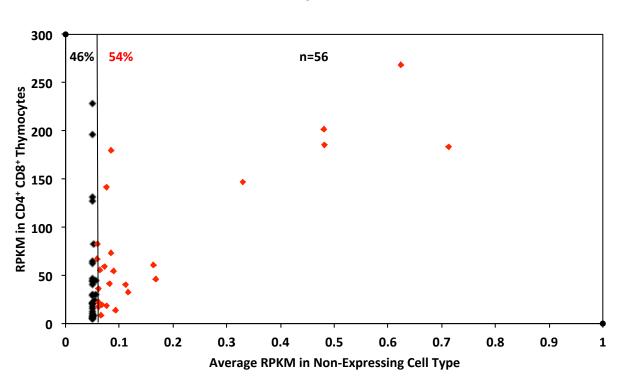
B


100 Fold Specific Genes Include Genes Known to be Important for Function

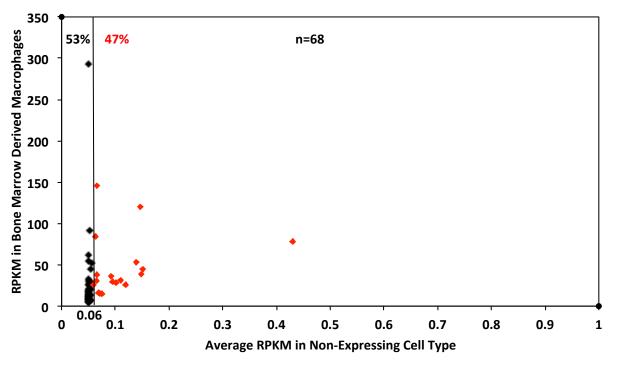


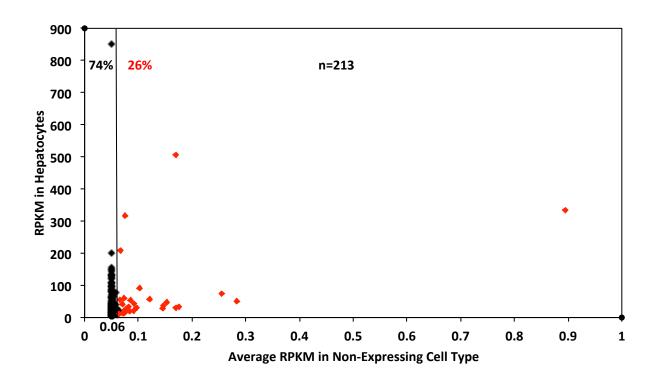
Absolute Fold Changes for Tissue Specific Genes





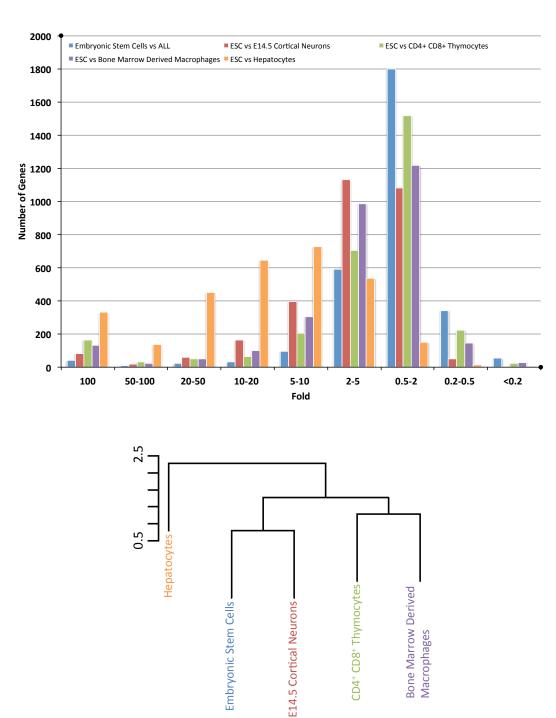
Α



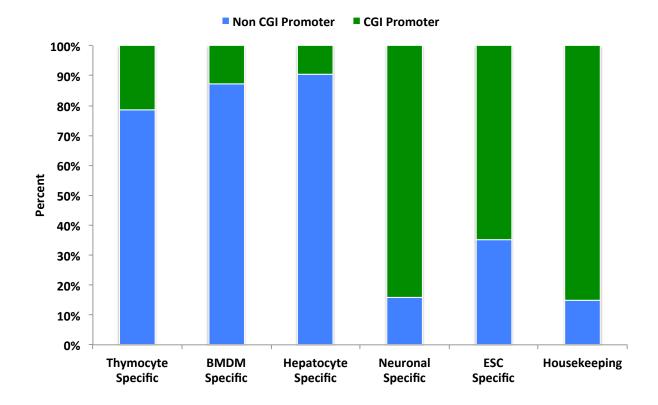


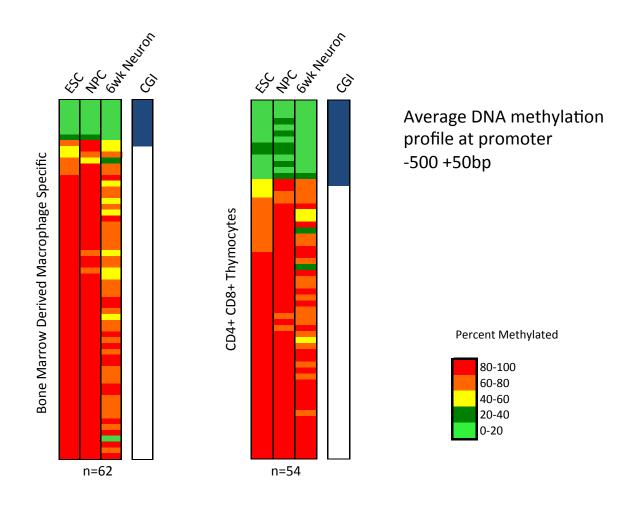
С

D

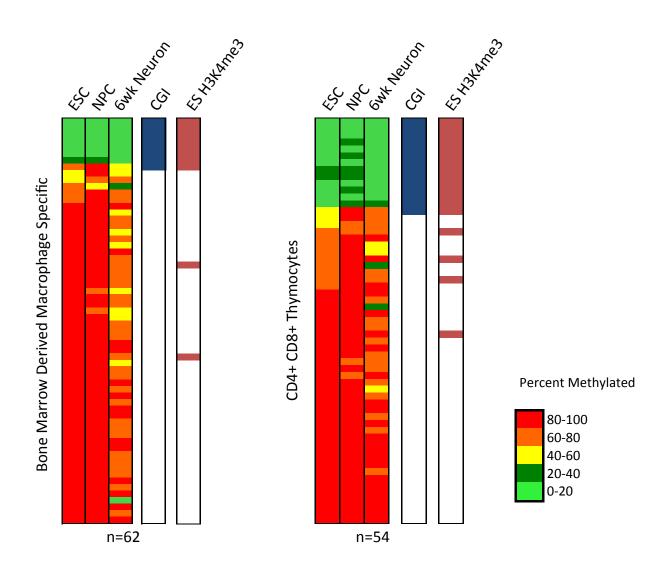

Absolute Expression Values for 100-Fold Tissue Specific Genes

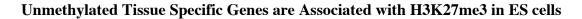
E

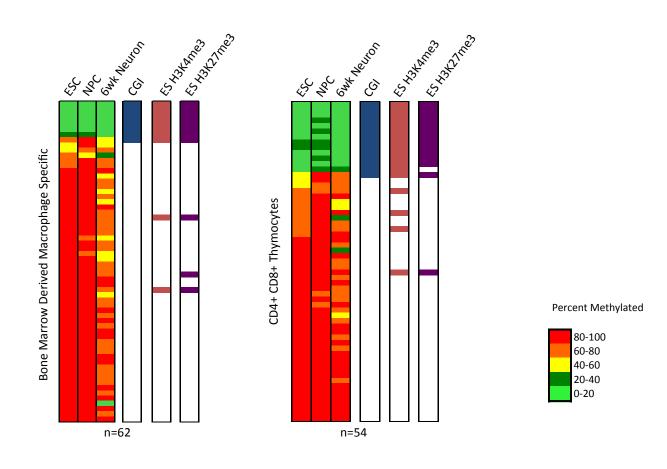

Embryonic Stem Cell Specificity in Individual Cell Types Versus All Cell Types

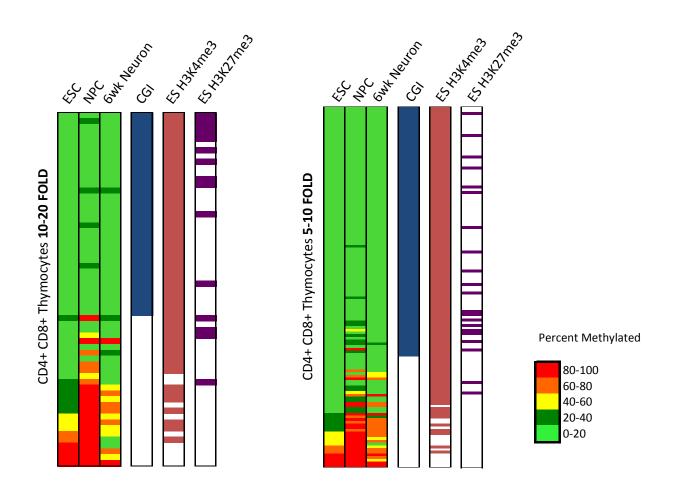

Α

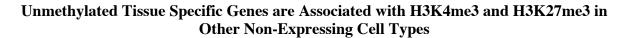
B

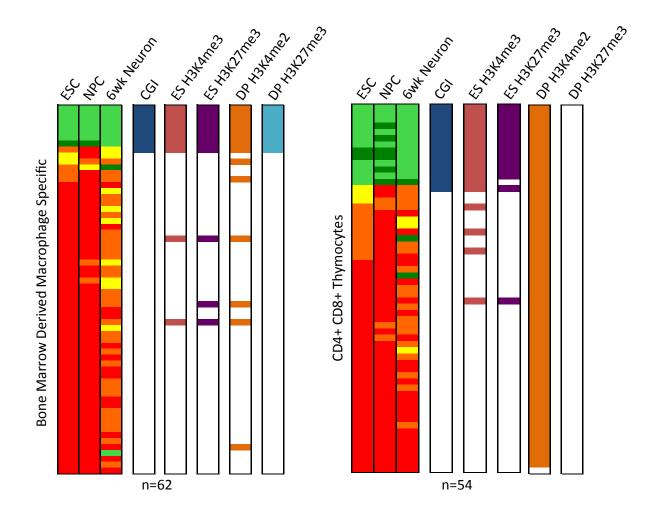



Tissue Specific Genes Show Two Distinct DNA Methylation Promoter Patterns in Non Expressing Cells

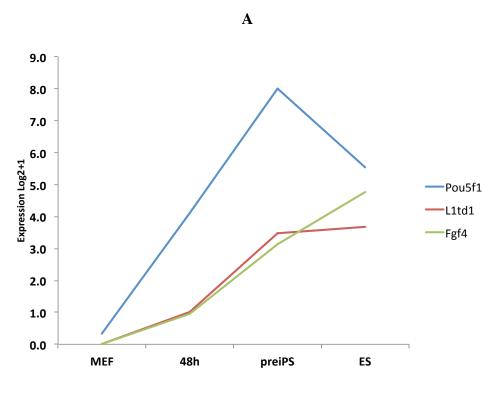


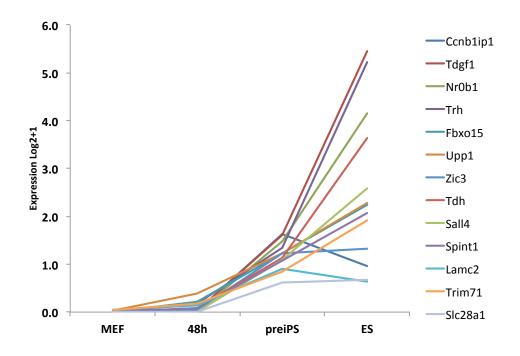


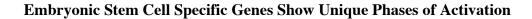


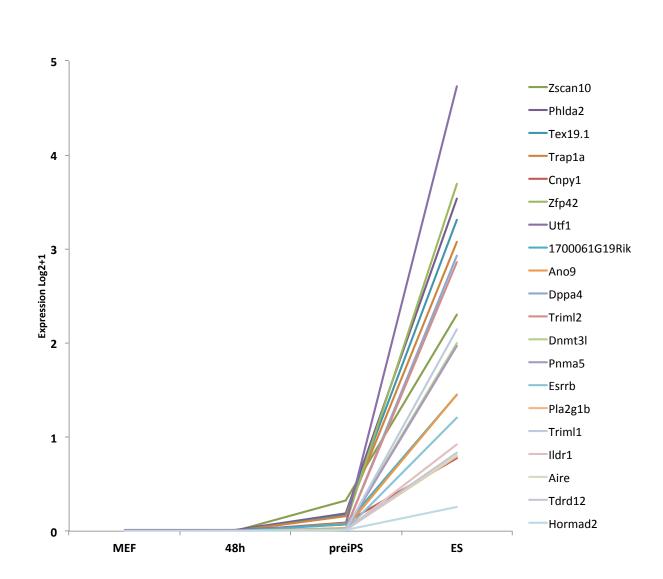



Tissue Specific Genes with a Limited Dynamic Range Lack a Clear Epigenetic Profile









