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Abstract

Multiscale network characterization of the strength and robustness of trabecular bone

by

Chantal Nguyen

Trabecular bone is a flexible, lightweight bone tissue that exhibits hierarchical mech-

anisms of fracture resistance across scales. At the mesoscale, trabecular bone resembles a

web of interconnected bone struts (trabeculae) that erode with age and diseases such as

osteoporosis, resulting in increased fracture propensity. Recent ex vivo bone experiments

have indicated that the traditional diagnostic marker of osteoporosis, bone mineral den-

sity (BMD), correlates poorly with bone strength when used as a sole predictor, but that

it can explain much of the variation in bone strength when considered in conjunction

with architectural features.

We introduce a novel approach to modeling trabecular bone that combines network

analysis with simulations of mechanical loading and failure, enabling a unique charac-

terization of how bone architecture contributes to robustness and resilience. Network

science has been applied to a vast range of systems across biology and soft condensed

matter physics, among many other fields, but has rarely been applied to the study of

bone. Exploiting the disordered network resemblance of bone, we generate network mod-

els from tomographic images of real human vertebral bone. We simulate loading and

deformation on finite element models in which edges are replaced by beams, resulting

in a considerable reduction in computation time in comparison with fine-grained models

used for in silico validation. The beam-element analysis facilitates direct comparison of

mechanics and topology at multiple scales ranging from that of individual edges (beams)

to the network as a whole.

viii



To assess how variation in architecture impacts mechanical response, we also develop

networked structures simulated via multi-objective topology optimization. We maximize

a weighted combination of biologically motivated objectives: stiffness, surface area, and

stability. By modulating the weights of the objectives, we analyze how tradeoffs in these

quantities produce topologies of varying strength and robustness. Finally, we discuss

implications of our work in the context of clinical application, facilitated by advances

in data acquisition methods for assessing fine tissue structure, and we highlight future

directions for integrating our results into a comprehensive characterization of bone that

links its molecular constituents at the nanoscale to its architecture at large.
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Chapter 1

Introduction

Bone is a hierarchical material that exhibits mechanisms of fracture resistance across

multiple scales. At the macroscale, human bone consists of two types: the dense, shell-

like cortical bone, and the web-like trabecular (or cancellous) bone. Here, we focus on

trabecular bone, which is found mostly in the vertebrae, the pelvis, and at the ends

of long bones (such as the femur), encased by a cortical shell. At the mesoscale, the

architecture of trabecular bone resembles a highly porous network of struts and rods

called trabeculae that are individually on the order of tens of microns in thickness. This

structure results in a strong, lightweight material that can tolerate large deformations

[1]. At the sub-microscale, individual trabeculae are made up of mineralized collagen

fibrils, the “building blocks” of bone, which themselves comprise hydroxyapatite crystals

embedded in a collagen matrix [2]. The micromechanics of these components have been

shown to be predictive of overall bone stiffness [3, 4].

In this thesis, we primarily characterize trabecular bone at length scales in the range

of 0.1 to 10 mm, which spans the thickness of an individual trabecula to more complex

trabecular architecture. (In comparison, a vertebral body, for example, is about 50

mm across.) We develop a modeling framework that integrates various computational

1



Introduction Chapter 1

Figure 1.1: Comparison of trabecular structure in young (a) and old (b) bone. The
young sample is taken from a 21-year-old male and the old sample from a 65-year-old
female. Trabeculae are noticeably thinner in the older sample. From Ritchie, Buehler,
and Hansma, Phys. Today 62, 41, 2009 [6].

methods to relate structure and function in trabecular bone, and we further apply this

framework to generate and analyze bone-inspired structures. The trabecular bone data

studied in this work are high-resolution images obtained ex vivo, but we also validate

a newly-developed magnetic resonance technique aimed at probing trabecular structure

in live patients. A driving force behind the study of morphometry and mechanics in

trabecular bone is its decreased fracture resistance due to osteoporosis, a metabolic bone

disease that affects approximately 200 million worldwide [5], in addition to regular aging

processes.

1.1 Trabecular bone

1.1.1 Osteoporosis

Trabeculae erode with age (Fig. 1.1), even to the point of perforation, widening and

connecting the spaces on either side of a trabecula. The accumulation of microcracks

and breakage in aging bone contributes to its fragility. This process is accelerated with

diseases such as osteoporosis (and osteopenia, its less severe form), a disease that arises

due to an imbalance in bone regeneration activity. The regeneration cycle of bone is

2
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governed by cells called osteoblasts and osteoclasts: osteoclasts break down and resorb

bone, while osteoblasts rebuild bone. (A mnemonic: osteoclasts — “c” — collect bone,

while osteoblasts — “b” — build bone.) When more resorption occurs than the deposition

of new bone tissue, the overall bone mass density is decreased.

Osteoporosis effects a significant personal and economic toll worldwide. Osteoporosis

increases the risk of fracture four-fold [7]; hip fracture is associated with excess mortality

of between 8% and 36% [8]. In the United States alone, osteoporosis affects approximately

10.2 million adults over age 50 [9], and about 1.5 million adults experience a fracture each

year [10]. The annual cost of managing osteoporotic fractures is in the tens of billions

and is projected to increase as life expectancy increases [7, 11]. In Europe, the number

of patients with disability due to osteoporosis is comparable to that of heart disease and

greater than that of cancer [12].

Osteoporosis is diagnosed by measuring bone mineral density (BMD), which is typi-

cally accomplished via dual-energy X-ray absorptiometry (DXA or DEXA) [13] or quan-

titative computed tomography (QCT) [14]. DXA works by directing a high-energy X-ray

beam and a low-energy X-ray beam at the body; the difference in attenuation of the two

beams is used to estimate the amount of bone and of soft tissue. On the other hand,

computed tomography (CT) uses X-rays from which tomographic images can be recon-

structed by calculating the different attenuation rates by various tissues. Attenuation in

CT scanning is measured according to Hounsfield scale, which is defined relative to the

attenuation of water; bone absorbs X-rays at a higher rate and is thus assigned higher

values on the Hounsfield scale. In QCT, Hounsfield units are converted from tomographic

images of bone to estimate BMD. One primary difference between DXA and QCT is that

DXA measures only areal bone mineral density, from which volumetric bone mineral den-

sity (or simply bone mineral density) is estimated, while QCT measures volumetric bone

mineral density directly.

3
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However, BMD, which effectively serves as a bulk measure of the quantity of bone

(as determined by the presence of calcium and other minerals), has been shown to be

an incomplete predictor of bone strength. While BMD can explain the variance in the

mechanical strength of trabecular bone up to about 70%, a combination of BMD and

architectural properties such as anisotropy can explain up to 90% [1, 15, 16, 17, 18].

In fact, osteoporotic bone structure is marked by its anisotropy; osteoporotic bone is

observed to contain fewer trabeculae that lie transverse to the principal direction of

loading than those that are parallel to the loading axis [1, 19]. For instance, in the

vertebrae, where loads are primarily parallel to the spine, there are fewer horizontal

trabeculae than vertical trabeculae. Moreover, the trabeculae parallel to the principal

loading direction tend to maintain their original thickness (and in some cases can be even

thicker), while the few transverse ones that remain are generally thinner.

1.1.2 Bone remodeling

Three mechanisms for remodeling — metabolic, adaptive, and microdamage remod-

eling — have been proposed to explain the changes in bone structure that occur with

age and osteoporosis (Fig. 1.2) [1]. Metabolic remodeling describes a process of resorp-

tion (performed by osteoclasts) and rebuilding (performed by osteoblasts) of bone tissue

that occurs uniformly throughout the bone. With age, an imbalance of osteoclast and

osteoblast activity will result in uniform thinning of trabecular structure. Adaptive re-

modeling posits that trabeculae that undergo less loading are preferentially resorbed,

and those that are more frequently loaded are preferentially rebuilt. In the spine, then,

this would result in fewer horizontal trabeculae over time, with the resorbed bone tissue

being used to rebuild and maintain vertical trabeculae. Microdamage remodeling, mean-

while, refers to preferential remodeling of trabeculae that undergo microdamage — small

4
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Healthy structure

Adaptive remodeling Metabolic remodeling Microdamage remodeling
Preferential resorption of
unloaded trabeculae and
maintenance of 
loaded trabeculae

Uniform thinning and
perforation of trabeculae

Preferential remodeling of
damaged trabeculae

Osteoporotic structure
Vertical trabeculae maintain 
thickness; horizontal trabeculae
preferentially resorbed;
microdamaged trabeculae may
be resorbed

Figure 1.2: Schematic of how three mechanisms of bone remodeling — adap-
tive, metabolic, and microdamage — can explain osteoporotic trabecular archi-
tecture. Adapted with permission from McDonnell, McHugh, and O’Mahoney,
Ann. Biomed. Eng. 35, 170, 2007 [1].
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cracks, called microcracks, that initiate in bone tissue may signal osteoclast activity of

bone at the location of the microdamage.

No one of these three mechanisms alone can explain osteoporotic bone architecture;

rather, a combination of these three mechanisms has been proposed to contribute to os-

teoporotic damage (Fig. 1.2). While (vertebral) osteoporosis results in fewer horizontal

trabeculae than vertical trabeculae, with vertical trabeculae generally maintaining their

original thickness, it has also been shown that the overall number of vertebral trabec-

ulae lost with aging and osteoporosis is greater than that of horizontal trabeculae [19].

This cannot be explained by adaptive remodeling alone, since osteoclast activity would

target unloaded (horizontal) trabeculae. Metabolic remodeling, particularly in the early

stages of aging, could explain the vertical bone loss. Thomsen et al. [19] have observed

that young, healthy vertebrae can contain about twice as many vertical trabeculae as

horizontal trabeculae. If metabolic remodeling targets all trabeculae equally, then the

absolute number of vertical trabeculae undergoing resorption would be greater than that

of horizontal trabeculae.

Microdamage remodeling, meanwhile, addresses remodeling activity that targets dam-

aged bone. It has been proposed that the presence of microdamage signals osteoclast

activity, and that the spatial distribution of microcracks is random [20, 21]. Huiskes et

al. have developed a model of bone remodeling that combines strain-signaled osteoblast

activity with either uniform osteoclast activity (regulated by microdamage) or osteoclast

activity that targets areas of disuse [20]. Simulations of this model in 2-D and in 3-D [21]

in a subsequent work have corroborated Wolff’s law, which states that bone remodels

itself to adapt to the loading conditions under which is placed [22]. In other words, if the

skeleton undergoes anisotropic loading where the loads are primarily along a preferred

direction, then over time, the trabecular structure will remodel itself such that the bone

is arranged to resist the loading in that direction. This typically results in a structure in

6
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Figure 1.3: Binarized micro-CT image slice of vertebral trabecular bone (left) skele-
tonized and converted to a network (right).

which trabeculae are preferentially aligned along the direction of loading. As shown in the

simulations of Huiskes et al. and Ruimerman et al., if the loading direction is rotated,

then over time, the bone architecture will rotate along that direction as well [20, 21].

However, the adaptation of trabecular structure to changes in loading have yet to be

confirmed in experiments on live specimens [23], but this may be due to the relatively

short timescale of previous experiments compared to the timescale of bone adaptation

[21].

1.2 Computational approaches

The web-like arrangement of trabecular bone calls to mind a network, i.e., a system

of nodes, or vertices, that are connected by links, or edges. While the mathematical and

computational infrastructure developed in the field of network science has been applied

to a vast array of biological, social, ecological, and physical systems [24], including but

very much not limited to vasculature, the brain, animal behavior, granular materials, and

soil [25, 26, 27, 28, 29], it has rarely been applied to the study of trabecular bone [30].

7
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In Chapter 2, we develop a novel network-based approach to modeling trabecular bone

by “skeletonizing” micro-computed tomography (micro-CT) images of real human bone

to extract the underlying topology, generating a network comprising links that represent

trabeculae and nodes that represent the points where trabeculae intersect (Fig. 1.3). In

doing so, we can represent trabecular bone in a compact mathematical form, as all of

the information describing a network is contained in one matrix, called the adjacency

matrix, from which topological measures can be extracted. Our approach stands in con-

trast to previous methods of trabecular analysis that primarily utilize specialized image

processing techniques [18, 31]. However, since the networks are spatially embedded, we

consider geometric properties in addition to length-scale-independent topological metrics

in our analysis of trabecular bone.

To examine the mechanics of bone, we translate the networks to finite element models

in which each trabecula is replaced by a beam, and we simulate compressive loading and

deformation. While simplified, these models present a large reduction in computational

time as compared to finer-grained “continuum” models used for in silico validation. The

beam models allow us to relate the mechanical response of the bone to its topology and

geometry at a range of scales. We examine the overall force-displacement response of the

network as a whole, as well as the distribution of stress across beams.

Why does trabecular bone have the disordered, web-like structure that we observe

in the human body? The answer may be due to an interplay of various factors: for

instance, the anisotropy of trabecular bone may arise due to uniaxial loading (following

Wolff’s law), while its porosity allows it to hold marrow and blood vessels. To probe

this, we may think of bone as the result of biological optimization — however, we do not

know what is being optimized for. This is the inverse of more commonly-encountered

problems: one may have some fixed quantity of material and must determine the optimal

arrangement of this material in order to satisfy some objective(s). Using multi-objective

8
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topology optimization (Chapter 3), we generate structures by optimizing objectives chosen

to represent qualities that may be linked to the strength and function of bone: stiffness,

surface area, and stability.

Topology optimization works as follows: starting from an initial density distribution,

perform a finite element step that simulates mechanical deformation; perform an opti-

mization step to update the density distribution; evaluate an objective function; and

repeat until convergence. The objective function can be, for instance, a maximization

of stiffness, surface area, or some other quantity. Combining multiple objectives, in our

case as a weighted sum, gives multi-objective topology optimization. In this thesis, we

generate topology-optimized bio-inspired structures that are not necessarily intended to

mimic bone. Rather, we select the aforementioned three properties associated with bone

and vary the respective weights of their objective functions to modulate the relative im-

portance of each objective. In doing so, we analyze how changing these weights produce

structures with varying strength and robustness.

We carry out similar analyses on topology-optimized bio-inspired structures as with

real bone: skeletonization, network conversion, and mechanical simulation. In addition

to simulating compressive loading in the linear regime, however, we implement a stress-

based failure criterion to investigate fracture. To characterize failure locations, we apply

community detection, a method of determining modularity in network structure. The

development of algorithms for identifying community structure, as well as their appli-

cation, is a major focus of network science. Community detection has been applied to

a wide variety of topics including brain activity, social interactions, and ecological food

webs [32, 33]. Most pertinently, however, it has previously been used to quantify the

architecture of force chains in granular materials, which qualitatively resemble networks

of connected filaments preferentially aligned with the direction(s) of loading [28], thereby

evoking somewhat the anisotropic structure of trabecular bone.

9
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1.3 Challenges in probing trabecular structure in

vivo

Currently, analyzing the micro- and millimeter-scale structure of trabecular bone

in humans requires high resolution images that cannot currently be acquired in vivo.

The current standard for assessing the architecture of trabecular bone is micro-CT, or

µCT, which can achieve resolution of order 10 µm voxel size or smaller (compare to

average trabecular thicknesses, which are of order 200 µm). However, the large amount

of ionizing radiation involved prevents its clinical application. Micro-CT is currently

only applied in vivo to small animals. High-resolution peripheral quantitative computed

tomography, or HR-pQCT, though, has been used to image bone architecture in vivo in

distal extremities in human patients at a resolution of approximately 80 µm [34] — but

this excludes imaging of vertebral trabecular bone, for example.

Magnetic resonance imaging (MRI), in contrast to X-ray tomography, does not in-

volve ionizing radiation. However, patient motion severely limits the ability of MRI to

resolve bone architecture. High resolution MRI such as micro-MRI can achieve a reso-

lution of at best 140 µm in peripheral locations in vivo [35]. For ex vivo samples not

subject to motion effects, micro-MRI can only achieve a resolution of 30 µm, poorer than

that of micro-CT [36]. As we address in Chapter 4, however, it is possible to extract

information regarding the texture of biological tissues, including trabecular bone, from

k -space without acquiring a full image. We perform a in silico validation study of a

novel magnetic resonance technique, and we identify a metric for classifying healthy and

diseased trabecular bone from frequency-domain data.

10
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1.4 Permissions and attributions

1. The content of Chapter 2 has previously appeared in A. Mondal, C. Nguyen, X.

Ma, A. E. Elbanna, and J. M. Carlson (2019), Phys. Rev. E 99, 042406. It is

reproduced here with the permission of the American Physical Society.

2. The content of Chapter 3 is the result of a collaboration with D. Peetz, A. E.

Elbanna, and J. M. Carlson and is based on a manuscript currently in submission

and available at arXiv:1907.07860.

3. The content of Chapter 4 has previously appeared in C. Nguyen, K. J. Schlesinger,

T. W. James, K. M. James, K. Masuda, R. L. Sah, and J. M. Carlson (2018), R. Soc.

Open Sci. 5, 180563 and is reproduced here under the terms of the Creative Com-

mons Attribution License http://creativecommons.org/licenses/by/4.0/.
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Chapter 2

Probing structure-function

relationships with network models

2.1 Introduction

In this chapter, we capitalize on the network resemblance of trabecular bone and

develop a streamlined modeling approach that draws from network science to relate

architecture with mechanics.

The architecture of trabecular bone is typically characterized with histomorphometry,

the image-analysis-based study of bone tissue to obtain quantitative information about

its structure and remodeling [37, 38]. Modern histomorphometry is accomplished using

high-resolution imaging, such as micro-CT, which can capture image resolution down

to the order of a micron [39, 40]. However, the large amounts of radiation involved in

high-resolution tomography limits its in vivo usage to distal extremities in humans [34].

In this study, we utilize high-resolution micro-CT images of cadaveric vertebral bone,

from which we generate accurate 3-D reconstructions of trabecular volumes and extract

histomorphometric parameters.

12



Probing structure-function relationships with network models Chapter 2

The web-like structure of trabecular bone closely resembles a network: each trabecula

resembles a link, while the points at which multiple trabeculae meet, referred to here as

branch points, resemble nodes. Hence, we capitalize on this resemblance by modeling

trabecular bone as a network. We exploit the existing mathematical framework developed

in network science to analyze the topology of trabecular bone in a streamlined fashion.

We begin by converting micro-CT images of trabecular bone into network models that

are compactly represented in a mathematical form, in contrast to previous methods of

trabecular analysis that involve specialized image processing techniques [18, 31]. To relate

structure to mechanics, we also create two types of finite element models that respectively

correspond to 3-D realizations of the bone images and of the network models.

We examine the statistical variability in architectural and mechanical properties

across scales. At the smallest scales, we characterize individual trabeculae and branch

points with network metrics. Moreover, we compute distributions of these metrics for

a network derived from a volume of bone that may contain hundreds of trabeculae and

branch points. For a mesoscale analysis, we coarse-grain an entire vertebral body into

such volumes (Fig. 2.1) and compare distributions across these volumes.

Likewise, we analyze mechanical response across scales with simulated deformation of

the bone models. The stress in one trabecula — here modeled as a beam in a finite element

model — represents the smallest-scale mechanical measure, and mesoscale response is

represented by the overall stiffness of bone volumes. We compare the stress distribution

of a beam network and its stiffness with structural metrics. Analysis at the mesoscale

reveals several correlations between architectural and mechanical quantities in bone.
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2.2 Modeling bone as networks

2.2.1 Micro-CT image analysis

To develop network models of trabecular bone, we utilize a 37-µm resolution micro-

CT image set obtained from the Bone 3D Project Team [41]. This set includes 970 axial

image slices, each 2048 pixel × 2048 pixel (75 mm × 75 mm) in size, of vertebral body

L3 from a human cadaver, imaged using the Scanco µCT 80 scanner. Stacked along the

axial direction, the images encompass a volume with dimensions 75 mm × 75 mm × 35.9

mm.

