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Gradients of Generative Models for Improved Discriminative 
Analysis of Tandem Mass Spectra

John T. Halloran,
Department of Public Health Sciences, University of California, Davis, jthalloran@ucdavis.edu

David M. Rocke
Department of Public Health Sciences, University of California, Davis, dmrocke@ucdavis.edu

Abstract

Tandem mass spectrometry (MS/MS) is a high-throughput technology used to identify the proteins 

in a complex biological sample, such as a drop of blood. A collection of spectra is generated at the 

output of the process, each spectrum of which is representative of a peptide (protein subsequence) 

present in the original complex sample. In this work, we leverage the log-likelihood gradients of 

generative models to improve the identification of such spectra. In particular, we show that the 

gradient of a recently proposed dynamic Bayesian network (DBN) [7] may be naturally employed 

by a kernel-based discriminative classifier. The resulting Fisher kernel substantially improves upon 

recent attempts to combine generative and discriminative models for post-processing analysis, 

outperforming all other methods on the evaluated datasets. We extend the improved accuracy 

offered by the Fisher kernel framework to other search algorithms by introducing Theseus, a DBN 

representing a large number of widely used MS/MS scoring functions. Furthermore, with gradient 

ascent and max-product inference at hand, we use Theseus to learn model parameters without any 

supervision.

1 Introduction

In the past two decades, tandem mass spectrometry (MS/MS) has become an indispensable 

tool for identifying the proteins present in a complex biological sample. At the output of a 

typical MS/MS experiment, a collection of spectra is produced on the order of tens-to-

hundreds of thousands, each of which is representative of a protein subsequence, called a 

peptide, present in the original complex sample. The main challenge in MS/MS is accurately 

identifying the peptides responsible for generating each output spectrum.

The most accurate identification methods search a database of peptides to first score 

peptides, then rank and return the top-ranking such peptide. The pair consisting of a scored 

candidate peptide and observed spectrum is typically referred to as a peptide-spectrum 
match (PSM). However, PSM scores returned by such database-search methods are often 

difficult to compare across different spectra (i.e., they are poorly calibrated), limiting the 

number of spectra identified per search [15]. To combat such poor calibration, post-

processors are typically used to recalibrate PSM scores [13, 19, 20].

HHS Public Access
Author manuscript
Adv Neural Inf Process Syst. Author manuscript; available in PMC 2019 November 19.

Published in final edited form as:
Adv Neural Inf Process Syst. 2017 December ; 30: 5724–5733.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Recent work has attempted to exploit generative scoring functions for use with 

discriminative classifiers to better recalibrate PSM scores; by parsing a DBN’s Viterbi path 
(i.e., the most probable sequence of random variables), heuristically derived features were 

shown to improve discriminative recalibration using support vector machines (SVMs). 

Rather than relying on heuristics, we look towards the more principled approach of a Fisher 

kernel [11]. Fisher kernels allow one to exploit the sequential-modeling strengths of 

generative models such as DBNs, which offer vast design flexibility for representing data 

sequences of varying length, for use with discriminative classifiers such as SVMs, which 

offer superior accuracy but often require feature vectors of fixed length. Although the 

number of variables in a DBN may vary given different observed sequences, a Fisher kernel 

utilizes the fixed-length gradient of the log-likelihood (i.e., the Fisher score) in the feature-

space of a kernel-based classifier. Deriving the Fisher scores of a DBN for Rapid 

Identification of Peptides (DRIP) [7], we show that the DRIP Fisher kernel greatly improves 

upon the previous heuristic approach; at a strict FDR of 1% for the presented datasets, the 

heuristically derived DRIP features improve accuracy over the base feature set by an average 

6.1%,, while the DRIP Fisher kernel raises this average improvement to 11.7% (Table 2 in 

[9]), thus nearly doubling the total accuracy of DRIP post-processing.

