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Conformational Flexibility in Respiratory Syncytial Virus G
Neutralizing Epitopes

Stanislav O. Fedechkin,a Natasha L. George,a Ana M. Nuñez Castrejon,a Joshua R. Dillen,a Lawrence M. Kauvar,b

Rebecca M. DuBoisa

aDepartment of Biomolecular Engineering, University of California—Santa Cruz, Santa Cruz, California, USA
bTrellis Bioscience, LLC, Redwood City, California, USA

ABSTRACT Respiratory syncytial virus (RSV) is a top cause of severe lower respira-
tory tract disease and mortality in infants and the elderly. Currently, no vaccine or
effective treatment exists for RSV. The RSV G glycoprotein mediates viral attachment
to cells and contributes to pathogenesis by modulating host immunity through in-
teractions with the human chemokine receptor CX3CR1. Antibodies targeting the
RSV G central conserved domain are protective in both prophylactic and postinfec-
tion animal models. Here, we describe the crystal structure of the broadly neutraliz-
ing human monoclonal antibody 3G12 bound to the RSV G central conserved
domain. Antibody 3G12 binds to a conformational epitope composed of highly
conserved residues, explaining its broad neutralization activity. Surprisingly, RSV G
complexed with 3G12 adopts a distinct conformation not observed in previously de-
scribed RSV G-antibody structures. Comparison to other structures reveals that the
RSV G central conserved domain is flexible and can adopt multiple conformations in
the regions flanking the cysteine noose. We also show that restriction of RSV G flexi-
bility with a proline mutation abolishes binding to antibody 3G12 but not antibody
3D3, which recognizes a different conformation of RSV G. Our studies provide new
insights for rational vaccine design, indicating the importance of preserving both the
global structural integrity of antigens and local conformational flexibility at antigenic
sites, which may elicit a more diverse antibody response and broader protection
against infection and disease.

IMPORTANCE Respiratory syncytial virus (RSV) causes severe respiratory infections in
infants, young children, and the elderly, and currently, no licensed vaccine exists.
In this study, we describe the crystal structure of the RSV surface glycoprotein G in
complex with a broadly neutralizing human monoclonal antibody. The antibody
binds to RSV G at a highly conserved region stabilized by two disulfide bonds, but it
captures RSV G in a conformation not previously observed, revealing that this region
is both structured and flexible. Importantly, our findings provide insight for the de-
sign of vaccines that elicit diverse antibodies, which may provide broad protection
from infection and disease.

KEYWORDS X-ray crystallography, broadly neutralizing antibodies, protein structure-
function, respiratory syncytial virus

Respiratory syncytial virus (RSV) is a globally prevalent virus that affects the airways
and lungs. Infants and young children are at the highest risk of severe outcomes

from RSV infection, with 33.1 million episodes of lower respiratory tract infection and
approximately 3.2 million hospital visits and 118,200 deaths per year worldwide in
children under the age of 5 years due to RSV (1). RSV is also a major cause of illness in
adults older than 65 years of age and immunocompromised individuals, with an
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estimated 14,000 deaths per year in the United States (2). Hospitalization due to RSV is
a major economic burden, especially in preterm infants and older adults (3).

Currently, no licensed vaccine exists for the prevention of RSV infection, making RSV
one of the highest-burden diseases with no readily available preventative measure. The
only FDA-approved therapy for RSV is passive prophylaxis with palivizumab (Synagis),
a monoclonal antibody (mAb) that reduces disease severity and hospitalization (4).
Palivizumab’s approved use is limited to high-risk premature-birth infants; moreover,
the high cost, approximately $10,000 for a full course of therapy, limits use even in that
narrow indication (5). The need for widely available vaccines and therapies for RSV is
evidenced by the 19 vaccine candidates and therapeutic monoclonal antibodies in
clinical trials (6).

RSV is a negative-sense single-stranded RNA virus with two major glycoproteins on
the virion surface: the attachment glycoprotein (G) and the fusion glycoprotein (F) (7).
RSV G is responsible for cellular attachment to host cells, and RSV F causes the viral
membrane to fuse with the target host cell membrane. While both RSV F and G are
immunogenic and are targeted by neutralizing antibodies, the majority of neutralizing
antibodies in human sera target RSV F (8, 9). As such, most RSV vaccine candidates and
therapeutic antibodies currently in development focus on RSV F. However, RSV that
does not express the G protein is highly attenuated in vivo (10), and monoclonal
antibodies that target RSV G are protective in vivo (11–21). In humans, anti-G antibodies
are associated with lower clinical disease severity scores, despite an abundance in sera
more than 30 times lower than anti-F antibodies (8). Thus, the RSV G protein is
increasingly recognized as an important target for RSV vaccine and therapeutic anti-
body development (22).