Pre-processing of micro-CT images is performed with CT-analyser (CTAn) [42]. The

raw images are binarized using the Otsu thresholding method [43]. All the images undergo

a “despeckling” procedure to remove spurious pixels; all black or white clusters consisting

of fewer than 100 pixels in three dimensions are removed. The stack is divided into small

volumes of interest (VOIs) to facilitate future processing. Each VOI comprises a stack of

100 images that are each 100 pixel × 100 pixel, corresponding to a cube with dimensions

(3.7 mm)3, or a volume of approximately 50 mm3 (Fig. 2.1).

2.2.2 Generating networks

Network models of trabecular bone are derived using skeletonization, a process that

isolates the medial axis of an image — the “skeleton” [44]. The medial axis of a 3-D object

can be determined by fitting spheres such that each sphere touches the surface of the

object at more than one point. Then the locus of the centers of the maximally fit spheres

forms the medial axis. Due to the web-like structure of trabecular bone and the rod-like

geometry of individual trabeculae, the medial axis of a section of trabecular bone typically

resembles a set of connected lines that run through the centers of each of the trabeculae
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Figure 2.1: Trabecular bone images used in this study. A: micro-CT transverse image
slice of human vertebral body L3 [41]. The highlighted region is divided into volumes
of interest (VOIs) shown in B. The inset shows a schematic of a sagittal cross-section of
a human vertebral body as it corresponds to our sample. The red arrow indicates the
principal direction of loading. B: The selected region is divided into 100 pixel (3.7 mm)
× 100 pixel tiles; each tile shown is the top image of a 100-image stack (Z-coordinate)
that defines a VOI. The X, Y, and Z directions refer to the medial-lateral (eye-to-eye),
anterior-posterior (front-to-back), and superior-inferior (head-to-foot, i.e., parallel to
the spine) directions, respectively.

(Fig. 2.2). We use the Skeleton3D library [45] for MATLAB (MathWorks, Natick, MA)

to compute the skeleton of each VOI. This is achieved by iteratively removing surface

voxels from the volume in such a way that the topology of the sample is preserved. As

a result, all branch points and cavities in the original shape remain after each iteration.

This is repeated until what remains is a collection of segments no larger than one voxel

thick [45].

The Skel2Graph library [45] for MATLAB is used to convert a skeleton into a network.

Links are defined as individual trabeculae, and nodes as the branch points between

trabeculae. The process of dividing the bone into VOIs results in isolated trabeculae in

each VOI that “float” in space; these are removed, and a single connected component is

isolated. The links are weighted with the average thicknesses of the individual trabeculae.

Bone thickness is computed with the BoneJ plugin [46] for ImageJ (National Institutes

of Health, Bethesda, MD).
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A B

D E

C

Figure 2.2: Trabecular bone modeling pipeline. Micro-CT image slices of bone are
stacked to create a 3-D volume (A). The skeleton (B) is generated by iteratively thin-
ning the volume until a one-voxel-wide line remains. Branch points in the skeleton are
assigned as nodes (yellow circles) in a network (C), with edges representing trabeculae
connecting the branch points. Endpoints of trabeculae created as a result of image
segmentation are also assigned as nodes. A continuum finite element model (D) is
generated by meshing the original bone images, while a beam-element model (E) is
generated by converting each edge in the network to a beam, where the thickness of
the beam is defined relative to the edge weight.

2.3 Structural analysis

We characterize the structure of bone by investigating histomorphometry, geometry,

and network topology at the scale of individual trabeculae (of order 0.1 mm) and at the

VOI scale (approximately a few mm). At the smaller scale, we determine characteristics

of nodes and links, as well as their distributions within a VOI. At the larger scale, we

compare the distributions of such characteristics across VOIs and examine the spatial

distribution of structural properties (Fig. 2.3). We analyze a total of 40 VOIs, each

measuring (3.7 mm)3 ≈ 50 mm3. Each VOI is small enough for structural and mechanical
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properties to be calculated in a short amount of computational time while large enough

to capture significant structural variation.

Topological characteristics of nodes considered here include degree and weighted de-

gree. Degree refers to the number of links connected to a node, while weighted degree is

the sum of the weights of the links connected to a node. Thus, the degree of a single node

is an integer value, while the weighted degree is not necessarily an integer. For both of

these measures, nodes of degree less than 3 are not considered, as the presence of these

nodes is directly dependent on locations of the boundaries of VOIs. For example, nodes

of degree 1 represent the ends of trabecular bone at the boundaries of VOIs. Nodes of

degree 2, which are rare in trabecular bone and theoretically should not exist based on

the definition of the trabecular networks, are the result of large, dense pieces of bone,

which are classified as nodes by the Skel2Graph algorithm, connected to two trabeculae.

Further details regarding network topological metrics are included in Appendix A.2.

For links, we consider geometric properties relevant to spatially-embedded networks:

average thickness (“trabecula width”), link length, vertical orientation (“Z-orientation”,

Zo), and weighted vertical orientation (“weighted Z-orientation”, Zow). We define Z-

orientation as the dot product of the unit position vector of a link with the unit vector

in the Z-direction (or superior-inferior direction, the primary loading axis in the spine).

Z-orientation ranges from 0 to 1, where 0 and 1 refer to a link that is perpendicular

and parallel to the Z-direction, respectively. Weighted Z-orientation is defined as the Z-

orientation of a link multiplied by the corresponding weight of the link. We also analyze

the average width of the voids (“pore width”) between trabeculae. Pore width is a metric

we introduce to examine the distribution of spaces between trabecula at the smaller scale.

Further details regarding the calculation of these spatially-dependent metrics are included

in Appendix B.

At the mesoscale, we compare averages of the above properties within each VOI across
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the vertebral body. Following bone histomorphometry conventions, the average width

of trabeculae in a VOI is called trabecular thickness, or Tb.Th, and the average of pore

widths in a VOI is called trabecular separation or trabecular spacing, abbreviated Tb.Sp

(Appendix A.1) [39, 46]. For weighted Z-orientation (but not unweighted orientation),

we use the sum of the weighted Z-orientation of the links in a VOI as the VOI-scale

measure, rather than the mean. We also determine the assortativity of each VOI, which

is the tendency of nodes to be connected to other nodes that have similar properties.

In this work, we specifically determine degree assortativity, the tendency of nodes to

be connected to nodes of similar degree. Nodes with a high assortativity (near 1) are

said to display assortative mixing and nodes with low assortativity (near -1) are said

to display disassortative mixing. Networks with assortativity near 0 are called neutral.

Furthermore, we compute the volume fraction (BV/TV), a traditional histomorphometric

quantity, and the total number of links in the network model of each VOI.

Fig. 2.3A-G compares within-VOI (left) and across-VOI (right) distributions for seven

structural metrics (degree, weighted degree, pore width/Tb.Sp, trabecula width/Tb.Th,

Z-orientation, weighted Z-orientation, and link length). The within-VOI plots show dis-

tributions of each respective metric at the node/link scale for three representative VOIs.

These illustrate the within-VOI statistical distribution of each metric for representative

high, medium, and low values of the corresponding VOI-scale average. The across-

VOI plots illustrate the spatial distribution of the average of each metric in each VOI.

Fig. 2.3H-J illustrates only across-VOI distributions for three metrics: number of links,

assortativity, and volume fraction, which are VOI-scale measures not defined at the in-

dividual node/link scale.

Distributions of degree (Fig. 2.3A) within a VOI consistently demonstrate a peak at

degree 3 and a tail extending to larger degree values. In general, VOIs with a higher aver-

age degree and a higher peak at degree 3 also contain a few nodes of degree greater than
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Figure 2.3: Distributions of structural metrics. A: degree; B: weighted degree; C:
trabecular separation (Tb.Sp); D: trabecular thickness (Tb.Th); E: Z-orientation; F:
weighted Z-orientation; G: link length; H: number of links; I: assortativity; J: volume
fraction (BV/TV). Each panel consists of two plots, except for panels H, I, and J: the
left plot illustrates the distribution of metrics at the node/link scale, and the right plot
shows the distribution of metrics at the VOI scale. (Number of links (H), assortativity
(I) and volume fraction (J) are only defined at the VOI scale.) The node/link-scale
plots show distributions within three example VOIs; the mean (or sum, in the case
of weighted Z-orientation) of each distribution is indicated in the respective top right
corners. Values are binned, with markers indicating the midpoint of each bin, except
for degree, which takes integer values. The VOI-scale plots illustrate the spatial
distributions of structural metrics across the vertebral body. The color of each tile
represents the average structural metric for one VOI. The three VOIs for which the
histograms are plotted on the left are indicated on the right by shapes corresponding to
their respective markers and illustrate results for representative high (yellow circles),
mid-range (light green/blue diamonds), and low (dark blue squares) values of the
corresponding VOI scale metrics.
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A B

k = 4.13k = 3.38
Figure 2.4: Illustration of 3-dimensional structure for two example VOIs. A: This
sample corresponds to the example low-degree VOI indicated in Fig 2.3A and has an
average degree of 3.38, the smallest of any of the VOIs analyzed in this work. B: This
sample corresponds to the example high-degree VOI in Fig 2.3A and has an average
degree of 4.13, the largest degree of all VOIs.

10. The yellow square-marked curve in Fig. 2.3A, corresponding to the largest degree,

is one example, containing nodes of degree 10, 11, 13, 15, 16, 22, 24, 37, 72, and 110.

Nodes of degree greater than 20 are not shown so that the low degree behavior of the dis-

tributions is visible. These nodes are responsible for the yellow curve having the highest

average degree, despite the fact that the light blue diamond-marked curve encompasses

more nodes of degree 3 through 9. Nodes of such high degree are uncommon in most

of the trabecular bone samples analyzed in this work. They tend to exist only in VOIs

that contain dense regions of bone. These regions do not share the characteristic rod-like

geometry of most trabecular bone, but are connected to many trabeculae due to their

large surface area. In the network conversion process, these regions are approximated as

nodes of unusually high degree.

To illustrate how the 3-dimensional structure of VOIs varies for different values of

average degree, Fig. 2.4 shows the continuum models generated by meshing the VOIs with

the smallest (Fig. 2.4A) and largest (Fig. 2.4B) average degrees. These correspond to

the blue square-marked tile and the red circle-marked tile in the right panel of Fig. 2.3A.

Fig. 2.4A displays a web-like structure throughout its volume with visible trabeculae.
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Fig. 2.4B displays an example of a VOI that contains a node of incredibly high degree.

This node is located in the upper left corner of the the figure, where the VOI contains a

dense section of bone.

The distributions of weighted degree (Fig. 2.3B) consistently display peaks between

10 and 15 while having significantly smaller fraction of nodes of weighted degree less than

10 and greater than 20. Certain VOIs have significantly higher weighted degree due to

the presence of high degree nodes connected to links of large weight. These nodes can

have weighted degrees in the hundreds, while the majority of nodes have weighted degrees

less than one hundred. As a result, full distributions of the weighted degree of VOIs are

heavily right-skewed. In Fig. 2.3B, all three of the VOIs have such high weighted degrees;

we only show the nodes with weighted degree between 0 and 60 so that the shape of each

distribution is visible. Despite only showing a fraction of the full range of this plot, we

only obscure about 0.2% of the nodes in each of the three distributions, which make up

the long tails of each of the distributions.

The trabecular separation Tb.Sp of a VOI (Fig. 2.3C) varies greatly across the bone

volume, ranging from 0.5 to 1.0 mm. Distributions of pore width within a VOI also vary

in shape. The dark blue square-marked VOI, corresponding to the lowest Tb.Sp, exhibits

a relatively symmetric distribution centered around 0.5 mm, while the distributions of

the green diamond (mid-range Tb.Sp) and yellow (largest Tb.Sp) circle-marked VOIs are

peaked at higher pore width values, with a heavy tail at low Tb.Sp.

The trabecular thickness (Tb.Th) (Fig. 2.3D) of a VOI ranges from 0.12 to 0.35 mm,

but the majority of VOIs have a Tb.Th less than 0.2 mm. The distributions of trabecula

width within a VOI tend to have a sharp peak at small widths around 0.15 mm followed

by a tail. The length of the tail reflects the size of the Tb.Th, with the dark blue

square-marked distribution having the shortest tail and smallest Tb.Th.

The distributions of Z-orientation (Fig. 2.3E) indicate that some VOIs (e.g., the blue

21



Probing structure-function relationships with network models Chapter 2

square-marked distribution with the smallest average Z-orientation) contain more tra-

beculae oriented perpendicular to the Z-axis, while others have more trabeculae oriented

along the Z-axis (e.g., the yellow circle-marked distribution with the highest average Z-

orientation). Overall, the mean Z-orientation does not vary greatly between the VOIs

and ranges from 0.45 to 0.5, where the lower limit indicates VOIs that contain a slight

prevalence of trabeculae oriented transverse to the Z-axis.

The distributions of weighted Z-orientation (Fig. 2.3G) consistently display a decay

with increasing length. The VOI-scale color map illustrates the sum of all weighted Z-

orientation values in each VOI, rather than the mean, in order to facilitate comparison

with VOI-scale (unweighted) Z-orientation. While weighted Z-orientation at the link scale

ranges from 0 to 2.2×10−3, it ranges from 0.45 to 0.52 at the VOI scale. This narrow

range can be attributed to our general observation that the sum of the thicknesses of

the links in a VOI is usually roughly twice that of the sum of the thickness of each link

multiplied by its Z-orientation. Thus, when dividing these quantities to get the weighted

Z-orientation, we find values that are close to 0.5.

Distributions of link length (Fig. 2.3G) consistently demonstrate a large decaying

behavior, with each VOI having hundreds of links about 0.2 mm long but fewer than

20 links 0.9 mm or longer. The average link length of a VOI is heavily dependent on

the range of lengths of the VOI. For instance, the yellow circle-marked VOI, which has

the largest average link length of all VOIs, contains links as long as 1.7 mm, while the

longest links in the blue square-marked VOI, which has the shortest average link length,

are about 1.2 mm.

The number of links in the network model of each VOI varies greatly over the analyzed

region (Fig. 2.3H). The network with the fewest links contains about 950 links, while the

network with the greatest contains about 2600 links. However, a majority of networks

contain fewer than 1500 links.
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Fig. 2.3I shows that the VOIs analyzed here display neutral mixing (assortativity

near 0), with the assortativity values ranging from -0.08 to 0.12. This indicates that the

nodes in these trabecular bone networks show no strong tendency to be connected with

nodes of either similar or dissimilar degree.

The majority of the VOIs have a volume fraction less than 0.2 (Fig. 2.3J). Seven

adjacent VOIs on the left side of the plot have slightly higher volume fraction, signifying

a denser region of bone spanning that section.

Table 2.1 contains the Pearson correlation coefficients (r-values) and corresponding

probability values (p-values) for each pair of structural metrics, with significant correla-

tions highlighted in bold. We define a weak correlation as corresponding to the absolute

value of r-values ranging from 0 to 0.3, moderate correlation as 0.3 to 0.6, and strong

correlation as 0.6 to 1; we assert that a correlation coefficient is significant if p ≤ 0.05.

Assortativity and weighted degree are significantly correlated with all of the other struc-

tural metrics. Volume fraction, Z-orientation, weighted Z-orientation, and link number

are significantly correlated with all metrics except link length. Trabecular spacing is not

significantly correlated with trabecular thickness or link length. Trabecular spacing is

strongly negatively correlated with volume fraction, as is expected, and is also moder-

ately correlated with Z-orientation. That is, a VOI with large average pore width tends

to contain links that are less aligned with the vertical axis. Trabecular thickness is mod-

erately negatively correlated with Z-orientation and weighted Z-orientation. Hence, in

our sample, VOIs with thicker trabeculae on average may tend to contain trabeculae less

aligned with the vertical axis.

Weighted Z-orientation is negatively correlated with both the number of links in a

VOI and the volume fraction. Fig. 2.3F shows that the VOIs with high weighted Z-

orientation are in the regions with the fewest links (Fig. 2.3H) and the lowest volume

fraction (Fig. 2.3J). We were initially surprised by this result. However, for the bone
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Figure 2.5: Distributions of weighted Z-orientation illustrating differences between
high average Zow VOIs (yellow squares) and low average Zow VOIs (blue diamonds).
The distribution of the representative high Zow VOI (marked in Fig. 2.3F by a circle)
is much broader and displays a heavier tail compared to the narrower distribution of
the representative low Zow VOI (marked in Fig. 2.3F by a square).

sample shown in Fig. 2.1, we observe that VOIs with lower volume fraction have a

larger fraction of thicker links aligned with the Z-axis. Fig. 2.5 shows the distribution

of weighted Z-orientations for the VOIs with the highest (yellow diamond-marked curve)

and the least (blue diamond-marked curve) weighted Z-orientation. The yellow curve

furthermore has among the fewest links of all VOIs and one of the lowest volume fractions,

while the blue curve has among the most links and one of the largest volume fractions.

The yellow distribution has a larger fraction of links with Zow > 0.5 than the blue

distribution. We find that this is true for all VOIs with higher average weighted Z-

orientation but low volume fraction and low number of links; they tend to have a larger

range of weighted Z-orientation with a larger fraction of vertically oriented links.

We use principal component analysis (PCA) to identify uncorrelated metrics that

explain the majority of the variation in the VOI mesoscale structural data (Fig. 2.3).

We examine the fraction of the total variance in structural metrics explained by each
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Figure 2.6: Principal component analysis of structural metrics. A: Fraction of vari-
ance explained by each principal component. The (upper) blue curve indicates the
fraction of cumulative variance explained, while the (lower) red curve indicates the
fractions explained by each principal component. The first three principal components
explain 92.1% of the total variance in the structural metric data. B-D: Correlation
coefficients of the first three principal components of the structural metric data fea-
ture space. PC 1, which explains about 60% of the data, only moderately or weakly
correlates to any of the individual metrics. This is also true for PC 2, which explains
about 21% of the variance in the data. Z-orientation is strongly correlated to PC 3,
which explains about 11% of the variance in the data.

of the principal components (PCs) individually and cumulatively (Fig. 2.6A). The first

PC explains approximately 60% of the variance, while the second and third explain

approximately 21% and 11% respectively. In total, they explain approximately 92% of

variance in the data. Since all the other components explain less than 10% of the variance

in the data, we focus further analysis on only the first three PCs.

Fig. 2.6B-D shows the correlation coefficients between the structural metrics and each

of the first three PCs. PC 1 and PC 2 are either weakly or moderately correlated to all

of the metrics. Notably, all of the correlation coefficients in PC 1 are relatively similar
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(between 0.25 and 0.40). PC 3 is strongly correlated to Z-orientation and moderately

correlated to degree and weighted Z-orientation. PC 1 and PC 2 explain the majority

of the variance in the structural metrics and are at best moderately correlated to the

individual structural metrics. This result indicates that no smaller subset of the metrics

(or linear combinations of them) can be used to capture the majority of the variance in

the data, despite the significant correlations between almost all the structural metrics

(Table 2.1).

2.4 Mechanical simulations

2.4.1 Finite element analysis

To analyze mechanical response, we convert the bone networks into finite element

models that consist of beam elements representing each link. We refer to these as “beam

models” (Fig. 2.2). We also construct continuum models generated from meshing the

original micro-CT images (Fig. 2.2) to serve as an in silico validation of the beam models.

We analyze both the bulk force-displacement response to compressive loading of the beam

models and the distribution of stress in the beams. We individually carry out this analysis

for each VOI in Fig. 2.1. Furthermore, we investigate how the structural properties of

trabecular bone contribute to its mechanical response. We calculate the stiffness of the

bone network in each VOI, and investigate correlations between the effective moduli and

the structural metrics shown in Fig. 2.3.

We develop the beam models by converting each link in a network to a beam ele-

ment (Fig. 2.2). The beam elements are rigidly connected such that, under deformation,

the angle between two beams remains the same. The resulting models function as 3-D

realizations of the network model. Simulations with the continuum models, which are
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full-scale mesh reconstructions, are used to validate the simulation results of the beam

model. The beam-element and continuum models are analyzed in Abaqus FEA (Das-

sault Systèmes, Vélizy-Villacoublay, France). Compared to the continuum models, the

beam models correspond to a reduction in the degrees of freedom by about one order of

magnitude, and require about an order of magnitude less computation time to solve.

