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Reply to Referee 1 

We thank referee 1 for his constructive and helpful comments. Here we detail how we have addressed 
these comments in the revised draft of our paper.  

Major points 

[1] In the current draft, the authors still consider T3 and T4 as two not eductively stable cases. This is not 
true, only T4 is not eductively stable. The distinction is even more important now that they found that 
with T4, but not with T3, convergence fails. The authors cannot reject eductive learning when 
convergence occurs in their experiment with T3. Why do they keep talking about T3 as an eductively 
unstable outcome? (pag. 14 "If Hypothesis 1 is rejected...") Do the authors still believe that they can test 
the original Guesnerie's criterion with a continuum of agents in an experiment with three agents? The 
condition in Gaballo (2013) is a generalization of the ones in Guesnerie (1992), and not a different case 
related to a finite number of agents (as they keep saying in the middle of pag. 5 and on top of pag. 11). N 
can be infinite! In the limit of 𝑁𝑁 → ∞ the condition is the same of Guesnerie (1992)! Therefore, to 
experimentally test the eductive learning criterion introduced by Guesnerie (1992), they do not have other 
choice that to refer to the conditions depending on N provided by Gaballo (2013)...unless they have an 
infinitely large lab! 

We agree there was some misunderstanding in the previous version. In the updated version, we discuss 
both Guesnerie (1992) and Gaballo (2013) when discussing the eductive stability conditions and clarify 
that the latter is a generalization of the former as it takes explicit account of the finite number, N, of 
agents in the economy.  In the new draft, T3 is treated as an eductively stable treatment throughout the 
paper.  We also state clearly that in the limit as N → ∞ the condition in Gaballo (2013) is the same as the 
competitive market version in Guesnerie (1992). 

[2] If the authors want to give relevance to the condition alpha =- 2 they can discuss a third possibility, 
that is, agents revise their expectation according to a naive rule. In this case, T1 and T2 only would be 
stable, whereas T3 and T4 unstable. This is different from adaptive learning for which all treatments are 
stable, and also different from eductive learning for which - with three agents - only T4 is unstable. In this 
context, the authors could put naive expectations in relation with Guesnerie's original conditions, but, 
again, they cannot say that convergence in T3 is in contrast with the eductive principle: this is definitely 
wrong! 

Thanks for this suggestion. We have added a brief discussion of naïve expectations in sections 4 and 5.6 
and we now label T3 only as a treatment with strong negative feedback and instability under naive 
expectations.  We also make sure that there is no place in the paper where T3 is referred to as eductively 
stable.   

[3] The authors discuss about the speed of convergence without quoting any theoretical result about the 
speed of convergence in the adaptive learning literature. The authors find that as 𝛼𝛼 decreases the speed 
of convergence increases: is this consistent with the theory? 

Response to Referees



We checked the Evans and Honkapohja (2001) book and there is no direct discussion on the relationship 
between the speed of convergence and the size of 𝛼𝛼 under adaptive learning.  We checked the larger 
literature and found that Marcet and Sargent (1992) report that the convergence speed decreases when 
the absolute value of the coefficient for expectation feedback increases when agents use adaptive 
learning to form expectations on inflation rate. Their results are based simulations.  

Using the cobweb model of our paper, we simulated the case of a single agent using adaptive learning 
who starts from 𝑝𝑝1𝑒𝑒 = 𝑅𝑅𝑅𝑅𝑅𝑅 + 10 for all four values of 𝛼𝛼. The simulation shows that it is indeed the case 
that the number of periods before convergence increases (i.e., convergence speed decreases) as |𝛼𝛼| 
increases if agents are adaptive learners.  The plots from this exercise are show below. 

 

 

Mathematically, if we ignore the noise term and refer to mathematical Appendix C: when an agent starts 
from an arbitrary deviation from the REE, Δ, at each period 𝑡𝑡, his deviation from the REE is 
𝛼𝛼(𝛼𝛼+1)(𝛼𝛼+2)…(𝛼𝛼+𝑡𝑡−2)

1×2×3×…(𝑡𝑡−1)
Δ . This expression reveals that the smaller the absolute value of 𝛼𝛼, the smaller is the 

absolute value of the numerator, and the quicker it goes to 0. We now add a brief one sentence mention 
of this finding to the paper in section 5.2 on p. 27.  We would be happy to elaborate on this analysis as 
shown above if you think it is warranted. 



Minor points 

- There should be a minus on the left hand term of (4). 

Thank you. We corrected that.  

- There are some (very few) typos (like pag. 12 "A noted" instead of "As noted"). The paper is generally 
well written, although some explanations and tables towards the end are less interesting (at least to me); 
some of them are based on quite rough classifications (for example the criterion about convergence that 
generated my concern about pictures 5 and 8 in the previous version). 