Motivated by improvements offered by the DRIP Fisher kernel, we look to extend this to 

other models by defining a generative model representative of the large class of existing 

scoring functions [2, 5, 6, 16, 10, 22, 17]. In particular, we define a DBN (called Theseus1) 

which, given an observed spectrum, evaluates the universe of all possible PSM scores. In 

this work, we use Theseus to model PSM score distributions with respect to the widely used 

XCorr scoring function [5]. The resulting Fisher kernel once again improves discriminative 

post-processing accuracy. Furthermore, with the generative model in place, we explore 

inferring parameters of the modeled scoring function using max-product inference and 

gradient-based learning. The resulting coordinate ascent learning algorithm outperforms 

standard maximum-likelihood learning. Most importantly, this overall learning algorithm is 

unsupervised which, to the authors’ knowledge, is the first MS/MS scoring function 

parameter estimation procedure not to rely on any supervision. We note that this overall 

training procedure may be adapted by the many MS/MS search algorithms whose scoring 

functions lie in the class modeled by Theseus.

The paper is organized as follows. We discuss background information in Section 2, 

including the process by which MS/MS spectra are produced, the means by which spectra 

are identified, and related previous work. In Section 3, we extensively discuss the log-

likelihood of the DRIP model and derive its Fisher scores. In Section 4, we introduce 

Theseus and derive gradients of its log-likelihood. We then discuss gradient-based 

unsupervised learning of Theseus parameters and present an efficient, monotonically 

convergent coordinate ascent algorithm. Finally, in Section 5, we show that DRIP and 

Theseus Fisher kernels substantially improve spectrum identification accuracy and that 

Theseus’ coordinate ascent learning algorithm provides accurate unsupervised parameter 

estimation. For convenience, a table of the notation used in this paper may be found in [9].

1In honor of Shannon’s magnetic mouse, which could learn to traverse a small maze.
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2 Background

A typical tandem mass spectrometry experiment begins by cleaving proteins into peptides 

using a digesting enzyme. The resulting peptides are then separated via liquid 

chromatography and subjected to two rounds of mass spectrometry. The first round measures 

the mass and charge of the intact peptide, called the precursor mass and precursor charge, 

respectively. Peptides are then fragmented and the fragments undergo a second round of 

mass spectrometry, the output of which is an observed spectrum indicative of the fragmented 

peptide. The x-axis of this observed spectrum denotes mass-to-charge (m/z), measured in 

thomsons (Th), and the y-axis is a unitless intensity measure, roughly proportional to the 

abundance of a single fragment ion with a given m/z value. A sample such observed 

spectrum is illustrated in Figure 1.

2.1 MS/MS Database Search

Let s be an observed spectrum with precursor mass m(s) and precursor charge c(s). In order 

to identify s, we search a database of peptides, as follows. Let 𝒫 be the set of all possible 

peptide sequences. Each peptide x ∈ 𝒫 is a string x = x1x2 … xn comprised of characters, 

called amino acids. Given a peptide database 𝒟 ⊆ 𝒫, we wish to find the peptide x ∈ 𝒟
responsible for generating s. Using the precursor mass and charge, the set of peptides to be 

scored is constrained by setting a mass tolerance threshold, w, such that we score the set of 

candidate peptides D(s, 𝒟, w) = x: x ∈ 𝒟, m(x)
c(s) − m(s) ≤ w , where m(x) denotes the mass 

of peptide x. Note that we’ve overloaded m(·) to return either a peptide’s or observed 

spectrum’s precursor mass; we similarly overload c(·). Given s and denoting an arbitrary 

scoring function as ψ(x, s), the output of a search algorithm is thus 

x∗ = argmaxx ∈ D(m(s), c(s), 𝒟, w)ψ(x, s), the top-scoring PSM.