We simulate compressive (top to bottom) loading in the linear-elastic regime. The

elastic modulus is constant across a model and set to 10 GPa, and the Poisson ratio is set

to 0.16, following ranges reported for trabecular bone in the literature [47, 48]. However,

since the analysis is linear-elastic, a different choice of values simply corresponds to a

linear scaling of the results.

The topmost and bottommost nodes of the VOI are identified as those lying in the

transverse planes on the top and bottom of the VOI. The bottom nodes are held fixed

in all dimensions, while the top nodes are displaced slowly in the -Z (superior-inferior)

direction at a constant loading rate.

For each VOI, we validate the beam model by comparing results of the simulated

compression with that of the continuum model, using the continuum result as an in

silico validation. In the linear-elastic regime, initial comparisons (not shown) of the

force-displacement curves indicate that the beam model has lower stiffness compared

to the continuum model. In order to match the stiffness of the beam model to the

continuum model, the radius of each beam was increased. For the example VOI shown

in Fig. 2.7, an overall scale factor of 1.55 was required to match the force-displacement

response (Appendix B.3). Our use of the scale factor is attributed to geometric differences

between the beam and the continuum models. The cross-section of a trabecula is not

exactly circular, but is approximated as circular in the formulation of the beams in

the finite element model. Using a square cross-section for the beams while keeping the

same thickness increases the overall cross-sectional area of the model and would slightly
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Figure 2.7: Finite element models of trabecular bone, for a sample VOI. The con-
tinuum model (A) and beam-element model (B) generated from the same VOI are
compressed from the top. Colors show maximum principal stress in each element
at the end of the simulation. C-D: Coarse-grained spatial distributions of maximum
principal stress for the continuum (C) and beam-element (D) models. Each model is
divided into a regular grid of (0.11 mm)3 bins; each point corresponds to the average
stress in one bin. Stress is normalized to the highest stress value (measured for a
single element) in each model.

reduce but not entirely eliminate the scale factor. Moreover, while the individual beams

have uniform thickness, the continuum model trabeculae have inhomogeneous thickness.

Additionally, while the beam model approximates the branch points as nodes, the branch

points in the continuum model are regions of bone with significant bulk properties that

add to the stiffness of trabecular bone. The models used to produce the results shown

here contain beams with circular cross-sections.
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2.4.2 Stress distributions

Fig. 2.7A illustrates the stress states of each element of the beam and continuum

models at the end of the simulations of linear compressive loading, colored according to

the stress in each element. Here, stress refers specifically to maximum principal stress,

the first (diagonal) element of the stress tensor under a transformation to a coordinate

system with no shear stress. Because the two models have different numbers of ele-

ments and different types of elements (beams in the beam model, tetrahedral elements

in the continuum model), to facilitate a comparison of the spatial stress distribution,

we coarse-grain each model by dividing the (3.7 mm)3 VOI into a regular grid of (0.185

mm)3 bins and average the stress in each bin (Fig. 2.7B). While the locations of high

stress are similar, the highest stresses in the continuum model are almost an order of

magnitude greater than the beam model. (Note that Fig. 2.7B plots stress normalized

by the maximum stress in one individual element for each model.) Both models exhibit

a low-to-high-stress gradient along the +Z (superior-inferior) direction. However, this

gradient is more pronounced for the beam model, while the continuum model contains

greater spatial variation in stress. A trabecula is typically non-uniform in thickness, and

can contain significantly thinner regions, but the network conversion process averages the

thickness over a trabecula to produce the beam model. Hence, the continuum model can

contain much thinner regions than the beam model, as well as relatively sharp corners

that are smoothed in the beam model but which could be regions of localized stress in

the continuum model.

During loading, the stress carried by individual beams in the VOI varies significantly.

Fig. 2.8 shows the distribution of normalized stress in the beam model sample (Fig. 2.7A)

undergoing compressive loading in the linear regime. While Fig. 2.8 shows the distribu-

tion of stress during the final timestep of loading, the shape of this distribution remains
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constant in the linear regime for all timesteps. We define the parameters ζ0.001 and σ0.9

to characterize this distribution, where ζ0.001 is the fraction of beams with normalized

stress less than or equal to 0.001, and where ninety percent of beams bear a stress less

than or equal to σ0.9. In the VOI shown in Fig. 2.8, ζ0.001 = 0.340 and σ0.9 = 0.153. For

the VOIs studied in this work, the average value of ζ0.001 is 0.410, while the average value

of σ0.9 = 0.136. ζ0.001 ranges from 0.3 to 0.6 and σ0.9 ranges from 0.038 to 0.224 across

all VOIs.

Note, however, that each beam has a different volume. We also determine alternative

parameters ζ ′0.001 and σ′0.9 that account for the different volumes by expressing the cumu-

lative normalized stress distribution over volume fraction rather than number of beams:

ζ ′0.001 represents the fraction of the total bone volume taken up by beams with normalized

stress less than or equal to 0.001, and ninety percent of volume fraction bears a stress

less than or equal to σ′0.9. The average values of ζ ′0.001 and σ′0.9 are 0.428 and 0.067,

respectively. ζ ′0.001 ranges between 0.330 and 0.815, while σ′0.9 ranges between 0.0017 and

0.125. Corresponding distributions of stress are illustrated in Fig. B.2 of Appendix B.

2.5 Relating structure and mechanics

We investigate the relationship between structural properties — histomorphometric,

geometric, and network-topological metrics — and mechanical properties at both the

individual link (or node) scale and the VOI mesoscale.

2.5.1 Individual link scale

At the scale of individual links, we analyze the stress borne by each link during the

final timestep of compression in our simulations. We compare link structural features to

the distribution of stresses about the links to determine whether any structural properties
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Figure 2.8: Distributions of stress. Left: Distribution of normalized maximum
principal stress in the beam elements of an example beam model (Fig. 2.7) under
compressive loading in the linear regime. To calculate normalized stress σn, we nor-
malize stress σ with the largest value of stress in a beam at the final timestep of the
compressive loading simulation. The function ζ is the fraction of the beams that bear
a normalized stress less than or equal to σn. ζ0.001 is defined as the fraction of beams
that bear a normalized stress less than or equal to 0.001 and σ0.9 is defined as the
normalized stress that satisfies the equation ζ(σ0.9) = 0.9. In this VOI, 34% of the
beams bear a normalized stress less than 0.001 (ζ0.001 = 0.340), while 90% of beams
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each tile represents the stiffness for one VOI.
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Metric S Width L Zo Zow

Stress (S) —
-0.0331,

0.2810

0.0453,

0.2106

-0.1320,

0.0081

-0.0013,

0.3641

Trabecula

width
— —

0.0294,

0.3408

-0.0868,

0.0797

0.5137,

< 0.001

Link length (L) — — —
-0.0792,

0.0462

-0.0187,

0.2003

Z-orientation (Zo) — — — —
-0.4985,

< 0.001

Weighted

Z-orientation (Zow)
— — — — —

Table 2.2: Comparing stress with structural metrics at the individual link scale. Pear-
son correlation coefficient r and corresponding p-values between structural metrics and
stress at the individual link scale are shown. In each cell, the upper value is r and the
lower value is p. The values reported here are the averages of the coefficients over all
VOIs. Significant correlations with p less than 0.05 are highlighted in bold.

are correlated to mechanical properties at the individual link scale. For each VOI, we

calculate Pearson correlation coefficients and corresponding p-values between the stresses

and link metrics. We present the average of the r and p-values across all VOIs in Table 2.2.

We observe significant but weak correlations between stress and Z-orientation. Weighted

Z-orientation is also significantly correlated with both Z-orientation and trabecula width,

which is unsurprising due to its definition. Additionally, the length of the links is weakly,

negatively correlated to Z-orientation.

2.5.2 VOI scale

At the VOI mesoscale, we analyze the stiffness of each VOI. Stiffness is defined as

the slope of the force-displacement curve in the linear regime. Fig. 2.9 shows the spatial

33



Probing structure-function relationships with network models Chapter 2

distribution of stiffness across all VOIs. In the linear-elastic regime, the stiffness is a

constant over the loading process for each individual VOI. Fig. 2.10 compares stiffness

with ten network-topological, geometric, and traditional histomorphometric metrics.

We find significant linear correlations between the stiffness of each sample and all

structural metrics shown in Fig. 2.3. Stiffness is most strongly correlated with volume

fraction (r = 0.857, p < 0.001), number of links (r = 0.807, p < 0.001), and weighted

degree (r = 0.791, p < 0.001). We also observe significant, strong positive linear cor-

relations between stiffness and degree (r = 0.627, p < 0.001) as well as stiffness and

Tb.Th (r = 0.623, p < 0.001). Stiffness exhibits a significant, strong negative linear

correlation with Tb.Sp (r = −0.647, p < 0.001). We also observe moderate but signifi-

cant correlations between stiffness and assortativity (r = 0.592, p < 0.001), link length

(r = 0.400, p = 0.011), Z-orientation (r = −0.443, p = 0.004), and weighted Z-orientation

(r = −0.555, p < 0.001). These results indicate that the number of links, degree, weighted

degree, and assortativity can be informative network topological features to supplement

BMD in characterizing bone strength. Furthermore, weighted Z-orientation can be an in-

formative geometric property of the spatially-embedded network, in addition to volume

fraction, trabecular spacing, and trabecular thickness for histomorphometric analysis.

The strong correlation between stiffness and volume fraction shows that trabecular net-

works tend to be stiffer as the ratio of bone volume to pore volume increases, and the

strong correlation between stiffness and weighted degree indicates that stiffer trabecular

networks have larger numbers of thicker trabecula connected to each other.

To determine whether all ten metrics are necessary to predict stiffness, we performed

a multiple linear regression using the following model:

y = β0 + β1x1 + β2x2 + . . .+ βnxn, (2.1)
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βi (fit) Standard error p

Intercept 0 0.057 1

Assortativity 0.009 0.097 0.927

Degree -0.635 0.191 0.002

Weighted degree 0.872 0.295 0.005

Volume fraction 0.872 0.215 0.59

Tb.Sp 0.416 0.192 0.038

Tb.Th -0.172 0.277 0.053

Link length -0.699 0.299 0.026

Z-orientation 0.753 0.355 0.042

Weighted Z-orientation 1.30 0.230 < 0.001

Number of links 0.914 0.287 0.004

Table 2.3: Standardized linear coefficients, standard errors, and p-values for a multi-
ple linear regression model relating stiffness with the ten structural metrics. Metrics
with p < 0.05 are highlighted.

where y corresponds to stiffness and the xi correspond to each of the structural metrics (n

= 10). The data is standardized prior to fitting, and the standardized linear coefficients

βi are listed in Table 2.3.

There are forty different observations included in the regression analysis, one for

each VOI. These observations correspond to the ten metrics calculated for each VOI.

We find that the linear model is a significantly better fit to the data (p < 0.001) than

a constant model under the F -test, and that the ten metrics are strongly predictive of

stiffness (coefficient of determination r2 = 0.905). Furthermore, significance values for
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each of the individual metrics (Table 2.3) indicate the significant contribution of seven

metrics to the prediction of stiffness: degree, weighted degree, trabecular spacing, link

length, Z-orientation, weighted Z-orientation, and the number of links. Most notably,

volume fraction does not contribute significantly in the linear model, despite its strong

correlation with stiffness. Furthermore, removing any of these seven metrics, as well as

Tb.Th, from the model decreases the adjusted r2 (Appendix B.5), which penalizes the

number of explanatory variables in the model. For a linear model containing only the

aforementioned seven significant metrics, adding any additional variable to the model

also decreases the adjusted r2. This indicates that these seven metrics are the most

informative metrics in predicting stiffness with a multilinear model. The model with ten

significant metrics has an adjusted r2 = 0.872. The model with seven significant metrics

has an adjusted r2 = 0.882.

We also performed a multiple linear regression using the model described by Eq. (2.1),

with the principal components shown in Fig. 2.6. A model including all ten principal

components has the same r2 and adjusted r2 as the model shown in Table 2.3. A model

including the principal components which contribute most significantly to the prediction

of stiffness (p < 0.05) has an r2 of 0.878 and an adjusted r2 of 0.864. These values indicate

that a model consisting of the significant principal components does not perform as well

as a model with the significant structural metrics.

2.6 Discussion

We introduce a network characterization of bone that provides a new framework

for analyzing bone architecture. This approach incorporates existing mathematical and

computational methods developed for graph theory and network science with finite el-

ement analysis, directly relating topological, geometric, and mechanical properties of
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Figure 2.10: Stiffness compared with structural metrics at the VOI scale. For each
VOI, the stiffness is plotted against the average degree (A), weighted degree (B),
trabecular spacing (C), trabecular thickness (D), Z-orientation (E), weighted Z-orien-
tation (F), and link length (G), as well as the overall number of links (H), assortativity
(I), and volume fraction (J).
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trabecular bone. Moreover, the beam models developed here provide streamlined, effi-

cient alternatives to traditional methods of mechanical analysis of bone, which depend

on computationally expensive image processing methods to conduct structural and finite

element analysis. In this chapter, we use the network characterization and beam models

to analyze bone structure and mechanics at the scale of individual trabeculae and at the

scale of 50 mm3 volumes of interest. Further studies will involve investigating trabecular

bone at larger scales, extending to the entirety of the vertebra.

Our method of generating beam models of trabecular bone through skeletonization

has some similarities with the network representation of soil samples developed in [29], as

well as 3-D Line Skeleton Graph Analysis (LSGA) developed specifically for trabecular

bone in [49]. LSGA analyzes the mechanical properties of trabecular bone by skele-

tonizing bone images and converting the skeletons into FEM beam models. LSGA also

achieves an improved force-displacement curve fit with a more detailed bone model only

after the thickness of the beams is increased. However, unlike the LSGA method, we use

network science methods to further analyze the bone topology in addition to creating

beam models. Additionally, we use the network and beam models to characterize tra-

becular bone not only at the VOI scale, but also at the scale of individual trabeculae,

which is not analyzed with LSGA.

We analyzed the within-VOI distribution of network-topological, geometric, and tra-

ditional histomorphometric properties at the sub-millimeter scale (the level of individual

links), as well as the spatial distribution across VOIs at the millimeter scale. The goal

of our structural analysis in this chapter was to determine a set of useful metrics for de-

scribing trabecular bone structure, and we determined that these metrics are correlated

with the stiffness of trabecular bone using 40 healthy trabecular bone samples. Future

work can include a more comprehensive statistical analysis using a significantly larger

data set containing both healthy and osteoporotic bone in order to characterize how the
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structural metrics vary as the overall health of bone samples decreases.

Though the distributions of structural metrics shown in Fig. 3 are generally not nor-

mal distributions, we determine the mean value of the metrics as a convenient statistic

to differentiate between VOIs. We follow the convention in network science of charac-

terizing a network by its mean degree and/or weighted degree, and the convention in

histomorphometry of using the mean trabecular thickness, spacing, and length. Future

work can involve a more extensive statistical analysis on a larger data set to identify

other markers for characterizing trabecular architecture.

Using principal component analysis, we find no subset of properties that captures the

majority of the variation in the structural metrics, indicating that all metrics provide

unique information about the structure of the trabecular networks. We also determine

the Pearson correlation coefficients between structural metrics and stiffness, and find that

stiffness is significantly (positively or negatively) correlated with all structural metrics

analyzed. The strongest positive correlation observed was between stiffness and volume

fraction, corroborating previous studies which also find that volume fraction explains a

large percentage of the variation of stiffness in osteoporotic bone for similarly sized VOIs

(spatial dimensions on the millimeter scale) [50, 51]. We furthermore demonstrate a pos-

itive correlation between stiffness and weighted degree that is considerably stronger than

the correlation between stiffness and degree (which characterizes connectivity without

taking thickness into consideration) and the correlation between stiffness and trabecular

thickness (which characterizes thickness without connectivity). This may indicate that

stiffer networks contain links that are both thicker and more interconnected.

We use multiple linear regression to identify seven metrics that contribute the most

to explaining the variance in the data in a linear regression model: degree, weighted

degree, trabecular spacing, link length, Z-orientation, weighted Z-orientation, and the

number of links all had significant p-values in the multiple linear regression (Table 2.3).
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These metrics are determined by computing a slightly different set of measures: degree,

trabecular thickness, trabecular spacing, link length, Z-orientation, and number of links.

Additionally, we use multiple linear regression with the principal components of the

structural metric data to determine whether or not they present a better fit to stiffness.

We find that that a model consisting of the significant structural metrics fits the stiffness

data better than a model consisting of the significant principal components (adjusted

r2 = 0.882 for the former versus adjusted r2 = 0.864 for the latter).

It is surprising that the analysis did not identify volume fraction as a significant

(p < 0.05) variable for the prediction of stiffness, considering that volume fraction exhibits

the strongest linear correlation with stiffness out of all 10 structural metrics in a linear

regression model (Fig. 2.10). This does not indicate that volume fraction is uninformative

in the prediction of stiffness. Its lack of significance in the multiple linear regression

implies that it does not improve the predictive ability of a linear model which includes

the seven significant metrics previously indicated. However, volume fraction is known

to be the primary predictor of stiffness in porous media [52]. Previous studies have

indicated nonlinear relationships between mechanical properties, including compressive

yield strength and elastic modulus, and volume fraction in trabecular bone [53]. In

this chapter, we use multiple linear regression analysis to identify the smallest subset of

metrics that captures the most variation in stiffness; future work will extend the current

regression model to account for the possible nonlinear dependence of stiffness on volume

fraction and other variables in order to improve predictive power.

From the stress distribution across the elements of the beam models, we find that

only a small number of beams withstand a load comparable to the maximal stress on a

network, while the majority of links bear a stress less than or equal to one-third of this

maximal stress. Further development of our modeling framework will extend the beam

model to the nonlinear plastic regime, and ultimately to the point of failure, to investigate
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how the failure of individual links affects the distribution of stress on the network and the

overall compressive strength of the network. This may prove informative in predicting the

fracture susceptibility of a trabecular network and can serve as a biologically-motivated

application of previous studies characterizing the failure of disordered elastic networks

[54]. Furthermore, simulating the response of bone to other types of loading conditions,

such as shearing, tension, or rapid impacts, can be useful in developing a comprehensive

model of fracture.

Our results identifying relationships between structural metrics and mechanical prop-

erties suggest these mesoscale metrics may prove informative for bone health. Extensions

of our work to comparisons between healthy and osteoporotic bone samples may inform

future diagnostics. In particular, extensions of the analyses of Table 2.1 and Fig. 2.10

to diseased bone may inform the characterization of fracture resistance by identifying

structural differences between healthy and diseased bone. Additionally, applying net-

work analysis to bone at various stages of disease or aging may provide insight into how

healthy bone changes over time.

In clinical applications, high-resolution in vivo measurements are increasingly appre-

ciated as necessary for the evaluation of bone fragility. Innovative techniques for high-

resolution data acquisition of fine tissue structure are already in development (Chapter

4) [55], as well as techniques for in vivo mechanical assessment such as reference point

indentation [56]. The methods developed in this chapter aim to complement advances in

medical diagnostic measurements by identifying biomarkers that may be useful to target

using clinical procedures. Moreover, should high-resolution in vivo imaging of human

bone throughout the body become feasible, network models can be generated from bone

scans of patients and used to assess fracture risk. Our framework can hence inform the

development of improved procedures for assessing bone health and detecting the onset

of disease.
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Chapter 3

Fracture in topology-optimized

bio-inspired networks

3.1 Introduction

In pursuing a more complete understanding of how the microarchitecture of trabec-

ular bone contributes to its emergent strength and function, we can also mine nature

for insight on how to engineer bio-inspired materials that are strong and resilient. Ma-

terials found in nature must be spatially arranged to withstand repeated loading while

facilitating various biological functions. In this chapter, we use multi-objective topol-

ogy optimization, finite element modeling, and network science methods to generate and

analyze a range of networked structures with varying emphases placed on maximizing

stiffness, perimeter, and stability. We explore how differently weighting these objectives

influences robustness and resistance of these structures to failure.