B

С

Table 3-1

Refseq ID	Gene Name	Embryonic Stem Cells RPKM	E 14.5 Cortical Neurons RPKM	CD4+ CD8+ Thymocytes RPKM	Bone Marrow Derived Macrophages RPKM	Hepatocytes RPKM	Minumum Fold Difference	P-value
NM_001160412	Triml2	84.5797	0.0500	0.0500	0.0500	0.0500	1691.5930	0.0031
NM_177742	Triml1	46.4680	0.0500	0.0500	0.0500	0.0500	929.3602	0.0130
NM_009556	Zfp42	45.6535	0.0500	0.0500	0.0500	0.0500	913.0705	0.0000
NM_001081695	Dnmt3l	31.2066	0.0500	0.0500	0.0613	0.0500	509.1251	0.0196
NM_013633	Pou5f1	25.7053	0.0500	0.0500	0.0500	0.0500	514.1067	0.0212
NM_178381	Ano9	24.9591	0.0500	0.0500	0.0500	0.0519	480.9173	0.0299
NM_028034	Tdrd12	24.2561	0.1690	0.0500	0.0500	0.0500	143.5191	0.0339
NM_011562	Tdgf1	23.4477	0.0500	0.0500	0.0500	0.0500	468.9541	0.0110
NM_010202	Fgf4	22.7048	0.0500	0.0500	0.0500	0.0500	454.0961	0.0028
NM_001081202	L1td1	22.1226	0.0500	0.0500	0.0500	0.0500	442.4525	0.0187
NM_001271550	Aire	19.6533	0.0500	0.0500	0.0500	0.0500	393.0661	0.0316
NM_029458	Hormad2	19.6146	0.0500	0.1225	0.0500	0.0855	160.0567	0.0339
NM_015798	Fbxo15	18.5008	0.0500	0.0500	0.0500	0.0500	370.0166	0.0136
NM_028610	Dppa4	15.2601	0.0500	0.0500	0.0500	0.0500	305.2023	0.0000
NM_001159401	Upp1	14.1999	0.0500	0.0500	0.0500	0.0500	283.9979	0.0302
NM_020486	Bcam	11.2728	0.0917	0.0566	0.0500	0.0500	122.9946	0.0326
NM_001033425	Zscan10	11.0543	0.0500	0.0500	0.0500	0.0500	221.0865	0.0220
NM_001159500	Esrrb	10.6368	0.0500	0.0500	0.0500	0.0500	212.7363	0.0225
NM_001100461	Pnma5	10.3549	0.0500	0.0500	0.0500	0.0500	207.0980	0.0289
NM_009434	PhIda2	10.2140	0.0500	0.0500	0.0500	0.0500	204.2800	0.0326
NM_011107	Pla2g1b	10.1948	0.0500	0.0500	0.0500	0.0500	203.8953	0.0110
NM_201395	Sall4	9.6440	0.0500	0.0500	0.0500	0.0500	192.8802	0.0309
NM_011635	Trap1a	9.3327	0.0500	0.0500	0.0500	0.0500	186.6530	0.0309
NM_175651	Cnpy1	9.2782	0.0500	0.0500	0.0500	0.0500	185.5647	0.0310
NM_021480	Tdh	8.6244	0.0500	0.0500	0.0500	0.0500	172.4886	0.0208
NM_009426	Trh	8.4980	0.0689	0.0500	0.0500	0.0500	123.3067	0.0325
NM_001042503	Trim71	7.8740	0.0550	0.0500	0.0500	0.0500	143.2189	0.0314
NM_009482	Utf1	7.8099	0.0500	0.0500	0.0500	0.0500	156.1978	0.0323
NM_028946	Slc9b1	7.4125	0.0500	0.0500	0.0500	0.0500	148.2509	0.0319
NM_028602	Tex19.1	6.3753	0.0500	0.0500	0.0500	0.0500	127.5056	0.0237
NM_030141	1700061G19Rik	6.3202	0.0500	0.0500	0.0500	0.0500	126.4037	0.0299
NM_013611	Nodal	6.2391	0.0500	0.0500	0.0500	0.0500	124.7813	0.0325
NM_016907	Spint1	6.1974	0.0500	0.0500	0.0500	0.0500	123.9483	0.0317
NM_007430	Nr0b1	6.1341	0.0500	0.0500	0.0500	0.0500	122.6824	0.0156
NM_001111119	Ccnb1ip1	5.6051	0.0500	0.0500	0.0500	0.0500	112.1019	0.0224
NM_134109	Ildr1	5.5999	0.0500	0.0500	0.0500	0.0500	111.9980	0.0305
NM_009575	Zic3	5.5579	0.0500	0.0500	0.0500	0.0500	111.1570	0.0315
NM_001004184	Slc28a1	5.2316	0.0500	0.0500	0.0500	0.0500	104.6328	0.0254
NM_008485	Lamc2	5.1872	0.0500	0.0500	0.0500	0.0500	103.7445	0.0328

100 Fold Embryonic Stem Cell Specific Genes

Table 3-2

Refseg ID	Gene Name	E 14.5 Cortical	Embryonic Stem Cell	CD4+ CD8+	Bone Marrow Derived	Hepatocytes RPKM	Minumum Fold	P-value
		Neurons RPKM	RPKM	Thymocytes RPKM	Macrophages RPKM		Difference	
NM_001039195	Gria2	85.72376	0.05000	0.46244	0.05000	0.05000	185.37209	0.03374
NM_177284	Nrxn1	44.53018	0.07736	0.05000	0.05000	0.05000	575.63959	0.01022
NM_011807	Dlg2	39.27583	0.05000	0.05000	0.05000	0.05000	785.51659	0.00548
NM_001081306	Ptprz1	36.27603	0.08608	0.05000	0.05000	0.05000	421.40452	0.01604
NM_001271799	Pcdh9	33.61987	0.05000	0.05000	0.05000	0.05000	672.39750	0.00357
NM_001111268	Grik2	30.83337	0.05000	0.05000	0.05000	0.05000	616.66732	0.00939
NM_001253756	Gpm6a	28.75782	0.05000	0.05000	0.05000	0.05000	575.15644	0.00782
NM_016743	Nell2	28.73517	0.10780	0.05000	0.05000	0.05000	266.54968	0.02528
NM_181681	BC005764	28.26208	0.25803	0.07894	0.08535	0.05000	109.52963	0.04161
NM_001164268	Kalrn	25.05857	0.23700	0.05000	0.05000	0.05000	105.73265	0.03999
NM_001109764	Ctnna2	24.18948	0.05000	0.05000	0.05000	0.05000	483.78953	0.00225
NM_010025	Dcx	22.32328	0.07380	0.06625	0.08149	0.06210	273.92795	0.01613
NM 001081358	Lrrc7	22.07023	0.05000	0.05000	0.05000	0.05000	441.40452	0.00103
NM_007495	Astn1	21.84092	0.15430	0.05000	0.05966	0.05000	141.54603	0.03926
NM_011607	Tnc	20.34243	0.05000	0.05000	0.05000	0.05000	406.84862	0.01467
NM_001170787	Cntn5	19.91627	0.05000	0.05000	0.05000	0.05000	398.32534	0.00367
NM_001177957	Gpm6b	19.48704	0.11686	0.06533	0.11015	0.08393	166.75987	0.01115
NM_176930	Nrcam	19.22231	0.08886	0.05000	0.05000	0.05000	216.32597	0.02802
NM_001271858	Add2	18.91972	0.09169	0.06005	0.10125	0.15376	123.04507	0.04166
NM_080285	Cttnbp2	18.62222	0.11348	0.05000	0.05000	0.05000	164.10476	0.03437
NM_008171	Grin2b	18.05726	0.05000	0.05000	0.05000	0.05000	361.14527	0.02821
NM_133235	Khdrbs2	17.96142	0.05000	0.05000	0.05000	0.05000	359.22849	0.01100
NM_001195539	Dclk1	17.35469	0.09000	0.05000	0.07537	0.05743	192.83840	0.01535
NM_029792	B3gat1	16.74084	0.05000	0.05000	0.05000	0.05000	334.81688	0.00714
NM_001093778	Myt1l	16.66870	0.05000	0.05000	0.05000	0.05000	333.37392	0.00103
NM_019707	Cdh13	16.57510	0.11660	0.05000	0.05000	0.05000	142.15135	0.04034
NM_001042617	Cadps	16.29513	0.10907	0.05000	0.05000	0.05000	149.39542	0.03745
NM_007529	Bcan	16.15865	0.05000	0.05000	0.05000	0.05000	323.17293	0.02567
NM_138666	Nlgn1	15.26830	0.05000	0.05000	0.05000	0.05000	305.36610	0.00225
NM_175750	Plxna4	14.69435	0.05000	0.05000	0.13837	0.05000	106.19978	0.04161
NM_175642	Bai3	14.38011	0.08886	0.05000	0.05000	0.05000	161.82450	0.03745
NM_027712	Dlgap1	14.36652	0.05000	0.05000	0.05000	0.12685	113.25399	0.04151
NM_001164316	Ccser1	13.83973	0.05000	0.05000	0.05000	0.05000	276.79462	0.02875
NM_007937	Epha5	13.56579	0.05000	0.05000	0.05000	0.05000	271.31576	0.00636
	Frmd4a	12.79062	0.05000	0.05000	0.05000	0.05000	255.81246	0.00533
NM_001171615	Myt1	12.31853	0.05000	0.05000	0.05000	0.05000	246.37062	0.00621
NM_001205341	Ppfia2	12.12786	0.05000	0.05000	0.05000	0.05000	242.55724	0.00464
NM_001135688	Ly6h	12.05067	0.11786	0.05000	0.05000	0.05000	102.24403	0.04161
NM_207667	Fgf14	11.68177	0.05000	0.05000	0.05000	0.05000	233.63543	0.00592
NM_028627	Psd	11.54468	0.11164	0.08050	0.06496	0.05000	103.40596	0.04161

100 Fold E 14.5 Cortical Neuron Specific Genes

Table 3-2 continued

Refseq ID	Gene Name	E 14.5 Cortical Neurons RPKM	Embryonic Stem Cell RPKM	CD4+ CD8+ Thymocytes RPKM	Bone Marrow Derived Macrophages RPKM	Hepatocytes RPKM	Minumum Fold Difference	P-value
NM_001025074	Ntrk2	11.34394	0.06383	0.05000	0.05000	0.05000	177.72958	0.03261
NM_009548	Rnf112	11.28899	0.05000	0.05000	0.05000	0.05000	225.77977	0.02410
NM_053199	Cadm3	10.97517	0.08334	0.05000	0.05000	0.05000	131.68391	0.03731
NM_031404	Actl6b	10.89807	0.05000	0.05000	0.05000	0.05000	217.96146	0.01076
NM_021286	Sez6	10.83376	0.05000	0.05000	0.05000	0.05000	216.67524	0.03447
NM_001285843	Sybu	10.59145	0.10248	0.07545	0.09281	0.05847	103.35014	0.03378
NM_011856	Tenm2	10.51234	0.05000	0.05000	0.05000	0.05000	210.24687	0.00763
NM_001081017	Unc79	10.13164	0.09911	0.05000	0.05000	0.05000	102.22174	0.04068
NM_001198587	Nrxn3	9.86247	0.05000	0.05000	0.05000	0.05000	197.24939	0.01061
NM_001039173	Dok6	9.78616	0.05000	0.05000	0.05000	0.05000	195.72326	0.02058
NM_199065	Slitrk1	9.77733	0.05000	0.05000	0.05000	0.05000	195.54654	0.00176
NM_172290	Ntm	9.51210	0.05000	0.05000	0.05000	0.05000	190.24206	0.03080
NM_001113325	Gria1	9.49226	0.05000	0.05000	0.05000	0.05000	189.84513	0.00958
NM_001253361	Kcnma1	9.38737	0.05000	0.05000	0.06680	0.05000	140.53668	0.01741
NM_019675	Stmn4	9.37703	0.05000	0.05000	0.07835	0.05000	119.67828	0.03833
NM_019724	Mmp16	9.15044	0.07844	0.05000	0.05000	0.05000	116.65434	0.04004
NM_053171	Csmd1	9.13988	0.05000	0.05000	0.05000	0.05000	182.79760	0.00508
NM_007461	Apba2	9.07994	0.06967	0.05000	0.05000	0.05000	130.33672	0.03999
NM_010199	Fgf12	8.88513	0.05000	0.05000	0.05000	0.05000	177.70270	0.00000
NM_010140	Epha3	8.75578	0.05000	0.05000	0.05000	0.05000	175.11561	0.00670
NM_010045	Darc	8.72251	0.05000	0.05000	0.05000	0.05000	174.45030	0.03012
NM_011215	Ptprn2	8.69861	0.06215	0.05000	0.05000	0.05000	139.96477	0.03804
NM_177328	Grm7	8.57727	0.05000	0.05000	0.05000	0.05000	171.54539	0.03114
NM_019931	Kcnd3	8.54058	0.05000	0.05000	0.05000	0.05000	170.81152	0.03217
NM_133207	Kcnh7	8.22942	0.05000	0.05000	0.05000	0.05000	164.58848	0.00875
NM_182807	Fam19a2	8.10875	0.05000	0.05000	0.05000	0.05000	162.17493	0.01037
NM_001190187	Nrg3	7.98912	0.05000	0.05000	0.05000	0.05000	159.78245	0.03246
NM_001081348	Hecw1	7.72696	0.05000	0.05000	0.05000	0.05000	154.53929	0.01027
NM_001081035	Nav3	7.59772	0.05000	0.05000	0.05000	0.05000	151.95431	0.01530
NM_001081397	Myo16	7.56557	0.05000	0.05000	0.05000	0.05000	151.31149	0.04004
NM_178714	Lrfn5	7.49946	0.05000	0.05000	0.05000	0.05000	149.98914	0.02254
NM_183188	Rbfox1	7.19904	0.05000	0.05000	0.05000	0.05000	143.98086	0.03809
NM_001081414	Grm5	7.18668	0.05000	0.05000	0.05000	0.05000	143.73368	0.00792
NM_199024	Nol4	7.11830	0.05000	0.05000	0.05000	0.05000	142.36594	0.03823
NM_001199244	Kcnip4	6.87500	0.05000	0.05000	0.05000	0.05000	137.49991	0.02679
NM_008069	Gabrb1	6.85658	0.05000	0.05000	0.05000	0.05000	137.13168	0.00548
NM_177906	Opcml	6.61235	0.05000	0.05000	0.05000	0.05000	132.24709	0.00225
NM_001081391	Csmd3	6.45293	0.05000	0.05000	0.05000	0.05000	129.05858	0.00318
NM_001163565	Ptpn5	6.36962	0.05000	0.05000	0.05000	0.05000	127.39230	0.01237
NM_172610	Mpped1	6.36862	0.05000	0.05000	0.05000	0.05000	127.37246	0.03198