RSV G is a type II membrane protein containing two mucin-like regions coated with
30 to 40 O-linked glycans and 3 to 5 N-linked glycans (Fig. 1A) (7, 23, 24). There are two
forms of RSV G produced during infection. Membrane-bound RSV G is responsible for
virus attachment to airway epithelial cells via the human chemokine receptor CX3CR1
(25–28). A secreted form of RSV G, derived from a second translation initiation site at
Met48 and released from the membrane by proteolysis, is expressed early in infection
(first �6 h, prior to the release of virions at �12 h) (Fig. 1A) (29). Secreted RSV G
modulates signaling and trafficking of CX3CR1� immune cells, contributing to airway
congestion and pathogenesis (26, 27, 30–33). Between the two mucin-like regions of
RSV G is a central conserved domain (CCD) of �40 highly conserved amino acids,
including 4 invariant cysteines forming a cysteine noose motif with two disulfide bonds
(1-4, 2-3 connectivity) (Fig. 1A) (34–36). While the C terminus of the RSV G CCD
possesses a heparin binding domain (Fig. 1A) (37, 38), initial RSV infection is thought to
be mediated primarily by interactions between the RSV G CCD and CX3CR1 on ciliated
airway cells (25–28), which do not have measurable heparan sulfate proteoglycans on
their surfaces (39).

Broadly neutralizing monoclonal antibodies (bnmAbs) that target RSV G are able to
neutralize RSV infectivity in cell culture, including in human airway epithelial (HAE) cells,
and significantly reduce RSV viral loads and disease in both prophylactic and postin-
fection animal models (12, 14–16, 21, 25, 28, 40, 41). In addition, treatment with
anti-RSV G mAbs reduces bronchoalveolar lavage (BAL) fluid cell influx, including RSV
G protein-induced leukocyte migration and eosinophilic inflammatory responses, re-
sulting in decreased airway congestion (15, 33, 42). Anti-G mAbs have also been shown
to reduce mucus production and to restore beneficial antiviral alpha interferon (IFN-�)
(18, 42–44). Most of the anti-G bnmAbs that have been studied to date bind with high
affinity to RSV G (KD [binding dissociation constant] � 1.1 pM to 3.3 nM) and bind to
linear epitopes within the RSV G CCD as determined by linear epitope mapping
techniques (17, 21, 40, 45). Recently, two studies elucidated four high-resolution crystal
structures of antibody-RSV G CCD complexes (16, 46). Unexpectedly, all four antibodies
have additional interactions outside their linear epitopes, revealing a previously unap-
preciated role of the disulfide-stabilized cysteine noose in forming conformational
epitopes and contributing to high-affinity antibody binding.
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Here, we investigated the human bnmAb 3G12, which reduces viral loads, airway
hyperresponsiveness, and inflammation in both prophylactic and postinfection mouse
models of RSV infection (12, 21). Linear epitope mapping experiments have shown that
bnmAb 3G12 binds to RSV G CCD residues 167 to 176, which is shifted downstream
compared to other anti-G bnmAbs in the panel that bind primarily RSV G residues 162
to 169 (12, 21). We hypothesized that structural studies into the 3G12 epitope might
reveal additional information about the mechanisms of high-affinity antibody binding
and broad neutralization against RSV A and B strains. We present here the structure of
antibody 3G12 bound to the RSV G CCD, which reveals a novel conformational epitope
composed of highly conserved residues. Comparison to other structures highlights the
flexible nature of the RSV G CCD. We furthermore show that RSV G flexibility is
important for binding by antibody 3G12. Overall, these studies have broad implications
for vaccine antigen design. The studies highlight the importance of preserving antigen

FIG 1 Crystal structure of the Fab 3G12-RSV G157–197 complex. (A) Schematic of the RSV G glycoprotein from RSV strain A2,
including the transmembrane region (TM), the CCD, the cysteine noose (Cys noose), and the heparin binding domain (HBD).
Met48 is the alternate initiation site for the production of soluble RSV G. Predicted N- and O-linked glycans are shown by
red “Y’s” and blue “O’s,” respectively. Below is a sequence logo of residues 160 to 197 of the RSV G CCD, revealing sequence
conservation across strains RSV A, RSV B, RSV L, and RSV 1 to 8. (B) Overall views of the antibody 3G12 heavy chain (dark
gray) and light chain (light gray) bound to RSV G157–197 (cyan, with disulfides in yellow). (C) Detailed views of interactions
of antibody 3G12 with the RSV G CCD, with the same viewpoints as in panel B. Hydrogen bonds are shown as dashes. Heavy
chain complementarity-determining regions (HCDR1 to -3) and light chain complementarity-determining regions (LCDR1
and -3) are labeled.
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structural integrity and also maintaining flexibility in antigenic sites, in order to elicit a
diverse antibody response.