We corrected the typo on page 12 and went through the paper again a number of times to check typos. 
We acknowledge that some classifications towards the end are a bit rough when we use self-reported 
data on strategies.  But that is an issue that typically occurs for all experimental data of this type.  We 
think it is worthwhile to include this data as it reveals information about subjects’ self-retrospection, and 
our estimation exercise has greater validity if there is some accord with the self-reported data.   

-The introduction is still 90% motivation and 10% results. Moreover, from the introduction, results appear 
to be more generic than that which they are. The authors need to be more informative and overall 
sharper. The introduction could improve by far. 

Thank you for this perspective.  We have rewritten parts of the introduction to make the questions we 
ask clearer and to give more weight and precision to our major experimental findings. 

Reference 

Marcet, Albert, and Thomas J. Sargent. "Speed of convergence of recursive least squares learning with 
ARMA perceptions." Economics Working Paper of University Pompeu Fabra, (1992). 

 



Reply to Referee3 

We thank referee 1 for his constructive and helpful comments. Here we detail how we have addressed 
these comments in the revised draft of our paper.  

(1) The description of the literature in Section 2 is in general accurate, but two minor points are: 

p4: “First, subjects in all of these prior studies do not precisely know the model of the economy ...” This is 
true for most learning-to-forecast market experiments, but e.g. Sonnemans and Tuinstra (2010) compare 
different treatments with limited as well as complete information. 

p4: “Second, all prior experiments using the cobweb model employ a group design ...” 

This is true for most cobweb experiments, but e.g. Hommes et al. (2000) discuss an individual learning-to-
forecast experiment. 

We replaced “all these works” by “most of these works” in this paragraph, and include the discussion on 
Sonnemans and Tuinstra (2010) and Hommes et al. (2000) in a qualifying footnote.  

(2) p11, Eq. (4): it seems to me that a “-” sign is missing and the Eq. should read 

Thank you. We corrected this typo.  

(3) p18: “it seems that several subjects directly solved for the REE using ”. On which evidence is this 
statement based? 

It was based on two facts. (1) there are a few, though not many subjects who choose option 2 “I make 
calculations based on the value of 𝛼𝛼” in the strategy question in the post experiment questionnaire. (2) 
in one session, a subject commented to the experimenter “this experiment is simple; I can just solve the 
linear equation and then give the same prediction every period” after the experiment was over.  We 
include this anecdote in a footnote on the same page. 

(4) p21, Table 3: For the four different treatments, the REE levels 𝑝𝑝∗ are different with  𝑝𝑝∗ lower for more 
unstable treatments. Might it be that lower price levels are more difficult to learn, is it more asymmetric 
w.r.t. the price interval? Why were these levels chosen differently? An alternative might have been to fix 
the REE level  𝑝𝑝∗ across all treatments. 

In this dimension of the design, we face a trade-off between fixing the intercept 𝜇𝜇 of the expectation 
feedback function or the REE level 𝑝𝑝∗. Given that the intercept 𝜇𝜇 is included in the instructions to provide 
complete information of the economy, we decided to make intercept 𝜇𝜇 the same in all treatments so 
that the instructions are more comparable across treatments –they only vary in terms of α. In addition, if 
we want to have the same REE in all treatments, we would need a much larger 𝜇𝜇, e.g. 𝜇𝜇 = 200 for the 
treatment 𝛼𝛼 = −4. In that case, it would be difficult to set the axes of the different treatments on the 
same scale. Thus, while we acknowledge that the lower REE might be harder to learn, in particular in 
learning to forecast experiments with qualitative instead of quantitative information on the law of 
motion of the economy, we choose to fix  𝜇𝜇 in our experiment to address other concerns.  



(5) The questionnaire to get some information about the use of adaptive versus eductive learning seems 
important, in particular to get insight in any inductive reasoning of subjects. But it might have been 
better to ask open questions, in order not to impose or suggest any strategies to the subjects. Moreover, 
out of the four choices in the questionnaire, two (options 2 and 3) are classified as eductive and only one 
(option 1) as adaptive learning. Might this difference bias the results? 

This is a very good question. Actually, we asked the restricted form multiple choice question partly 
because each of us had prior experience asking open-ended questions. While the data from open-ended 
questions is richer, it is also more likely to have uninformative answers such as “I try to maximize profit” 
or “I used a very wise strategy” (among many other possibilities).  For these reasons we chose to script 
the available answers and have subjects choose which answer best described their behavior. 

In our view, it should be acceptable to assign two options to eductive learning and one to adaptive 
learning. Options 2 and 3 are associated with individual and social versions of eductive learning (or 
individual vs. common knowledge of rationality) respectively. It seemed better to combine them to 
capture all of the eductive learners. To partly compensate for this, we also made the adaptive learning 
option the first option to give it more salience.   