2.1.1 Theoretical Spectra—In order to score a candidate peptide x, fragment ions 

corresponding to suffix masses (called b-ions) and prefix masses (called y-ions) are 

collected into a theoretical spectrum. The annotated b- and y-ions of the generating peptide 

for an observed spectrum are illustrated in Figure 1. Varying based on the value of c(s), the 

kth respective b- and y-ion pair of x are

b(x, cb, k) =
∑i = 1

k m(xi) + cb
cb

, y(x, cy, k) =
∑i = n − k

n m(xi) + 18 + cy
cy

,

where cb is the charge of the b-ion and cy is the charge of the y-ion. For c(s) = 1, we have cb 

= cy = 1, since these are the only possible, detectable fragment ions. For higher observed 

charge states c(s) ≥ 2, it is unlikely for a single fragment ion to consume the entire charge, so 

that we have cb + cy = c(s), where cb, cy ∈ [1, c(s) – 1]. The b-ion offset corresponds to the 

mass of a cb charged hydrogen atom, while the y-ion offset corresponds to the mass of a 

water molecule plus a cy charged hydrogen atom.

Further fragment ions may occur, each corresponding to the loss of a molecular group off a 

b- or y-ion. Called neutral losses, these correspond to a loss of either water, ammonia, or 
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carbon monoxide. These fragment ions are commonly collected into a vector v, whose 

elements are weighted based on their corresponding fragment ion. For instance, XCorr [5] 

assigns all b- and y-ions a weight of 50 and all neutral losses a weight of 10.

2.2 Previous Work

Many scoring functions have been proposed for use in search algorithms. They range from 

simple dot-product scoring functions (X!Tandem [2], Morpheus [22]), to cross-correlation 

based scoring functions (XCorr [5]), to exact p-values over linear scoring functions 

calculated using dynamic programming (MS-GF+ [16] and XCorr p-values [10]). The 

recently introduced DRIP [7] scores candidate peptides without quantization of m/z 

measurements and allows learning the expected locations of theoretical peaks given high 

quality, labeled training data. In order to avoid quantization of the m/z axis, DRIP employs a 

dynamic alignment strategy wherein two types of prevalent phenomena are explicitly 

modeled: spurious observed peaks, called insertions, and absent theoretical peaks, called 

deletions (examples of both are displayed in Figure 1). DRIP then uses max-product 

inference to calculate the most probable sequences of insertions and deletions to score 

candidate peptides, and was shown to achieve state-of-the-art performance on a variety of 

datasets.

In practice, scoring functions are often poorly calibrated (i.e., PSM scores from different 

spectra are difficult to compare to one another), leading to potentially identified spectra left 

on the table during statistical analysis. In order to properly recalibrate such PSM scores, 

several semi-supervised post-processing methods have been proposed [13, 19, 20]. The most 

popular such method is Percolator [13], which, given the output target and decoy PSMs 

(discussed in Section 5) of a scoring algorithm and features detailing each PSM, utilizes an 

SVM to learn a discriminative classifier between target PSMs and decoy PSMs. PSM scores 

are then recalibrated using the learned decision boundary.

Recent work has attempted to leverage the generative nature of the DRIP model for 

discriminative use by Percolator [8]. As earlier mentioned, the output of DRIP is the most 

probable sequence of insertions and deletions, i.e., the Viterbi path. However, DRIP’s 

observations are the sequences of observed spectrum m/z and intensity values, so that the 

lengths of PSM’s Viterbi paths vary depending on the number of observed spectrum peaks. 

In order to exploit DRIP’s output in the feature-space of a discriminative classifier, PSM 

Viterbi paths were heuristically mapped to a fixed-length vector of features. The resulting 

heuristic features were shown to dramatically improve Percolator’s ability to discriminate 

between PSMs.

2.3 Fisher Kernels

Using generative models to extract features for discriminative classifiers has been used to 

great effect in many problem domains by using Fisher kernels [11, 12, 4]. Assuming a 

generative model with a set of parameters θ and likelihood p(O∣θ) = ∑Hp(O, H∣θ), where O 
is a sequence of observations and H is the set of hidden variables, the Fisher score is then Uo 

= ∇θ log p(O∣θ). Given observations Oi and Oj of differing length (and, thus, different 

underlying graphs in the case of dynamic graphical models), a kernel-based classifier over 
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these instances is trained using UOi and UOj in the feature-space. Thus, a similarity measure 

is learned in the gradient space, under the intuition that objects which induce similar 

likelihoods will induce similar gradients.