RESULTS
Fab 3G12-RSV G157–197 complex structure. We investigated bnmAb 3G12, a native

human antibody that binds RSV G with high affinity, with a KD of 579 pM. Antibody
3G12 shows broadly neutralizing activity across diverse laboratory and clinical RSV
strains (21). To understand the molecular basis for the broad reactivity of bnmAb 3G12
and to determine if it binds to a larger conformational epitope beyond that predicted
by linear epitope mapping, we used X-ray crystallographic studies to determine the
structure of bnmAb 3G12 bound to the RSV G CCD (Fig. 1A). Purified antigen binding
fragment (Fab) 3G12 was mixed with recombinant RSV G157–197, which formed a stable
complex in solution. We crystallized the Fab 3G12-RSV G157–197 complex and deter-
mined its crystal structure to a 2.9-Å resolution (Fig. 1B and C and Table 1).

The Fab 3G12-RSV G157–197 complex structure reveals a 924-Å2 epitope on the RSV
G CCD, with the 3G12 heavy chain burying 697 Å2 and the light chain burying 227 Å2

of the epitope (Fig. 1B). Similar to RSV G-antibody structures determined previously (16,
46), antibody 3G12 binds to a conformational epitope comprising RSV G residues 160
to 179, 182, and 189, revealing additional interactions beyond the linear epitope
residues 167 to 176 (Fig. 1). Epitope residues are invariant or highly conserved (Fig. 1A),

TABLE 1 Crystallographic data collection and refinement statistics

Parameter Value(s) for Fab 3G12-RSV G157–197b

PDB accession no. 6UVO

Data collection statisticsa

Space group P3121
Cell dimensions

a, b, c (Å) 139.33, 139.33, 94.77
�, �, � (°) 90, 90, 120

Resolution (Å) 74.53–2.90 (3.00–2.90)
Total no. of reflections 93,208 (14,475)
No. of unique reflections 23,682 (3,763)
Rmerge

c 0.097 (0.641)
I/�(I) 9.4 (1.9)
Completeness (%) 99.5 (99.5)
Redundancy 3.9 (3.8)
CC1/2

d 0.993 (0.601)

Refinement statistics
Resolution (Å) 74.53–2.90
No. of reflections 23,665
Rwork/Rfree

e 0.193/0.209
No. of atoms

Protein 3,595
Ligand/ion 0
Water 0

B-factors (Å2)
Protein: bnmAb 62
Protein: RSV G 76
Ligand/ion 0

RMSD
Bond lengths (Å) 0.015
Bond angles (°) 2.067

Ramachandran plot (%)
Favored regions 95.7
Allowed regions 4.3
Outliers 0

aData from one crystal were used.
bValues in parentheses are for the highest-resolution shell.
cRmerge � �|(I � �I�)|/�(I), where I is the observed intensity.
dCC1/2 is the Pearson correlation coefficient between random half-data sets.
eRwork � ��Fo| � |Fc�/�|Fo| for all data except 5%, which were used for Rfree calculation.
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explaining the broad reactivity of bnmAb 3G12 for diverse RSV strains. The 3G12 heavy
chain complementarity-determining regions (HCDRs) account for the majority of
the interactions and buried surface with the RSV G CCD, with HCDR2 burying the
largest portion, 315 Å2, and HCDR3 accounting for 284 Å2 (Fig. 1C). On the light
chain complementarity-determining regions (LCDRs), LCDR3 buries 169.5 Å2 on the
N-terminal end of the RSV G CCD, while LCDR1 and the Fab 3G12 N-terminal residues
form additional minor interactions (Fig. 1C). 3G12 heavy chain CDR2 stabilizes residues
167 to 170 of RSV G by several hydrogen bonds and van der Waals interactions (Fig. 1C).
In addition, residues from all three of the HCDRs from bnmAb 3G12 stabilize hydro-
phobic interactions with RSV G residues F163, F165, F168, F170, P172, and I175, forming
a hydrophobic core-like region within the antibody 3G12-RSV G complex (Fig. 1C).
Interestingly, the helix on the C-terminal end of the cysteine noose, which encompasses
the CX3C motif (residues 180 to 186), has almost no interactions with antibody 3G12,
unlike other antibody-RSV G CCD structures where this helix has a role in antibody
binding (Fig. 1C and Fig. 2).