(6) The authors focus on a cobweb model with negative expectations feedback. I wonder what the results 
might be under positive feedback, with 0 < 𝛼𝛼 < 1, particularly for a coefficient close to 1 (near unit root). 
Earlier laboratory experiments have shown that near unit root positive feedback markets do not easily 
converge. But both adaptive learning and eductive learning predict convergence to RE for 0 < 𝛼𝛼 < 1. The 
authors could perhaps briefly discuss this in the concluding section how adaptive versus eductive learning 
would fare in a positive feedback environment. 

We fully agree with the referee’s comment.  It would be interesting to study a version of our model with 
positive feedback, where 0 < 𝛼𝛼 < 1. Previous works, e.g., Hommes et al. (2005, 2008) find that positive 
feedback tends to generate bubbles and crashes in asset prices when the slope coefficient is close to 1.  
A useful future study would redo our analysis with positive feedback and  0 < 𝛼𝛼 < 1 in which case both 
adaptive and eductive learning theories predict convergence to REE. The focus of such studies would be 
on whether adaptive or eductive learning was a better predictor of individual behavior in the positive 
feedback environment.  We include this suggestion for future research in the last paragraph of the 
conclusion.  
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1 Introduction

How do agents learn a rational expectations equilibrium (REE) if they do not initially

find themselves in such an equilibrium? This important, foundational question has

generated a large literature in macroeconomics (see, e.g., surveys by Sargent (1993),

Grandmont (1998), Evans and Honkapohja (2001)). In this paper we focus on two

different but related approaches to addressing this question.

Perhaps the most widely used approach, beginning, e.g., with Bray (1982) is to

suppose that agents are boundedly rational adaptive learners and to ask whether

their use of a given real-time adaptive learning model that allows for a REE as a

possible solution converges in the limit to that REE. An alternative, off-line approach,

originally advocated by Guesnerie (1992, 2002), is to suppose that learning is a mental

process involving collective introspection that takes place in some notional time and

that leads agents to understand and instantly coordinate upon or “educe” the REE

solution.1 Both approaches to learning place restrictions on model parameters under

which learning agents can learn the REE. The restrictions for learnability under

adaptive learning may differ from the restrictions under eductive learning and this

difference serves as one means of identifying the learning process that agents are

using. A second difference between the two learning approaches concerns the speed

of convergence: if agents are adaptive learners who start out with beliefs different

from the REE and if the REE is stable under adaptive learning, then it will generally

take some time before agents’ forecasts converge to the REE value. By contrast, if

agents are eductive learners who understand the model and if the REE is eductively

stable, then agents’ forecasts should instantaneously convergence to the REE value.

A third difference between the two learning approaches is that eductive learning is

an inherently social type of learning as it relies heavily on common knowledge of

the rationality of other actors, whereas adaptive learning does not explicitly consider

the behavior of other agents. The contribution of this paper is that we test the

importance of all of these different features of the two learning approaches using

controlled laboratory experiments with human subjects.

Evans (2001) highlights the differences between the adaptive and eductive ap-

proaches to learning and invites empirical and experimental testing of the different

1These two approaches are also considered as two broad classes for belief formation in a recent

survey of expectations in macroeconomics by Woodford (2013).
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theoretical predictions. Specifically he writes:

“Which is the appropriate way to model economic agents will ultimately

be a matter for empirical and experimental research. It is likely that

the answer depends on the circumstances, for example, in experiments,

on the details of the setting and the types of information provided to

the subjects. A plausible conjecture is that when a model is simple and

transparent as well as eductively stable, agents will coordinate rapidly on

the REE....If a model has no eductively stable REE, but has an REE

that is adaptively stable, then a plausible conjecture is that there will still

be convergence to the REE, at a rate governed by the accumulation of

data....The eductive results provide a caution, however, that coordination

in such cases may not be robust.” (Evans 2001, p. 581 emphasis added).

In this paper we follow up on Evans’s invitation to compare adaptive versus eductive

learning approaches. Indeed, the manner in which agents might go about learning a

rational expectations equilibrium is an important, fundamental yet unresolved issue;

there are many ways to model this learning process and it would be useful to have

a consensus on which approach (or combination of approaches) are more empirically

valid than others.2 Understanding the manner in which agents learn is also important

for policy purposes. For instance, if agents can educe a REE prior to making decisions

via the mental, collective introspective process described by eductive learning, then

policy ineffectiveness propositions that arise under rational expectations may have

full standing. However, if agents instead learn a REE adaptively over time, then

policy interventions may be effective in the short-run in the determination of economic

variables. Thus, the manner in which agents learn is an important empirical question.

Ideally, one would like to address the question of how agents form expectations

using non-experimental field data, but unfortunately, properly incentivized field data

on individual-level expectations are not generally available. Survey evidence, e.g., on

inflationary expectations, consumer confidence, etc. are available, but these data are

not properly incentivized in that constant rewards or, more typically, no reward at

all for participation in such surveys, yield poor incentives to report truthful beliefs.