100 Fold E 14.5 Cortical Neuron Specific Genes

Table 3-2 continued

100 Fold E 14.5 Cortical Neuron Specific Genes

Refseq ID	Gene Name	E 14.5 Cortical Neurons RPKM	Embryonic Stem Cell RPKM	CD4+ CD8+ Thymocytes RPKM	Bone Marrow Derived Macrophages RPKM	Hepatocytes RPKM	Minumum Fold Difference	P-value
NM_001286388	Trim9	6.26009	0.05000	0.05000	0.05000	0.05000	125.20184	0.02425
NM_001039154	Cdh8	6.25031	0.05000	0.05000	0.05000	0.05000	125.00612	0.01120
NM_007831	Dcc	6.17123	0.05000	0.05000	0.05000	0.05000	123.42455	0.02963
NM_001281955	Csmd2	6.02276	0.05000	0.05000	0.05000	0.05000	120.45511	0.03476
NM_009960	Pcdha11	5.99102	0.05000	0.05000	0.05000	0.05000	119.82031	0.02758
NM_010151	Nr2f1	5.98832	0.05000	0.05000	0.05000	0.05000	119.76631	0.00983
NM_001011874	Xkr4	5.97716	0.05000	0.05000	0.05000	0.05000	119.54328	0.02552
NM_001003671	Pcdhac1	5.86403	0.05000	0.05000	0.05000	0.05000	117.28055	0.03418
NM_001077398	Ldb2	5.84576	0.05000	0.05000	0.05000	0.05000	116.91528	0.03144
NM_001286013	Dlk2	5.82093	0.05000	0.05000	0.05000	0.05000	116.41864	0.03789
NM_009961	Pcdha10	5.73365	0.05000	0.05000	0.05000	0.05000	114.67309	0.03403
NM_001167748	Egfem1	5.68082	0.05000	0.05000	0.05000	0.05000	113.61644	0.01193
NM_198250	Lrrc4b	5.65458	0.05000	0.05000	0.05000	0.05000	113.09160	0.02088
NM_001282102	Lrrtm4	5.64930	0.05000	0.05000	0.05000	0.05000	112.98596	0.00357
NM_138661	Pcdha9	5.51392	0.05000	0.05000	0.05000	0.05000	110.27833	0.03031
NM_008900	Pou3f3	5.46738	0.05000	0.05000	0.05000	0.05000	109.34759	0.04107
NM_178673	Fstl5	5.43604	0.05000	0.05000	0.05000	0.05000	108.72074	0.00000
NM_175549	Robo2	5.17453	0.05000	0.05000	0.05000	0.05000	103.49059	0.02494
NM_029911	Kcnk10	5.08145	0.05000	0.05000	0.05000	0.05000	101.62899	0.00543

Table 3-3

Bofcog ID	Refseq ID Gene Name	CD4+ CD8+	Embryonic Stem Cell	E 14.5 Cortical	Bone Marrow Derived	Hepatocytes RPKM	Minumum Fold	P-value
Keised ID	Gene Name	Thymocytes RPKM	RPKM	Neurons RPKM	Macrophages RPKM		Difference	P-Value
NM_009331	Tcf7	268.17473	2.16625	0.21040	0.05000	0.06961	123.79655	0.08603
NM_009019	Rag1	228.38005	0.05000	0.05000	0.05000	0.05000	4567.60102	0.00095
NM_001162432	Lck	201.62636	1.57148	0.25186	0.05000	0.05000	128.30365	0.08603
NM_001081110	Cd8a	196.48176	0.05000	0.05000	0.05000	0.05000	3929.63516	0.00308
NM_001198914	Myb	185.24599	1.11372	0.51380	0.24920	0.05000	166.33043	0.08297
NM_010689	Lat	183.36579	1.10864	0.45025	1.19342	0.09845	153.64674	0.08617
NM_009858	Cd8b1	179.66459	0.05000	0.05000	0.05000	0.18916	949.81794	0.04190
NM_009382	Thy1	146.95880	0.43898	0.77929	0.05000	0.05000	188.58026	0.07649
NM_001281966	Itk	141.38486	0.06877	0.05000	0.13505	0.05000	1046.88719	0.04535
NM_013488	Cd4	131.52748	0.05000	0.05000	0.05000	0.05000	2630.54967	0.00286
NM_001043228	Dntt	126.82478	0.05000	0.05000	0.05000	0.05000	2536.49556	0.00303
NM_007648	Cd3e	82.85960	0.05710	0.05000	0.05000	0.05000	1451.09452	0.00526
NM_178666	Themis	82.76471	0.08680	0.05000	0.05000	0.05000	953.47457	0.02376
NM_001113391	Cd247	73.07327	0.05496	0.05000	0.18180	0.05000	401.93346	0.07290
NM_010742	Ly6d	66.98759	0.05000	0.05000	0.05000	0.08537	784.70122	0.04085
NM_001166625	Ccr9	64.56851	0.05000	0.05000	0.05000	0.05000	1291.37026	0.00303
NM_009850	Cd3g	62.45917	0.05000	0.05000	0.05000	0.05000	1249.18331	0.00242
NM_011246	Rasgrp1	60.74510	0.50508	0.05000	0.05000	0.05000	120.26880	0.08603
NM_001083960	Spo11	59.21071	0.08328	0.05691	0.09196	0.05794	643.87274	0.00000
NM_001033126	Cd27	55.51463	0.08227	0.05000	0.07254	0.05000	674.78077	0.04835
NM_013487	Cd3d	54.66024	0.05000	0.05000	0.05000	0.20872	261.88783	0.08216
NM_183264	Tespa1	47.33927	0.05000	0.05000	0.05000	0.05000	946.78532	0.00829
NM_001276403	Lef1	46.08353	0.42672	0.12212	0.06467	0.05741	107.99464	0.08595
NM_007650	Cd5	45.24783	0.05000	0.05000	0.07080	0.05000	639.09894	0.02481
NM_001168693	Endou	44.87904	0.05000	0.05000	0.05000	0.05000	897.58087	0.01335
NM_009937	Colq	43.27285	0.05000	0.05000	0.05000	0.05000	865.45708	0.00242
NM_198297	Trat1	41.41748	0.05000	0.17733	0.05000	0.05000	233.56126	0.07735
NM_009852	Cd6	40.39733	0.25526	0.05302	0.08567	0.05398	158.26196	0.08358
NM_153175	Gimap6	40.22641	0.05000	0.05000	0.05000	0.05000	804.52825	0.04703
NM_029983	Sla2	36.08206	0.09555	0.05000	0.05000	0.05000	377.60568	0.07322
NM_010815	Grap2	32.58080	0.05000	0.05000	0.31493	0.05000	103.45416	0.08617
NM_032465	Cd96	30.21901	0.05000	0.05000	0.05000	0.05000	604.38013	0.01159
NM_021309	Sh2d2a	30.05000	0.05933	0.05000	0.06551	0.05000	458.67932	0.00000
NM_011771	Ikzf3	29.01566	0.05000	0.05000	0.05000	0.05000	580.31320	0.01354
NM_001033186	Skap1	23.46961	0.06394	0.05000	0.05000	0.05000	367.05457	0.06451
NM_013698	Txk	22.07962	0.06304	0.05000	0.08295	0.05000	266.16923	0.01799
NM_011364	Sh2d1a	22.04979	0.05000	0.05000	0.05000	0.05000	440.99570	0.01032
NM_030710	Slamf6	21.00818	0.05000	0.05000	0.05000	0.05000	420.16357	0.02308
NM_019436	Sit1	20.81864	0.05000	0.05000	0.05000	0.05000	416.37274	0.00362
NM 001267621	Gfi1	20.57217	0.05000	0.05000	0.05000	0.05000	411.44341	0.01191

100 Fold CD4⁺ CD8⁺ Thymocyte Specific Genes

Table 3-3 continued

100 Fold CD4⁺ CD8⁺ Thymocyte Specific Genes

Refseq ID	Gene Name	CD4+ CD8+ Thymocytes RPKM	Embryonic Stem Cell RPKM	E 14.5 Cortical Neurons RPKM	Bone Marrow Derived Macrophages RPKM	Hepatocytes RPKM	Minumum Fold Difference	P-value
NM_008859	Prkcq	19.54454	0.05000	0.11972	0.05000	0.05000	163.25090	0.08385
NM_011346	Sell	18.59547	0.08405	0.05744	0.10424	0.05847	178.38900	0.01958
NM_013730	Slamf1	18.05000	0.05000	0.05000	0.05000	0.05000	361.00007	0.03760
NM_013486	Cd2	17.22083	0.09374	0.05000	0.05000	0.05000	183.71727	0.07943
NM_028878	Slc6a19	15.55685	0.05000	0.05000	0.05000	0.05000	311.13709	0.07740
NM_175860	Gimap1	13.63900	0.09867	0.06743	0.10895	0.09740	125.18254	0.07446
NM_172435	P2ry10	12.13710	0.05000	0.05000	0.05000	0.05000	242.74208	0.01271
NM_173398	Gpr171	10.83846	0.05000	0.05000	0.05000	0.05000	216.76917	0.05141
NM_009824	Cbfa2t3	8.61997	0.07721	0.08445	0.05247	0.05000	102.07608	0.08566
NM_008091	Gata3	8.06650	0.05698	0.05000	0.05000	0.05000	141.56663	0.08515
NM_010165	Eya2	8.05969	0.05000	0.05000	0.05000	0.05000	161.19388	0.06456
NM_009020	Rag2	6.80898	0.05000	0.05000	0.05000	0.05000	136.17965	0.06725
NM_001038499	Arsi	6.07416	0.05000	0.05000	0.05000	0.05000	121.48313	0.08485
NM_031395	Sytl3	5.53504	0.05000	0.05000	0.05000	0.05000	110.70078	0.08595
NM_001013390	Scn4b	5.28724	0.05000	0.05000	0.05000	0.05000	105.74472	0.07512
NM_205823	Tlr12	5.15783	0.05000	0.05000	0.05000	0.05000	103.15655	0.06762

Table 3-4

100 Fold Bone Marrow Derived Macrophage Specific Genes

		Bone Marrow Derived	Embryonic Stem Cell	E 14.5 Cortical Neurons	CD4+ CD8+ Thymocytes		Minumum Fold	
Refseq ID	Gene Name	Macrophages RPKM	RPKM	RPKM	RPKM	Hepatocytes RPKM	Difference	P-value
NM_053110	Gpnmb	292.68255	0.05000	0.05000	0.05000	0.05000	5853.65092	0.00934
NM_031254	Trem2	145.85513	0.05748	0.10456	0.05000	0.05000	1394.96743	0.02462
NM_138672	Stab1	120.23534	0.05000	0.17103	0.05000	0.31456	382.23361	0.06090
NM_001037859	Csf1r	91.61717	0.05000	0.05000	0.05000	0.06264	1462.62728	0.02692
NM_001267695	Ctss	84.12816	0.05000	0.05000	0.10249	0.05000	820.81936	0.04752
NM_001206390	Hk3	78.08887	0.73943	0.39940	0.45673	0.12630	105.60637	0.08229
NM 008147	Gp49a	62.05057	0.05000	0.05000	0.05000	0.05000	1241.01146	0.01645
NM 013532	Lilrb4	54.74895	0.05000	0.05000	0.05000	0.05000	1094.97901	0.02418
NM 010185	Fcer1g	52.94950	0.16214	0.15798	0.17214	0.06359	307.59261	0.06356
NM 011662	Tyrobp	52.27353	0.05000	0.05000	0.07139	0.05000	732.18121	0.06126
NM 017372	Lyz2	45.57331	0.05000	0.05000	0.05859	0.05577	777.86539	0.03951
NM 001110322	Cd72	44.63842	0.11789	0.10520	0.26383	0.11637	169.19156	0.08461
NM 001008702	Dab2	38.76748	0.21921	0.24380	0.05000	0.07858	159.01521	0.07674
NM 008873	Plau	38.08635	0.11182	0.05000	0.05000	0.05000	340.60092	0.06361
NM 015811	Rgs1	36.24535	0.05000	0.05000	0.21881	0.05000	165.64998	0.07080
NM 001146022	Wdfy4	32.77408	0.05000	0.05000	0.05000	0.05000	655.48151	0.03188
NM 178911	Pld4	31.13481	0.08279	0.05000	0.25701	0.05000	121.14467	0.08258
NM 001286037	Ncf1	30.73459	0.05000	0.07209	0.08662	0.05133	354.82546	0.05654
NM 011333	Ccl2	30.05000	0.05000	0.05000	0.05000	0.05000	601.00000	0.03092
NM 013652	Ccl4	29.73191	0.05000	0.05000	0.22839	0.05000	130.17866	0.07390
NM 010819	Clec4d	28.92787	0.05972	0.05329	0.05000	0.05000	484.38544	0.03797
NM_010821	Mpeg1	28.06373	0.05000	0.05000	0.05000	0.25492	110.08755	0.09148
NM 010130	Emr1	26.38304	0.05000	0.05000	0.05000	0.05000	527.66077	0.03356
NM 008677	Ncf4	26.15958	0.05000	0.05000	0.07749	0.05000	337.57613	0.05085
NM 145227	Oas2	25.63305	0.17608	0.05000	0.20210	0.05000	126.83474	0.08620
NM 008533	Cd180	25.51811	0.08797	0.05000	0.05000	0.05000	290.06453	0.05371
NM 011311	S100a4	25.31032	0.05000	0.05000	0.05000	0.05000	506.20636	0.03601
NM 001163616	1810011H11Rik	21.21735	0.05000	0.05000	0.05000	0.05000	424.34698	0.02359
NM 011539	Tbxas1	20.69167	0.05000	0.07012	0.05000	0.05000	295.10075	0.05510
NM 009777	C1qb	19.60353	0.05000	0.05000	0.05000	0.06032	324.99898	0.05823
NM 011095	Pirb	18.86643	0.05000	0.05000	0.05000	0.05000	377.32850	0.02479
NM 145827	NIrp3	17.94324	0.05000	0.05000	0.05000	0.05000	358.86474	0.01552
NM 013654	Ccl7	17.86522	0.05000	0.05000	0.05000	0.05000	357.30442	0.02002
NM 001113326	Msr1	16.61677	0.05000	0.05000	0.05000	0.05000	332.33541	0.06050
NM 001169153	Cd300lf	16.41884	0.05119	0.05000	0.05000	0.05000	320.74128	0.05601
NM 001111058	Cd33	15.95177	0.05109	0.05000	0.05000	0.12485	127.77178	0.08454
NM 008625	Mrc1	15.23913	0.05000	0.05000	0.05000	0.13721	111.06669	0.08488
NM 001281818	Specc1	14.84498	0.10444	0.09658	0.05000	0.05000	142.14502	0.08370
NM 011337	Ccl3	14.78896	0.05000	0.05000	0.05000	0.05000	295.77915	0.03545
NM 134158	AF251705	14.44968	0.05000	0.05000	0.05000	0.05000	288.99364	0.02936