The bio-inspired structures we develop here are motivated by the challenge of reverse-

engineering trabecular bone. Compared to the hard, dense cortical bone, trabecular bone

is weaker but has roughly ten times the surface area. The pores in trabecular bone hold
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bone marrow, nerves, and blood vessels, and the increased surface area facilitates bone re-

sorption and remodeling. This tradeoff between the pore distribution and strength drives

our choice of objectives in constructing structures guided by the emergent properties of

vertebral trabecular bone.

Continuum topology optimization is a method that, given a set of objectives and

constraints, optimizes the distribution of material within a domain [57]. We are moti-

vated to use topology optimization to generate bone-inspired structures by the premise

of Wolff’s law [22]: over time, trabecular bone remodels its architecture to adapt to the

loads it is regularly subjected to. That is, it will ‘self-optimize’ itself into a structure

that is more stiff along the primary loading directions. Analogously, multi-objective

topology optimization starts from an initial density distribution, applies specified loads

that in our case represent uniaxial loading in vertebrae, and minimizes a weighted sum

of objective functions to achieve a desired architecture. Here, the objective functions

represent compliance (inverse stiffness), perimeter (the 2-D analog of surface area), and

stability. Conceptually speaking, we assume that real bone is the outcome of a biolog-

ical optimization procedure, but the quantities being optimized are unknown. While

the topology-optimized structures are not intended to mimic bone, in isolating material

properties associated with bone and varying the weights of corresponding objective func-

tions, we examine how the relative weighting impacts overall toughness and robustness

to failure.

The topology-optimized structures are disordered planar networks. Following the

modeling approach detailed in Chapter 2, we extract from them graph models which

allow us to extract topological metrics that quantify the architecture of the network. We

further analyze the mechanical response of the topology-optimized networks by convert-

ing the networks to beam-element models. We simulate compressive loading in similar

fashion as in Chapter 2, with the addition of a failure criterion to simulate fracture. In
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combining these computational methods, we relate the mechanics of bone-like structures

to their architecture and identify how topology informs fracture. Our results inform the

development and design of bio-inspired networked structures that are robust and strong.

3.2 Multi-objective topology optimization

The topology optimization process begins by assuming an initial two-dimensional den-

sity distribution on a discretized uniform grid of elements, then iteratively 1) performs

a finite element analysis step that simulates mechanical deformation, 2) carries out a

gradient-based optimization step that updates the density distribution, and 3) evaluates

the objective until convergence [58]. Three objectives were used: compliance (inverse

stiffness) minimization, perimeter maximization, and stability maximization. The ob-

jective functions are combined as a weighted sum to form a single objective function

that is evaluated in the iterative optimization procedure. Adjusting the weights of each

objective function can result in highly variable topologies.

Each element has a density that can take on any value between 0 (void) and 1 (solid),

but intermediate values are penalized using the solid isotropic material with penalization

model (SIMP) [57] to ensure that the result contains binary density values. We include

an area constraint in the optimization problem so that the total area of each generated

structure is effectively constant. While the topology optimization method developed here

is limited to 2-dimensional structures, it can be generalized to three dimensions, albeit

with a higher computational cost.

The most basic topology optimization problem is that of minimizing compliance

(weights of perimeter and stability functions are set to zero) with an area constraint.

The topology optimization problem for minimization of compliance C, with a constraint
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on the area fraction, is conventionally defined as

min
ρ

C = uTKu, (3.1)

s.t.
1

AΩ

N∑
e=1

ρeAe ≤ A,

where K is the material stiffness matrix, u is the vector of displacements, AΩ is the total

area of the domain, ρe is the density of element e, Ae is the area of each element, and

A is a specified total area fraction. Here, u is related to the vector of applied loads, f ,

through the relation

Ku = f . (3.2)

Compliance is minimized, or equivalently, stiffness maximized, to minimize the displace-

ment undergone by the structure in response to loading. Minimizing compliance alone

produces a structure primarily consisting of thick rods aligned with the principal direc-

tion of loading (Fig. 3.1A). Hence, an anisotropic architecture can give rise to increased

stiffness when the elements (trabeculae) are preferentially aligned with the loading di-

rection.

However, trabecular bone does not consist of thick parallel rods. The surface of

trabecular bone is necessary for its remodeling cycle, which requires contact with sur-

rounding bone marrow for new osteoclasts to form [59]. Bone is resorbed by osteoclasts,

with new bone deposited on the surface by osteoblasts. Trabecular bone also has a much

higher surface area compared to cortical bone and consequently a large number of pores

that hold marrow, nerves, and blood vessels.

Reverse-engineering trabecular bone to produce a structure of similar flexibility and

lightness will require taking perimeter into account as in the objective function. Here

we define P , the perimeter (2-D) or surface area (3-D) of the structure, in a dimension-
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agnostic form as

max
ρ

P =

∫
∆ρ dΩ, (3.3)

where ρ is the material density or volume at any point in the structure. Numerically,

this translates to a sum of density changes across all element boundaries. Setting the

perimeter function weight to a non-zero value and optimizing for both compliance and

perimeter, while keeping the same volume, results in a structure with a greater number

of thinner struts, rather than fewer, thicker ones. Most of these thin struts are aligned

in the principal loading direction, while a few are transverse.

Previous studies applying topology optimization to explore trabecular bone struc-

ture have considered only compliance as an objective function and included a perimeter

constraint [60, 61]. However, depending on the weights used, including only compliance

(and perimeter) objective functions can result in an unstable model, such as one that

consists of long, thin vertical rods. The instability of this model is represented by its

critical buckling load, Pcrit = maxi=1,...,Ndof
Pi. The objective in this case is to maximize

the critical buckling load defined by the generalized eigenvalue equation

[
G(u)− 1

Pi
K

]
Φi = 0, i = 1, . . . , Ndof , (3.4)

where G(u) is the geometric stiffness matrix and Φi is the eigenvector associated with

the ith buckling load. To avoid degeneracy of the eigenvalues 1/Pi, which can result in

poor or incorrect convergence of the optimizer, we apply a bound formulation [57] such
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that the stability optimization problem is written as

min
ρ

β, (3.5)

s.t. αi
(

1

Pi

)
≤ β, i = 1, . . . , Ndof ,[

G(u)− 1

Pi
K

]
Φi = 0, i = 1, . . . , Ndof ,

where α is a number slightly less than 1, e.g. 0.95, which ensures that each eigenvalue

is slightly larger than the next. Note that this bound formulation will only actively

impact eigenvalues near one end of the spectrum and eigenvalues in the interior or near

the other end of the spectrum will inherently satisfy the constraint. As a result, we can

safely truncate the series from Ndof terms to a much smaller number such as n = 10.

Optimizing for stability as well as compliance and perimeter further increases the number

of struts as well as those oriented at a nonzero angle to the primary loading (vertical)

direction.

The multiple objectives are combined as a weighted sum, where the weights can be

varied to change the relative importance of each objective:

min
ρ

w1C0 − w2P0 + w3β0, (3.6)

s.t. αi
(

1

Pi

)
≤ β, i = 1, . . . , Ndof ,[

G(u)− 1

Pi
K

]
Φi = 0, i = 1, . . . , Ndof ,

1

AΩ

N∑
e=1

ρeAe,

3∑
i=1

wi = 1,

where wi are the respective weights on each of the objective functions C0, P0, and β0,

47



Fracture in topology-optimized bio-inspired networks Chapter 3

which refer to normalized compliance, perimeter, and stability, respectively (Eqs. 3.1,

3.3, and 3.6). Here we normalize by independently optimizing for each of the objectives

separately and then evaluating each objective function on each optimized structure. The

functions are then normalized relative to the maximum and minimum values across each

of the structures.

Note that the purpose of normalization is to make the magnitude of each function

more consistent. As a result, the actual values of the function weights for one system

are somewhat arbitrary in that they depend on the normalization procedure used. As

such, the weights are only truly meaningful when compared relative to each other and/or

across different optimization problems. It is possible, once the optimization is completed,

to compute the actual contribution of each objective to the aggregate cost function.

Examples are given in Table C.1 in Appendix C.

We generate topology-optimized structures for a total of seven different sets of ob-

jective weights. One example structure for each parameter set is shown in Fig. 3.1; all

remaining structures are included in Appendix C.2. Each set contains twelve different

structures. Each structure is generated from the same initial density distribution, with

a small perturbation added to ensure that each optimization with the same weights will

converge to a different structure. We label each set of structures with the letters C, P,

and/or S, representing compliance, perimeter, and stability objectives, respectively, fol-

lowed by the corresponding weight (times 100) of the objective function used to generate

the structures.

Fig. 3.1A is an example structure from the set labeled C99999P00001, which is rep-

resentative of optimizing all but entirely for compliance. The weight of the compliance

function is 0.99999, rather than 1 even. If the compliance weight were 1, for some initial

conditions, it is possible that the result would be a contiguous piece of material with

no porosity. Hence, we assign a very small weight of 0.00001 to the perimeter objec-

48



Fracture in topology-optimized bio-inspired networks Chapter 3

A B C

D E

F G

A

G
F
E
D
C
B C99P01

C50S50

C92P08

C99999P00001
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Compliance
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Figure 3.1: Example 2-D topology-optimized structures generated by varying objective
weights. The horizontal bar plot in the lower right shows the relative weights assigned
to the compliance, perimeter, and stability objectives for each image. Weights sum
to one. Panels A-G: C99999P00001, C99P01, C92P08, C50S50, C65S35, C85P05S10,
and C88P01S11, respectively. A total of 12 structures were generated for each of the
seven parameter sets shown here; all structures for each parameter set are shown in
the Supplemental Material.

tive; combined with the different initial conditions, this promotes variation in topology.

Stability is not considered in this case.

Figs. 3.1B-C, labeled C99P01 and C92P08, respectively, are generated by including

weights for both compliance and perimeter, resulting in an increased number of thinner
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Figure 3.2: Example beam element models. Color of beams represents spatial distri-
bution of von Mises stress in example structures for each parameter set. Each model is
shown at the timestep immediately preceding the first element failure in each respec-
tive simulation. A: C99999P00001; B: C99P01; C: C92P08; D: C50S50; E: C65S35;
F: C85P05S10; G: C88P01S11.

struts and consequently a greater number of pores.

Figs. 3.1D-E, labeled C50S50 and C65S35, respectively, are generated by including

weights for compliance and stability, but omitting the perimeter objective. The resulting

structures consist of much thicker struts that are largely oriented at an angle to the

vertical. The structures are also noticeably concave at each side.

Figs. 3.1F-G, labeled C85P05S10 and C88P01S11, respectively, are generated from

combining all three objectives. These structures contain more struts and small pores

than the other sets, with a few longer vertical columns joined by a number of shorter

angled elements.
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Figure 3.3: Force-displacement response. The force-displacement curve for each struc-
ture is indicated by a thin dashed line; the average curve for each parameter set is
shown as a thick solid line. Shaded areas represent the regions spanned by the highest
and lowest reaction force for each parameter set.

3.3 Network modeling and mechanical simulation

3.3.1 Skeletonization

From topology-optimized images, we generate graph models, following the procedure

described in Section 2.2.2, that allow us to utilize existing graph theoretical methods to

efficiently analyze the topology of networked structures. Converting a topology-optimized

structure to a graph begins with skeletonization, or progressively thinning the image

until its one-pixel-wide medial axis is found, followed by conversion to a graph by setting

nodes at branch points where 3 or more struts meet, with edges corresponding to struts

themselves. The edges are weighted according to the respective average thicknesses of

corresponding struts. Skeletonization and graph conversion are accomplished using the

Skeleton3D and Skel2Graph toolboxes for MATLAB [45]. Strut thicknesses are computed

using the BoneJ plug-in [46] for ImageJ (National Institutes of Health, Bethesda, MD).
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3.3.2 Beam element models

To simulate mechanical loading and deformation, we translate these graphs into

streamlined finite element models. Rather than meshing the trabecular model, we gen-

erate beam-element models from the graphs, where each link is represented by a Timo-

shenko beam with a uniform thickness corresponding to its weight (Fig. 3.2). Nodes in

the beam-element model correspond directly to nodes in the network.

Mechanical loading is simulated with Abaqus FEA. The beam-element model is com-

pressed from the top and bottom, representing loading along the superior-inferior direc-

tion, the primary loading axis in vertebrae. The von Mises stress at each link is computed

at each time step, along with the force and displacement of each node. von Mises stress

is a stress invariant often used as a yielding criterion in ductile materials and in two

dimensions is given by

σvon Mises =
√
σ2

11 − σ11σ22 + σ2
22 + 3σ2

12

where σij is the ij-th element of the Cauchy stress tensor.

We solve the models in the linear-elastic regime, where the stress is linear as a function

of strain. We also model failure by setting von Mises stress as a failure criterion; when

the stress in a beam reaches the critical stress value, the beam is said to have failed and

is removed from the simulation. We arbitrarily set the failure criterion to be a von Mises

stress of 0.5 MPa; as the response is linear, this value can be scaled up or down with no

qualitative change in the overall behavior.

We note that the skeletonization and network conversion process is limited by its

inability to fully capture non-uniform trabecular thicknesses or increased bulk at branch

points (nodes). This tradeoff, however, greatly simplifies modeling and provides a stream-

lined approach to relating topology with mechanics. To improve the resolution of tra-
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becular thickness in beams with nonuniform widths, we divide longer beams into five

segments, such that each segment can have a different thickness.

3.3.3 Bulk force-displacement response

Force-displacement curves for the seven beam-element models generated from the

topology-optimized structures (Fig. 3.1) are compared in Fig. 3.3. We model the struc-

tures in the linear-elastic regime with a von Mises stress failure criterion. The force-

displacement curves are hence linear until the initialization of beam failure, whereupon

they exhibit large decreases until reaching zero, at which point the structure is said to

have failed completely. The force-displacement response after this point exhibits fluctu-

ations that are artifacts of wave propagation in the simulation and are not considered

in the analysis of the results. The curves in Fig. 3.3 are truncated where the reaction

force reaches zero, and the full force-displacement curves for each model are included for

completeness in Appendix C.3.

On average, stiffness (the slope of the force-displacement curve in the initial linear

regime) is greatest for C99999P00001, the parameter set for which compliance minimiza-

tion was most highly weighted. However, C50S50 and C65S35 demonstrate slightly higher

average stiffness than C99P01 and C92P08, which have greater compliance minimization

weights. The models with lowest stiffness are C85P05S10 and C88P01S11.

We use two additional metrics to quantify mechanical response: the peak reaction

force typically attained at the onset of element failure, and the maximum displacement

at total system failure (when the reaction force reaches 0). The peak force represents

the strength of the model, while the maximum displacement serves as a proxy for the

ductility of the structure as it undergoes fracture. A large maximum displacement could

indicate that stresses redistribute such that the entire structure does not fail imme-
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Figure 3.4: Ashby plots comparing properties of different optimization parameter sets.
Panel A compares the maximum displacement before complete failure with the peak
reaction force attained. Panel B compares stiffness, the slope of the force-displacement
curve in the linear regime prior to failure, with robustness, measured as the relative
change between the peak forces of the original and perturbed models. Shaded ellipses
represent 2σ confidence intervals.

diately when the first failure occurs. The distributions of peak force and maximum

displacement are compared in an Ashby plot in Fig. 3.4A. The highest peak forces are

given by C99999P00001, followed by C99P01, while the peak force for the other param-

eter sets are comparable. The maximum displacement varies greatly for some parameter

sets, in particular C92P08, C65S35, C85P05S10, and C88P01S11, while the variation in

displacement is considerably smaller for C99999P00001 and C50S50.

We note that while C99999P00001 demonstrates the highest peak forces, it also has

the largest variation in peak force. Hence, slight variations in structure across models,

despite being generated under the same optimization criteria, can result in significantly

different mechanical response. To probe robustness, we perturb each structure slightly

and subject them to the same loading conditions as the original models. For each model,

each node is shifted in both x- and y- coordinates by a small random distance of order

1% of the length of the structure.
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For the purposes of this work, we define robustness as the relative change in peak force

between the original and perturbed models: (Fpeak, original − Fpeak, perturbed)/Fpeak, original.

Robustness is plotted against the stiffness of the original model in Fig. 3.4. In some cases,

the perturbed model can exhibit a greater peak force than the original model, indicated

by a positive robustness score. We observe that C99999P00001, which demonstrated the

greatest variation in peak force among original models, exhibits relatively low robustness,

with large spread in stiffness values. C65S35 exhibits the greatest variation in robustness,

with several instances in which the perturbed model was stronger than the original model.

C50S50 shows slightly lower robustness than C65S35; C50S50 and C65S35 exhibit roughly

similar stiffness values and are the second stiffest models after C99999P00001. C99P01,

C92P08, C85P05S10, and C88P01S11 demonstrate similar stiffness and robustness.

We note that the C50S50 structures lie on an approximately 45-degree line in the

Ashby plot shown in Fig. 3.4. This suggests that these structures achieve a delicate

balance between strength and ductility in which both mechanical markers increase hand

in hand. This property is similar to what has been reported for some biological materials

with superior mechanical properties such as mollusk shell, spider silk, and bone.

Our results suggest that while assigning almost all weight to compliance minimization

can produce structures that are on average stiffer and tougher, these structures can be

prone to small perturbations in geometry or objective weights. Moreover, optimizing

for compliance and perimeter without accounting for stability can result in structures

that are less robust and less stiff than those generated by assigning considerable weight

to stability maximization. We observe that some structures in the C50S50 and C35S65

families exhibit positive robustness where geometric imperfections may lead to an increase

in their strength and stiffness. This suggests that assigning significant weight to stability

may enhance mechanical response under uncertain conditions. However, structures with

small weights on both perimeter and stability objectives remain weaker and less robust
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Set ζ0.001 σ0.9

C99999P00001 0.612 0.378
C99P01 0.421 0.397
C92P08 0.236 0.475
C50S50 0.199 0.391
C65S35 0.260 0.270

C85P05S10 0.187 0.241
C88P01S11 0.162 0.293

Table 3.1: Average ζ0.001 and σ0.9 values for each set. ζ0.001 gives the fraction of
beams with normalized stress less than or equal to 0.001, and σ0.9 gives the normalized
stress value wherein 90% of beams bear stress less than equal to this value. Stress is
normalized to the largest stress value in a single beam in each individual structure.

than those for which perimeter is not considered.

3.3.4 Stress distribution

The fragility of these structures may be linked to the spatial distribution of stress:

whether the stress is distributed relatively evenly or concentrated in a few beams. The

distribution of (von Mises) stress across beams can vary greatly between parameter sets,

as visualized in Fig. 3.2. Fig. 3.5 illustrates the distribution of stress, normalized to

the highest stress value in one beam in each model, averaged over all models in a set

(histogram). In the models without stability objectives (top row), a large area frac-

tion exhibits no stress, demonstrated by a considerable peak at 0. The distribution for

C99999P00001, however, shows that in some models, a small fraction of links bears al-

most all of the stress. In contrast, the models with stability objectives (bottom row)

demonstrate a peak at 0 with relatively heavy tails.

Fig. 3.5 also shows the cumulative fraction of beams that bear normalized stress values

between 0 and 1 (colored shaded regions). For C99999P00001, and to a lesser extent,

C99P01, a notable fraction of beams have normalized stress close to 0. Their cumulative

distributions rise sharply compared to those with stability objectives before flattening
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Figure 3.5: Stress distributions. A: C99999P00001; B: C99P01; C: C92P08; D:
example cumulative stress distribution; E: C50S50; F: C65S35; G: C85P05S10; H:
C88P01S11. Histograms represent the average distribution of normalized stress for
each parameter set, weighted by the thickness of each link. The shaded regions illus-
trate the variation in the cumulative distribution of normalized stress, expressed in
terms of the fraction of area occupied by the links (normalized by the area of the entire
model). Dotted lines within the shaded regions correspond to the distributions of each
individual model. Red crosses represent average ζ0.001 and σ0.9 for each parameter set,
as illustrated by the example in the panel D.
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out. To quantify the stress distribution, we compute two metrics ζ ′0.001 and σ′0.9. ζ ′0.001

is the fraction of total area with normalized stress less than or equal to 0.001, and σ′0.9

is the normalized stress value such that 90% of the total area bears stress less than or

equal to this value; these metrics were previously defined in the context of trabecular

bone in . Average values for ζ0.001 and σ0.9 are tabulated in Table 3.1. ζ0.001 is highest for

C99999P00001; approximately 61% of the total area — corresponding to 67% of beams

— bear almost no stress, followed by C99P01 at 42% (52% of beams). For the remaining

models, which all include stability weights except for C92P08, ζ0.001 is lower, representing

between 16% and 26% of area that is unstressed, indicating that stress is distributed more

evenly for these models.