Even setting such incentive problems aside, to use survey data on expectations one

2Here we focus on just two approaches, but there are several other approaches including Bayesian

learning, evolutionary learning and near-rational (calculation-cost) learning.
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would have to know the precise structure of the economic environment, i.e., the data

generating process in which agents were forming their expectations, knowledge that is

typically unavailable and/or subject to some dispute. For these reasons, a laboratory

experiment offers the better means of collecting data on expectations as truthful

revelation can be properly incentivized (using quadratic loss scoring rules) and the

control of the laboratory allows for precise implementation of the model environment

(data generating process) in which agents’ expectations matter for the realizations of

economic variables.3

We report results from an experiment where subjects form predictions about the

single market price in a simple cobweb economy. The price forecasts determine ac-

tual prices according to an equilibrium reduced form equation of the model which is

known to all subjects. Our main treatment variable is the slope parameter of this

reduced form model, which is also known to subjects. We consider values for this

parameter such that the REE solution is both adaptively and eductively stable and

other parameterizations where the REE solution is adaptively stable but not educ-

tively stable, taking into account the number of agents in the economy. As eductive

stability relies upon common knowledge of rationality, we also vary whether several

agents’ forecasts are aggregated to determine market prices as in an oligopoly setting,

or whether each subject acts as a monopolist so that their own price forecast uniquely

determines the market clearing price.

Our main finding is that support can be found for both types of learning, adaptive

and eductive, in our experimental data. More precisely, we find that prices converge

reliably to the REE in experimental markets where both learning approaches predict

convergence to the REE. Some of these markets converge in the first period as is

consistent with eductive learning, while other markets take many more periods to

converge, as is consistent with adaptive learning. In our treatment where the REE

is learnable under adaptive learning but is not stable under eductive learning, we

find that some markets still converge to the REE within 50 periods but that the

majority of markets fail to converge to REE in this case. This non-convergence

finding only obtains when agents form forecasts as part of a group of agents, as in our

oligopoly setting, and not when they form forecasts independently of others as in our

3See Duffy (2016) for further arguments in support of using laboratory evidence to evaluate

macroeconomic models and assumptions as well as a survey of the literature on experimental macroe-

conomics.
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monopoly setting, and this distinction is consistent with the social learning aspect

of the eductive learning criterion. Finally, looking at individual price forecasts we

find that we can characterize a majority of the subjects in our experiment as either

adaptive or eductive learners, with a roughly equal division between the two types.

The organization of the remainder of paper is as follows: section 2 discusses

related literature, section 3 presents the theoretical model, section 4 discusses the

experimental design and hypotheses, section 5 reports the experimental results, and

section 6 concludes.

2 Related Literature

Our experiment employs a “learning–to–forecast” experimental design (as pioneered

by Marimon and Sunder (1993)), that involves versions of the cobweb market model

with negative feedback (or strategic substitutes). Hommes et al. (2000) provide the

first experimental test of such a cobweb economy, and this study has been followed

up by Sonnemans et al. (2004), Hommes et al. (2007), Heemeijer et al. (2009),

Sonnemans and Tuinstra (2010), Bao et al. (2012, 2013) and Beshears et al. (2013).

Hommes (2011) surveys the literature. The differences between the present study

and those earlier papers are as follows. First, subjects in most of these prior studies

do not precisely know the model of the economy (i.e., the data generating process).

This lack of knowledge makes it impossible for subjects to apply eductive learning as

that type of learning (as demonstrated below) requires full knowledge of the model

thereby enabling introspective reasoning about the proper price forecast. By contrast,

subjects in our experiment are informed about the model economy and so they can in

principle apply eductive learning, or even directly solve for the REE using the perfect

foresight condition. Second, most prior experiments using the cobweb model employ

a group design where both learning and strategic uncertainty can influence the speed

of the convergence to the REE. By contrast, we have both a group (“oligopoly mar-

ket”) treatment and an individual-decision making (“monopoly” market) treatment.

The monopoly treatment rules out strategic uncertainty as a factor and serves as an

important baseline for assessing the extent of rational play among subjects. Third,

all prior learning–to–forecast experiments involving linear cobweb models use a data

generating process for the market price equation that has a coefficient on expected

4



prices, α, that is smaller than 1 in absolute value.4 Finally, we explicitly test re-

strictions on the stability of REE under the two different learning approaches. By

contrast, most of the existing experimental literature on whether and how agents

learn a REE in cobweb economies has been concerned with characterizing the type

distribution of (adaptive) learning behaviors without regard to any stability under

learning criteria, and certainly not a comparison of two different learning criteria, as

we present in this paper.

Since subjects in our experiment are informed that prices are determined as a

function of price forecasts, (i.e., they know the data generating process) our experi-

ment is also related to an experimental literature on “guessing” or “beauty contest”

games (see, e.g., Nagel (1995), Duffy and Nagel (1997), Ho et al. (1998) Grosskopf

and Nagel (2008) among others). In these guessing games, subjects are asked to guess

a number. The winning guess, (which is similar to a market price and which yields

the winner a large prize), is a known function of the average guess (or average opinion

which is similar to the mean price forecast). A main finding from this literature is that

the winning number is initially very far from the rational expectations equilibrium

though it gets closer to that prediction with experience.