3 DRIP Fisher Scores

We first define, in detail, DRIP’s log-likelihood, followed by the Fisher score derivation for 

DRIP’s learned parameters. For discussion of the DRIP model outside the score of this 

work, readers are directed to [7, 8]. Denoting an observed peak as a pair (Omz, Oin) 

consisting of an m/z measurement and intensity measurement, respectively, let 

s = (O1
mz, O1

in), (O2
mz, O2

in), …, (OT
mz, OT

in) be an MS/MS spectrum of T peaks and x be a 

candidate (which, given s, we’d like to score). We denote the theoretical spectrum of x, 

consisting of its unique b- and y-ions sorted in ascending order, as the length-d vector v. The 

graph of DRIP is displayed in Figure 2, where variables which control the traversal of the 

theoretical spectrum are highlighted in blue and variables which control the scoring of 

observed peak measurements are highlighted in red. Groups of variables are collected into 

time instances called frames. The frames of DRIP correspond to the observed peak m/z and 

intensity observations, so that there are T frames in the model.

Unless otherwise specified, let t be an arbitrary frame 1 ≤ t ≤ T. δt is a multinomial random 

variable which dictates the number of theoretical peaks traversed in a frame. The random 

variable Kt, which denotes the index of the current theoretical peak index, is a deterministic 

function of its parents, such that p(Kt = Kt–1 + δt∣Kt–1, δt) = 1. Thus, δt > 1 corresponds to 

the deletion of δt – 1 theoretical peaks. The parents of δt ensure that DRIP does not attempt 

to increment past the last theoretical peak, i.e., p(δt > d – Kt–1∣d, Kt–1, it–1) = 0. 

Subsequently, the theoretical peak value v(Kt) is used to access a Gaussian from a collection 

(the mean of each Gaussian corresponds to a position along the m/z axis, learned using the 

EM algorithm [3]) with which to score observations. Hence, the state-space of the model is 

all possible traversals, from left to right, of the theoretical spectrum, accounting for all 

possible deletions.

When scoring observed peak measurements, the Bernoulli random variable it denotes 

whether a peak is scored using learned Gaussians (when it = 0) or considered an insertion 

and scored using an insertion penalty (when it = 1). When scoring m/z observations, we thus 

have p(Ot
mz ∣ v(Kt), it = 0) = f (Ot

mz ∣ μmz(v(Kt)), σ2) and p(Ot
mz ∣ v(Kt), it = 1) = amz, where μmz 

is a vector of Gaussian means and σ2 the m/z Gaussian variance. Similarly, when scoring 

intensity observations, we have p(Ot
in ∣ it = 0) = f (Ot

in ∣ μin, σ‒2) and p(Ot
in ∣ it = 1) = ain, where 

μin and σ‒2 are the intensity Gaussian mean and variance, respectively. Let i0 = K0 = ∅ and 

1{·} denote the indicator function. Denoting DRIP’s Gaussian parameters as θ, the likelihood 

is thus
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p(s ∣ x, θ) = ∏
t = 1

T
p(δt ∣ Kt − 1, d, it − 1)1{Kt = Kt − 1 + δt}

p(Ot
mz ∣ Kt)p(Ot

in)

= ∏
t = 1

T
p(δt ∣ Kt − 1,d, it − 1)1{Kt = Kt − 1 + δt}

( ∑
it = 0

1
p(it)p(Ot

mz ∣ Kt, it))( ∑
it = 0

1
p(it)p(Ot

in ∣ it))

= ∏
t = 1

T
ϕ(δt, Kt − 1, it, it − 1) .