For σ0.9, the highest values are found for the three models with the highest compliance

weights. These models have relatively high ζ0.001 values as well, thus containing a larger

percentage of low-stress area with the stress more evenly distributed on the remaining

elements. σ0.9 is moreover relatively high for C50S50, which also has a low ζ0.001 value,

indicating that the stress distribution is less skewed. Overall, σ0.9 ranges between 0.24

and 0.47 for all models, implying that a small percentage of beams bear large stresses.

The models with stability objectives are most similar in visual resemblance to tra-

becular bone, and the shape of their stress distributions is also the most similar to that

of bone (Figure 2.8). For the models with stability objectives, however, ζ0.001 remains

much lower than for bone, which is on average approximately 0.43 (Section 2.4.2), while

this value is surpassed for C99999P00001 and C99P01. For bone, approximately 6.7% of

the total volume fraction bears less than 90% of the normalized stress, indicating that

the stress distributions are considerably less skewed for the topology-optimized models

than for bone — note, however, that the topology-optimized structures generated here

are two-dimensional, while the bone volumes analyzed previously are three-dimensional.
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3.3.5 Community detection

We use community detection to investigate whether the topology of the network

encodes information about likely points of failure. We observe that locations of failure —

i.e., the most stressed beams in the finite element models — do not generally correspond

with the thinnest elements, and there is no preferred orientation associated with the

failed beams. We hypothesize that elements corresponding to links that connect two

different communities — “boundary links” — are more likely to fail than elements within

a community.

Community detection is a method of determining clusters (communities) that contain

dense within-cluster connections, with sparse connections to the rest of the network [24].

The development of community detection algorithms and their application as a beginning

phase of network structure or function diagnostics is a focus of network science [62].

Community detection has been used to characterize social interactions, brain function,

and much more, but most pertinently to characterize force chains in granular materials

[63, 64]. Granular packings have been described by assigning nodes to individual particles

and edges to contact forces between particles [28]. Community detection can extract

information about force chains, networks that typically resemble interconnected filaments

primarily aligned with the principal axes of loading.

Here, we perform community detection to identify whether failure locations reside

in any particular locations within the network topology. Community detection typically

involves maximizing a modularity function Q that identifies community structure relative

to a null model P [24, 28]:

Q =
∑
ij

[Wij − γPij]δ(gi, gj), (3.7)

where Wij is the weight of the edge between nodes i and j, γ is a resolution parameter
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that controls community size, Pij specifies the expected weight of the edge between nodes

i and j under the null model, gi is the community assignment of node i, and δ(gi, gj) is

the Kronecker delta.

The null model is commonly chosen to be a random rewiring of nodes with the degree

distribution kept constant (Newman-Girvan null model):

Pij =
sisj
2m

, (3.8)

where si is the weighted degree of node i and m is the sum of all edge weights in the

network (i.e., m = 1
2

∑
ijWij). This null model assumes that connections between any

pair of nodes is possible. However, because the networks are spatially embedded, and

long-range connections that span large spatial distances are impossible, we choose a

geographical null model, initially developed for use in the study of brain networks and

subsequently adapted for granular networks [63]:

Pij = ρBij, (3.9)

where ρ is the mean edge weight of the network and B is the binary adjacency matrix of

the network (i.e., the adjacency matrix where all nonzero edge weights have been set to

1).

The geographical null model produces communities that are anisotropically aligned

with the vertical direction and thus reminiscent of force chains. The resolution param-

eter γ modulates the size and number of communities. We set γ to 1.6. Examples of

community structure are shown in Fig. 3.6.

We observe that failures tend to occur at the boundaries between communities, i.e.,

in links that connect two different communities. We quantify statistical significance with
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A

F GED

CB

Figure 3.6: Example of community structure for each parameter set. A:
C99999P00001, B: C99P01, C: C92P08, D: C50S50, E: C65S35, F: C85P05S10, G:
C88P01S11. Nodes are colored to distinguish between communities. Black nodes
represent communities of one node.

the Bayes factor, which represents the inverse of the ratio of probability of the data given

the null hypothesis — that the probability q of a failure occurring at a boundary link is

equal to the fraction of boundary links in the network lbd/L — to the probability of the

data given the alternative hypothesis — that the probability q of failure occurring at a

boundary link is unknown and where we assume a uniform prior on [0, 1]. The Bayes

factor is given by

BF =
P (Fbd = f |Ftot, q unknown)

P (Fbd = f |Ftot, q = lbd/L)
, (3.10)

where Fbd is the number of failures at boundaries, Ftot is the total number of failures, lbd

is the total number of boundary links, and L is the total number of links. Furthermore,

P (Fbd = f |Ftot, q = lbd/L) (3.11)

=

(
Ftot
f

)
(lbd/L)f (1− lbd/L)Ftot−f , (3.12)
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and

P (Fbd = f |Ftot, q unknown) (3.13)

=

(
Ftot
f

)∫ 1

0

qf (1− q)Ftot−fdq (3.14)

=

(
Ftot
f

)
B(f + 1, Ftot − f + 1), (3.15)

where B is the beta function. Then the Bayes factor is given by

BF =
B(f + 1, Ftot − f + 1)

(lbd/L)f (1− lbd/L)Ftot−f
. (3.16)

If BF > 102, or similarly lnBF > 5, then the evidence strongly supports the alternative

hypothesis over the null hypothesis.

We find that the fraction of failures that occur at these boundary links ranges between

0.58 and 0.73 for structures in sets C50S50, C65S35, C85P05S10, and C88P01S11 (Table

3.2). The fractions are smaller for the sets without stability objectives, and decreases as

the compliance weight increases. In contrast, the fraction of links in the networks that

are boundary links ranges between 0.25 and 0.32.

The average values of Fbd, lbd/L, and lnBF are tabulated in Table 3.2, while their dis-

tributions are illustrated in Figure 3.7. The Bayes factors are lowest for C99999P00001

and C92P08. Moreover, the spread of Fbd values for C99999P00001 and C92P08 are

the largest, with some structures having very few failures at boundaries in the case of

C99999P00001. We observe that models with high compliance weights and no stability

objective contain a greater number of vertical beams and are less disordered in structure,

which can result in community detection being less useful at characterizing failure loca-

tions. Overall, we find that all Bayes factors support the significance of the hypothesis

that probability of failure occurring at a boundary is not the same as the probability
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Figure 3.7: Variation in fraction of failures that occur at boundaries between commu-
nities (Fbd), and overall fraction of edges that join two different communities (lbd/L).

Set Fbd lbd/L lnBF
C99999P00001 0.359 0.255 12.6

C99P01 0.469 0.264 25.9
C92P08 0.517 0.265 19.6
C50S50 0.724 0.321 43.0
C65S35 0.733 0.324 43.6

C85P05S10 0.576 0.279 49.6
C88P01S11 0.722 0.283 96.0

Table 3.2: Fraction of failures that occur at boundaries between communities (Fbd),
and overall fraction of edges that join two different communities (lbd/L). Logarithm
of Bayes factor > 5 indicates statistical significance.

that a link represents a boundary.

3.4 Discussion

We use multi-objective topology optimization to generate networked structures in-

spired by trabecular bone. An analysis of the stress distribution and fracture patterns in

these structures reveals the contribution of compliance, perimeter, and stability objec-

tives to strength and resilience. We observe that in structures with the greatest weight

maximizing stiffness, with little to no consideration given to optimizing for stability, me-

chanical response is sensitive to small geometric perturbations. In comparison, structures

generated with greater weight given to the stability objective are more robust.
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Each topology-optimized structure analyzed in this chapter is constrained to have

the same area fraction, but mechanical response can vary widely among structures that

otherwise have the same objective weights. This corroborates previous findings that

bone mass density is an incomplete predictor of fracture resistance in trabecular bone

[1, 15, 16, 17, 18]. Moreover, this variation is most notable for structures optimized

primarily for compliance. Prior studies of topology-optimized structures inspired by tra-

becular bone involve solely compliance minimization with perimeter constraints [60, 61].

Here, we find that when perimeter and stability weights are taken into account, the

reaction force and displacement maxima shift significantly. This may suggest that com-

pliance minimization alone overestimates the behavior of a realistic biological material.

Since these materials are typically multifunctional, introducing multiple objectives be-

yond compliance in topology optimization will provide more flexiblity in balancing various

tradeoffs without greatly compromising the mechanical response. When considered on its

own as a design principle, Wolff’s law, which states that bone adapts itself to resist the

loads under which it is placed, and hence typically results in increased bone mass along

principal loading axes, may result in structures that are less robust. In real biological

tissues, Wolff’s law is likely not the sole factor governing remodeling processes, and it

may hence be important to use robustness as an objective for bio-inspired design.

Our mechanical simulations are linearly elastic, followed by brittle failure initiated by

a stress-based criterion. An entire beam fails at once when the stress in the beam reaches

a specified threshold, but in bone, the nonuniform thicknesses of trabeculae would result

in beams that fail progressively. Our division of each beam into five segments serves to

mitigate this discrepancy. Moreover, taking into account inelasticity and subscale energy

dissipation mechanisms can improve realistic modeling of bone-like structures.

Our observation of substantial variation in the distribution of stress across different

models suggests an investigation into the extent to which topology optimization can

64



Fracture in topology-optimized bio-inspired networks Chapter 3

engineer redundancy in structures. A structure with redundant or sacrificial beams may

have higher toughness as the failure of some beams might not immediately result in

catastrophic system failure, and stress can be redistributed through remaining beams.

It will be valuable to draw further biological inspiration from the changes in bone

structure that occur due to aging, e.g. increases in anisotropy. Currently, our topology-

optimization results are static and the objectives used are not chosen with regard to

a material that undergoes age-related geometric changes. Additional insight into aging

processes can be achieved by extending the modeling procedure to begin with our original

topology-optimized structures as initial conditions, followed by an optimization process

that reflects the conditions of aging bone.

It is also of interest to apply our methodology to experiments, for instance by laser

cutting or 3-D printing topology-optimized structures and testing mechanical compres-

sion ex silico. Moreover, generating larger and denser (in terms of struts per unit area)

structures can allow us to explore the behavior of cracking and how crack patterns can

change with different objective weights. Driscoll et al. have studied the relationships

between rigidity and crack patterns in both simulated random networks and experimen-

tal 2-D disordered honeycomb lattices [54]. Moreover, Berthier et al. have used edge

betweenness centrality to predict locations of failure in experimental 2-D disordered net-

works [65]. Edge betweenness centrality is a measure that describes the frequency at

which an edge lies on the shortest path between pairs of nodes in a network. Indeed,

edge betweenness centrality as a failure marker is akin to our use of “boundary links”

in characterizing failure locations as calculating edge betweenness can be used for deter-

mining community structure as per the Girvan-Newman method [33]. Edges connecting

different communities have high edge betweenness centrality.

The modeling framework developed in this chapter has wide-ranging applications for

the design of materials and networked structures inspired by nature. While we focus on
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macroscale architecture in this work, engineering additional architecture at micro- and

nanoscales can lead to improved function as bone, along with other naturally-occurring

materials such as wood and nacre, exhibits structure and mechanisms of strength at a

range of scales [66, 67]. Characterizing the contribution of multiscale organization to

emergent strength can further inform the development of bio-inspired materials.
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Chapter 4

Novel magnetic resonance technique

for clinical assessment of trabecular

health

4.1 Introduction

In this chapter, we discuss a newly introduced method that allows for clinically prob-

ing the health of trabecular bone (and potentially other biological tissues) in live patients.

Currently, bone architecture cannot be directly imaged in vivo in high resolution in all

parts of the skeleton. Imaging techniques that can be accomplished in vivo include

quantitative computed tomography (QCT), high-resolution magnetic resonance imaging

(HR-MRI, or micro-MRI), and high-resolution peripheral quantitative computed tomog-

raphy (HR-pQCT) [68]; HR-MRI and HR-pQCT have been used to probe the morphology

of trabecular bone, but neither reach the resolution of micro-CT. Meanwhile, mechanical

methods for assessing bone strength, stiffness, and hardness are primarily undertaken ex

vivo. However, reference point indentation has been developed as a method of mechani-
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cally assessing bone in vivo via an instrument containing a probe that is inserted through

the skin and tissue beneath to indent the underlying bone [56, 69, 70, 71], and can be

applied in a rapid procedure in the clinical setting.

Here, we focus on computationally validating a magnetic resonance (MR) technology

called µTexture, developed by bioProtonics, Inc. [55], for non-invasively probing the

texture of various biological tissues including trabecular bone. µTexture overcomes the

motion limitations of existing MRI methods to acquire high-resolution data that can

inform the detection and monitoring of disease. A vast number of diseases, such as

hepatitis C, nonalcoholic fatty liver disease, and pulmonary fibrosis, are linked to changes

in tissue texture in the heart, liver, and other organs [72, 73, 74]. We focus, however, on

the structural damage and changes in anisotropy that occur in trabecular bone with the

onset and progression of osteoporosis and osteopenia.

While micro-CT is the current standard for obtaining high-resolution images of bone

and other tissues, the large amount of radiation involved prevents its clinical use, limiting

its application to isolated samples or small animals [1]. In contrast, µTexture is designed

to be implemented clinically for diagnosis and monitoring of disease. MRI does not

involve ionizing radiation, but existing MR methods cannot achieve the resolution of

micro-CT. In traditional MRI, measurements are made in the spatial frequency domain;

the raw data matrix is referred to as k-space, which is Fourier transformed to obtain

the final image. Rather than acquiring a 2-dimensional image, µTexture finely samples

one point of k-space at a time to obtain high-resolution data in the spatial frequency

domain, at frequencies relevant to the texture of the targeted tissue. Hence, µTexture is

not limited by patient motion as in traditional MRI, and can probe smaller length scales

than existing MR methods.

Here, we simulate µTexture measurements on trabecular bone tissue to determine

acquisition parameters that will provide valuable diagnostic information related to the
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structure of the probed tissue. We furthermore computationally validate the diagnos-

tic ability of µTexture in the case of osteoporosis by developing a “ratio metric” for

classification of healthy and diseased bone.

As discussed in Chapter 2 and in Appendix A.1, trabecular architecture is quantified

with histomorphometry, the study of the shape and form of tissue, typically from analysis

of high-resolution images. Commonly-used histomorphometric parameters include tra-

becular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N)

— Tb.Th decreases with age and disease; Tb.N decreases as well, resulting in an increased

Tb.Sp [75, 76]. Histomorphometric measures can indeed serve as informative diagnostic

markers for the health and strength of trabecular bone. However, Tb.Th and Tb.Sp are

typically reported as average values over a region, but the thickness and spacing can

be highly variable throughout a volume of bone. Measures of variability in Tb.Th and

Tb.Sp, e.g., moments or other characteristic quantities of their distributions, may provide

further diagnostic information. The anisotropy of the trabecular structure has also been

shown to be predictive of bone mechanics [77].

Micro-CT is the imaging standard for histomorphometry, but high amounts of radi-

ation involved places limitations on acquiring high-resolution images of in vivo human

bone. The highest resolution obtainable for in vivo imaging of bone is accomplished with

HR-pQCT (high-resolution peripheral quantitative computed tomography), developed

for use on distal extremities in humans, which images at a resolution of approximately 80

µm. Furthermore, the best resolution of micro-MRI (high-resolution MRI) is about 30

µm for ex vivo samples where motion effects are not prohibitive [36]; applied in vivo to

peripheral locations, resolution of approximately 140 µm has been achieved in imaging

bone [35]. In comparison, trabecular thicknesses are roughly 100 µm on average and are

lower for osteoporotic bone. Here, we use ex vivo 9-µm resolution micro-CT images of

human bone to obtain ground-truth histomorphometric measurements, and we simulate
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diseased bone profiles by virtually eroding bone elements in these images.

While µTexture is an MR technique, it is not a procedure that is applied to existing

MR images. Rather, it is a technique for obtaining frequency-space data using clinical

MR equipment without acquiring full 2-D or 3-D images. In this chapter, we first intro-

duce and detail the µTexture technique for probing biological tissues by measuring the

MR signal at specific spatial frequencies relevant to the tissue texture. We then conduct

an in silico validation of µTexture by simulating µTexture measurements, using micro-CT

data as ground truth, to obtain spatial frequency information associated with trabecular

structure. We start by transforming high-resolution micro-CT images into spatial fre-

quency data, and extract a subset of this data at frequencies specifically chosen to be

relevant to the structure of trabecular bone. We use the simulated µTexture measure-

ments to calculate a ratio metric, which we then use to train a classifier to distinguish

between healthy bone and bone that has been artificially eroded to simulate osteopenia

and osteoporosis. We apply this classifier to bone with osteoporotic characteristics to

show that the ratio metric can be used to identify diseased bone, indicating that a full

2-D image is not required to yield diagnostic information derived from bone architecture.

4.2 MR technique for probing biological texture

We have developed an MR technique known as µTexture [78] which allows for fast

acquisition of magnetic resonance (MR) data from in vivo biological tissues, while over-

coming most of the motion limitations of other commonly used diagnostic MR imaging

techniques [79, 80]. µTexture is able to resolve the texture of biological tissues at wave-

lengths down to less than 40 µm, or even smaller in conjunction with machine learning

techniques, compared with the ∼80 µm resolution of HR-pQCT or ∼140 µm resolution

of micro-MRI available for in vivo human clinical use. In contrast to typical MRI, which
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acquires data from all or most of k-space and takes the Fourier transform to obtain an

image, µTexture probes k-space one point (or small region) at a time, acquiring a measure

of signal magnitude vs. k-value (frequency) at the desired points or regions in k-space

for a selected volume of tissue. That is, µTexture focuses on obtaining frequency-domain

data at specific frequencies relevant to the texture of the targeted tissue.

Patient motion severely affects traditional MRI at the resolution required to image

the fine texture of biological tissues. Even when the patient holds their breath during

imaging, cardiac pulsatile motion and twitching can cause blurring. Imaging at higher

resolution lengthens the data acquisition time and worsens the motion-induced blurring.

Furthermore, on top of the longer times required to image higher k-values (shorter wave-

lengths), signal strength weakens as k increases. Because µTexture trades acquisition of

a full 2-D image for a high-resolution profile at a few chosen k-space values, the acqui-

sition time required to obtain relevant frequency-domain information about the tissue is

vastly reduced. µTexture acquires measurements from one k-value on the time scale of

milliseconds, small enough such that blurring due to patient motion is negligible.

µTexture uses a custom pulse sequence (Fig. 4.1) to isolate a small, targeted region,

which is typically a prism with one dimension designated as the “analysis” dimension

and the other two the “cross-section” dimensions. Within one µTexture excitation, the

prism is excited and phase-encoded for the desired k-value or values (hereinafter referred

to as a k-encode), and the signal is measured. Up to ∼10 k-values can be measured in

one repetition time (TR; the time interval between excitations), though Fig. 4.1 describes

an example procedure in which one k-value is measured in each TR. These steps can be

repeated several times within the same analysis volume and the magnitude of the signals

can be averaged to improve the signal-to-noise ratio. The signals from several different

non-overlapping prisms, in a technique called interleaved acquisition, can also be acquired

in one TR. Additional wavelengths can be probed by repeating the encoding of other k-
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values over subsequent TRs, thereby building up a sampling of k-space pertinent to the

pathogenesis of a disease.

As measurements from one k-value are done in a single TR, they are inherently

immune to motion during signal recording. The protons in the VOI are independent,

without coherence or interference effects, and the proton spin direction is decoupled from

the molecular orientation. The encoded spins move with the tissue regardless of trans-

lation, rotation, or distortion of the tissue; as long as the VOI stays within the receiver

and the homogeneous magnetic field, the signal is not affected. Furthermore, because

µTexture probes texture, rather than acquiring an image, there is no need for precise spa-

tial coherence between subsequent excited volumes. Hence, in a series of k-encodes over

several TRs, each measurement is independent. Thus, µTexture is tolerant to motion

across excitations, and this motion immunity is not tied to the fast (milliseconds-long)

acquisition but to the fact that data within a chosen k-value is acquired within a single

TR.