RSV G CCD epitopes and conformational flexibility. To better understand the
conformational flexibility in the RSV G CCD, all known structures of the CCD bound by
antibodies were compared (Fig. 2). The structures were aligned at the cysteine noose
region (residues �170 to 187), which has a root mean square deviation (RMSD) of
	0.6 Å across all structures. The region N terminal to the cysteine noose (residues �160
to 169) adopts a different conformation in each structure (RMSD of 3 to 5 Å) and varies
in secondary structural elements (i.e., it forms a helix when bound to antibody 3D3 and
forms a strand when bound to antibody CB002.5) (Fig. 2). RSV G residue N169 appears
to be flexible across all of the structures and may be one of the last ordered residues
in the N-terminal region of the CCD. Similarly, the C-terminal region after K187 may be
flexible and capable of adopting multiple conformations (Fig. 2). These C-terminal RSV
G CCD residues are present in most of the complexes but do not have visible electron
density, suggesting that they are dynamic and flexible. Overall, the RSV G CCD cysteine
noose is structurally conserved and is an important structural element for antibody
binding; however, the N- and C-terminal regions of the CCD are flexible and are
captured in different conformations by diverse antibodies.

Role of RSV G flexibility in bnmAb binding. To evaluate the role of RSV G
flexibility in bnmAb binding, we sought to investigate a mutant of RSV G with restricted

FIG 2 Comparison of known RSV G CCD epitopes and structures. Epitope amino acids interacting with antibodies
are colored as follows: blue, 3G12; gold, CB002.5; green, 3D3; magenta, CB017.5; cyan, 2D10. Bottom panels are
rotated 180° around the y axis compared to the top panels. Epitope amino acids were determined by the PDBePISA
server and are indicated below each structure.
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flexibility in its CCD. We chose the F170P mutant, which was previously identified
among neutralization escape mutants of respiratory syncytial virus grown in the
presence of an anti-G monoclonal antibody (47). The F170 side chain contributes only
1.3% of the 3G12 epitope (12 Å2 of the 924 Å2), suggesting that mutation of the side
chain alone would not substantially affect bnmAb 3G12 binding. However, when
bound to bnmAb 3G12, RSV G residue F170 has a Phi torsion angle of �143°, whereas
a typical proline is restricted to a Phi torsion angle of �60°. Thus, we reasoned that the
proline mutation would restrict the flexibility of the RSV G CCD and could affect bnmAb
binding. We produced and purified the wild-type RSV G ectodomain (RSV Gecto) and its
mutant (RSV Gecto F170P) (Fig. 3A). We then evaluated binding by bnmAbs 3G12 and
3D3, which bind to two very different conformations of the RSV G CCD (Fig. 3B). Biolayer
interferometry binding studies reveal that while both bnmAbs bind to wild-type RSV
Gecto with high affinity, bnmAb 3G12, but not 3D3, completely lost binding to the
mutant RSV Gecto F170P (Fig. 3C and Table 2). These data reveal that the mutant RSV
Gecto F170P can adopt the conformation for the 3D3 epitope; however, it cannot adopt
the conformation for the 3G12 epitope.

DISCUSSION

Our study highlights how even disulfide-constrained antigens can have flexible,
dynamic antigenic sites and that different high-affinity antibodies can target these sites
in distinct ways. We describe the crystal structure of the human bnmAb 3G12 bound to
the RSV G CCD and show that bnmAb 3G12 binding is dependent on RSV G flexibility.
The antibody binds to a conformational epitope composed of highly conserved resi-

FIG 3 Differences in bnmAb 3G12 and bnmAb 3D3 binding to RSV Gecto F170P. (A) Coomassie-stained SDS-polyacrylamide gel of RSV Gecto (wild type) and RSV
Gecto F170P (F170P). Molecular weight (MW) ladder values (in kilodaltons) are labeled. (B) Structure of the RSV G CCD when bound to bnmAb 3D3 (top) and
bnmAb 3G12 (bottom). F170 is in red. (C) Biolayer interferometry traces (blue) and curve fits (red) for binding of bnmAb 3D3 (top) and bnmAb 3G12 (bottom)
to RSV Gecto and RSV Gecto F170P. Concentrations of Gecto used for each trace are shown. The vertical red line indicates the transition of the biosensors from
the association step to the dissociation step. Binding on-rates, off-rates, dissociation constants, and curve fit statistics are shown in Table 2.