The only stochastic variables in the model are it and δt, where all other random variables are 

either observed or deterministic given the sequences i1:T and δ1:T. Thus, we may 

equivalently write p(s∣x, θ) = p(i1:T, δ1:T∣θ). The Fisher score of the kth m/z mean is thus 
∂

∂μmz(k)
log p(s ∣ x, θ) = 1

p(s ∣ x, θ)
∂

∂μmz(k)
p(s ∣ x, θ), and we have (please see [9] for the full 

derivation)

∂
∂μmz(k)

p(s ∣ x, θ) = ∂
∂μmz(k)

∑
i1:T , δ1:T

p(i1:T , δ1:T ∣ θ) = ∑
i1:T , δ1:T :Kt = k, 1 ≤ t ≤ T

∂
∂μmz(k)

p(i1:T ,

δ1:T ∣ θ)

= ∑
i1:T , δ1:T

1{Kt = k}p(s ∣ x, θ) ∏
t:Kt = k

1
p(Ot

mz ∣ Kt)
∂

∂μmz(k)
∏

t:Kt = k
p(Ot

mz ∣ Kt) .

∂
∂μmz(k)

log p(s ∣ x, θ) = ∑
t = 1

T
p(it, Kt = k ∣ s, θ)p(it = 0 ∣ Kt, Ot

mz

)
(Ot

mz − μmz(k))
σ2 .

(1)

Note that the posterior in Equation 1, and thus the Fisher score, may be efficiently computed 

using sum-product inference. Through similar steps, we have

∂
∂σ2(k)

log p(s ∣ x, θ) = ∑
t

p(it, Kt = k ∣ s, θ)p(it = 0 ∣ Kt, Ot
mz)(

(Ot
mz − μmz(k))

2σ4

− 1
2σ2 )

(2)

∂
∂μin log p(s ∣ x, θ) = ∑

t
p(it, Kt ∣ s, θ)p(it = 0 ∣ Ot

in)
(Ot

in − μin)
σ‒2 (3)
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∂
∂σ‒2 log p(s ∣ x, θ) = ∑

t
p(it, Kt ∣ s, θ)p(it = 0 ∣ Ot

in)(
(Ot

in − μin)
2σ‒4 − 1

2σ‒2 ), (4)

where σ2(k) denotes the partial derivative of the variance for the kth m/z Gaussian with 

mean μmz(k).

Let Uμ = ∇μmz log p(s, x∣θ) and Uσ2 = ∇σ2) log p(s, x∣θ). ϋμ and Uσ2 are length-d vectors 

corresponding to the mapping of a peptide’s sequence of b- and y-ions into r-dimensional 

space (i.e., dimension equal to an m/z-discretized observed spectrum). Let 𝟙 be the length-r 

vector of ones. Defining zmz, zi ∈ ℝr, the elements of which are the quantized observed 

spectrum m/z and intensity values, respectively, we use the following DRIP gradient-based 

features for SVM training in Section 5: 

∣ Uμ ∣1, ∣ U
σ2 ∣

1
, Uμ

Tzmz, U
σ2
T zi, Uμ

T𝟙, U
σ2
T 𝟙, ∂

∂μin log p(s, x ∣ θ), and log p(s, x∣θ), and 

∂
∂σ‒2 log p(s, x ∣ θ).

4 Theseus

Given an observed spectrum s, we focus on representing the universe of linear PSM scores 

using a DBN. Let z denote the vector resulting from preprocessing the observed spectrum, s. 

As a modeling example, we look to represent the popular XCorr scoring function. Using 

subscript τ to denote a vector whose elements are shifted τ units, XCorr’s scoring function is 

defined as

XCorr(s, x) = vTz − ∑
τ = − 75

75
vTzτ = vT(z − ∑

τ = − 75

75
zτ) = vTz′,

where z′ = z − ∑τ = − 75
75 zτ. Let θ ∈ ℝl be a vector of XCorr weights for the various types of 

possible fragment ions (described in Section 2.1.1). As described in [10], given c(s), we 

reparameterize z′ into a vector zθ such that XCorr(x, s) is rendered as a dot-product 

between zθ and a boolean vector u in the reparameterized space. This reparameterization 

readily applies to any linear MS/MS scoring function. The ith element of zθ is 

zθ(i) = ∑ j = 1
l θ( j)z j(i), where zj is a vector whose element zj(i) is the sum of all higher 

charged fragment ions added into the singly-charged fragment ions for the jth fragment ion 

type. The nonzero elements of u correspond to the singly-charged b-ions of x and we have 

uTzθ = ∑i = 1
n zθ(m(xi) + 1) = ∑i = 1

n ∑ j = 1
l θ( j)z j(m(xi) + 1) = vTz′ = XCorr(s, x).