In our experiment we consider forecasting by a group of three subjects (in our

“oligopoly” setting) as well as an individual forecasting treatment (our “monopoly”

setting) and we also examine whether our results for the monopoly treatment are

closer to the REE relative to the oligopoly treatment. The winning number in beauty

contest games is typically a linear function, ρ × the mean guess, where ρ ∈ (0, 1)

which is similar to a learning–to–forecast experiment with positive feedback (strategic

complements). There are also some guessing game experiments where ρ ∈ (−1, 0) such

as Sutan and Willinger (2009). The difference between our work and their paper is

that we provide a more detailed description of the model that generates the price

that agents are seeking to forecast and we vary the value of ρ (equivalently, our α)

so as to explore the implications of differing stability results under the adaptive and

eductive approaches to learning. As in a typical macroeconomic model, we also add

4Sonnemans and Tuinstra (2010) compare different treatments with limited as well as complete

information. Hommes et al. (2000) discuss an individual learning-to-forecast experiment. Hommes

et al. 2007 report on a nonlinear cobweb model experiment where |α| > 1 in the REE. However,

none of these studies explicitly tests for differences between adaptive and eductive learning model

predictions.

5



a shock term to the price determination equation, a setup that is not usually found

in beauty contest/guessing games. Our framework could also be readily extended to

a real intertemporal design where these shocks are autocorrelated.

Since we have both monopoly (individual decision-making) and oligopoly (group

decision-making) treatments, our paper is related to experimental studies on oligopoly

markets, for example, Bosch-Doménech and Vriend (2003), Huck et al. (1999), and

Offerman et al. (2002). These oligopoly market experiments use learning–to–optimize

designs where subjects submit a quantity choice directly and price forecasts are not

elicited. By contrast, we ignore quantity choices and focus instead on price forecasts

(expectations) using a learning-to-forecast design.5 Our monopoly versus oligopoly

design is also helpful for investigating the important role played by common knowledge

of rationality in eductive learning. In this respect our paper is related to other

experimental studies exploring the role of common knowledge of rationality in market

settings, for example, the “money illusion” experiments of Fehr and Tyran (2005,

2007, 2008) and the asset market experiments of Akiyama et al. (2012, 2013).

Finally, we note that Gaballo (2013) has generalized Guesnerie’s (1992, 2002)

perfectly competitive market version of the eductive learning criterion to market

settings with an arbitrary but finite number of firms, N > 0, so that the conditions

under which an REE is eductively stable explicitly depends on N . We compare and

contrast Gaballo’s eductive stability conditions with Guesnerie’s eductive stability

conditions in our experimental design and analysis and find that Gaballo’s conditions

matter for convergence to REE and the stability of price forecasts.

5In a learning-to-forecast design, subjects submit a price forecast and a computer program uses

that forecast to optimally determine the subject’s quantity decision. By contrast, in a learning–

to–optimize design, subjects submit a quantity choice directly; their price forecast is not elicited,

though it is implicit in their quantity decision. See Bao et al. (2013) for a comparison of these two

approaches.
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3 Theoretical Model

3.1 Cobweb economy

We consider a simple version of a cobweb model as presented in Evans and Honkapo-

hja (2001) that is based on Bray and Savin (1986). We chose the cobweb model as it

was the model originally used by Muth (1961) to illustrate the notion of a REE. It is

also simple enough to explain to subjects and has the critical feature that expecta-

tions matter for outcomes, here price realizations, while outcomes can in turn matter

for beliefs as subjects interact under the same model environment repeatedly. The

cobweb model is one of demand and supply for a single perishable good and consists

of the two equations:

Dt = a− bpt,

St = cpet + ηt.

Here, D represents demand, S supply, a, b, and c are parameters, which are usually

assumed to be positive, pt is the period t price of the good, pet = Et−1[pt], and ηt is a

mean zero supply shock.6

Assuming market clearing, the reduced form equation for prices is given by:

pt = µ+ αpet + νt, (1)

where µ = a
b
, α = − c

b
, and νt = ηt

b
.

The system has a unique rational expectation equilibrium where

pe,∗t =
µ

1− α
and p∗t = pe,∗t + νt. (2)

3.2 Theoretical Predictions

As Evans (2001) shows, the unique REE of this model (2) is stable under adaptive

learning (i.e., it is “learnable”) if α < 1. However, under the eductive learning

6Bray and Savin and Evans and Honkapohja use a somewhat richer model in which the supply

equation, St = cpet + δwt−1 + ηt, where wt−1 is an observable exogenous variable affecting supply,

e.g., weather in period t − 1, that follows a known process (i.i.d. mean 0 or possibly AR(1)). For

simplicity we study the case where δ = 0, but we think it would also be interesting to study cases

with such exogenous forcing variables as well.
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approach, the REE is learnable only if |α| < 1 (See, e.g., Evans (2001) or Evans and

Honkapohja (2001, section 15.4).7 We exploit this difference in stability conditions as

one means of identifying which learning process, adaptive or eductive, characterizes

the price forecasts of our human subjects.