TABLE 2 Biolayer interferometry binding studiesa

Sample bnmAb Mean KD (pM) (SE) Mean ka (105 M�1 s�1) (SE) Mean kd (10�4 s�1) (SE) R2

RSV Gecto 3D3 202 (
1) 8.73 (
0.02) 1.77 (
0.01) 0.998
RSV Gecto F170P 3D3 264 (
1) 6.23 (
0.01) 1.65 (
0.01) 0.999
RSV Gecto 3G12 423 (
1) 5.27 (
0.01) 2.23 (
0.01) 0.999
RSV Gecto F170P 3G12 NB
aKD, binding dissociation constant; ka, on-rate; kd, off-rate; R2, curve fit statistic; NB, no binding observed. Values in parentheses are standard errors.
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dues, explaining its broad reactivity to diverse strains of RSV. The antibody interacts
mainly with the RSV G CCD’s N-terminal region, in a conformation distinct from those
of all other known CCD structures, suggesting that the RSV G CCD is flexible outside its
rigid disulfide-bonded cysteine noose region. Residue N169 likely represents a “hinge”
residue, where the N-terminal region of the CCD preceding N169 appears to be flexible
and capable of adopting multiple conformations and even secondary structures. Like-
wise, residues after K187 in the C-terminal region of the CCD also appear to be flexible.
Thus, RSV G is part of a growing list of antigens with flexible or intrinsically disordered
regions (IDRs) that are targeted by antibodies (48–56).

The observation of different conformations of the RSV G CCD raises several impor-
tant questions. Does RSV G move freely and randomly, and do our structures reveal
momentary snapshots captured by antibody binding? What conformation does RSV G
adopt when interacting with the human CX3CR1 receptor? We note that none of the
conformations have any substantial tertiary-structure-stabilizing interactions within the
CCD or clearly defined secondary structure. Therefore, it is unlikely that RSV G assumes
distinct conformations without additional external stabilizing interactions. One form of
stabilization may come from the oligomerization state of RSV G. It was previously
suggested that RSV G exists as a trimer or tetramer (57, 58). The extensive glycosylation
of RSV G in the mucin-like regions flanking the CCD may also restrict RSV G flexibility.
It is also possible that RSV G interacts with RSV F on the virus surface, creating a
quaternary structure that may limit RSV G to defined structures like those captured by
the antibodies discussed in this paper. Interestingly, in an RSV virus-like particle vaccine
containing F and G, the conformation of F affected the immunogenicity of G (59). These
factors may be important in the design of an RSV vaccine.

Our study also has important implications for vaccine antigen design in a broader
sense. Recently, there has been a trend to stabilize antigens based on structural
analyses to elicit higher levels of neutralizing antibodies targeting specific epitopes,
e.g., HIV gp120, influenza virus hemagglutinin, Middle East respiratory syndrome
(MERS) coronavirus spike, human parainfluenza virus fusion protein, human metapneu-
movirus fusion protein, and RSV fusion protein (60–71). A common approach to antigen
stabilization in many of the above-mentioned studies involves the introduction of
proline substitutions and disulfide bonds, which can stabilize by limiting polypeptide
backbone mobility. However, antigen overstabilization could limit the diversity of
antibody responses. In support of this concept, we show that limiting the flexibility of
RSV G with a proline mutation abolishes the epitope for the high-affinity bnmAb 3G12.
Thus, when designing stabilized antigens that display specific epitopes, one should also
consider the benefits of preserving the native flexibility of antigenic sites, which may
elicit a more diverse immune response and may offer better protection against virus
escape (Fig. 4). Incorporating antibody repertoire analysis technologies during vaccine
development could provide opportunities to evaluate antibody diversity that is elicited
by stabilized antigens.

FIG 4 Proposed model relating antigenic site flexibility, antibody response diversity for that site, and the
potential for virus neutralization escape at that site.
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MATERIALS AND METHODS
Production of bnmAb 3G12 and Fab 3G12. Recombinant bnmAb 3G12 was produced by transient

transfection in CHO cells and purification by immobilized protein A, as described previously (21, 45). Fab
3G12 was generated by incubation of bnmAb 3G12 with immobilized papain, followed by the removal
of the Fc fragment with immobilized protein A. Fab 3G12 was then purified by Superdex 200 size
exclusion chromatography in a solution containing 10 mM Tris-HCl (pH 8.0) and 150 mM NaCl.