While in this chapter we focus on probing trabecular bone through isolated vertebral

samples that have been washed to remove soft tissue, µTexture can be used to measure

multiple chemical species in a tissue that may have differing spatial compositions. Unlike

typical MRI, µTexture can probe large enough regions with signal averaging to map

chemical species as a function of wavelength. With volume selection and no k-encoding,

µTexture can be used to measure the NMR spectrum in order to correlate chemical species

with the measured textures. One potential application is in characterizing inflammation,

as the water signal of healthy tissue may be relatively organized compared to inflamed

tissue, in which the water may have migrated, resulting in a more disordered composition.
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Figure 4.1: Example schematic of the µTexture measurement procedure, consisting of
a repeated set of singular k-value encodings. Each TR encodes a different k-value; an
example pulse sequence timing diagram for one TR is highlighted at the bottom of the
figure. The free induction decay (FID) is acquired for the full T ∗2 period, from which
the measure for a chemical species of interest (e.g., water) at the encoded k-value
is determined. The dark blue rectangles in the timing diagram represent slice-select
gradients, crusher gradients, or k-encoding gradients. In this example, the z-axis is
the analysis direction. Note that one of the crusher gradients is modified to k-encode
the tissue.
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A B C D E

Figure 4.2: Example raw micro-CT image slices and comparison of thresholded and
eroded images. A: Example 9 µm-resolution micro-CT image slice from vertebral
body dataset F60L3. The image slice lies in the transverse plane and is 56.1 mm wide
and 59.4 mm long. B: Example transverse slice from osteoporotic vertebral dataset
AE15TH11, 52.0 mm × 52.0 mm. Image contrast has been increased in panels AB to
improve visibility. CDE: 5 mm × 5 mm section of micro-CT image, eroded at various
stages to simulate effect of osteoporosis. C: Baseline thresholded (healthy) section. D:
The same section as in C, eroded with radius of 2 voxels (osteopenic). E: The same
section as in C, eroded with radius of 4 voxels (osteoporotic).

4.3 Trabecular bone samples

To computationally validate the effectiveness of µTexture, and to identify optimal

cross-section sizes and other measurement parameters for diagnostic power, we simulate

µTexture data acquisition utilizing test datasets constructed from micro-CT scans of ex

vivo vertebral bone samples. We transform the micro-CT scans into frequency space

and extract the signal intensities at frequencies relevant to trabecular bone texture. We

first simulate µTexture measurements on the trabecular bone within two healthy vertebral

bodies, labeled AE12L2 and F60L3. An example of a micro-CT image slice from vertebral

body F60L3 is shown in Fig. 4.2A. We also simulate osteoporotic bone by artificially

eroding the healthy bone images; examples of eroded regions at different levels of erosion

are compared with a baseline thresholded image in Fig. 4.2C–E. Furthermore, we compare

our results with those from two osteoporotic vertebral bodies, labelled AE15TH10 and

AE15TH11; an example image slice from AE15TH11 is shown in Fig. 4.2B.
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4.3.1 Micro-CT image sets

We simulate µTexture measurements on micro-CT images of ex vivo human verte-

bral specimens obtained from a local organ bank and scanned at the Cartilage Tissue

Engineering Lab at the University of California, San Diego. There are a total of two

image sets generated from two specimens from two non-osteoporotic patients, and two

from an osteoporotic patient. Each set comprises image slices of one vertebral body.

The specimens were obtained from different vertebra; the non-osteoporotic image sets

were taken from L2 and L3, and the osteoporotic image sets from TH10 and TH11. The

non-osteoporotic vertebral bodies were obtained from a 75-year-old female (F60L3) and a

32-year-old male (AE12L2); neither patients had any bone-related diseases at the time of

death. The two osteoporotic vertebral bodies were obtained from a 52-year-old male who

died of chronic obstructive pulmonary disease and labelled AE15TH10 and AE15TH11,

respectively. All images have a voxel size of 9 µm isotropic.

4.3.2 Sample preparation and imaging

The vertebral specimens are kept frozen before digestion with KOH. Specimens are

thawed, and the vertebral bodies are dissected from the spinal column with a bone saw.

Each vertebral body is placed in a beaker, to which 300 mL 1M KOH is added. The

healthy samples are incubated at 56°C for 5 hours, with the KOH replaced after the first

1.5 hours of incubation. The healthy samples are washed with Milli-Q water several times

to remove soft tissue, then incubated for another hour in KOH, for a total of 6 hours of

incubation. The osteoporotic samples are incubated for a total of only 4.5 hours.

For all samples, the KOH is neutralized with the addition of glacial acetic acid at 0.052

times the volume of KOH. The samples are then washed with Milli-Q water, sonicated for

15 minutes at room temperature, washed again with Milli-Q water, then stored in 70%
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ethanol at room temperature before imaging. The samples are imaged in the sagittal

plane using a Skyscan 1076 (Bruker, Kontich, Belgium) micro-CT scanner at a 9 µm

voxel size.

4.3.3 Histomorphometry of trabecular bone

Histomorphometric analysis of micro-CT images is accomplished using Bruker CT-

analyser, or CTAn [42]. All images must be thresholded before histomorphometric analy-

sis can be performed. The images are thresholded with 2-dimensional Otsu thresholding

[43], followed by a ‘despeckling’ process in which black and white speckles, which are

artefacts of image noise, below a specified threshold size are removed.

Analysis performed in CTAn gives average Tb.Th and Tb.Sp values for dataset

AE12L2 of 0.15 mm and 0.71 mm, respectively. F60L3 has slightly higher Tb.Th and

Tb.Sp of 0.19 mm and 0.81 mm, respectively. While the sample is non-osteoporotic, it

is taken from a considerably older patient. The Tb.Th values fall within ranges reported

in the literature for human vertebral bone, though the Tb.Sp is slightly low [18, 81].

AE15TH10 and AE15TH11, in comparison, have lower Tb.Th values, but also lower

Tb.Sp values. The average Tb.Th for AE15TH10 and AE15TH11 are 0.072 and 0.073

mm, respectively, while the average Tb.Sp are 0.45 and 0.44 mm, respectively. However,

these two datasets exhibit lower bone volume fractions of 10.7% and 10.0%, compared

to 15.7% and 16.5% for AE12L2 and F60L3, respectively.

4.3.4 VOI selection

To focus the analysis on trabecular structure, we select volumes of interest from

the interior trabecular region of the bone images, excluding portions of the images that

contain the cortical shell or areas outside the bone. We subdivide this interior trabecular
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region into non-overlapping contiguous rectangular VOIs that encompass as much of the

region as possible. From vertebral body F60L3, we generate a total of 106 5 mm × 5 mm

× 5 mm VOIs from a usable region of trabecular bone spanning roughly 25 mm × 30 mm

× 36 mm, and from vertebral body AE12L2, we generate a total of 166 (5 mm)3 VOIs

from a region spanning roughly 30 mm × 30 mm × 35 mm. The size of the VOIs was

chosen such that the superior-inferior, anterior-posterior, and medial-lateral directions

could be used as analysis directions, and where the VOI would be long enough in the

analysis direction to contain several repeats of the trabecular pattern in order to achieve

high signal-to-noise ratio. In calculating the ratio metric, we further subdivide the VOIs

into 25 1 mm × 1 mm × 5 mm prisms, the signals from which are averaged together,

since integrated power within our chosen frequency bands increases for narrower cross-

sections (see Appendix D, Figs. D.1 and D.2). The same procedure is followed for the

osteoporotic samples, yielding 13 VOIs for AE15TH10 and 15 VOIs for AE15TH11.

4.3.5 Image erosion

To simulate diseased bone, we artificially erode the micro-CT images of the healthy

samples at various degrees to produce thinner trabeculae and wider spacings (Fig. 4.2C–

E). The erosion process is performed by initially thresholding the images, following the

Otsu and despeckling procedure described above, and then eroding the thresholded image

with a kernel (or structuring element) of a chosen erosion radius. That is, a cubical (as

the erosion is performed in 3-D) kernel twice the erosion radius in length is used to

remove voxels from the surfaces of each bone element in the VOI. The higher the erosion

radius, the more voxels are removed (the thinner the bone elements). Image erosion is

not performed on images of the osteoporotic samples.

Note that at higher erosion radii, such as in Fig. 4.2E, the trabecular elements can
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be eroded to the point of splitting in two, uniting gaps on either side of the elements.

This can also result in isolated trabecular elements artificially created from the erosion

process, though these are typically small enough to be identified and removed through

the despeckling procedure. We also find that trabecular number decreases with increased

erosion radius (Fig. 4.3).
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Figure 4.3: Trabecular number (Tb.N), which loosely represents the ’frequency’ of the
repeating trabecula-void pattern. 5 mm × 5 mm × 5 mm VOIs are thresholded, then
eroded with varying erosion radii. One voxel corresponds to a (9 µm)3 cube. Error
bars indicate one standard deviation from average over 10 samples.

4.4 Results

4.4.1 µTexture measurement simulation

Simulated µTexture measurements on human vertebral trabecular bone consist of in-

tensities at specified frequency values within chosen VOIs. First, we select rectangular

prisms from several stacked micro-CT image slices and collapse each prism in two chosen
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cross-section dimensions (i.e., averaging the 3-D spatial signal in the two cross-section

dimensions) to obtain a 1-D spatial signal the length of the analysis dimension. We then

compute the discrete Fourier transform of the 1-D signal. However, a µTexture mea-

surement examines one spatial frequency in one TR, though measurements at different

spatial frequencies (as many as ∼10 in a single excitation) are possible. Thus, to simulate

a suite of µTexture measurements, we extract from the full spectrum the intensities of a

selected subset of k-space values to represent a direct acquisition of signal intensities.

In order to obtain a Fourier spectrum that contains information regarding the texture

of the trabecular bone, the length of the analysis dimension should be long enough to

contain several repeats of the “pattern” of trabecular bone and spacing. Furthermore,

the prism should be relatively narrow in the cross-section dimensions, such that averaging

over these dimensions does not result in excessive washing-out of structure. In practice,

however, narrowing the cross-section size, while helpful in delineating structure, will also

reduce the signal-to-noise ratio.

4.4.2 Trabecular ratio metric

Architectural parameters can be readily calculated from 2-D images of trabecular

bone with histomorphometry software. However, extracting structural information from

frequency-domain data within a small subset of k-space is more subtle, particularly due

to the variability in Tb.Th and Tb.Sp. We identify a quantity that can be extracted

from a small number of k-values, as determined from simulated µTexture measurements,

which can give insight into trabecular structure and serve as a diagnostic marker of bone

disease.

Following Faber et al. [82, 83], we calculate a Fourier transform ratio metric to charac-

terize trabecular bone and classify baseline (healthy) and eroded (simulated osteoporotic)
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Figure 4.4: Workflow for calculating ratio metric. A: A (5 mm)3 VOI is evenly divided
into 25 1 mm × 1 mm × 5 mm prisms. B: Each prism is collapsed along the dimensions
measuring 1 mm in length. The resulting 1-D signal in the spatial domain, plotted
as a function of the length of the analysis dimension (5 mm), is shown normalized to
between 0 and 1. C: The Fourier transform is applied to the 1-D (non-normalized)
spatial signal. The full spectrum is truncated to show the first few peaks, excluding
the DC signal. D: 1-D Fourier spectra are calculated in the same manner as B and C
for all the prisms in A, and averaged. E: The ratio metric is calculated from the mean
spectrum by averaging the points in the low-frequency band (blue stars) and averaging
the points in the high-frequency band (black stars) before taking the (log-transformed)
ratio of the two values.

structures. Faber et al. began with 2-D micro-CT images of trabecular bone. For each

image, the discrete 1-D Fourier transform was calculated line-by-line for each pixel row

of the image. The Fourier spectra were then averaged, resulting in one 1-D Fourier spec-

trum for each image. The ratio metric was then determined by averaging the intensities

within a chosen low-frequency band and a chosen high-frequency band, taking the ratio

of the average low-frequency intensity to the average high-frequency intensity, and taking

the base-10 logarithm to better approximate a normal distribution.

In contrast to the micro-CT images used in Faber et al., µTexture is not used to obtain

entire 2-D position-space images. Hence, we develop an alternate method of calculating

the ratio metric that more accurately simulates the µTexture measurement. First, we

begin with 3-D VOIs selected from the trabecular interior of the vertebrae. We then

take various small samples within a VOI (Fig. 4.4A). Each sample is the same length as
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Figure 4.5: Comparing frequency-space intensities of healthy and simulated diseased
bone. The Fourier spectra of a baseline thresholded VOI and the same VOI eroded
to two different extents (2-voxel radius, simulating osteopenia; and 4-voxel radius,
simulating osteoporosis) are shown. The baseline Fourier spectrum is the same as
that shown in Fig. 4.4E. Each individual dotted line is generated by isolating a 1 mm
× 1 mm × 5 mm prism generated from stacking micro-CT images, collapsing it in
the cross-section (1 mm × 1 mm) dimensions, then taking the Fourier transform of
the 5-mm-long 1-D spatial signal. The thick lines are generated by averaging together
the dotted lines of corresponding color, such that each thick line represents a (5 mm)3

VOI. The pink shaded areas correspond to the low- and high-frequency bands used in
calculating the ratio metric (Fig. 4.4).

the original VOI in a chosen analysis direction, but is much narrower in the two cross-

section directions. We find that the integrated power within our chosen frequency bands

increases as the analysis length increases and the cross-section size decreases (Figs. D.1

and D.2). We select these samples to have a cross-section size of 1 mm × 1 mm, which is

on the order of the smallest resolution and machine parameters that can be acquired with

µTexture, with the same analysis length of 5 mm. Since in practice, the samples cannot

overlap in position space, we choose the samples to lie side-by-side spanning the entire

VOI, for a total of 25 non-overlapping samples, comparable to the number of samples
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that can be acquired in a few TRs with interleaved acquisition.

We then average each of these samples into a 1-D signal along the analysis direc-

tion (Fig. 4.4B). We compute the discrete Fourier transform of each of these samples

(Fig. 4.4C), average the spectra (Fig. 4.4D), and calculate the ratio metric (Fig. 4.4E).

As in Faber et al. [82], the ratio metric is defined as the base-10 logarithm of the ra-

tio of average signal intensity in the low-frequency band to the average intensity in the

high-frequency band.

In Faber et al. [82], the frequency bands corresponded to short and wide Tb.Sp ranges.

In our case, we fix the band widths and locations to coincide roughly with Tb.Sp and

Tb.Th distributions (of non-eroded structure) as determined with histomorphometric

analysis in CTAn. The bands are located at [1, 1.8] mm−1 and [3.8, 7.4] mm−1 for low

and high frequencies, respectively, corresponding to wavelengths of [0.56, 1] mm for Tb.Sp

and [0.13, 0.26] mm for Tb.Th. However, the ratio metric is calculated from simulated

raw µTexture measurements, which represent signal intensities, and as such actual values

of Tb.Sp and Tb.Th are not used. Fig. 4.5 compares sample Fourier transforms for a

baseline thresholded VOI and the same VOI eroded to two extents to simulate osteopenia

(2-voxel erosion radius) and osteoporosis (4-voxel radius). The frequency bands used to

calculate the ratio metric are highlighted.

Fig. 4.6 compares the distributions of ratio metric for baseline data and eroded data,

for both the 2-voxel radius (simulated osteopenia) and 4-voxel radius (simulated osteo-

porosis) cases from vertebral image sets AE12L2 and F60L3. The respective baseline

distributions for each dataset coincide with each other. The 2-voxel eroded distributions

(Fig. 4.6ACE) overlap more strongly with the baseline distributions than the 4-voxel dis-

tributions (Fig. 4.6BDF), as is expected. The eroded distributions for F60L3 (Fig. 4.6CD)

is shifted to slightly higher values of ratio metric than for AE12L2 (Fig. 4.6AB). Over-

all, the baseline and eroded distributions for both datasets remain mostly separate but
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Figure 4.6: Comparing baseline and simulated diseased bone for the two healthy
vertebral body samples. Each plot compares the histograms of ratio metric, a quantity
determined from simulated µTexture measurements, for baseline data and simulated
osteopenic or osteoporotic data, taken from a healthy vertebral dataset or datasets
(AB, AE12L2; CD, F60L3; EF, AE12L2 and F60L3 combined). Each histogram (bars
of the same color) corresponds to the distribution of ratio metric values calculated
from either the baseline (healthy) VOIs taken from a dataset, or the same VOIs after
undergoing the erosion procedure to simulate osteopenic (2-voxel radius; panels ACE)
or osteoporotic (4-voxel radius; panels BDF) damage. The ratio metric values were
calculated by simulating µTexture measurements on 1 mm × 1 mm × 5 mm with a
5-mm medial-lateral analysis direction. A support vector machine (SVM) classifier
is trained on the baseline and eroded ratio metric values plotted in panels EF to
determine the decision boundary (vertical black line) that best separates the two
classes.
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demonstrate some overlap between [0.7, 1.0].

We verify that a bone VOI can be correctly labelled as healthy or osteopenic / os-

teoporotic (eroded) based on the ratio metric. That is, we use the ratio metric as the

sole input feature for two-class classification. We determine the decision boundary using

a support vector machine (SVM) with a linear kernel function, implemented in MAT-

LAB. We perform 5-fold cross-validation and calculate the average sensitivity (fraction

of eroded bone correctly classified) and average specificity (fraction of healthy bone cor-

rectly classified) to assess the classifier; we repeat this process a total of 50 times to

minimize the effect of the partitioning of the data on the classification accuracy. Over-

all, we find that the sensitivity and specificity can vary significantly depending on the

chosen analysis direction. For a classifier trained and tested on VOIs taken from dataset

AE12L2, choosing the anterior-posterior analysis direction gave the highest sensitivity

and specificity of 0.968 ± 0.003 and 0.954 ± 0.004, respectively, for the simulated osteo-

porotic (4-voxel eroded) case. For the simulated osteopenic (2-voxel eroded) case, the

sensitivity and specificity are slightly lower due to the increased overlap in distributions

and are 0.924± 0.008 and 0.916± 0.003, respectively.

For dataset F60L3 in the simulated osteoporotic case, the anterior-posterior analysis

direction gave a sensitivity of 0.890± 0.009 and a specificity of 0.857± 0.005, while the

medial-lateral analysis direction gave a slightly lower sensitivity of 0.888 ± 0.009 and

a higher specificity of 0.907 ± 0.007. For simulated osteopenia, the anterior-posterior

direction gave sensitivity and specificity of 0.762± 0.014 and 0.782± 0.012, respectively;

the medial-lateral direction gave sensitivity and specificity of 0.761± 0.011 and 0.793±

0.014, respectively.

For a classifier trained and tested on VOIs from both healthy vertebral datasets

combined, the medial-lateral direction gave the highest sensitivity (0.920± 0.003 for the

4-voxel case, 0.847 ± 0.004 for the 2-voxel case) and specificity (0.946 ± 0.003 for the
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4-voxel case, 0.873 ± 0.006 for the 2-voxel case). The corresponding data and decision

boundary are shown in Fig. 4.6EF. Average ratio metric values are tabulated in Table

D.1 of Appendix D, and sensitivities and specificities for each analysis direction and

dataset are tabulated in Tables D.2 (for the 2-voxel case) and D.3 (for the 4-voxel case).

Moreover, for a diagnostic application, the decision boundary could be moved in order

to prioritize minimizing false negatives, for example, at the expense of increasing the

number of false positives.

A question arises as to whether a smaller region of bone can provide sufficient di-

agnostic information. We determine the SVM classification accuracy when varying the

number of sub-samples within each (5 mm)3 VOI, i.e., varying the size of the cross-

sectional area of the prism targeted by µTexture. We systematically increase the number

of sub-samples between one (a 5 mm × 1 mm × 1 mm prism, and thus the smallest

possible resolvable cross-section) and 25 (constituting the entire VOI). For classifying

healthy and 4-voxel eroded bone, we found that the SVM accuracy is significantly lower

when the cross-sectional area is less than 5 mm2 (Fig. 4.7). However, for larger areas,

the accuracy exhibits no significant trend, and any small variation in the accuracy could

be attributed to small variation in the bone itself.