To be more precise about these two learning processes, adaptive learning consists

of a general class of backward looking learning rules that make use of past informa-

tion and the specific type of adaptive learning rule that we consider in this paper

is “least squares learning” which is widely used. In supposing that agents learn in

this particular adaptive fashion, we assume that they do not know or they ignore

any information about the price determination equations of the economy. Instead,

they start out by choosing a random prediction for the price in period 1, pe1. The

adaptive agents’ “perceived law of motion” for the price at time t is that it is equal to

some constant, a, plus noise, εt, i.e., pet = a+ εt, which has the same functional form

as the REE solution. Given this perceived law of motion and the assumption that

the adaptive agents are least squares learners, it follows that, in each period t > 1,

an agent’s price forecast is equal to the sample average of all past prices given the

available history:

pet =
1

t− 1

t−1∑
s=1

ps. (3)

Evans and Honkapohja (2001, section 2.3 and 2.4 for a simple linear case with an

additional exogenous variable) provide a general proof, based on matrix operations, as

to why the REE in this simple cobweb system is learnable via adaptive, least squares

learning provided that α < 1.8 For readers without prior knowledge about adaptive

learning to capture the idea of this modeling approach, we provide an alternative

proof for the non-stochastic version of this model (namely, ignoring the noise term νt

since it has mean zero and small variance) based on mathematical induction in the

7We recognize that other learning approaches may impose different restrictions on the parameters

of the cobweb economy to ensure converge to the REE. For example, Hommes and Wagener (2010)

find that when agents use the evolutionary learning model of Brock and Hommes (1997), the market

price may converge to a locally stable two cycle when α ∈ [ 12 , 1].
8See also Evans and Honkapohja (2001), p. 149 for a more sophisticated non-stochastic non-

linear negative feedback model with decreasing gain in the multivariate case based on Evans and

Honkapohja, (2000).
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Appendix.

For the experiment we parameterized the cobweb model as follows. We set µ = 60

and νt ∼ N(0, 1). We drew the sequence of random shocks, {νt} just once and then

used the same shock sequence in all of our experimental sessions. Thus, µ and {νt}
are the same in all of our experimental sessions. We consider four different values for

the parameter α, which serves as the primary treatment variable in our experiment.

Specifically, our four treatment values for α are T1 : α = −0.5, T2 : α = −0.9,

T3 : α = −2 and T4 : α = −4. The REE price predictions associated with these

four different choices for α are T1 : pe,∗ = 40, T2 : pe,∗ = 31.58, T3 : pe,∗ = 20 and

T4 : pe,∗ = 12, respectively. The rationale for these different values for α has to do

with differing predictions for the stability of the REE under the two different learning

approaches.

Eductive learning has two versions, the basic, single-dimensional version found in

Guesnerie (1992) and a more general, multi-dimensional version in Guesnerie (2002).

Eductive learning is based on iterated elimination of strategies that are never best

responses, in our case, the elimination of unlikely price forecasts.9 This iteration

occurs in a competitive market environment where each individual producer has no

market power (therefore, the rational expectations equilibrium corresponds to the

competitive equilibrium). Each producer has perfect individual rationality, namely,

each producer can perfectly solve for the rational expectations equilibrium of the

system, and common knowledge of such rationality by other producers is also as-

sumed.10 The eductive learning model describes the learning process by which agents

iteratively eliminate non-rationalizable strategies (price forecasts) from their strategy

space. If this process leads to elimination of all other strategies aside from predicting

the rational expectations equilibrium, then the rational expectations equilibrium is

said to be eductively stable. We would like to emphasize that in this sense, eductive

learning is a social learning process (Vriend, 2000) as the agents’ learning behavior

is also conditioned upon others’ decisions, while adaptive learning is essentially an

individual learning process where agents learn from the history of the realized market

9Eductive learning is the counterpart of rationalizability (Bernheim 1984, Pearce 1984) in games.
10We acknowledge that the ability of agents to solve the REE from equation (1) is not explicitly

included as a part of individual rationality as defined by Guesnerie (1992) on page 1257. But

immediately after that, on page 1258, Guesnerie makes the comment that the rational expectations

equilibrium is also the unique Nash Equilibrium of the game. Therefore, the subjects should be able

to find the REE/Nash Equilibrium by solving the game as if they are perfectly rational.
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price and interact with other agents only indirectly.