Expression and purification of RSV G157–197. A synthetic gene codon optimized for Escherichia coli
encoding RSV G (strain A2) amino acids 157 to 197 (UniProtKB accession number P03423) with a
C-terminal six-histidine purification tag was cloned into pET52b. Recombinant RSV G157–197 was ex-
pressed overnight in E. coli BL21(DE3) at 18°C. E. coli cells were lysed by ultrasonication in a buffer
containing 20 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 25 mM imidazole (buffer A) with 2 �M MgCl2,
Benzonase, and protease inhibitors. RSV G157–197 was purified from soluble lysates by HisTrap FF affinity
chromatography and eluted with a gradient into buffer B (buffer A containing 500 mM imidazole).

Formation and structure determination of the Fab 3G12-RSV G157–197 complex. Purified RSV
G157–197 was mixed in a 2-fold molar excess with purified Fab 3G12, incubated for 1 h at 4°C, and purified
by Superdex 75 size exclusion chromatography in a solution containing 10 mM Tris-HCl (pH 8.0) and
150 mM NaCl. The Fab 3G12-RSV G157–197 complex was concentrated to 15 mg/ml. Crystals were grown
by hanging-drop vapor diffusion at 22°C with a well solution of 1.8 M ammonium sulfate and 100 mM
sodium acetate trihydrate (pH 4.4). Crystals were transferred into a cryoprotectant solution of 2.0 M
ammonium sulfate, 100 mM sodium acetate trihydrate (pH 4.4), and 25% glycerol and flash-frozen in
liquid nitrogen. Diffraction data were collected at cryogenic temperature at the Advanced Light Source
on beamline 8.3.1 using a wavelength of 1.11503 Å. Diffraction data from a single crystal were processed
with iMosflm (72) and Aimless (73) (Table 1). The Fab 3G12-RSV G157–197 complex structure was solved
by molecular replacement with the Fab under PDB accession number 5K59 and the program PHASER
(74), and the structure was refined and manually rebuilt using PHENIX (75) and Coot (76), respectively
(Table 1).

Expression and purification of RSV Gecto and RSV Gecto F170P. A codon-optimized synthetic gene
encoding RSV G (strain A2) amino acids 64 to 298 (UniProtKB accession number P03423) was cloned into
pCF in frame with an N-terminal CCR5 signal sequence, a C-terminal His tag, and Twin-Strep purification
tags. The F170P mutation was introduced by Phusion site-directed mutagenesis and verified by Sanger
sequencing. Recombinant RSV Gecto and RSV Gecto F170P were produced by transient transfection in
HEK293F cells with Effectene transfection reagent (Qiagen). After 5 days, cell medium was supplemented
with BioLock (IBA) and 20 mM Tris-HCl (pH 8.0) and 0.22-�m filtered. RSV Gecto and RSV Gecto F170P were
batch purified from medium with Strep-Tactin resin (IBA), washed, and eluted with Strep-Tactin elution
buffer (50 mM Tris [pH 8.0], 150 mM NaCl, 1 mM EDTA, 2.5 mM desthiobiotin). RSV Gecto and RSV Gecto

F170P were concentrated and dialyzed into phosphate-buffered saline (PBS) using 10-kDa spin concen-
trators. Protein purity was evaluated by SDS-polyacrylamide gel electrophoresis.

Binding affinity analyses. An Octet RED96e biolayer interferometry instrument was used to evaluate
the binding of bnmAbs 3G12 and 3D3 to RSV Gecto and RSV Gecto F170P. Antibody 3G12 or 3D3 at
1 �g/ml in Octet buffer (phosphate-buffered saline [pH 7.4], 0.05% Tween 20, 1% bovine serum albumin
[BSA]) was loaded onto anti-human IgG Fc capture (AHC) biosensors, and 2-fold serially diluted RSV Gecto

or RSV Gecto F170P, from 40 nM to 0.625 nM, was assessed for binding. Red lines are the fit of global
association and dissociation with a 1:1 model, with at least 5 curves used to determine binding on- and
off-rates and to calculate dissociation constants.

Data availability. Coordinates and structure factors have been deposited in the Protein Data Bank
under accession number 6UVO.
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