The frequency bands used for calculating the ratio metric contain 5 frequency points

(for the low-frequency band) and 19 frequency points (for the high-frequency band),

respectively. We investigate whether narrower bands, which would correspond to fewer

µTexture measurements, result in a significant decrease in classification accuracy. We

keep the same low-frequency band, but use a narrower high-frequency band of [3.8, 5.6]

mm−1, which contains 10 points, to calculate the ratio metric, with a medial-lateral

analysis direction. We train the SVM classifier on these values of the ratio metric for

the thresholded and 4-voxel eroded bone sets, and we achieve, averaged over 50 runs of

5-fold cross-validation, average sensitivity of 0.890±0.005 and specificity of 0.938±0.005.
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Figure 4.7: SVM classification accuracy for healthy and 4-voxel eroded bone as a
function of cross-sectional area. The number of sub-VOI samples used to calculate
the ratio metric is varied between 1 and 25, corresponding to cross-sectional area
between 1 and 25 mm2. The accuracy does not exhibit a significant trend when the
cross-sectional area is larger than 5 mm2. Training data is taken from both vertebral
bodies AE12L2 and F60L3, with medial-lateral analysis direction. Blue points indicate
ratio metric determined with original frequency bands; orange points indicate ratio
metric determined with narrower high-frequency band (10 frequency points). Each
point is averaged over 50 iterations of 5-fold cross-validation to minimize partitioning
bias; error bars indicate one standard deviation.

Figure 4.7 illustrates the change in classification accuracy as a function of total sample

cross-sectional area.

4.4.3 Osteoporotic bone

We now apply our classifier trained on artificially eroded bone to images of bone

with osteoporotic characteristics. The osteoporotic vertebral bodies AE15TH10 and

AE15TH11 both contain a smaller volume of trabecular bone than the healthy bod-

ies and thus we generate much fewer VOIs from the respective CT images, obtaining 13

(5 mm)3 VOIs from AE15TH10 and 15 VOIs from AE15TH11. We determine the ratio
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Figure 4.8: Comparing ratio metric distributions for healthy, eroded, and osteoporotic
bone. Each plot compares the ratio metric histograms for baseline (blue) and eroded
(orange) VOIs from datasets AE12L2 and F60L3, and the ratio metric histogram for
the thresholded VOIs from each of the osteoporotic datasets (AE15TH10, green, top;
AE15TH11, yellow, bottom). As in Fig. 4.6, the ratio metric was calculated using
the medial-lateral analysis direction. Due to the much smaller number of osteoporotic
VOIs, counts are normalized such that the total number of counts in each histogram
equals 1.

87



Novel magnetic resonance technique for clinical assessment of trabecular health Chapter 4

metric for each of the VOIs, and use the SVM classifier trained on the baseline and artifi-

cially 4-voxel eroded data (using VOIs from both healthy vertebral bodies) to classify the

osteoporotic VOIs. We find that classification accuracy is higher for the medial-lateral

analysis direction than the anterior-posterior analysis direction. Fig. 4.8 compares the

ratio metric distributions for AE15TH10 and AE15TH11 with the distributions from the

healthy baseline and eroded data (from AE12L2 and F60L3, using the medial-lateral

analysis direction) used to train the classifier. The osteoporotic ratio metric distribu-

tions coincide with the eroded ratio metric distribution, but also partially overlap with

the baseline distribution. Applying the SVM classifier, VOIs from AE15TH10 are classi-

fied with a sensitivity of 0.92, while VOIs from AE15TH11 are classified as osteoporotic

with a sensitivity of 0.80. Sensitivities and specificities for other analysis directions are

tabulated in Table D.4 of Appendix D.

4.5 Discussion

In this chapter, we introduce an MR technique called µTexture, which can be used to

rapidly acquire high-resolution information at scales ∼40 µm about the complex architec-

ture of biological tissues. Focusing on the specific case of osteoporosis in trabecular bone,

we identify a diagnostic marker called the ratio metric that is predictive of deterioration

in both osteoporotic and artificially eroded bone samples. Importantly, we demonstrate

in silico that the ratio metric can be determined from only a few k-space values, which

can be acquired rapidly with µTexture in small targeted regions within a bone. This

procedure provides diagnostic information without the need to acquire an entire 2-D MR

image or even a 1-D spectrum, thus avoiding the motion limitations that have previously

limited the ability to probe complex bone architecture in vivo. By enabling the acquisi-

tion of predictive structural information in a short and non-invasive clinical procedure,
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µTexture has the potential to supplement traditional bone density measurements and

significantly improve the detection and monitoring of osteoporosis.

We demonstrate the feasibility of our proposed procedure through simulations of the

µTexture measurement on high-resolution micro-CT bone data. We calculate the ratio

metric from simulated measurements on healthy bone and artificially eroded versions of

healthy bone, and find that an SVM classifier can distinguish the healthy and eroded

bone using the ratio metric, with high sensitivity and specificity. We apply our classifier

to simulated measurements of the ratio metric using micro-CT images of osteoporotic

bone, and find that the metric is able to accurately classify healthy and diseased bone.

We also show that a ratio metric measured with narrower frequency bands (i.e., fewer

k-space measurements) can be used to classify healthy and eroded bone with only a

minor sacrifice in accuracy, suggesting that µTexture measurements within only a few

TRs could be sufficient to measure a diagnostic predictive of osteoporosis.

We note that a potential limitation of µTexture involves frequencies relevant to bone

beyond which µTexture can probe. While the average trabecular thickness is on the order

of 100 µm in healthy humans, Tb.Th for osteoporotic patients is much lower, and some

trabeculae can be thinner than the ∼40 µm limiting wavelength of µTexture. Despite

this, our results in this chapter show that µTexture is a promising tool for rapidly, non-

invasively, and effectively supplementing current methods of diagnosing and monitoring

bone disease. Providing information about the complex architecture of bone, which is

known to be a crucial factor in determining bone strength and fragility, this procedure

has the potential to substantially improve osteoporosis detection.

We also note that characterization of bone strength depends not solely on the geome-

try and histomorphometry at this ∼100 µm mesoscale, as can be probed with µTexture,

but also on the micromechanics of bone constituents, such as mineralized collagen fibrils,

at smaller scales [3, 4]. µTexture is unable to probe these scales, but a combination
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of mesoscale textural measurements and microscale mechanical modeling can provide a

more complete characterization of bone strength.

While this initial study focuses on trabecular bone, the methods described can be

generalized to other biological tissues. µTexture can be utilized to investigate textu-

ral changes at scales down to ∼40 µm (and smaller, with the use of machine learning

techniques) in a variety of tissues, including the development of fibrosis in the lungs,

liver, heart, or kidney; the degradation of neuronal architecture with Alzheimer’s and

other neurodegenerative diseases; and the formation of tumours marked by angiogenesis,

thereby informing diagnosis at early stages of disease. Furthermore, µTexture can be

implemented clinically as a short, non-invasive procedure that can be repeated over time

to monitor disease progression.

4.5.1 Methodological considerations

Our initial validation of the µTexture technique and the diagnostic ratio metric uses

simulated measurements on a relatively small sample of four human vertebrae. Although

these four bones provide a large set of VOIs for analysis and the results show promising

classification performance, future work will examine the characteristics of trabecular

bone across a larger dataset from a wider demographic range of individuals, in order to

determine the performance of the proposed diagnostic across the population in clinical

settings.

It is known that osteoporosis risk and bone architecture depend on several demo-

graphic characteristics. For example, women are more likely to develop osteoporosis

than men, and the condition affects white, Hispanic, and Asian women more than black

women [10]. Future studies will characterize distributions of the ratio metric across a rep-

resentative sample of the population, and determine how classification boundary depends
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upon factors such as age, ethnicity, or sex.

In this analysis, we use artificial erosion of healthy bone samples as a model of bone

disease, in addition to testing our methods on osteoporotic bone. This choice erodes all

bone elements uniformly. However, this is not necessarily the case in actual osteoporotic

bone tissue, especially due to preferential resorption of unloaded trabeculae. Indeed,

we observe that variability and anisotropy are fundamental characteristics of trabecular

bone architecture across the samples in this study. Previous studies have emphasized

the relationship between the anisotropy of trabecular bone and its mechanical properties,

though additional measures are needed to fully predict bone fracture [15, 77]. The method

proposed in this work determines the ratio metric through measurements on several small

VOIs within the larger bone sample, without considering spatial variability in structure

explicitly. Importantly, the method classifies healthy and diseased bone successfully even

with this limitation. However, future work will extend the analysis of the variability

in trabecular architecture in healthy and diseased bone. This variability in itself may

provide important diagnostic information about the health and strength of trabecular

bone, which could be leveraged to enhance the predictive capacity of the metric that we

introduce here.

Finally, in this initial validation, we choose several parameters that may affect the

classification outcome, including the sizes of the VOIs that µTexture samples from the

bone. As described above, the ideal cross-sectional VOI size, across which the signal is

averaged, will give a good trade-off between a higher signal-to-noise ratio and a finer

structural resolution. For this analysis, we chose these sizes guided by both the practical

limits on VOI size imposed by µTexture, and a study of which sizes produce the largest

signal in the frequency bands of interest. Future work, however, will work to optimize

this and other parameters through more in-depth investigations of larger datasets, in

order to enable the best classification performance in clinical applications.
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Conclusion

In this thesis, we have developed a unique framework of integrated computational meth-

ods to probe the architecture of trabecular bone and trabecular bone-inspired structures.

Recent ex vivo studies (e.g. [18]) have demonstrated that bone mineral density cannot

fully capture the variance of bone strength, but that architectural measures can supple-

ment BMD for a more complete characterization. Our network science and finite element

analysis methods provide us with great flexibility in directly relating topological and ge-

ometric properties with mechanical response at not only the whole-network scale, but at

the scale of individual trabeculae.

In this work, we quantify the importance of connectivity and trabecular orientation

for stiffness, but we also examine how structures that prioritize stiffness at the expense

of stability can be robust in the presence of geometric perturbations. We furthermore

introduce a community detection approach for characterizing fracture locations which is

inspired by prior studies of force chains in networks derived from granular packings. This

method is likely to be applicable across domains and can be incorporated into a more

comprehensive diagnostic tool for fracture susceptibility.

We validate an application of magnetic resonance technology to clinically assess bone
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health in vivo. We show that a “ratio metric” extracted from frequency-domain data can

be used to distinguish between healthy and osteoporotic bone. While we have focused on

trabecular bone for the validation study in Chapter 4, this MR technique is organ-agnostic

and can potentially be applied to other biological tissues in order to probe pathological

changes in texture. Moreover, it is easily implementable using existing clinical equipment,

opening up new avenues for precise, patient-oriented detection and monitoring of disease.

5.1 Future directions

Quantifying the strength, robustness, and resilience of bone at millimeter scales is

only one part of the picture. Bone is a complex material with structured components at

many smaller scales (Fig. 5.1). Efforts exist to probe each of these constituents, but a

complete characterization of bone strength and fracture resistance must link together the

spatial scales spanning nanoscale polymer networks and interfaces, microscale mineralized

collagen fibrils, and the trabecular architecture at large. Possible modeling approaches are

highlighted in Fig. 5.1, but in silico and ex silico analyses should be undertaken in tandem

such that data can inform the design of models, and computational results can inform

the design of experiments. The scale of macroscopic trabecular architecture is relatively

data-rich: micro-CT technology is able to image large-scale trabecular structure in high

resolution, and mechanical tests can be performed in the laboratory on ex vivo specimens

for precision analysis of the elastic properties of bone. However, the smaller scales of

trabeculae and mineralized collagen fibrils are data-poor in comparison, but micro- and

nanoindentation techniques, for example, which involve indenting a test sample with an

extremely small, hard tip, have been developed for testing bone strength at these small

scales.

At the microscale are mineralized collagen fibrils, the “building blocks” of bone.
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Figure 5.1: Overview schematic of the hierarchical structure and strength mechanisms
in trabecular bone, and modeling approaches to bridge spatial scales. Figure courtesy
of Ahmed Elbanna.

Mineralized collagen fibrils consist of platelets of stiff hydroxyapatite (calcium phosphate)

embedded in a soft matrix of collagen molecules. The platelets, which are elongated in

one direction, are arranged periodically within the matrix, resulting in the potential

emergence of band gaps for elastic and acoustic waves. The existence of band gaps

will influence the response of bone to dynamic loading. Understanding the relationship

between band gaps and fracture resistance is especially important as the bulk of loads

placed on bone are dynamic (e.g., from walking or running, or from impacts such as

falling), rather than static or quasistatic, as considered in our previous work.

It has also been found that mineralized collagen fibrils contain fracture resistance

mechanisms at the nanoscale known as sacrificial bonds and hidden length [84]. The

fibrils are embedded in an organic matrix that functions as a glue to hold them together.

When fibrils start to separate due to applied forces, this “glue” forms filaments that
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resist the separation of the fibrils. Weak “sacrificial” bonds in the filaments break first,

allowing energy to dissipate; these sacrificial bonds can reform when the load is removed.

(Sacrificial bonds and hidden length have been observed at even smaller length scales, in

the constituent molecules of bone tissue [85].) Integrating the (micro-)scales of band gaps

within fibrils and the (nano-)scales of the interfaces between fibrils and the surrounding

matrix will be important for identifying the emergent collective behavior of the building

blocks of bone.

Our work presented here can be highly synergistic with a wide range of other dis-

ciplines. Complex, hierarchical materials are found in many biological, geological, and

physical systems, and the modeling framework described in this thesis can be extended

and applied to other systems such as earthquake faults, polymers, and other biological

tissues, as well as engineered systems such as truss structures and bio-inspired materials.

Nacre, for instance, is another naturally-occurring composite material that comprises in-

organic platelets embedded semi-regularly in an organic matrix [86], and has inspired the

development of impact-resistant glass [87]. As with bone, understanding the mechanisms

of strength and dynamics that span multiple spatial and/or temporal scales is necessary

for quantifying strength and predicting vulnerabilities in these systems.
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Structural and topological metrics

This appendix contains a detailed list of metrics commonly used in histomorphometry

and network science.

A.1 Histomorphometric quantities

The terminology for the histomorphometric quantities defined below follow from the

standardized nomenclature proposed in [37]. In this work, histomorphometry is per-

formed using Bruker CT-analyser [42] and BoneJ [46], and the calculation methods de-

scribed below are those utilized by these software packages.

Trabecular thickness (Tb.Th). The local thickness of trabeculae is typically

measured using a sphere-fitting procedure, wherein the trabecular bone volume is first

skeletonized to identify the medial axes of the trabeculae, and spheres are fit along these

axes. The local thickness at a point is given by the diameter of the largest sphere that

contains the point and is bounded within the edges of the structure. Tb.Th is usually

defined as a single value representing the mean trabecular thickness within a specified

region, though the distribution of Tb.Th is commonly used as well.
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Trabecular separation (Tb.Sp). Trabecular separation, or sometimes trabecular

spacing, is determined with the same method as trabecular thickness, but applied to the

voids rather than the bone.

Trabecular number (Tb.N). Trabecular number is a measure of the density of

trabeculae and represents the number of crossings of bone per unit length on a random

linear path through a specified volume. Trabecular number can be measured directly, or

can alternatively be defined as

Tb.N =
1

Tb.Th+ Tb.Sp

Degree of anisotropy (DA). The degree of anistropy measures the extent to which

trabeculae are preferentially aligned along a certain direction. If a structure is isotropic,

then there is no preferential alignment. Anisotropy can be probed by measuring the mean

intercept length (MIL). MIL analysis involves measuring how many times a straight line

sent through a volume would pass through bone; the MIL is the length of the line

divided the number of times it passes through bone. More specifically, a grid of lines is

sent through the volume and rotated over a large range of angles (in 3-D space). The

MIL for each angle is calculated as an average over the grid. Each MIL value can be

visualized as a line passing through the origin, oriented at its corresponding angle, with

length equal to the MIL. An ellipsoid is fit to this 3-D distribution of MIL; the resulting

ellipsoid can be described by three orthogonal vectors collected into a tensor. The degree

of anisotropy can be expressed either as the maximum eigenvalue of this tensor divided by

the minimum (ranging from 1, completely isotropic, to infinity, completely anisotropic),

or as 1 minus the ratio of the minimum eigenvalue to the maximum (ranging from 0 for

completely isotropic to 1 for anisotropic).

In this work, we do not calculate the degree of anisotropy with histomorphmetric
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methods. Rather, by representing trabecular bone as spatially-embedded networks, we

determine the distribution of orientation; we calculate the angle each link makes relative

to the vertical direction.

Percent bone volume (BV/TV). The percent bone volume measures the fraction

of total volume that is occupied by bone. For a binarized image, then, this is equivalent

to the number of voxels with value 1 divided by the total number of voxels.

A.2 Graph topological metrics

Networks can be mathematically summarized by graphs, a collection of nodes or

vertices that are connected by edges or links (in this work, we use the terms edges and

links interchangeably). All information about a network with N nodes is encompassed

by an N ×N matrix called the adjacency matrix, typically denoted A. The elements of

A represent the edges between nodes and are 0 if an edge does not exist between a pair

of nodes or a nonzero number if an edge exists. Edges can be weighted to symbolize the

varying strength of connections between nodes. If the connections are unweighted, the

nonzero elements are equal to 1, and the graph is a binary graph. If the connections are

weighted, the nonzero elements are equal to the corresponding edge weights. The diagonal

elements of A are 0 unless the network contains self-loops. The graphs considered in this

thesis are simple graphs and therefore do not contain self-loops or multiple edges between

a pair of nodes.

If the network is undirected, A is symmetric. For a directed network, an edge has a

direction, pointing from one node to another. Hence Aij is not necessarily equal to Aji,

and A is generally not symmetric. In this thesis, all networks are undirected.

Degree. The degree of a node is the number of edges connected to the node. For an
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undirected network, the degree k of node i is given by

k(i) =
∑
j

Aij (A.1)

where Aij refers to the element of the adjacency matrix in row i and column j, which is

0 if there does not exist an edge between nodes i and j; 1 if there is an edge between

nodes i and j and the network is unweighted; or a nonzero value representing the edge

weight between nodes i an j if the network is weighted.

The networks analyzed in Chapters 2 and 3 are weighted, with edge weights cor-

responding to the average trabecular thicknesses of the trabeculae represented by the

edges.

Assortativity. Assortativity refers to the tendency of nodes to be connected to

nodes with similar characteristics. In particular, we consider degree assortativity, which

measures the likelihood that nodes are connected to other nodes of similar degree, i.e.,

high-degree nodes connected to other high-degree nodes, and low-degree nodes connected

to other low-degree nodes. The degree assortativity is described by a Pearson correlation

coefficient given by

r =

∑
ij(Aij − kikj/2m)kikj∑
ij(kiδij − kikj/2m)kikj

, (A.2)

where Aij is the element of the adjacency matrix corresponding to the link between

nodes i and j, ki is the degree of node i, m is the total number of links, and δij is the

Kronecker delta [24]. If the assortativity is positive (up to 1), then like is linked to like,

and assortative mixing is said to occur. If assortativity is negative (down to -1) like is

linked to unlike, resulting in disassortative mixing. If assortativity is 0, then the network

is said to be neutral.

It must be mentioned, however, that this is not the most efficient way to calculate
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assortativity; rather, we can write

r =
S1Se − S2

2

S1S3 − S2
2

, (A.3)

where Sn =
∑

i k
n
i and Se =

∑
ij Aijkikj = 2

∑
edges(i,j) kikj, where the sum over edges

(i, j) refers to a sum over all distinct pairs of nodes i and j that are connected by an

edge (rather than summing over all pairs of nodes, regardless of whether or not they are

connected) [24].