In this paper, we focus on the single-dimensional version of eductive learning as

in Guesnerie (1992) since our cobweb model is a simple, one product market. The

eductive learning process works in the following way: in notional period 0, each agent

knows that it is rational to forecast pt = µ
1−α . Further, since all agents know the

data generating process, pt = µ + αpet , that prices should be non-negative and that

α = − c
b
< 0, it follows that agents can logically rule out the possibility that any

other agent would forecast prices greater than µ11, and so it can be regarded as

common knowledge that no one is going to forecast pt > µ. In notional period 1,

knowing that no one is going to make a price forecast that is larger than µ, and

substituting this constraint into the price equation, pt = µ + αpet , agents should all

infer that no one will forecast prices lower than µ + αµ = (1 + α)µ. In notional

period 2, using the same reasoning, agents can rule out price forecasts greater than

µ + α(µ + αµ) = (1 + α + α2)µ, etc. More generally, in notional period t, the new

forecast boundary created by this iterative process will be (1 + α + α2 + ... + αt)µ.

If |α| < 1, this process will tighten the interval range of possible price forecasts to

a single point, the REE. When |α| < 1, in the limit, the two boundaries become a

single point, limt→∞
∑t

s=1 α
sµ = µ

1−α . This iterative, notional time eductive learning

process is illustrated in Figure 1. By contrast, when α < −1, agents cannot rule out

any price forecasts starting from notional period 1, because µ + αµ < 0. Hence, in

the case where α < −1, the REE is not eductively stable, though as noted earlier,

it is stable under the adaptive learning dynamics. This difference in the criteria for

convergence to REE is the main hypothesis that our experiment addresses.

Thus far, our theoretical conditions for stability under eductive learning are de-

rived under the perfectly competitive market model of Guesnerie (1992), which pre-

sumes that all firms are atomistic and have no market power. However, since it is

not possible to host infinitely many producers in the lab, we should also consider how

the finite number of firms in our oligopoly treatment matters for the stability of REE

under eductive learning. Recently, Gaballo (2013) has derived a generalized version

of the eductive stability condition that can be used for the oligopoly cobweb market

11Since the literature on eductive learning typically assumes that α < 0 as the starting point,

when we prove that the REE is not eductively stable when |α| > 1, we only focus on α < −1, case

because the α > 1 case is already ruled out by the assumption that α < 0.
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The Iterative Process of Eductive Learning in Notional Periods 

Figure 1: An illustration of the iterative process in notional time under eductive

learning. The process creates a boundary, Bt, in notional time period t, and excludes

numbers that are larger/smaller than this boundary in even/odd notional periods.

When |α| < 1 the boundaries move closer to each other with each iteration so that

the interval eventually tightens to a single point, i.e., limt→∞
∑t

s=1 α
sµ = µ

1−α .

model with a finite number N > 0 of firms. This condition is:

− N

N − 2
< αN < 1. (4)

Here αN refers to the expectation feedback coefficient in the price generation function

when there are N firms (by contrast with α for the perfectly competitive version of the

same model). Notice that in the limit, as N →∞, this condition becomes exactly the

same as the competitive market version of Guesnerie (1992). According to Gaballo’s

criteria, our oligopoly T3 treatment, where N = 3 and α = −2 is eductively stable

since −2 ∈ [−3, 1]. To address whether the finiteness of the firm population size

matters for our experimental findings, we added treatment T4 where α = −4 as a

robustness check.12 With N = 3 and α = −4, Gaballo’s criterion for eductive stability

is not satisfied. If oligopoly markets (with N = 3) converge to the REE in treatment

T4, that finding would serve as strong evidence in favor of adaptive over eductive

learning. In this paper, we will use the condition defined in (4) as the condition for

eductive stability.

We note that there is another type of stability condition, namely stability under

näıve expectations, where pet = pt−1. This näıve view of expectation formation pre-

dicts that the REE will be stable or unstable depending on whether |α| < 1 or |α|¿1.13

12We thank a referee who recommended us to run this additional treatment.
13For example, when α = −2, näıve expectations results in convergence to an oscillatory two
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While näıve expectations is not the focus of our study, it also predicts differences in

the stability of the REE between our treatments T1-T2 and T3-T4. Later, in section

5.6, we check whether subjects are behaving in this näıve manner and find little evi-

dence for näıve expectations, but we mention this possibility here as a further way of

distinguishing between the predictions of our various experimental treatments.

As noted above, our primary treatment variable is α, which takes on four different

values {−.5,−.9,−2,−4} in our experiment. As a second treatment variable, we also

differentiate between monopoly and oligopoly markets. In the oligopoly treatment

there are N = 3 firms forming price forecasts in each market while in the monopoly

treatment there is a single firm forming price forecasts in each market. Since educ-

tive learning is a social learning process, only the oligopoly market design provides

an environment where both adaptive learning and eductive learning can be properly

implemented. In that case, both learning theories predict that subjects will learn

the REE in treatments T1 (α = −.5) and T2 (α = −.9) and T3 (α = −2), but

under treatment T4 (α = −4) the REE is “learnable” only if agents are adaptive

learners. This is our main hypothesis to be tested. In addition, as a robustness

check on the oligopoly market behavior, we also explore a monopoly market treat-

ment involving individual decision-making. By contrast with the oligopoly design,

in the monopoly design, the REE is learnable under eductive learning in all four

treatments, since eductive learning assumes that agents have no difficulty solving for

the REE by themselves. In other words, the predictions of the two learning models

diverge only in the oligopoly T4 treatment. Finally, we also consider differences in the

speed of convergence to the REE; when an REE is stable under eductive learning,

convergence should, in principle, be instantaneous while under adaptive learning, it

can take several periods for the economy to converge to the REE depending on initial

price forecasts.