Table 3-4 continued

100 Fold Bone Marrow Derived Macrophage Specific Genes

Defect ID	Corre Norre	Bone Marrow Derived	Embryonic Stem Cell	E 14.5 Cortical Neurons	CD4+ CD8+ Thymocytes	Userstandas DDKM	Minumum Fold	P-value
Refseq ID	Gene Name	Macrophages RPKM	RPKM	RPKM	RPKM	Hepatocytes RPKM	Difference	P-value
NM_023044	Slc15a3	14.20659	0.05000	0.05000	0.05256	0.05000	270.30702	0.05569
NM_176913	Dpep2	13.71171	0.05000	0.05000	0.06375	0.05000	215.09560	0.07187
NM_001040696	Nlrp1b	13.61658	0.05000	0.05000	0.05000	0.05000	272.33166	0.03638
NM_007577	C5ar1	12.66434	0.05000	0.05000	0.05000	0.05000	253.28689	0.02100
NM_199221	Cd300lb	12.51051	0.05000	0.05000	0.05000	0.05000	250.21021	0.01601
NM_001281854	Aoah	11.81439	0.05000	0.05000	0.05000	0.05000	236.28784	0.03914
NM_009841	Cd14	11.59313	0.05000	0.05000	0.05000	0.05000	231.86252	0.03066
NM_145509	5430435G22Rik	10.45637	0.05000	0.05000	0.05000	0.05000	209.12738	0.03770
NM_001033308	Themis2	10.15814	0.05470	0.05000	0.05000	0.05000	185.71145	0.07534
NM_138310	Apobr	9.94353	0.05000	0.05000	0.05000	0.05000	198.87065	0.07082
NM_177686	Clec12a	9.79479	0.05000	0.05000	0.05000	0.05000	195.89587	0.06640
NM_153074	Lrrc25	9.63310	0.05000	0.05000	0.05000	0.05000	192.66210	0.04642
NM_145158	Emilin2	9.31194	0.05000	0.05000	0.05000	0.05000	186.23873	0.05307
NM_013482	Btk	9.13808	0.05000	0.05000	0.05000	0.05000	182.76157	0.06050
NM_009779	C3ar1	8.31513	0.05000	0.05000	0.05000	0.05000	166.30264	0.05285
NM_011355	Spi1	8.23520	0.05000	0.05000	0.05000	0.05000	164.70391	0.05033
NM_001004435	Pik3r6	8.05183	0.05000	0.05000	0.05000	0.05000	161.03651	0.05500
NM_152803	Hpse	7.58002	0.05544	0.05000	0.06069	0.05000	124.90431	0.08754
NM_001025610	Ms4a7	7.49524	0.05000	0.05000	0.05000	0.05000	149.90470	0.05207
NM_027763	Treml1	7.40742	0.05000	0.05000	0.05000	0.05000	148.14841	0.06126
NM_011426	Siglec1	6.99533	0.05699	0.05000	0.05000	0.05000	122.73969	0.07767
NM_205820	Tlr13	6.35673	0.05000	0.05000	0.05000	0.05000	127.13454	0.02569
NM_001166493	Rasgrp3	6.10249	0.05000	0.05000	0.05000	0.05962	102.35928	0.09131
NM_001164426	Kcnk13	6.03810	0.05000	0.05000	0.05000	0.05000	120.76209	0.06554
NM_009807	Casp1	5.42220	0.05000	0.05000	0.05000	0.05000	108.44394	0.05432
NM_021297	Tlr4	5.34423	0.05000	0.05000	0.05000	0.05000	106.88469	0.03735
NM_007574	C1qc	5.21923	0.05000	0.05000	0.05000	0.05000	104.38467	0.06676
NM_144539	Slamf7	5.01541	0.05000	0.05000	0.05000	0.05000	100.30824	0.06063

Table 3-5

100 Fold Hepatocyte Specific Genes

			Embryonic Stem Cell	E 14.5 Cortical Neurons	CD4+ CD8+ Thymocytes	Bone Marrow Derived	Minumum Fold	
Refseq ID	Gene Name	Hepatocytes RPKM	RPKM	RPKM	RPKM	Macrophages RPKM	Difference	P-value
NM 009654	Alb	850.85912	0.05000	0.05000	0.05000	0.05000	17017.18239	0.01760
NM 008645	Mug1	200.53821	0.05000	0.05000	0.05000	0.05000	4010.76423	0.00000
NM 013465	Ahsg	316.58885	0.08178	0.05589	0.07341	0.09030	3505.83807	0.07796
NM 001122647	Mup10	157.52651	0.05000	0.05000	0.05000	0.05000	3150.53013	0.00034
NM 009692	Apoa1	150.12379	0.05000	0.05000	0.05000	0.05000	3002.47577	0.08488
NM 001286096	Mup2	149.57525	0.05000	0.05000	0.05000	0.05000	2991.50505	0.00029
NM 001252569	Serpina1a	142.43664	0.05000	0.05000	0.05000	0.05000	2848.73274	0.00000
NM 009245	Serpina1c	134.17731	0.05000	0.05000	0.05000	0.05000	2683.54619	0.00000
NM 001199995	Mup12	133.23854	0.05000	0.05000	0.05000	0.05000	2664.77078	0.00044
NM 001135127	Mup19	131.82398	0.05000	0.05000	0.05000	0.05000	2636.47970	0.00029
NM 001134675	Mup7	130.73753	0.05000	0.05000	0.05000	0.05000	2614.75067	0.00022
NM 009244	Serpina1b	129.78424	0.05000	0.05000	0.05000	0.05000	2595.68484	0.03156
NM 001200004	Mup15	126.26784	0.05000	0.05000	0.05000	0.05000	2525.35684	0.00020
NM 001281979	Mup9	123.16813	0.05000	0.05000	0.05000	0.05000	2463.36265	0.00022
NM 001199999	Mup14	121.54775	0.05000	0.05000	0.05000	0.05000	2430.95491	0.00034
NM 031188	Mup1	506.02931	0.19734	0.13486	0.12923	0.21791	2322.23819	0.00015
NM 001039544	Mup3	110.84384	0.05000	0.05000	0.05000	0.05000	2216.87686	0.00064
NM 011458	Serpina3k	109.27784	0.05000	0.05000	0.05000	0.05000	2185.55683	0.05940
NM 001199333	LOC100048884	108.48562	0.05000	0.05000	0.05000	0.05000	2169.71233	0.00064
NM_011044	Pck1	107.22084	0.05000	0.05000	0.05000	0.05000	2144.41676	0.04950
NM 001199936	Mup16	100.63025	0.05000	0.05000	0.05000	0.05000	2012.60509	0.00064
NM 013474	Apoa2	208.20296	0.05000	0.06139	0.05000	0.10545	1974.39993	0.09172
NM_021282	Cyp2e1	97.75749	0.05000	0.05000	0.05000	0.05000	1955.14973	0.00000
NM 001164526	Mup11	97.03364	0.05000	0.05000	0.05000	0.05000	1940.67282	0.00064
NM 001134676	Mup8	96.00393	0.05000	0.05000	0.05000	0.05000	1920.07861	0.00093
NM 001200006	Mup17	95.71986	0.05000	0.05000	0.05000	0.05000	1914.39712	0.00090
NM_013697	Ttr	88.86616	0.05000	0.05000	0.05000	0.05000	1777.32316	0.08798
NM 017399	Fabp1	88.83222	0.05000	0.05000	0.05000	0.05000	1776.64438	0.09038
NM 001134674	Mup13	87.57621	0.05000	0.05000	0.05000	0.05000	1751.52427	0.00090
NM 008096	Gc	81.18870	0.05000	0.05000	0.05000	0.05000	1623.77392	0.08813
NM_008277	Hpd	80.95663	0.05000	0.05000	0.05000	0.05000	1619.13259	0.06153
NM_001080809	Cps1	80.86087	0.05000	0.05000	0.05000	0.05000	1617.21738	0.09143
NM 009246	Serpina1d	80.73597	0.05000	0.05000	0.05000	0.05000	1614.71937	0.00000
NM_146214	Tat	72.90907	0.05000	0.05000	0.05000	0.05000	1458.18131	0.08969
NM_019792	Cyp3a25	65.11589	0.05000	0.05000	0.05000	0.05000	1302.31782	0.09153
NM_008646	Mug2	65.02588	0.05000	0.05000	0.05000	0.05000	1300.51764	0.00027
NM_133862	Fgg	62.36437	0.05000	0.05000	0.05000	0.05000	1247.28731	0.09180
NM_009247	Serpina1e	61.22536	0.05000	0.05000	0.05000	0.05000	1224.50710	0.00000
NM_001190732	Gm20594	4485.90508	3.20780	0.49085	3.66918	0.36733	1222.58915	0.15900
NM 181849	Fgb	59.16627	0.05000	0.05000	0.05000	0.05000	1183.32531	0.09094

Table 3-5 continued

100 Fold Hepatocyte Specific Genes

			Embryonic Stem Cell	E 14.5 Cortical Neurons	CD4+ CD8+ Thymocytes	Bone Marrow Derived	Minumum Fold	
Refseq ID	Gene Name	Hepatocytes RPKM	RPKM	RPKM	RPKM	Macrophages RPKM	Difference	P-value
NM_198672	Ces3a	78.21781	0.06438	0.05000	0.05000	0.07109	1100.26678	0.00010
NM 001134644	Gm2083	66.02625	0.05535	0.05000	0.05000	0.06112	1080.27349	0.00147
NM_010006	Cyp2d9	53.25007	0.05000	0.05000	0.05000	0.05000	1065.00149	0.00024
NM_023114	Apoc3	50.99010	0.05000	0.05000	0.05000	0.05000	1019.80192	0.08986
NM_007376	Pzp	55.85013	0.05595	0.05000	0.05000	0.05000	998.19012	0.09282
NM_017370	Нр	48.75876	0.05000	0.05000	0.05000	0.05000	975.17511	0.09167
NM_080845	Ftcd	45.19420	0.05000	0.05000	0.05000	0.05000	903.88395	0.08744
NM_007606	Car3	45.05313	0.05000	0.05000	0.05000	0.05000	901.06265	0.09170
NM_008877	Plg	44.94791	0.05000	0.05000	0.05000	0.05000	898.95822	0.09153
NM_001111048	Fga	44.67690	0.05000	0.05000	0.05000	0.05000	893.53802	0.09104
NM_007817	Cyp2f2	43.29222	0.05000	0.05000	0.05000	0.05000	865.84444	0.06735
NM_009780	C4b	43.08862	0.05000	0.05000	0.05000	0.05000	861.77245	0.09182
NM_009693	Apob	40.66979	0.05000	0.05000	0.05000	0.05000	813.39585	0.09529
NM_019414	Selenbp2	39.12078	0.05000	0.05000	0.05000	0.05000	782.41562	0.09158
NM_007443	Ambp	37.72946	0.05000	0.05000	0.05000	0.05000	754.58925	0.09285
NM_019911	Tdo2	37.56060	0.05000	0.05000	0.05000	0.05000	751.21201	0.09285
NM_013478	Azgp1	36.76458	0.05000	0.05000	0.05000	0.05000	735.29168	0.08500
NM_009253	Serpina3m	35.69297	0.05000	0.05000	0.05000	0.05000	713.85944	0.07952
NM_023617	Aox3	46.68301	0.06737	0.05000	0.05000	0.05000	692.91279	0.12695
NM_013475	Apoh	33.59207	0.05000	0.05000	0.05000	0.05000	671.84136	0.09165
NM_010406	Hc	32.32595	0.05000	0.05000	0.05000	0.05000	646.51895	0.10637
NM_007954	Ces1c	31.63888	0.05000	0.05000	0.05000	0.05000	632.77763	0.09167
NM_016668	Bhmt	30.33683	0.05000	0.05000	0.05000	0.05000	606.73659	0.00007
NM_133653	Mat1a	30.16094	0.05000	0.05000	0.05000	0.05000	603.21872	0.08754
NM_007818	Cyp3a11	29.78872	0.05000	0.05000	0.05000	0.05000	595.77442	0.09155
NM_008406	ltih1	28.77039	0.05000	0.05000	0.05000	0.05000	575.40778	0.08977
NM_001252616	Fut8	28.38661	0.05000	0.05000	0.05000	0.05000	567.73216	0.00560
NM_008061	G6pc	28.22501	0.05000	0.05000	0.05000	0.05000	564.50012	0.09182
NM_001159415	Ces3b	28.08855	0.05000	0.05000	0.05000	0.05000	561.77091	0.08238
NM_010005	Cyp2d10	28.05610	0.05000	0.05000	0.05000	0.05000	561.12198	0.08053
NM_019546	Prodh2	28.04150	0.05000	0.05000	0.05000	0.05000	560.83005	0.09155
NM_001150749	Rdh7	27.44077	0.05000	0.05000	0.05000	0.05000	548.81532	0.00007
NM_007482	Arg1	26.90464	0.05000	0.05000	0.05000	0.05000	538.09272	0.11742
NM_080434	Apoa5	26.61618	0.05000	0.05000	0.05000	0.05000	532.32353	0.04975
NM_001012323	Mup20	26.45991	0.05000	0.05000	0.05000	0.05000	529.19823	0.00565
NM_144940	Uroc1	26.34236	0.05000	0.05000	0.05000	0.05000	526.84725	0.08930
NM_008101	Gcgr	41.47632	0.08299	0.05000	0.05000	0.05000	499.77008	0.11617
NM_008407	ltih3	55.37335	0.05000	0.11346	0.05000	0.05000	488.06354	0.10927
NM_133946	NIrp6	24.12604	0.05000	0.05000	0.05000	0.05000	482.52084	0.11292
NM_007409	Adh1	23.61279	0.05000	0.05000	0.05000	0.05000	472.25587	0.09140