Modularity. Roughly speaking, modularity is a measure of how easily a network

can be partitioned into groups of nodes that share similar characteristics: the fraction of

links that connect nodes of the same type, minus the expected fraction of links connect-

ing nodes of the same type if the links were randomly assigned between nodes. Let ci

represent the type of node i, or rather the “community” it belongs to. The total number

of links between nodes of the same type is given by

1

2

∑
ij

Aijδ(ci, cj), (A.4)

where δ is the Kronecker delta and the 1
2

is due to the double counting of links that

occurs when summing over i and j. If links were distributed at random, the expected

number of links between nodes i and j would be kikj/2m. If node i has degree ki, and

there are m total links in the network (and 2m ends of links), then the probability that

the end of one link connected to node i is connected to node j would be kj/2m, where

kj is the degree of node j. Then the expected number of links that connect all pairs of

nodes within the same community is

1

2

∑
ij

kikj
2m

δ(cicj). (A.5)
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The modularity Q is given by the difference of expressions A.4 and A.5, divided by the

total number of edges (m):

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj). (A.6)

Community structure. Community structure follows from the concept of modular-

ity: a network has community structure it can easily be partitioned into clusters wherein

nodes within a cluster are densely connected to each other, but sparsely connected to

nodes outside the cluster. The technique of identifying community structure is known

as community detection and is often achieved by maximizing the modularity. Modular-

ity maximization is computationally extremely difficult and many heuristic algorithms

have been developed for community detection, one common method being the Louvain

method. Various software packages exist for performing community detection; this work

uses the GenLouvain package developed for MATLAB [88].

The modularity function that is maximized need not be identical to Eq. A.6. A

general expression for modularity is given by

Q =
∑
ij

(Aij − γPij) δ(ci, cj), (A.7)

where γ is a specified resolution parameter that modulates the size of the communities,

and Pij is the null model term. A common choice of null model is the Newman-Girvan

null model [89], whereby

Pij = kikj/2m,

recovering the modularity expression in Eq. A.6 (times 2m). This null model, which,

again, corresponds to a random rewiring of links, assumes that any two nodes can be

connected. However, this may not always be the case for a given network, and alternative
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null models may be used, especially if physical properties must be taken into account. One

choice is the geographical null model, initially developed in the context of neuroscientific

networks with ordered nodes connected only to their nearest neighbors (chain networks)

[32]. Geographical null models have also been applied to force networks in granular

materials, which consist of nodes that represent individual particles and links representing

forces between particles [28, 63, 64]. Such a network has spatial constrains in that only

nodes that represent particles in contact can be connected. The geographical null model

is given by

Pij = ρBij, (A.8)

where ρ is the average weight of edges in the network, and Bij is the ij component of the

binary adjacency matrix B. The binary adjacency matrix is the same as the adjacency

matrix, except that all nonzero elements are set to 1.
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Appendix for Chapter 2

This appendix contains supplementary information for Chapter 2.

B.1 Data availability

The data analyzed in this work are available online at the following Figshare reposi-

tories:

• https://doi.org/10.6084/m9.figshare.7771046.v1

• https://doi.org/10.6084/m9.figshare.7771043.v1

• https://doi.org/10.6084/m9.figshare.7771040.v1

• https://doi.org/10.6084/m9.figshare.7834859.v1

Datasets comprise thresholded and despeckled micro-CT images constituting the 40

VOIs; the respective skeletonizations; network models generated from the skeletonized

bone and corresponding histomorphometric, geometric, and topological metrics; and net-

works representing the pores between trabeculae (the “dual” of the bone networks).
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B.2 Structural metrics

In addition to the standard histomorphometric and network topological metrics de-

scribed in further detail in Appendix A.1 and A.2, we also introduce several structural

metrics used in our analysis.

Pore width. Pore width refers to the average width of a pore within trabecular

bone and is calculated using the method of sphere fitting [90], which is also used to

determine trabecular thickness (Appendix A.1). In this work, we make a distinction

between pore width and trabecular separation in that Tb.Sp is used to refer to an average

value representative of an entire VOI, while pore width refers to the size of an individual

void.

Trabecula width. Trabecula width refers to the average width of a trabecula, also

calculated with sphere fitting. Again, we use trabecula width to refer to the width of

a single trabecula, while trabecular thickness (Tb.Th) refers to the average of trabecula

widths in an entire VOI.

Link length. The length of a link in the network model, equivalent to the length of

the medial axis of the corresponding trabecula.

Link orientation. Link orientation captures the extent to which a link points along

a specified axis. For a specific link d, we can define a vector ~d connecting the nodes of

the links. For a given axis a with corresponding unit vector â, the link orientation with

respect to a is defined as:

Oa(d) =
~d · â
||d||

. (B.1)

This metric can be thought of as the direction cosine between the a axis and link d. This

is not broadly applicable to any graph as it can only be applied to networks embedded in

physical space. In this thesis, we define the principal direction of loading as being parallel

to the Z-axis (corresponding to the superior-inferior direction parallel to the spine). We
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focus on orientation with respect to this direction, which we call Z-orientation, due to the

role the loading direction plays in the anisotropy of trabecular structure. Past studies

have shown that with age and osteoporosis, trabeculae with low Z-orientation tend to

be preferentially resorbed and become thinner on average, while those with a high Z-

orientation (more parallel to the loading direction) retain their thickness or even become

thicker since they are preferentially rebuilt [91].

Weighted link orientation. Weighted link orientation refers to orientation weighted

by the thickness of the corresponding link. For a link d, the weighted orientation WO

with respect to direction a is defined as:

WOa(d) =
Oa(d)w(d)∑

i

w(i)
, (B.2)

where Oa(d) is the orientation of link d, w(d) is its weight (thickness), and
∑

iw(i) is

a sum over all weights of links in the network. The sum of weighted link orientation

over all the links in a VOI gives the VOI-scale measure of the weighted orientation and

indicates the prevailing directionality of a trabecular network. As with link orientation,

we focus on the weighted Z-orientation in this work.

Number of links. The total number of links in a network, representative of the

number of trabeculae.

B.3 Comparison of mechanical response

We validate our beam model approximation by comparing results of simulated com-

pression with that of a continuum model. Initial comparisons between the two show that

the continuum model is stiffer than the beam model. In order to match the stiffnesses

of the two models, the radius of the beams in the beam model is increased by an overall
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scale factor of 1.55 for the example VOI shown in the main text. Figure B.1 indicates

agreement of the force-displacement curves (in the linear regime) of the continuum model

and the beam model after incorporating the overall scale factor.
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Figure B.1: Force-displacement curve for the beam-element and continuum models
in the linear regime. The force-displacement response is nearly identical, and the two
lines overlap.

B.4 Stress distribution

As discussed in Chapter 2.4.2, the cumulative distribution of stress shifts when the

differing volume fractions of each beam is taken into account. Fig. B.2 is the counterpart

to Fig. 2.8, wherein the cumulative fraction of beams is replaced by the cumulative

volume fraction. ζ ′0.001 is the fraction of the total bone volume encompassed by beams

with normalized stress less than or equal to 0.001, and ninety percent of the total volume

fraction bears a stress less than or equal to σ′0.9.
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Figure B.2: Left: Distribution of normalized maximum principal stress in the beam
elements of an example beam model (Fig. 2.7) under compressive loading in the linear
regime. Stress σn is normalized to the largest value of stress in a beam at the final
timestep of the compressive loading simulation. The function ζ ′ is the fraction of the
total bone volume encompassed by the beams that bear a normalized stress less than or
equal to σn. ζ ′0.001 is defined as the volume fraction of beams that bear a normalized
stress less than or equal to 0.001 and σ′0.9 is defined as the normalized stress that
satisfies the equation ζ ′(σ0.9) = 0.9. In this VOI, 37% of the total volume bears
a normalized stress less than 0.001 (ζ0.001 = 0.366), while 90% of the total volume
bears a normalized stress less than or equal to 0.065 (σ0.9 = 0.065). Right: Spatial
distributions of ζ ′0.001 and σ′0.9 across the sample. The example VOI is indicated by
the red circle.
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Variable omitted Adjusted r2

None 0.872

Assortativity 0.878

Degree 0.829

Weighted degree 0.837

Volume fraction 0.875

Tb.Sp 0.856

Tb.Th 0.875

Link length 0.859

Z-orientation 0.853

Weighted Z-o 0.857

Number of links 0.740

Table B.1: Adjusted r2 values for multiple linear regression with nine variables.
We determine the redundancy of variables in the multiple linear regression model by
comparing the adjusted r2 of a ten-variable linear model against that of all possible
nine-variable models, each of which are labeled with the variable omitted. The ad-
justed r2 for the ten-variable model (no variables omitted) is italicized and indicated
in bold. The variables whose omission results in a reduction of the adjusted r2 are
highlighted in bold.

B.5 Multiple linear regression

We quantify the redundancy of metrics in our multiple linear fit by calculating the

adjusted r2 for our model. The adjusted r2 measures the predictiveness of a model

with a penalty for the number of explanatory variables. For a linear model contain-

ing degree, weighted degree, trabecular spacing, link length, Z-orientation, and weighted

Z-orientation, adding any additional variable to the model, with the exceptions of assor-

tativity and trabecular thickness, also decreases the adjusted r2.
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Variable added Adjusted r2

None 0.882

Assortativity 0.878

Volume fraction 0.879

Tb.Th 0.879

Table B.2: Adjusted r2 values for multiple linear regression with five variables.
We determine the redundancy of variables in the multiple linear regression model by
comparing the adjusted r2 of a 7-variable linear model consisting of the 7 significant
metrics (Table III of the main text), with the adjusted r2 of all possible eight-variable
models. Each of the eight-variable models is labeled by the variable that is added to
the seven-variable model. The adjusted r2 for the seven-variable model (no variables
added) is italicized and indicated in bold. All eight-variable models result in a decrease
in the adjusted r2.
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Appendix C

Appendix for Chapter 3

This appendix contains supplementary information for Chapter 3.

C.1 Methodological considerations

The individual objective functions in the optimization problem (Eq. 6 of the main

text) are normalized so that their respective magnitudes are more consistent. Given that

the compliance and stability functions can take values at or near infinity (for purely

void structures) and the maximum value of the perimeter function is limited by the

filter length scale (an alternating solid-void design with no structural links), a finite

normalization scheme may disproportionately normalize those functions relative to the

perimeter function. As a result the function weights may appear disproportionate, but

could be made more similar (or even uniform) by using modified normalization factors.

For reference, Table C.1 shows the percent of the weighted objective sum contributed

by each function for the compliance and perimeter models (a 50-50 split indicates equal

weighted values for each function).
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Compliance Perimeter
Model Contribution Contribution
C92P08 1 63.2 36.8
C92P08 2 64.3 35.7
C92P08 3 65.0 35.0
C92P08 4 63.2 36.8
C92P08 5 77.9 22.1
C92P08 6 68.4 31.6
C92P08 7 61.3 38.7
C92P08 8 72.0 28.0
C92P08 9 70.5 29.5
C92P08 10 56.5 43.5
C92P08 11 62.4 37.6
C92P08 12 65.8 34.2
C99999P00001 1 100.0 0.0222
C99999P00001 2 100.0 0.0288
C99999P00001 3 100.0 0.0303
C99999P00001 4 100.0 0.0274
C99999P00001 5 100.0 0.0192
C99999P00001 6 100.0 0.0118
C99999P00001 7 100.0 0.0083
C99999P00001 8 100.0 0.0158
C99999P00001 9 100.0 0.0117
C99999P00001 10 100.0 0.0140
C99999P00001 11 100.0 0.0220
C99999P00001 12 100.0 0.0205
C99P01 1 94.6 5.4
C99P01 2 90.7 9.3
C99P01 3 92.2 7.8
C99P01 4 91.5 8.5
C99P01 5 93.9 6.1
C99P01 6 94.3 5.7
C99P01 7 96.0 4.0
C99P01 8 93.9 6.1
C99P01 9 95.0 5.0
C99P01 10 93.0 7.0
C99P01 11 95.0 5.0
C99P01 12 93.7 6.3

Table C.1: Percent contribution of compliance and perimeter functions to weighted
objective sum for models with no stability objective.
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C.2 Topology-optimized structures

Twelve structures were generated for each of the seven sets of objective weights. The

initial density distribution was perturbed slightly for each optimization run to produce

variation in architecture. Structures for each parameter set are shown in Figs. C.1-C.7.

C.3 Force-displacement response

While we only consider the force-displacement response between the origin and the

point at which it has reached zero for each structure (indicating total failure), we include

the full force-displacement curves here for completeness (Fig. C.8). The data used to

generate Fig. 4 of the main text are also shown as boxplots in Fig. C.9 to facilitate

comparison between the response of the original and perturbed models.
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Figure C.1: Structures generated using C99999P00001 objective weights.
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Figure C.2: Structures generated using C99P01 objective weights.
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Figure C.3: Structures generated using C92P08 objective weights.

115



Appendix for Chapter 3 Chapter C

Figure C.4: Structures generated using C50S50 objective weights.
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Figure C.5: Structures generated using C65S35 objective weights.
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Figure C.6: Structures generated using C85P05S10 objective weights.
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Figure C.7: Structures generated using C88P01S11 objective weights.
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Figure C.8: Force-displacement curves for each structure in a parameter set.
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Figure C.9: Left column: boxplots indicating variation in peak force, maximum dis-
placement, stiffness, and displacement between initial beam failure and system failure.
Each pair of plots represents the same parameter set, with the left boxplot correspond-
ing to the original model and the right boxplot to the perturbed model. Right column:
percent difference between original and perturbed model, averaged over each model
within the same parameter set, for each of the four metrics shown on the left.
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Appendix for Chapter 4

This appendix contains supplementary information for Chapter 4. Figs. D.1 and D.2

demonstrate the integrated power in frequency bands [1.0, 1.8] mm−1 and [3.8, 7.4] mm−1,

respectively, as a function of the size of the analyzed prism. These figures illustrate that

the highest power is achieved for prisms with small cross-section sizes and longer analysis

dimensions; hence, we choose prisms with 1 mm cross-section widths and 5 mm analysis

lengths.

Table D.1 contains the average ratio metric values for the baseline and eroded versions

of each dataset, while Tables D.2 and D.3 contain the corresponding sensitivities and

specificities for classifying baseline and eroded data. Table D.4 contains the average

ratio metric for osteoporotic data, as well as classification sensitivities.
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Figure D.1: Integrated power increases as analysis length increases and cross-section
size decreases. The integrated power in frequency band [1.0, 1.8] mm−1, corresponding
to the low-frequency (Tb.Sp) band used to determine the ratio metric, is calculated
for prisms of varying analysis dimension length and cross-section side length. The
cross-section is kept square. Each data point is obtained by averaging over 100 prisms
of the same size from different locations in the baseline thresholded AE12L2 dataset.
The highest integrated power occurs for a prism with 1 mm × 1 mm cross-sectional
area and 5 mm analysis length. To calculate the ratio metric, we use prisms of this
size, which also corresponds to approximately the smallest resolution and machine
parameters that can be acquired with µTexture.
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Figure D.2: Integrated power increases as analysis length increases and cross-section
size decreases. The integrated power in frequency band [3.8, 7.4] mm−1, corresponding
to the high-frequency (Tb.Th) band used to determine the ratio metric, is calculated
for prisms of varying analysis dimension length and cross-section side length. The
cross-section is kept square. Each data point is obtained by averaging over 100 prisms
of the same size from different locations in the baseline thresholded AE12L2 dataset.
The highest integrated power occurs for a prism with 1 mm × 1 mm cross-sectional
area and 5 mm analysis length. To calculate the ratio metric, we use prisms of this
size, which also corresponds to approximately the smallest resolution and machine
parameters that can be acquired with µTexture.
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Table D.1: Mean ratio metric of of baseline and eroded healthy bone samples.

Sample Analysis direction Baseline Eroded (2-voxel) Eroded (4-voxel)
AE12L2 Anterior-posterior 0.95 ± 0.08 0.74 ± 0.08 0.63 ± 0.09
AE12L2 Medial-lateral 0.92 ± 0.07 0.74 ± 0.08 0.61 ± 0.10
AE12L2 Superior-inferior 0.91 ± 0.09 0.77 ± 0.10 0.70 ± 0.11
F60L3 Anterior-posterior 0.95 ± 0.09 0.82 ± 0.10 0.71 ± 0.11
F60L3 Medial-lateral 0.90 ± 0.08 0.78 ± 0.09 0.67 ± 0.11
F60L3 Superior-inferior 0.72 ± 0.09 0.74 ± 0.11 0.60 ± 0.11
Both Anterior-posterior 0.95 ± 0.08 0.77 ± 0.10 0.66 ± 0.10
Both Medial-lateral 0.91 ± 0.08 0.75 ± 0.09 0.63 ± 0.10
Both Superior-inferior 0.84 ± 0.13 0.76 ± 0.10 0.66 ± 0.12

Average ratio metric of baseline and eroded samples for each analysis direction and
sample. Error denotes one standard deviation.

Table D.2: Classification accuracy of baseline and eroded (2-voxel radius) healthy
bone samples.

Sample Analysis direction Sensitivity Specificity
AE12L2 Anterior-posterior 0.924 ± 0.008 0.916 ± 0.003
AE12L2 Medial-lateral 0.890 ± 0.009 0.919 ± 0.004
AE12L2 Superior-inferior 0.761 ± 0.009 0.838 ± 0.007
F60L3 Anterior-posterior 0.762 ± 0.014 0.782 ± 0.012
F60L3 Medial-lateral 0.761 ± 0.011 0.793 ± 0.014
F60L3 Superior-inferior 0.433 ± 0.086 0.540 ± 0.087
Both Anterior-posterior 0.841 ± 0.004 0.872 ± 0.004
Both Medial-lateral 0.847 ± 0.004 0.873 ± 0.006
Both Superior-inferior 0.549 ± 0.163 0.684 ± 0.101

Sensitivity (percentage of eroded samples correctly classified) and specificity (percent-
age of thresholded samples correctly classified) of classifiers trained on VOIs from indi-
cated dataset(s) with specified analysis direction, averaged over 50 runs of 5-fold cross-
validation. Error denotes one standard deviation.
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Table D.3: Classification accuracy of baseline and eroded (4-voxel radius) healthy
bone samples.

Sample Analysis direction Sensitivity Specificity
AE12L2 Anterior-posterior 0.968 ± 0.003 0.954 ± 0.004
AE12L2 Medial-lateral 0.927 ± 0.006 0.964 ± 0.002
AE12L2 Superior-inferior 0.858 ± 0.004 0.922 ± 0.006
F60L3 Anterior-posterior 0.890 ± 0.009 0.857 ± 0.005
F60L3 Medial-lateral 0.888 ± 0.009 0.907 ± 0.007
F60L3 Superior-inferior 0.656 ± 0.015 0.826 ± 0.015
Both Anterior-posterior 0.920 ± 0.003 0.918 ± 0.004
Both Medial-lateral 0.920 ± 0.003 0.946 ± 0.003
Both Superior-inferior 0.801 ± 0.006 0.718 ± 0.004

Sensitivity (percentage of eroded samples correctly classified) and specificity (percent-
age of thresholded samples correctly classified) of classifiers trained on VOIs from indi-
cated dataset(s) with specified analysis direction, averaged over 50 runs of 5-fold cross-
validation. Error denotes one standard deviation.

Table D.4: Classification accuracy of osteoporotic bone samples.
Sample Analysis direction Mean ratio metric Sensitivity
AE15TH10 Anterior-posterior 0.74 ± 0.08 0.923
AE15TH10 Medial-lateral 0.72 ± 0.05 0.923
AE15TH10 Superior-inferior 0.75 ± 0.06 0.542 ± 0.027
AE15TH11 Anterior-posterior 0.79 ± 0.05 0.601 ± 0.009
AE15TH11 Medial-lateral 0.72 ± 0.07 0.800
AE15TH11 Superior-inferior 0.77 ± 0.09 0.327 ± 0.020

Average sensitivity for each set of osteoporotic VOIs classified using support vector ma-
chine classifier trained on baseline thresholded and 4-voxel eroded VOIs from AE12L2
and F60L3, as well as average ratio metric of osteoporotic samples. Sensitivities are
averaged over 50 runs of 5-fold cross-validation. Error denotes one standard deviation.
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