Our generative model is illustrated in Figure 3. n is the maximum possible peptide length 

and m is one of M discrete precursor masses (dictated by the precursor-mass tolerance 

threshold, w, and m(s)). A hypothesis is an instantiation of random variables across all 

frames in the model, i.e., for the set of all possible sequences of Xi random variables, X1:n = 

X1, X2, …, Xn, a hypothesis is x1:n ∈ X1:n. In our case, each hypothesis corresponds to a 
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peptide and the corresponding log-likelihood its XCorr score. Each frame after the first 

contains an amino acid random variable so that we accumulate b-ions in successive frames 

and access the score contribution for each such ion.

For frame i, Xi is a random amino acid and Bi the accumulated mass up to the current frame. 

B0 and Bn are observed to zero and m, respectively, enforcing the boundary conditions that 

all length-n PSMs considered begin with mass zero and end at a particular precursor mass. 

For i > 0, Bi is a deterministic function of its parents, p(Bi∣Bi–1, Xi) = p(Bi = Bi–1 + m(Xi)) = 

1. Thus, hypotheses which do not respect these mass constraints receive probability zero, 

i.e., p(Bn ≠ m∣Bn–1, Xn) =0. m is observed to the value of the current precursor mass being 

considered.

Let 𝒜 be the set of amino acids, where ∣ 𝒜 ∣ = 20. Given Bi and m, the conditional 

distribution of Xi changes such that p(Xi ∈ 𝒜 ∣ Bi − 1 < m) = α𝒰{𝒜}, p(Xi = κ ∣ Bi − 1 ≥ m) = 1, 

where 𝒰{ ⋅ } is the uniform distribution over the input set and κ ∉ 𝒜, m(κ) = 0. Thus, when 

the accumulated mass is less than m, Xi is a random amino acid and, otherwise, Xi 

deterministically takes on a value with zero mass. To recreate XCorr scores, α = 1 ∕ ∣ 𝒜 ∣, 
though, in general, any desired mass function may be used for p(Xi ∈ 𝒜 ∣ Bi − 1 < m).

Si is a virtual evidence child [18], i.e., a leaf node whose conditional distribution need not be 

normalized to compute probabilistic quantities of interest in the DBN. For our model, we 

have p(Si ∣ Bi < m, θ) = exp(zθ(Bi)) = exp(∑i = 1
∣ θ ∣ θizi(Bi)) and p(Si∣Bi ≥ m, θ) = 1. Let t′ denote 

the first frame in which m(X1:n) ≥ m. The log-likelihood is then log p(s, X1:n∣θ)

= log p(X1:n, B0:n, S1:n − 1)

= log(1{B0 = 0}( ∏
i = 1

n − 1
p(Xi ∣ m, Bi − 1)p(Bi = Bi − 1 + m(Xi))p(Si ∣ m, Bi, θ))1{Bn − 1 + m(Xn) = m})

= log 1{B0 = 0 ∧ m(X1:n) = m} + log( ∏
i = t′ + 1

n
p(Xi ∣ m, Bi − 1)p(Bi = Bi − 1 + m(Xi))p(Si ∣ m, Bi, θ)) +

log( ∏
i = 1

t′
p(Xi ∣ m, Bi − 1)p(Bi = Bi − 1 + m(Xi))p(Si ∣ m, Bi, θ))

= log 1{m(X1:n) = m} + log 1 + log( ∏
i = 1

t′
exp(zθ(Bi)))

= log 1m(X1:n) = m} + ∑
i = 1

t′
zθ(Bi) = log 1{B0 = 0 ∧ m(X1:n) = m} + XCorr(X1: t′, s)