Defease ID	Come Name		Embryonic Stem Cell	E 14.5 Cortical Neurons	CD4+ CD8+ Thymocytes	Bone Marrow Derived	Minumum Fold	D undure
Refseq ID	Gene Name	Hepatocytes RPKM	RPKM	RPKM	RPKM	Macrophages RPKM	Difference	P-value
NM_007815	Cyp2c29	22.88506	0.05000	0.05000	0.05000	0.05000	457.70130	0.09167
NM 007385	Apoc4	22.01433	0.05000	0.05000	0.05000	0.05000	440.28655	0.11710
NM 001013777	Zfp488	21.97497	0.05000	0.05000	0.05000	0.05000	439.49943	0.10091
NM 001159487	Rbp4	59.57028	0.14257	0.05251	0.05000	0.05000	417.83679	0.14511
NM_001009550	Mup21	19.89251	0.05000	0.05000	0.05000	0.05000	397.85028	0.12098
NM_032541	Hamp	20.07532	0.05000	0.05000	0.05086	0.05000	394.73763	0.12803
NM 009474	Uox	19.70910	0.05000	0.05000	0.05000	0.05000	394.18208	0.09167
NM 001102411	Kng1	19.42512	0.05000	0.05000	0.05000	0.05000	388.50245	0.09370
NM 001243063	Nr1i3	54.52047	0.06938	0.06735	0.06456	0.14093	386.86308	0.10717
NM 008777	Pah	18.80795	0.05000	0.05000	0.05000	0.05000	376.15890	0.05212
NM 018795	Abcc6	25.72854	0.06973	0.05000	0.05000	0.05000	368.95198	0.14824
NM 011082	Pigr	18.23932	0.05000	0.05000	0.05000	0.05000	364.78633	0.09148
NM 013786	Hsd17b6	18.07698	0.05000	0.05000	0.05000	0.05000	361.53960	0.10649
NM 021022	Abcb11	17.60137	0.05000	0.05000	0.05000	0.05000	352.02732	0.11964
NM 009778	C3	90.75740	0.05000	0.05000	0.05000	0.25971	349.45686	0.15096
NM 133657	Cyp2a12	17.30371	0.05000	0.05000	0.05000	0.05000	346.07425	0.09092
NM 144909	Gckr	29.06369	0.08694	0.05178	0.05000	0.05000	334.31251	0.13047
NM_030611	Akr1c6	16.58442	0.05000	0.05000	0.05000	0.05000	331.68833	0.00022
NM 010582	ltih2	16.37381	0.05000	0.05000	0.05000	0.05000	327.47611	0.09192
NM 010391	H2-Q10	41.85909	0.13046	0.05000	0.05000	0.05000	320.86103	0.14736
NM 009252	Serpina3n	15.89211	0.05000	0.05000	0.05000	0.05000	317.84221	0.09285
NM 026701	Pbld1	15.53241	0.05000	0.05000	0.05000	0.05000	310.64816	0.11111
NM 008649	Mup5	15.34678	0.05000	0.05000	0.05000	0.05000	306.93567	0.09556
NM 144930	Ces1f	15.11324	0.05000	0.05000	0.05000	0.05000	302.26473	0.09172
NM 001199306	2810007J24Rik	15.04765	0.05000	0.05000	0.05000	0.05000	300.95295	0.09241
NM 183249	1100001G20Rik	14.86022	0.05000	0.05000	0.05000	0.05000	297.20432	0.14062
NM 146148	C8a	14.71787	0.05000	0.05000	0.05000	0.05000	294.35742	0.12668
	Slco1a1	13.59993	0.05000	0.05000	0.05000	0.05000	271.99866	0.09754
NM 013467	Aldh1a1	13.30656	0.05000	0.05000	0.05000	0.05000	266.13121	0.09180
NM 011316	Saa4	13.25616	0.05000	0.05000	0.05000	0.05000	265.12314	0.09184
NM 007812	Cyp2a5	13.19805	0.05000	0.05000	0.05000	0.05000	263.96110	0.00017
NM 053176	Hrg	13.15506	0.05000	0.05000	0.05000	0.05000	263.10118	0.09854
NM 017371	Нрх	56.55486	0.05000	0.16900	0.05000	0.21597	261.86159	0.19325
NM 177002	Slc22a30	12.98061	0.05000	0.05000	0.05000	0.05000	259.61218	0.00046
NM 053200	Ces1d	12.97609	0.05000	0.05000	0.05000	0.05000	259.52182	0.10461
NM 013485	C9	12.87222	0.05000	0.05000	0.05000	0.05000	257.44434	0.08111
NM 021489	F12	12.83755	0.05000	0.05000	0.05000	0.05000	256.75094	0.11448
NM 001105160	Cyp3a59	12.76412	0.05000	0.05000	0.05000	0.05000	255.28242	0.09412
NM 001276710	Agxt	12.73384	0.05000	0.05000	0.05000	0.05000	254.67671	0.09121
NM 145565	Sds	12.70550	0.05000	0.05000	0.05000	0.05000	254.11003	0.15272

Refseg ID	Gene Name		Embryonic Stem Cell	E 14.5 Cortical Neurons	CD4+ CD8+ Thymocytes	Bone Marrow Derived	Minumum Fold	P-value
Refsed ID	Gene Name	Hepatocytes RPKM	RPKM	RPKM	RPKM	Macrophages RPKM	Difference	P-value
NM_001031851	Agxt2	12.58547	0.05000	0.05000	0.05000	0.05000	251.70949	0.09192
NM_133995	Upb1	12.57255	0.05000	0.05000	0.05000	0.05000	251.45105	0.11937
NM_145146	Afm	12.46505	0.05000	0.05000	0.05000	0.05000	249.30107	0.09184
NM_007428	Agt	12.17997	0.05000	0.05000	0.05000	0.05000	243.59944	0.09268
NM_018746	Itih4	47.75628	0.17799	0.12164	0.11656	0.19654	242.98191	0.18699
NM_001081408	Agmat	11.64528	0.05000	0.05000	0.05000	0.05000	232.90565	0.13619
NM_001160303	Gm4788	12.66841	0.05000	0.05000	0.05000	0.05477	231.28445	0.00183
NM_028093	Entpd8	11.54180	0.05000	0.05000	0.05000	0.05000	230.83598	0.14682
NM_013547	Hgd	16.72058	0.05000	0.07252	0.05000	0.05000	230.55970	0.14761
NM_027902	Tmprss6	14.99184	0.06702	0.05000	0.05000	0.05000	223.69065	0.19080
NM_009993	Cyp1a2	11.15190	0.05000	0.05000	0.05000	0.05000	223.03802	0.09400
NM_054094	Acsm1	10.58340	0.05000	0.05000	0.05000	0.05000	211.66801	0.08879
NM_029692	Upp2	13.71767	0.05000	0.06507	0.05000	0.05000	210.80168	0.18325
NM_001029867	Ugt2b36	10.39757	0.05000	0.05000	0.05000	0.05000	207.95139	0.00125
NM_001161667	Acox2	10.35723	0.05000	0.05000	0.05000	0.05000	207.14454	0.09192
NM_008768	Orm1	10.30788	0.05000	0.05000	0.05000	0.05000	206.15753	0.11272
NM_020495	Slco1b2	20.90911	0.05000	0.10203	0.05000	0.05000	204.93441	0.16367
NM_027853	Mettl7b	10.07579	0.05000	0.05000	0.05000	0.05000	201.51580	0.10685
NM_144903	Aldob	43.62623	0.05000	0.21708	0.05000	0.05000	200.96422	0.17137
NM_030739	Vmn1r58	9.74313	0.05000	0.05000	0.05000	0.05000	194.86254	0.00171
NM 031884	Abcg5	9.51614	0.05000	0.05000	0.05000	0.05000	190.32287	0.09285
NM_025834	Proz	9.47919	0.05000	0.05000	0.05000	0.05000	189.58379	0.17750
NM_011707	Vtn	33.23511	0.05000	0.17833	0.05000	0.05000	186.36894	0.16337
NM_001081372	Ces1b	9.28366	0.05000	0.05000	0.05000	0.05000	185.67315	0.13027
NM_153193	Hsd3b2	9.10834	0.05000	0.05000	0.05000	0.05000	182.16678	0.09419
NM_010007	Cyp2j5	9.06969	0.05000	0.05000	0.05000	0.05000	181.39374	0.09165
NM_011134	Pon1	9.02366	0.05000	0.05000	0.05000	0.05000	180.47316	0.09854
NM_007703	ElovI3	9.01511	0.05000	0.05000	0.05000	0.05000	180.30217	0.37156
NM_001102409	Kng2	9.00910	0.05000	0.05000	0.05000	0.05000	180.18205	0.09192
NM_010775	Mbl1	8.99874	0.05000	0.05000	0.05000	0.05000	179.97474	0.09092
NM 027852	Rarres2	12.84925	0.07144	0.05000	0.05000	0.05000	179.85847	0.19797
NM_139300	Mylk	8.49603	0.05000	0.05000	0.05000	0.05000	169.92053	0.17726
NM_009467	Ugt2b5	8.47992	0.05000	0.05000	0.05000	0.05000	169.59833	0.00687
NM_007576	C4bp	8.47590	0.05000	0.05000	0.05000	0.05000	169.51791	0.09683
NM_147100	Olfr613	8.43631	0.05000	0.05000	0.05000	0.05000	168.72628	0.06718
	Acsm5	8.33358	0.05000	0.05000	0.05000	0.05000	166.67167	0.08879
NM_145499	Cyp2c70	8.26245	0.05000	0.05000	0.05000	0.05000	165.24897	0.09167
NM_010012	Cyp8b1	8.20916	0.05000	0.05000	0.05000	0.05000	164.18320	0.09167
NM_001204333	Cyp4f14	8.18182	0.05000	0.05000	0.05000	0.05000	163.63635	0.14751

D (an		Embryonic Stem Cell	E 14.5 Cortical Neurons	CD4+ CD8+ Thymocytes	Bone Marrow Derived	Minumum Fold	
Refseq ID	Gene Name	Hepatocytes RPKM	RPKM	RPKM	RPKM	Macrophages RPKM	Difference	P-value
NM_019503	Fxyd1	14.65518	0.05000	0.09121	0.05000	0.05000	160.67111	0.16015
NM_001163486	Hsd17b13	7.92915	0.05007	0.05000	0.05000	0.05000	158.34595	0.19601
NM 001042767	Proc	23.67694	0.15190	0.05000	0.05000	0.05000	155.86746	0.19056
NM 001025575	Cfhr2	7.75950	0.05000	0.05000	0.05000	0.05000	155.18993	0.15641
NM 008341	lgfbp1	8.80248	0.05000	0.05675	0.05000	0.05000	155.11787	0.21168
NM_053096	Cml2	9.83357	0.06387	0.05000	0.05000	0.05000	153.96518	0.18447
NM 023623	Cyp2d40	7.56099	0.05000	0.05000	0.05000	0.05000	151.21980	0.13013
NM 010168	F2	36.84730	0.25137	0.05000	0.23542	0.05000	146.58838	0.20613
NM 009997	Cyp2a4	7.27598	0.05000	0.05000	0.05000	0.05000	145.51958	0.06251
NM 010321	Gnmt	50.14684	0.34566	0.22398	0.24054	0.32417	145.07551	0.19885
NM 008878	Serpinf2	20.64251	0.05000	0.05000	0.12162	0.14241	144.94835	0.19349
NM 133977	Trf	334.39893	1.12245	0.06475	0.07966	2.31252	144.60347	0.20669
NM_028066	F11	7.20855	0.05000	0.05000	0.05000	0.05000	144.17099	0.10825
NM 177142	Lipi	13.04970	0.08252	0.05640	0.05404	0.09112	143.20771	0.01716
NM 008124	Gjb1	8.07029	0.05000	0.05649	0.05000	0.05000	142.85622	0.18183
NM 001161742	Hsd3b3	7.13770	0.05000	0.05000	0.05000	0.05000	142.75409	0.09221
NM 007686	Cfi	6.98796	0.05000	0.05000	0.05000	0.05000	139.75915	0.11597
NM 007494	Ass1	74.90605	0.54195	0.05000	0.14924	0.28095	138.21532	0.21104
NM 153168	Lars2	22790.06503	32.37085	8.52373	94.26926	165.34499	137.83342	0.24617
NM 001177964	Dcdc2c	6.87996	0.05000	0.05000	0.05000	0.05000	137.59926	0.12729
NM 007468	Apoa4	6.79957	0.05000	0.05000	0.05000	0.05000	135.99150	0.08977
NM 009060	Rgn	6.71353	0.05000	0.05000	0.05000	0.05000	134.27066	0.09536
NM 145365	Creb3l3	18.54222	0.13841	0.05000	0.05000	0.06700	133.96245	0.21175
NM 009108	Nr1h4	9.46711	0.06438	0.05814	0.05000	0.07109	133.17108	0.11512
NM 001101475	F830016B08Rik	6.60806	0.05000	0.05000	0.05000	0.05000	132.16128	0.16528
NM 146230	Acaa1b	30.52828	0.23569	0.05000	0.05000	0.05000	129.52919	0.21178
NM 007493	Asgr2	6.71086	0.05299	0.05000	0.05000	0.05000	126.65326	0.19315
NM 027552	Kynu	7.64463	0.05000	0.05000	0.05000	0.06052	126.31935	0.18359
NM 152811	Ugt2b1	6.28873	0.05000	0.05000	0.05000	0.05000	125.77468	0.09189
NM_144834	Serpina10	6.28684	0.05000	0.05000	0.05000	0.05000	125.73681	0.10935
NM_001166350	Serpina11	6.07745	0.05000	0.05000	0.05000	0.05000	121.54891	0.09172
NM 133660	Ces1e	6.02437	0.05000	0.05000	0.05000	0.05000	120.48737	0.09637
NM_183257	Hamp2	5.94592	0.05000	0.05000	0.05000	0.05000	118.91833	0.00205
NM_008455	Klkb1	7.00257	0.05000	0.05000	0.05000	0.05902	118.64891	0.18733
NM_009349	Inmt	5.91996	0.05000	0.05000	0.05000	0.05000	118.39921	0.08248
NM 026180	Abcg8	5.85629	0.05000	0.05000	0.05000	0.05000	117.12588	0.09930
NM 080844	Serpinc1	29.98274	0.14434	0.12476	0.25923	0.15027	115.66017	0.20537
NM 001081318	Gm6614	5.71494	0.05000	0.05000	0.05000	0.05000	114.29872	0.12859
NM_001104531	Cyp2d11	5.68582	0.05000	0.05000	0.05000	0.05000	113.71636	0.09698
NM 001013820	Slc22a28	5.64302	0.05000	0.05000	0.05000	0.05000	112.86042	0.10162

Defear ID	Come Norma	Hepatocytes RPKM	Embryonic Stem Cell	E 14.5 Cortical Neurons	CD4+ CD8+ Thymocytes	Bone Marrow Derived	Minumum Fold	Duralua
Refseq ID	Gene Name		RPKM	RPKM	RPKM	Macrophages RPKM	Difference	P-value
NM_022884	Bhmt2	5.50363	0.05000	0.05000	0.05000	0.05000	110.07251	0.15386
NM_008223	Serpind1	5.46256	0.05000	0.05000	0.05000	0.05000	109.25116	0.16110
NM_029562	Cyp2d26	29.19095	0.05000	0.21333	0.26761	0.05000	109.08118	0.21395
NM_009202	Slc22a1	5.31982	0.05000	0.05000	0.05000	0.05000	106.39634	0.20662
NM_134127	Cyp4f15	11.45146	0.05000	0.10774	0.05000	0.05000	106.28916	0.20259
NM_009150	Selenbp1	19.24069	0.05059	0.05000	0.05000	0.18316	105.05063	0.20012
NM_177406	Cyp4a12a	5.16129	0.05000	0.05000	0.05000	0.05000	103.22583	0.29316
NM_010011	Cyp4a10	5.12611	0.05000	0.05000	0.05000	0.05000	102.52216	0.00232
NM_008198	Cfb	33.16717	0.32410	0.17231	0.05918	0.14708	102.33557	0.22190
NM_010936	Nr1i2	9.21386	0.09007	0.05000	0.05000	0.05000	102.30092	0.21926
NM_001167875	Cyp2c50	5.08752	0.05000	0.05000	0.05000	0.05000	101.75041	0.12106
NM_146101	Habp2	5.05905	0.05000	0.05000	0.05000	0.05000	101.18103	0.09172
NM_001113418	Ppara	6.07911	0.05000	0.06021	0.05000	0.05000	100.96801	0.20620
NM_027904	Cpn2	5.04735	0.05000	0.05000	0.05000	0.05000	100.94697	0.09561
NM_009714	Asgr1	13.61249	0.05000	0.13604	0.05734	0.05000	100.06381	0.20613

Table 3.6

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_008485	Lamc2	1	155033527	155034077	-
NM_201395	Sall4	2	168592651	168593201	-
NM_016907	Spint1	2	119062595	119063145	+
NM_028946	Slc9b1	3	135010500	135011050	+
NM_001081202	L1td1	4	98392944	98393494	+
NM_175651	Cnpy1	5	28536512	28537062	-
NM_011107	Pla2g1b	5	115915774	115916324	+
NM_009426	Trh	6	92194594	92195144	-
NM_178381	Ano9	7	148303655	148304205	-
NM_028034	Tdrd12	7	36322713	36323263	-
NM_020486	Bcam	7	20355831	20356381	-
NM_010202	Fgf4	7	152046790	152047340	+
NM_009482	Utf1	7	147129254	147129804	+
NM_009434	Phlda2	7	150688379	150688929	-
NM_001004184	Slc28a1	7	88259184	88259734	+
NM_177742	Triml1	8	44235317	44235867	-
NM_009556	Zfp42	8	44392313	44392863	-
NM_001160412	Triml2	8	44265295	44265845	+
NM_011562	Tdgf1	9	110848612	110849162	-
NM_001042503	Trim71	9	114473437	114473987	-
NM_013611	Nodal	10	60880219	60880769	+
NM_019448	Dnmt3l	10	77512086	77512636	+
NM_001271550	Aire	10	77506305	77506855	-
NM_029458	Hormad2	11	4341035	4341585	-
NM_028602	Tex19.1	11	121006956	121007506	+
NM_001159401	Upp1	11	9017510	9018060	+
NM_0119348*	Esrrb*	12	87810566	87811116	+
NM_021480	Tdh	14	64127879	64128429	-
NM_001111119*	Ccnb1ip1*	14	51424682	51425232	-
NM_134109	lldr1	16	36693563	36694113	+
NM_028610	Dppa4	16	48283347	48283897	+
NM_030141	1700061G19Rik	17	57014555	57015105	+
NM_013633	Pou5f1	17	35642476	35643026	+
NM_001033425	Zscan10	17	23737322	23737872	+
NM_015798	Fbxo15	18	85103916	85104466	+
NM_011635	Trap1a	Х	135867721	135868271	+
NM_009575	Zic3	Х	55283304	55283854	+
NM_007430	Nr0b1	Х	83436613	83437163	+
NM_001100461	Pnma5	Х	70284885	70285435	-

100 Fold Embryonic Stem Cell Specific Promoter Coordinates

* Altered start site

Table 3.7

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_175642	Bai3	1	25886502	25887052	-
NM_133235	Khdrbs2	1	32229150	32229700	+
NM_053199	Cadm3	1	175297776	175298326	-
NM_010045	Darc	1	175263584	175264134	-
NM_008900	Pou3f3	1	42753490	42754040	+
NM_007495	Astn1	1	160291934	160292484	+
NM_001011874	Xkr4	1	3661529	3662079	-
NM_172475	Frmd4a*	2	3938296	3938846	+
NM_133207	Kcnh7	2	63022294	63022844	-
NM_001171615	Myt1	2	181497536	181498086	+
NM_178673	Fstl5	3	75877982	75878532	+
NM_138666	Nlgn1	3	26230781	26231331	-
NM_019978	Dclk1	3	55045947	55046497	+
NM_007529	Bcan	3	87804228	87804778	-
NM_001167748	Egfem1	3	28980998	28981548	+
NM_001081358	Lrrc7	3	158225135	158225685	-
NM_001039347	Kcnd3	3	105254747	105255297	+
NM_001039195	Gria2	3	80606663	80607213	-
NM_019724	Mmp16	4	17780128	17780678	+
NM_011607	Tnc	4	63707999	63708549	-
NM_001281955	Csmd2	4	127664787	127665337	+
NM_031404	Actl6b	5	137994282	137994832	+
NM_008069	Gabrb1	5	72090754	72091304	+
NM_007937	Epha5	5	84846357	84846907	-
NM_001199244	Kcnip4*	5	49915890	49916440	-
NM_001077398	Ldb2	5	45190935	45191485	-
NM_177328	Grm7	6	110595091	110595641	+
NM_175750	Plxna4*	6	32537654	32537704	-
NM_080285	Cttnbp2	6	18464775	18465325	-
NM_008171	Grin2b	6	136123479	136124029	-
NM_001282102	Lrrtm4	6	79968370	79968920	+
NM_001271858	Add2	6	85978174	85978724	+
NM_001164316	Ccser1	6	61129818	61130368	+
NM_001109764	Ctnna2	6	77929611	77930161	-
NM_001081306	Ptprz1	6	22825001	22825551	+
	Lrrc4b*	7	51684327	51684877	+
NM_013643	Ptpn5	7	54389004	54389554	-
 NM_011807	Dlg2*	7	97625182	97625732	+
NM_007461	Apba2	7	71646091	71646641	+

100 Fold E14.5 Cortical Neuron Specific Promoter Coordinates

Table 3.7 continued

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_001081414	Grm5	7	94732177	94732727	+
NM_053171	Csmd1	8	17535335	17535885	-
NM_019707	Cdh13	8	120807154	120807704	+
NM_001253754	Gpm6a	8	55864286	55864836	+
NM_001081397	Myo16	8	10153422	10153972	+
NM_001039154	Cdh8	8	101940321	101940871	-
NM_177906	Opcml	9	27598353	27598903	+
NM_172290	Ntm	9	29770664	29771214	-
NM_029792	B3gat1*	9	26540901	26541450	+
NM_001170787	Cntn5	9	10904725	10905275	-
NM_182807	Fam19a2	10	122700631	122701181	+
NM_181681	BC005764	10	79337329	79337879	-
NM_001205341	Ppfia2	10	105906865	105907415	+
NM_001111268	Grik2	10	49508510	49509060	-
NM_001081035	Nav3	10	109893210	109893760	-
NM_021286	Sez6	11	77743944	77744494	+
NM_011856	Tenm2*	11	37049719	37050268	-
NM_009548	Rnf112	11	61267338	61267888	-
NM_001113325	Gria1	11	56824619	56825169	+
NM_178714	Lrfn5*	12	62623587	62624187	+
NM_176930	Nrcam	12	45429371	45429921	+
NM_029911	Kcnk10	12	99812872	99813422	-
NM_011215	Ptprn2	12	117723692	117724242	+
NM_001286388	Trim9	12	71448551	71449101	-
NM_001198587	Nrxn3*	12	89960820	89961370	+
NM_001093778	Myt1l	12	30212748	30213298	+
NM_001081017	Unc79	12	104186568	104187118	+
NM_010151	Nr2f1	13	78338193	78338743	-
NM_001282961	Ntrk2	13	58907429	58907979	+
NM_001081348	Hecw1	13	14615443	14615993	-
NM_207667	Fgf14*	14	125076668	125077218	-
NM_199065	Slitrk1	14	109313406	109313956	-
NM_019675	Stmn4	14	66962711	66963261	+
NM_001271799	Pcdh9	14	94289838	94290388	-
NM_001253361	Kcnma1	14	24823377	24823927	-
NM_001190187	Nrg3	14	40286326	40286876	-
NM_001042617	Cadps	14	13655543	13656093	-
NM_176998	Sybu	15	44619559	44620109	-
NM_172610	Mpped1	15	83609952	83610502	+

100 Fold E14.5 Cortical Neuron Specific Promoter Coordinates

Table 3.7 continued

100 Fold E14.5 Cortical Neuron Specific Promoter Coordinates

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_016743	Nell2	15	95359087	95359637	-
NM_001135688	Ly6h	15	75397236	75397786	-
NM_001081391	Csmd3*	15	48624164	48624714	-
NM_213614	Sept5	16	18629981	18630531	-
NM_175549	Robo2*	16	74412020	74412570	-
NM_021477	Rbfox1	16	5884385	5884935	+
NM_010199	Fgf12	16	28753279	28753829	-
NM_010140	Epha3	16	63863933	63864483	-
NM_001164268	Kalrn*	16	34573568	34574118	-
NM_027712*	Dlgap1*	17	70318208	70318758	+
NM_177284	Nrxn1	17	91492092	91492642	-
NM_001286013	Dlk2	17	46434376	46434926	+
NM_199024	Nol4	18	23200104	23200654	-
NM_138661	Pcdha9	18	37157033	37157583	+
NM_054072	Pcdhac1	18	37089438	37089988	+
NM_009961	Pcdha10	18	37164473	37165023	+
NM_009960	Pcdha11	18	37170011	37170561	+
NM_007831	Dcc	18	72510673	72511223	-
NM_001039173	Dok6	18	89938478	89939028	-
NM_028627	Psd	19	46401596	46402146	-
NM_010025	Dcx	Х	140367712	140368262	-
NM_001177961	Gpm6b	Х	162676374	162676924	+

Table 3.8

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_030710	Slamf6	1	173847167	173847717	+
NM_013730	Slamf1	1	173696762	173697312	+
NM_011346	Sell	1	165991706	165992256	+
NM_001113391	Cd247	1	167718311	167718861	+
NM_029983	Sla2	2	156712764	156713314	-
NM_011246	Rasgrp1	2	117168563	117169113	-
NM_010165	Eya2	2	165480297	165480847	+
NM_009020	Rag2	2	101464404	101464954	+
NM_009019	Rag1	2	101489639	101490189	-
NM_008859	Prkcq	2	11093508	11094058	+
NM_008091	Gata3	2	9800177	9800727	-
NM_001083960	Spo11*	2	172802701	172803251	+
NM_173398	Gpr171	3	58905693	58906243	-
NM_021309	Sh2d2a	3	87650176	87650726	+
NM_013486	Cd2	3	101091812	101092362	-
NM_010703	Lef1	3	130812714	130813264	+
NM_205823	Tlr12	4	128295813	128296363	-
NM_019436	Sit1	4	43496531	43497081	-
NM_001162432	Lck	4	129235566	129236116	-
NM_001267621	Gfi1	5	108154775	108155325	-
NM_001122754	Txk	5	73143962	73144512	-
NM_175860	Gimap1	6	48688545	48689095	+
NM_153175	Gimap6	6	48658193	48658743	-
NM_013488	Cd4	6	124838177	124838727	-
NM_009858	Cd8b1	6	71272305	71272855	+
NM_001081110	Cd8a	6	71322920	71323470	+
NM_001033126	Cd27	6	125186995	125187545	-
NM_010689	Lat	7	133512998	133513548	-
NM_009824	Cbfa2t3	8	125222959	125223509	-
NM_013487	Cd3d	9	44789368	44789918	+
NM_009850	Cd3g	9	44788464	44789014	-
NM_009382	Thy1	9	43850966	43851516	+
NM_007648	Cd3e	9	44817623	44818173	-
NM_001166625	Ccr9	9	123675828	123676378	+
NM_001013390	Scn4b	9	44946624	44947174	+
NM_183264	Tespa1	10	129759407	129759957	+
NM_178666	Themis	10	28387700	28388250	+
NM_001198914	Myb	10	20880740	20881290	-
NM_011771	lkzf3	11	98407295	98407845	-

100 Fold CD4⁺ CD8⁺ Thymocyte Specific Promoter Coordinates

Table 3.8 continued

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_009331	Tcf7*	11	52096466	52097016	-
NM_001281966	Itk	11	46202967	46203517	-
NM_001033186	Skap1	11	96325404	96325954	+
NM_028878	Slc6a19	13	73838093	73838643	-
NM_009937	Colq	14	32390519	32391069	-
NM_010815	Grap2	15	80402524	80403074	+
NM_010742	Ly6d	15	74593947	74594497	-
NM_001168693	Endou	15	97561786	97562336	-
NM_198297	Trat1	16	48772019	48772569	-
NM_032465	Cd96	16	46120311	46120861	-
NM_183368	Sytl3	17	6909678	6910228	+
NM_001038499	Arsi	18	61071393	61071943	+
NM_009852	Cd6	19	10904498	10905048	-
NM_007650	Cd5	19	10813414	10813964	-
NM_001043228	Dntt	19	41103264	41103814	+
NM_172435	P2ry10	Х	104284173	104284723	+
NM_011364	Sh2d1a	Х	39855284	39855834	+

100 Fold CD4⁺ CD8⁺ Thymocyte Specific Promoter Coordinates

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_144539	Slamf7	1	173579080	173579630	-
NM_145509	5430435G22Rik	1	133584771	133585321	+
NM_015811	Rgs1	1	146096184	146096734	-
NM_010185	Fcer1g	1	173164430	173164980	-
NM_008625	Mrc1	2	14150540	14151090	+
NM_011426	Siglec1	2	130912451	130913001	-
NM_011355	Spi1	2	90922047	90922597	+
NM_011311	S100a4	3	90407191	90407741	+
NM_001267695	Ctss	3	95330207	95330757	+
NM_021297	Tlr4	4	66488344	66488894	+
NM_009777	C1qb	4	136442042	136442592	-
NM_007574	C1qc	4	136448779	136449329	-
NM_001110322	Cd72	4	43467448	43467998	-
NM_001033308	Themis2	4	132352229	132352779	-
NM_152803	Hpse	5	101148652	101149202	-
NM_145227	Oas2	5	121199807	121200357	-
NM_001286037	Ncf1	5	134705445	134705995	-
NM_177686	Clec12a	6	129299761	129300311	+
NM_053110	Gpnmb	6	48986016	48986566	+
NM_011539	Tbxas1	6	38868484	38869034	+
NM_010819	Clec4d	6	123211624	123212174	+
NM_009779	C3ar1	6	122806125	122806675	-
NM_001111058	Cd33	7	50788491	50789041	-
NM_138310	Apobr	7	133728021	133728571	+
NM_011662	Tyrobp	7	31198306	31198856	+
NM_011095	Pirb	7	3671934	3672484	-
NM_007577	C5ar1	7	16844839	16845389	-
NM_176913	Dpep2	8	108508907	108509457	-
NM_153074	Lrrc25	8	73140242	73140792	+
NM_001113326	Msr1	8	40727982	40728532	-
NM_009807	Casp1	9	5298016	5298566	+
NM_017372	Lyz2	10	116719278	116719828	-
NM_013532	Lilrb4	10	51210280	51210830	+
NM_008147	Gp49a	10	51199984	51200534	+
NM_199221	Cd300lb	11	114795650	114796200	-
NM_145827	Nlrp3	11	59354587	59355137	+
 NM_134158	AF251705	11	114863144	114863694	-
NM_013654	Ccl7	11	81858713	81859263	+
NM_013652	Ccl4	11	83475585	83476135	+