The ith element of Theseus’ Fisher score is thus
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∂
∂θ(i) log p(s ∣ θ) = ∂

∂θ(i) log ∑
x1:n

p(s, x1:n ∣ θ) = 1
p(s ∣ θ)

∂
∂θ(i) ∑

x1:n

p(s, x1:n ∣ θ)

= 1
p(s ∣ θ) ∑

x1:n

1{b0 = 0 ∧ m(x1:n) = m}( ∑
j = 1

t′
zi(b j)) ∏

j = 1

t′
exp(zθ(b j)

),

(5)

While Equation 5 is generally difficult to compute, we calculate it efficiently using sum-

product inference. Note that when the peptide sequence is observed, i.e., X1:n = x, we have 

∂
∂θ(i) log p(s, x ∣ θ) = ∑ j z(m(x1: j)).

Using the model’s Fisher scores, Theseus’ parameters θ may be learned via maximum 

likelihood estimation. Given a dataset of spectra s1, s2, …, sn, we present an alternate 

learning algorithm (Algorithm 1) which converges monotonically to a local optimum 

(proven in [9]). Within each iteration, Algorithm 1 uses max-product inference to efficiently 

infer the most probable PSMs per iteration, mitigating the need for training labels. θ is 

maximized in each iteration using gradient ascent.

Algorithm 1 Theseus Unsupervised Learning Algorithm

1:while not converged do
2: for i = 1, …, n do
3: xi argmax

xi ∈ 𝒫
log p(si, xi ∣ θ)

4: end for

5: θ argmaxθ∑n
i = 1log p(si, xi ∣ θ)

6:end while

5 Results

Measuring peptide identification performance is complicated by the fact that ground-truth is 

unavailable for real-world data. Thus, in practice, it is most common to estimate the false 
discovery rate (FDR) [1] by searching a decoy database of peptides which are unlikely to 

occur in nature, typically generated by shuffling entries in the target database [14]. For a 

particular score threshold, t, FDR is then calculated as the proportion of decoys scoring 

better than t to the number of targets scoring better than t. Once the target and decoy PSMs 

are calculated, a curve displaying the FDR threshold vs. the number of correctly identified 

targets at each given threshold may be calculated. In place of FDR along the x-axis, we use 

the q-value [14], defined to be the minimum FDR threshold at which a given score is 
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deemed to be significant. As many applications require a search algorithm perform well at 

low thresholds, we only plot q ∈ [0, 0.1].

The same datasets and search settings used to evaluate DRIP’s heuristically derived features 

in [8] are adapted in this work. MS-GF+ (one of the most accurate search algorithms in wide 

use, plotted for reference) was run using version 9980, with PSMs ranked by E-value and 

Percolator features calculated using msgf2pin. All database searches were run using a 

±3.0Th mass tolerance, XCorr flanking peaks not allowed in Crux searches, and all search 

algorithm settings otherwise left to their defaults. Peptides were derived from the protein 

databases using trypsin cleavage rules without suppression of proline and a single fixed 

carbamidomethyl modification was included.

Gradient-based feature representations derived from DRIP and XCorr were used to train an 

SVM classifier [13] and recalibrate PSM scores. Theseus training and computation of XCorr 

Fisher scores were performed using a customized version of Crux v2.1.17060 [17]. For an 

XCorr PSM, a feature representation is derived directly using both ∇θ log p(s∣θ) and ∇θ log 

p(s, x∣θ) as defined in Section 4, representing gradient information for both the distribution 

of PSM scores and the individual PSM score, respectively. DRIP gradient-based features, as 

defined in Section 3, were derived using a customized version of the DRIP Toolkit 

[8].Figure 4 displays the resulting search accuracy for four worm and yeast datasets. For the 

uncalibrated search results in Figure 5, we show that XCorr parameters may be learned 

without supervision using Theseus, and that the presented coordinate descent algorithm 

(which estimates the most probable PSMs to take a step in the objective space) converges to 

a much better local optimum than maximum likelihood estimation.