100 Fold Bone Marrow Derived Macrophage Specific Promoter Coordinates

100 Fold Bone Marrow Derived Macrophage Specific Promoter Coordinates

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_011337	Ccl3	11	83462830	83463380	-
NM_011333	Ccl2	11	81848578	81849128	+
NM_001281818	Specc1	11	61769764	61770314	+
NM_001169153	Cd300lf	11	114995256	114995806	-
NM_001040696	Nlrp1b	11	71044185	71044735	-
NM_001004435	Pik3r6	11	68316020	68316570	+
NM_178911	Pld4	12	113998365	113998915	+
NM_001164426	Kcnk13	12	101202208	101202758	+
NM_008533	Cd180	13	103483137	103483687	+
NM_001281854	Aoah	13	20885481	20886031	+
NM_001033245	Hk3	13	55122696	55123246	-
NM_138672	Stab1	14	31981777	31982327	-
NM_008873	Plau	14	21655383	21655933	+
NM_001163616	1810011H11Rik	14	33598648	33599198	+
NM_001146022	Wdfy4	14	33998202	33998752	-
NM_023118	Dab2	15	6336247	6336797	+
NM_008677	Ncf4	15	78074740	78075290	+
NM_001166493	Rasgrp3	17	75834744	75835294	+
NM_145158	Emilin2	17	71660255	71660805	-
NM_031254	Trem2	17	48485225	48485775	+
NM_027763	Treml1	17	48498740	48499290	+
NM_010130	Emr1	17	57497608	57498158	+
NM_009841	Cd14	18	36886258	36886808	-
NM_001037859	Csf1r	18	61264725	61265275	+
NM_010821	Mpeg1	19	12534768	12535318	+
NM_023044	Slc15a3	19	10916533	10917083	+
NM_001025610	Ms4a7	19	11410586	11411136	-
NM_205820	Tlr13	Х	103338113	103338663	+
NM_013482	Btk	Х	131117629	131118179	-

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_001290273	Marc1	1	186635129	186635679	-
NM_080844	Serpinc1	1	162908236	162908786	+
NM_023617	Aox3	1	58169479	58170029	+
NM_013474	Apoa2	1	173154684	173155234	+
NM_011082	Pigr	1	132722760	132723310	+
NM_007576	C4bp	1	132558145	132558695	-
NM_001276710	Agxt	1	95031316	95031866	+
NM_001243063	Nr1i3	1	173143600	173144150	+
NM_001160303	Gm4788	1	141677766	141678316	-
NM_001080809	Cps1	1	67169100	67169650	+
NM_001025575	Cfhr2	1	141915448	141915998	-
NM_029692	Upp2	2	58607094	58607644	+
NM_028093	Entpd8	2	24935342	24935892	+
NM_027552	Kynu	2	43410344	43410894	+
NM_021022	Abcb11	2	69180623	69181173	-
NM_011044	Pck1	2	172978073	172978623	+
NM_010582	ltih2	2	10052260	10052810	-
NM_010406	Нс	2	34916911	34917461	-
NM_010168	F2	2	91476521	91477071	-
NM_007494	Ass1	2	31325289	31325839	+
NM_153193	Hsd3b2	3	98528416	98528966	-
NM_001161742	Hsd3b3	3	98567001	98567551	-
NM_181849	Fgb	3	82853662	82854212	-
NM_133862	Fgg	3	82811317	82811867	+
NM_019911	Tdo2	3	81779600	81780150	-
NM_019414	Selenbp2	3	94496994	94497544	+
NM_009474	Uox	3	146259612	146260162	+
NM_009150	Selenbp1	3	94736504	94737054	+
NM_007686	Cfi	3	129539156	129539706	+
NM_007606	Car3	3	14863037	14863587	+
NM_007409	Adh1	3	137940108	137940658	+
NM_001111048	Fga	3	82829574	82830124	+
NM_010011	Cyp4a10	4	115190391	115190941	+
NM_177406	Cyp4a12a	4	114971150	114971700	+
NM_146148	C8a	4	104548953	104549503	-
NM_144903	Aldob	4	49562305	49562855	-
NM_031188	Mup1	4	60514782	60515332	-
NM_010007	Cyp2j5	4	96330760	96331310	-
NM_008768	Orm1	4	63005099	63005649	+

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_007443	Ambp	4	62815126	62815676	-
NM_001286096	Mup2	4	60152678	60153228	-
NM_001281979	Mup9	4	60434774	60435324	-
NM_001200006	Mup17	4	61256814	61257364	-
NM_001200004	Mup15	4	60152680	60153230	-
NM_001199999	Mup14	4	60964980	60965530	-
NM_001199995	Mup12	4	60736103	60736653	-
NM_001199936	Mup16	4	61180468	61181018	-
NM_001199333	LOC100048884	4	61335078	61335628	-
NM_001164526	Mup11	4	60675217	60675767	-
NM_001135127	Mup19	4	61443208	61443758	-
NM_001134676	Mup8	4	60235421	60235971	-
NM_001134675	Mup7	4	60083297	60083847	-
NM_001134674	Mup13	4	60889268	60889818	-
NM_001134644	Gm2083	4	60675187	60675737	-
NM_001122647	Mup10	4	60594977	60595527	-
NM_001081408	Agmat	4	141302089	141302639	+
NM_001039544	Mup3	4	61748296	61748846	-
NM_001012323	Mup20	4	61715101	61715651	-
NM_001009550	Mup21	4	61811825	61812375	-
NM_001163486	Hsd17b13	5	104406357	104406907	-
NM_152811	Ugt2b1	5	87355478	87356028	-
NM_145565	Sds	5	120926055	120926605	+
NM_145146	Afm	5	90947474	90948024	+
NM_144909	Gckr	5	31599453	31600003	+
NM_019792	Cyp3a25	5	146821143	146821693	-
NM_013478	Azgp1	5	138422248	138422798	+
NM_009654	Alb	5	90889414	90889964	+
NM_009467	Ugt2b5	5	87569315	87569865	-
NM_008277	Hpd	5	123632645	123633195	-
NM_008096	Gc	5	89886873	89887423	-
NM_007818	Cyp3a11	5	146691380	146691930	-
NM_001105160	Cyp3a59	5	146890333	146890883	+
 NM_001029867	Ugt2b36	5	87521530	87522080	-
 NM_001190732	Gm20594	6	79767524	79768074	+
	Uroc1	6	90282782	90283332	+
	Cml2	6	85819081	85819631	-
	Rarres2	6	48522619	48523169	-
	Slco1b2	6	141577538	141578088	+

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_017399	Fabp1	6	71149381	71149931	+
NM_013797	Slco1a1	6	141895433	141895983	-
NM_011134	Pon1	6	5143896	5144446	-
NM_009349	Inmt	6	55124934	55125484	-
NM_008646	Mug2	6	121956315	121956865	+
NM_008645	Mug1	6	121788058	121788608	+
NM_007376	Pzp	6	128476688	128477238	-
NM_001081318	Gm6614	6	141960775	141961325	-
NM_183257	Hamp2	7	31709150	31709700	-
NM_178758	Acsm5	7	126669278	126669828	+
NM_175250	2810007J24Rik	7	15031886	15032436	-
NM_133946	Nlrp6	7	148106300	148106850	+
NM_133657	Cyp2a12	7	27813608	27814158	+
NM_054094	Acsm1	7	126760841	126761391	+
NM_032541	Hamp	7	31728986	31729536	-
NM_021282	Cyp2e1	7	147949230	147949780	+
NM_019546	Prodh2	7	31278176	31278726	+
NM_019503	Fxyd1	7	31840625	31841175	-
NM_018795	Abcc6	7	53285606	53286156	-
NM_017371	Нрх	7	112748580	112749130	-
NM_011316	Saa4	7	53987863	53988413	-
NM_009997	Cyp2a4	7	27091710	27092260	+
NM_007817	Cyp2f2	7	27904473	27905023	+
NM_007812	Cyp2a5	7	27619857	27620407	+
NM_007385	Apoc4	7	20266759	20267309	-
NM_198672	Ces3a	8	107571998	107572548	+
NM_146214	Tat	8	112513835	112514385	+
NM_144930	Ces1f	8	95803585	95804135	-
NM_133660	Ces1e	8	95753468	95754018	-
NM_053200	Ces1d	8	95721653	95722203	-
NM_028066	F11	8	46347335	46347885	-
NM_025834	Proz	8	13060407	13060957	+
NM_017370	Нр	8	112103022	112103572	-
NM_008455	Klkb1	8	46380139	46380689	-
NM_007954	Ces1c	8	95655132	95655682	-
NM_007428	Agt	8	127093557	127094107	-
NM_001159415	Ces3b	8	107607154	107607704	+
NM_001081372	Ces1b	8	95603866	95604416	-
NM_146230	Acaa1b	9	119066161	119066711	-

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_133977	Trf	9	103132566	103133116	-
NM_080434	Apoa5	9	46076190	46076740	+
NM_023114	Арос3	9	46043332	46043882	-
NM_010012	Cyp8b1	9	121825373	121825923	-
NM_009993	Cyp1a2	9	57531412	57531962	-
NM_009692	Apoa1	9	46036212	46036762	+
NM_007468	Apoa4	9	46048426	46048976	+
NM_013786	Hsd17b6	10	127444514	127445064	-
NM_145365	Creb3l3	10	80561567	80562117	-
NM_133995	Upb1	10	74869155	74869705	+
NM_080845	Ftcd	10	76037892	76038442	+
NM_027853	Mettl7b	10	128397994	128398544	-
NM_026701	Pbld1	10	62523864	62524414	+
NM_008777	Pah	10	86984039	86984589	+
NM_007482	Arg1	10	24647226	24647776	-
NM_001163504	Nr1h4	10	88996317	88996867	-
NM_001150749	Rdh7	10	127325739	127326289	-
NM_183249	1100001G20Rik	11	83559941	83560491	+
NM_013475	Apoh	11	108256110	108256660	+
NM_011707	Vtn	11	78312121	78312671	+
NM_009714	Asgr1	11	69867370	69867920	+
NM_008878	Serpinf2	11	75252953	75253503	-
NM_008341	lgfbp1	11	7097289	7097839	+
NM_008101	Gcgr	11	120383680	120384230	+
NM_008061	G6pc	11	101228543	101229093	+
NM_007493	Asgr2	11	69905645	69906195	+
NM_144834	Serpina10	12	104869565	104870115	-
NM_011458	Serpina3k	12	105576195	105576745	+
NM_009693	Apob	12	7983982	7984532	+
NM_009253	Serpina3m	12	105624873	105625423	+
NM_009252	Serpina3n	12	105644417	105644967	+
NM_009247	Serpina1e	12	105195057	105195607	-
NM_009246	Serpina1d	12	105011793	105012343	-
 NM_009245	Serpina1c	12	105143110	105143660	-
NM_009244	Serpina1b	12	104976349	104976899	-
NM_001252569	Serpina1a	12	105101779	105102329	-
NM_001166350	Serpina11	12	105228117	105228667	-
NM_030611	Akr1c6	13	4433088	4433638	+
NM_022884	Bhmt2	13	94444207	94444757	-

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_021489	F12	13	55528113	55528663	-
NM_016668	Bhmt	13	94407663	94408213	-
NM_133653	Mat1a	14	41917821	41918371	+
NM_018746	ltih4	14	31699161	31699711	+
NM_010775	Mbl1	14	41964244	41964794	+
NM_008407	ltih3	14	31736723	31737273	-
NM_008406	ltih1	14	31756425	31756975	-
NM_001161667	Acox2	14	9091303	9091853	-
NM_029562	Cyp2d26	15	82624625	82625175	-
NM_027902	Tmprss6	15	78299014	78299564	-
NM_023623	Cyp2d40	15	82594502	82595052	-
NM_013485	C9	15	6394832	6395382	+
NM_010006	Cyp2d9	15	82282306	82282856	+
NM_010005	Cyp2d10	15	82237574	82238124	-
NM_001113418	Ppara	15	85565493	85566043	+
NM_001104531	Cyp2d11	15	82224402	82224952	-
NM_001031851	Agxt2	15	10287833	10288383	+
NM_013465	Ahsg	16	22891587	22892137	+
NM_139300	Mylk	16	34744796	34745346	+
NM_053176	Hrg	16	22950644	22951194	+
NM_027904	Cpn2	16	30267568	30268118	-
NM_013547	Hgd	16	37579738	37580288	+
NM_010936	Nr1i2	16	38294860	38295410	-
NM_008223	Serpind1	16	17330963	17331513	+
NM_001102411	Kng1	16	23057872	23058422	+
NM_001102409	Kng2	16	23029124	23029674	-
NM_134127	Cyp4f15	17	32822103	32822653	+
NM_031884	Abcg5	17	85082213	85082763	-
NM_026180	Abcg8	17	85081960	85082510	+
NM_010391	H2-Q10	17	35606533	35607083	+
NM_010321	Gnmt	17	46866064	46866614	-
NM_009780	C4b	17	34880792	34881342	-
NM_009778	C3	17	57367509	57368059	-
NM_009202	Slc22a1	17	12868654	12869204	-
NM_008877	Plg	17	12570974	12571524	+
NM_008198	Cfb	17	34999409	34999959	-
NM_001204333	Cyp4f14	17	33054224	33054774	-
NM_013697	Ttr	18	20823250	20823800	+
NM_008934	Proc	18	32297809	32298359	-

Refseq ID	Gene Name	Chrom	Start	End	Strand
NM_001101475	F830016B08Rik	18	60452533	60453083	+
NM_177002	Slc22a30	19	8479545	8480095	-
NM_146101	Habp2	19	56361927	56362477	+
NM_145499	Cyp2c70	19	40261726	40262276	-
NM_013467	Aldh1a1	19	20675971	20676521	+
NM_007815	Cyp2c29	19	39361074	39361624	+
NM_007703	Elovl3	19	46205888	46206438	+
NM_001167875	Cyp2c50	19	40163668	40164218	+
NM_001159487	Rbp4	19	38199761	38200311	-
NM_001013820	Slc22a28	19	8206422	8206972	-
NM_009060	Rgn	Х	20126443	20126993	+
NM_008124	Gjb1	Х	98572175	98572725	+

100 Fold ESC Specific Gene Ontology

Gene Ontology Enrichment	P-value
In utero embryonic development	3.6E-12
Embryo development	8.3E-12
Chordate embryonic development	2.3E-10
Embryo development ending in birth or egg hatching	2.9E-10
Placenta development	1.9E-08
Blastocyst development	2.7E-08
Blastocyst formation	2.9E-08
Embryonic morphogenesis	2.8E-07
Stem cell maintenance	1.7E-06
Trophectodermal cellular morphogenesis	4.3E-06