5.1 Discussion

DRIP gradient-based post-processing improves upon the heuristically derived features in all 

cases, and does so substantially on a majority of datasets. In the case of the yeast datasets, 

this distinguishes DRIP post-processing performance from all competitors and leads to state-

of-the-art identification accuracy. Furthermore, we note that both XCorr and XCorr p-value 

post-processing performance are greatly improved using the gradient-based features derived 

using Theseus, raising performance above the highly similar MS-GF+ in several cases. 

Particularly noteworthy is the substantial improvement in XCorr accuracy which, using 

gradient-based information, is nearly competitive with its p-value counterpart. Considering 

the respective runtimes of the underlying search algorithms, this thus presents a tradeoff for 

a researcher considering search time and accuracy. In practice, the DRIP and XCorr p-value 

computations are at least an order of magnitude slower than XCorr computation in Crux 

[21]. Thus, the presented work not only improves state-of-the-art accuracy, but also 

improves the accuracy of simpler, yet significantly faster, search algorithms.

Owing to max-product inference in graphical models, we also show that Theseus may be 

used to effectively learn XCorr model parameters (Figure 5) without supervision. 

Furthermore, we show that XCorr p-values are also made more accurate by training the 

underlying scoring function for which p-values are computed. This marks a novel step 

towards unsupervised training of uncalibrated scoring functions, as unsupervised learning 

has been extensively explored for post-processor recalibration, but has remained an open 
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problem for MS/MS database-search scoring functions. The presented learning framework, 

as well as the presented XCorr gradient-based feature representation, may be adapted by 

many of the widely scoring functions represented by Theseus [2, 5, 6, 16, 10, 22, 17].

Many exciting avenues are open for future work. Leveraging the large breadth of graphical 

models research, we plan to explore other learning paradigms using Theseus (for instance, 

estimating other PSMs using k-best Viterbi in order to discriminatively learn parameters 

using algorithms such as max-margin learning). Perhaps most exciting, we plan to further 

investigate the peptide-to-observed-spectrum mapping derived from DRIP Fisher scores. 

Under this mapping, we plan to explore learning distance metrics between PSMs in order to 

identify proteins from peptides.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Example tandem mass spectrum with precursor charge c(s) = 2 and generating peptide x = 

LWEPLLDVLVQTK. Plotted in red and blue are, respectively, b- and y-ion peaks (discussed 

in Section 2.1.1), while spurious observed peaks (called insertions) are colored gray. Note 

y1, b1, b4, and b12 are absent fragment ions (called deletions).
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Figure 2: 
Graph of DRIP, the frames (i.e., time instances) of which correspond to observed spectrum 

peaks. Shaded nodes represent observed variables and unshaded nodes represent hidden 

variables. Given an observed spectrum, the middle frame (the chunk) dynamically expands 

to represent the second observed peak to the penultimate observed peak.
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Figure 3: 
Graph of Theseus. Shaded nodes are observed random variables and unshaded nodes are 

hidden (i.e., stochastic). The model is unrolled for n + 1 frames, including B0 in frame zero. 

Plate notation denotes M repetitions of the model, where M is the number of discrete 

precursor masses allowed by the precursor-mass tolerance threshold, w.
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Figure 4: 
Search accuracy plots measured by q-value versus number of spectra identified for worm (C. 
elegans) and yeast (Saccharomyces cerevisiae) datasets. All methods are post-processed 

using the Percolator SVM classifier [13]. “DRIP” augments the standard set of DRIP 

features with DRIP-Viterbi-path parsed PSM features (described in [8]) and “DRIP Fisher” 

augments the heuristic set with gradient-based DRIP features. “XCorr,” “XCorr p-value,” 

and “MS-GF+” use their standard sets of Percolator features (described in [8]), while 

“XCorr p-value Fisher” and “XCorr Fisher” augment the standard XCorr feature sets with 

gradient-based Theseus features.
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Figure 5: 
Search accuracy of Theseus’ learned scoring function parameters. Coordinate ascent 

parameters are learned using Algorithm 1 and MLE parameters are learned using gradient 

ascent.
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