Gene Ontology Enrichment	P-value
Synaptic transmission	1.34E-30
Cell-cell signaling	1.37E-26
Nervous system development	1.67E-25
Synapse organization	1.35E-17
Neuron projection development	1.53E-16
Generation of neurons	1.94E-16
System development	1.29E-15
Neurogenesis	3.00E-15
Synaptic transmission, glutamatergic	8.86E-15
Neuron differentiation	2.33E-14

100 Fold CD4⁺ CD8⁺ Thymocyte Specific Gene Ontology

Gene Ontology Enrichment	P-value
Immune system process	7.36E-13
Lymphocyte activation	2.86E-10
Leukocyte activation	5.26E-09
T cell activation	3.80E-08
Cell activation	5.22E-08
Positive regulation of immune response	2.20E-07
T cell receptor signaling pathway	8.93E-07
Regulation of immune system process	1.30E-06
Positive regulation of immune system process	8.00E-06
Regulation of immune response	1.22E-05

100 Fold Bone Marrow Derived Macrophage Specific Gene Ontology

Gene Ontology Enrichment	P-value
Immune system process	1.87E-23
Defense response	1.93E-22
Inflammatory response	3.33E-22
Response to wounding	1.38E-21
Immune response	2.73E-18
Regulation of response to external stimulus	1.15E-13
Positive regulation of response to stimulus	4.82E-13
Positive regulation of cytokine production	2.11E-12
Response to external stimulus	2.36E-12
Regulation of immune system process	2.68E-12

100 Fold Hepatocyte Specific Gene Ontology

Gene Ontology Enrichment	P-value
Organic acid metabolic process	2.23E-37
Oxidation-reduction process	9.05E-37
Carboxylic acid metabolic process	3.91E-35
Oxoacid metabolic process	8.79E-34
Negative regulation of peptidase activity	2.69E-33
Single-organism metabolic process	1.16E-31
Negative regulation of hydrolase activity	5.83E-30
Negative regulation of endopeptidase activity	4.44E-29
Blood coagulation	2.50E-24
Hemostasis	4.35E-24

REFERENCES

Barrera, L.O., Li, Z., Smith, A.D., Arden, K.C., Cavenee, W.K., Zhang, M.Q., Green, R.D., and Ren, B. (2008). Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. Genome research *18*, 46-59.

Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., *et al.* (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell *125*, 315-326.

Bhatt, D.M., Pandya-Jones, A., Tong, A.J., Barozzi, I., Lissner, M.M., Natoli, G., Black, D.L., and Smale, S.T. (2012). Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell *150*, 279-290.

Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L.A., Lee, T.I., Levine, S.S., Wernig, M., Tajonar, A., Ray, M.K., *et al.* (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature *441*, 349-353.

Carninci, P., Sandelin, A., Lenhard, B., Katayama, S., Shimokawa, K., Ponjavic, J., Semple, C.A., Taylor, M.S., Engstrom, P.G., Frith, M.C., *et al.* (2006). Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet *38*, 626-635.

Deaton, A.M., and Bird, A. (2011). CpG islands and the regulation of transcription. Genes & development 25, 1010-1022.

Dejosez, M., and Zwaka, T.P. (2012). Pluripotency and nuclear reprogramming. Annual review of biochemistry *81*, 737-765.

Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D.J., Dash, C., Bazett-Jones, D.P., Le Grice, S., McKay, R.D., Buetow, K.H., *et al.* (2008). Global transcription in pluripotent embryonic stem cells. Cell stem cell *2*, 437-447.

Ernst, J., Kheradpour, P., Mikkelsen, T.S., Shoresh, N., Ward, L.D., Epstein, C.B., Zhang, X., Wang, L., Issner, R., Coyne, M., *et al.* (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature *473*, 43-49.

Gifford, C.A., Ziller, M.J., Gu, H., Trapnell, C., Donaghey, J., Tsankov, A., Shalek, A.K., Kelley, D.R., Shishkin, A.A., Issner, R., *et al.* (2013). Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell *153*, 1149-1163.

Hanna, J.H., Saha, K., and Jaenisch, R. (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell *143*, 508-525.

Hemmati-Brivanlou, A., and Melton, D. (1997). Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88, 13-17.

Jones, P.A., and Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science *293*, 1068-1070.

Kafri, T., Ariel, M., Brandeis, M., Shemer, R., Urven, L., McCarrey, J., Cedar, H., and Razin, A. (1992). Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes & development *6*, 705-714.

Kmiec, Z. (2001). Cooperation of liver cells in health and disease. Advances in anatomy, embryology, and cell biology *161*, Iii-xiii, 1-151.

Levin, J.Z., Yassour, M., Adiconis, X., Nusbaum, C., Thompson, D.A., Friedman, N., Gnirke, A., and Regev, A. (2010). Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nature methods *7*, 709-715.

Lienert, F., Mohn, F., Tiwari, V.K., Baubec, T., Roloff, T.C., Gaidatzis, D., Stadler, M.B., and Schubeler, D. (2011). Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS genetics *7*, e1002090.

Lister, R., Mukamel, E.A., Nery, J.R., Urich, M., Puddifoot, C.A., Johnson, N.D., Lucero, J., Huang, Y., Dwork, A.J., Schultz, M.D., *et al.* (2013). Global epigenomic reconfiguration during mammalian brain development. Science *341*, 1237905.

Meister, P., Towbin, B.D., Pike, B.L., Ponti, A., and Gasser, S.M. (2010). The spatial dynamics of tissue-specific promoters during C. elegans development. Genes & development 24, 766-782.

Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods *5*, 621-628.

Munoz-Sanjuan, I., and Brivanlou, A.H. (2002). Neural induction, the default model and embryonic stem cells. Nature reviews Neuroscience *3*, 271-280.

Mutz, K.O., Heilkenbrinker, A., Lonne, M., Walter, J.G., and Stahl, F. (2013). Transcriptome analysis using next-generation sequencing. Current opinion in biotechnology 24, 22-30.

Okazaki, Y., Furuno, M., Kasukawa, T., Adachi, J., Bono, H., Kondo, S., Nikaido, I., Osato, N., Saito, R., Suzuki, H., *et al.* (2002). Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature *420*, 563-573.

Pandya-Jones, A., and Black, D.L. (2009). Co-transcriptional splicing of constitutive and alternative exons. RNA (New York, NY) 15, 1896-1908.

Pruitt, K.D., Tatusova, T., and Maglott, D.R. (2007). NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic acids research *35*, D61-65.

Ramirez-Carrozzi, V.R., Braas, D., Bhatt, D.M., Cheng, C.S., Hong, C., Doty, K.R., Black, J.C., Hoffmann, A., Carey, M., and Smale, S.T. (2009). A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell *138*, 114-128.

Sachs, M., Onodera, C., Blaschke, K., Ebata, K.T., Song, J.S., and Ramalho-Santos, M. (2013). Bivalent chromatin marks developmental regulatory genes in the mouse embryonic germline in vivo. Cell reports *3*, 1777-1784.

Saxonov, S., Berg, P., and Brutlag, D.L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences of the United States of America *103*, 1412-1417.

Schwartz, R.E., Fleming, H.E., Khetani, S.R., and Bhatia, S.N. (2014). Pluripotent stem cell-derived hepatocyte-like cells. Biotechnology advances *32*, 504-513.

Song, Y., Ahn, J., Suh, Y., Davis, M.E., and Lee, K. (2013). Identification of novel tissuespecific genes by analysis of microarray databases: a human and mouse model. PloS one *8*, e64483.

Stadler, M.B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Scholer, A., Wirbelauer, C., Oakeley, E.J., Gaidatzis, D., Tiwari, V.K., *et al.* (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature *480*, 490-495.

Su, A.I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K.A., Block, D., Zhang, J., Soden, R., Hayakawa, M., Kreiman, G., *et al.* (2004). A gene atlas of the mouse and human proteinencoding transcriptomes. Proceedings of the National Academy of Sciences of the United States of America *101*, 6062-6067.

Sun, P., Zhou, X., Farnworth, S.L., Patel, A.H., and Hay, D.C. (2013). Modeling human liver biology using stem cell-derived hepatocytes. International journal of molecular sciences *14*, 22011-22021.

Thomson, M., Liu, S.J., Zou, L.N., Smith, Z., Meissner, A., and Ramanathan, S. (2011). Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell *145*, 875-889.

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature biotechnology 28, 511-515.

Tropepe, V., Hitoshi, S., Sirard, C., Mak, T.W., Rossant, J., and van der Kooy, D. (2001). Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron *30*, 65-78.

Varley, K.E., Gertz, J., Bowling, K.M., Parker, S.L., Reddy, T.E., Pauli-Behn, F., Cross, M.K., Williams, B.A., Stamatoyannopoulos, J.A., Crawford, G.E., *et al.* (2013). Dynamic DNA methylation across diverse human cell lines and tissues. Genome research *23*, 555-567.

Vastenhouw, N.L., and Schier, A.F. (2012). Bivalent histone modifications in early embryogenesis. Current opinion in cell biology 24, 374-386.

Vincent, J.J., Huang, Y., Chen, P.Y., Feng, S., Calvopina, J.H., Nee, K., Lee, S.A., Le, T., Yoon, A.J., Faull, K., *et al.* (2013). Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells. Cell stem cell *12*, 470-478.

Voigt, P., Tee, W.W., and Reinberg, D. (2013). A double take on bivalent promoters. Genes & development 27, 1318-1338.

Wei, C.L., Miura, T., Robson, P., Lim, S.K., Xu, X.Q., Lee, M.Y., Gupta, S., Stanton, L., Luo, Y., Schmitt, J., *et al.* (2005). Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem cells *23*, 166-185.

Wuarin, J., and Schibler, U. (1994). Physical isolation of nascent RNA chains transcribed by RNA polymerase II: evidence for cotranscriptional splicing. Molecular and cellular biology *14*, 7219-7225.

Xie, W., Schultz, M.D., Lister, R., Hou, Z., Rajagopal, N., Ray, P., Whitaker, J.W., Tian, S., Hawkins, R.D., Leung, D., *et al.* (2013). Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell *153*, 1134-1148.

Zhang, J.A., Mortazavi, A., Williams, B.A., Wold, B.J., and Rothenberg, E.V. (2012). Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell *149*, 467-482.

Zhu, J., He, F., Hu, S., and Yu, J. (2008). On the nature of human housekeeping genes. Trends in genetics : TIG 24, 481-484.

Chapter 4

Concluding Remarks

In the studies presented here we sought to address the fundamental properties associated with tissue specific genes and the chromatin signatures that define the regulatory elements associated with these genes. We took two approaches, one narrow, which focused closely on the well-characterized thymocyte specific gene Ptcra and its associated enhancer, the other broad, using deep chromatin RNA-sequencing to generate a highly quantitative and unbiased assessment of the transcriptome in multiple cell types.

The Ptcra enhancer is marked by unmethylated CpG dinucleotides in embryonic stem cells. We used a bacterial artificial chromosome containing the pTa gene locus to recapitulate the endogenous chromatin environment. Key transcription factor binding sites reside within the enhancer mark, which are involved in the thymocyte specification. We conducted mutational analyses in the pTa enhancer in the BAC to determine if these transcription factor binding sites contribute to the unmethylated state of the enhancer. We show that no individual mutation in the transcription factor binding sites alters the methylation status of the enhancer. We also show that deletions of in the enhancer do no alter the methylation status of the enhancer in the context of the BAC. Together these data show the pTa enhancer mark reappears robustly after stable integration of the BAC after *in vitro* premethylation. The BAC provided a native chromatin context but is not ideal. To further these studies efforts must be made towards targeting and altering endogenous loci. Recently emerging techniques, such as CRISPR-Cas, make it feasible to modify endogenous loci, rapidly, efficiently and with ease.

The reappearance of the mark, although interesting, does not indicate functional significance. In order to progress these analyses, systems must be designed to determine the relevance of the marks in relation to expression in the differentiated cell type. This would include a method to stably alter the chromatin environment at the enhancer, followed by differentiation

to the appropriate cell type. If important, differences in expression compared to wild type would be observed. If enhancer marks in ES cells are necessary for transcription upon lineage differentiation, it will add to the properties pluripotency. In order for ES cells to be truly considered pluripotent the appropriate markings must be present at enhancers.

We then broadened our scope to look genome-wide at tissue specific genes. We used chromatin RNA-sequencing, which has clear advantages over older transcriptome profiling techniques. We quantified the transcriptome in embryonic stem cells, E14.5 cortical neurons, CD4⁺ CD8⁺ thymocytes, bone marrow derived macrophages and hepatocytes. We used this quantification to identify tissue specific genes that show the largest dynamic range in expression. We determined the DNA methylation and histone properties found at the promoters of our tissue specific genes. Consistent with the literature we show an inverse correlation between CpG island content and tissue specificity. Interestingly, we observed a very high percentage of neuronal specific genes that possess a CpG island at their promoter. We speculate that our tissue specific neuronal genes may need to be dynamically regulated, as the presence of a CpG island correlates with a permissive chromatin environment and is thus accessible for rapid activation.

We then addressed the histone modification profile of our tissue specific promoters in expressing and non-expressing cells. As expected in expressing cells tissue specific promoters are unmethylated and associated with positive histone marks such as H3K4me3 and H3K9Ac. In non-expressing cells the epigenetic signatures fell into two categories, genes with and without a CpG island promoter. Genes that lacked a CpG island promoter followed the existing paradigm, showing heavily methylated promoters in all non-expressing cell types. Genes with a CpG island follow an almost perfect rule in non-expressing cell types; they are unmethylated and marked with H3K4me3 and H3K27me3. This provides some insights into the idea of bivalency, the

simultaneous marking of genes with H3K4me3 and H3K27me3. We show marking by K4/K27 in non-pluripotent, differentiated cell types. This lends towards the transcriptional status of the associated gene to be a direct indicator of the ability of CpG islands to be marked with K27. In this fashion is does not appear to be a mechanism for poising.

To further these studies there are a number of clear directions. Tissue specific gene expression is heavily influenced by distal regulatory elements. Identifying and locating enhancers for these tissue specific genes will likely yield insights into the mechanisms of tissue specific regulation. The use of chromatin RNA-Seq also provides an opportunity to identify noncoding transcripts and determine if tissue specific differences exist.

All Together we have described an interesting feature associated with the Ptcra enhancer in ES cells. We have performed quantitative transcriptome analysis and defined tissue specific genes with the largest dynamic range in gene expression. With those genes, we have characterized the DNA methylation and histone properties in non-expressing cells and provided added insights into bivalency. Beside these contributions the highly quantitative transcriptome analysis will be of great utility for future studies.