4 Experimental Design and Hypotheses

We employ a 4 × 2 experimental design where the treatment variables are (1) the

four different values of the slope coefficient, α, and (2) the number of subjects in

one experimental market: either just one subject–the “monopoly” market case or

period cycle where prices alternate between 0 and 60.
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three subjects–the “oligopoly” market case. The monopoly versus oligopoly design is

helpful for investigating the role of strategic uncertainty in decision-making. Eductive

learning assumes first that agents are perfectly rational, i.e., that they can perfectly

solve for the REE when they have complete information about the model (as in our

design) and second, that there is common knowledge of rationality, namely, that each

player knows the other players are rational, each knows that the others know that they

are rational and so on. In monopoly markets, common knowledge of rationality is not

an issue since the single agent faces no uncertainty about his own level of rationality.

Deviations from REE in the monopoly market are violations of the assumption of

individual rationality. However, since individual rationality is a precondition for

common knowledge of rationality, the extent to which deviations from individual

rationality arise in the monopoly markets is useful for understanding behavior in the

oligopoly markets where common knowledge of rationality plays a critical role. If there

is some doubt as to whether other market participants can form rational expectation

forecasts, as evidenced by monopoly market forecasts that are not immediately equal

to REE values, then forecasting the REE price in the oligopoly setting may no longer

be a best response. If it takes some time for subjects to learn the REE in the monopoly

setting, then it should take at least as much time or longer for subjects to learn the

REE in the oligopoly setting, as group members would first have to establish that

there was common knowledge of rationality.

As noted earlier, our four treatment values for α are as follows:

Treatment 1 (T1): weak negative feedback treatment, α = −0.5. The REE of

this treatment is stable under both adaptive and eductive learning, as well as

when agents use näıve expectations.

Treatment 2 (T2): medium negative feedback treatment, α = −0.9. The REE

of this treatment is stable under both adaptive and eductive learning, as well

as when agents use näıve expectations.

Treatment 3 (T3): strong negative feedback treatment, α = −2. The REE

of this treatment is stable under both adaptive and eductive learning, but not

stable when agents use näıve expectations.

Treatment 4 (T4): very strong negative feedback treatment, α = −4. The REE

of this treatment is stable only under adaptive learning, but not stable under

13



eductive learning or when agents use näıve expectations.

Our experiment makes use of a learning to forecast (“LtFE”) experimental design.

Subjects play the role of an advisor who makes price forecasts only. In our monopoly

treatment, each market consists of a single forecaster. The time t price forecast of

subject i, pei,t, determines the price forecast for that market, i.e., pet = pei,t which

is then used to determine the actual market price, pt, for that monopoly market

according to equation (1). By contrast, in the oligopoly treatment, each market

involves three forecasters. We use the mean of the three subjects’ individual price

forecasts for period t as the market price forecast for period t, i.e., pet = 1
3

∑3
i=1 p

e
i,t,

which is then used to determine the actual market price, pt, for each oligopoly market,

again according to equation (1). In both treatments, subjects are paid according to

the accuracy of their own price forecast and are thus incentivized to provide good

price forecasts. Since subjects are paid according to their forecast accuracy and not

according to the profit from their production decision, they have no incentive to

take their market power into consideration. Under our incentive system, predicting

the REE (competitive equilibrium) is the only Nash Equilibrium of the prediction

game, where the forecasting error is minimized, and the payoff is maximized for every

subject in the same market. Thus, the atomistic assumption underlying Guesnerie’s

eductive stability condition may not be unreasonable in our setting. If subjects were

instead paid according to the profit their firm earned, they might have an incentive to

play the Cournot-Nash equilibrium, or the collusive equilibrium, which are different

from the competitive market settings that are typically used in both the adaptive and

eductive learning literatures.

An important issue is how to allow for eductive learning, which is an off–line,

notional time concept. It is not clear how to capture or measure this type of learning

in real time. Here we focus on the stability differences as pointed out by Evans (2001)

as our main test of whether agents are eductive or adaptive learners. Nevertheless, we

wanted to be sure that subjects understood the model and had sufficient time for the

introspective reasoning required under eductive learning. Under adaptive learning,

there is no assumption that agents know the model while under eductive learning it is

assumed that agents do know the model. What we have chosen to do is to fully inform

subjects about the model, in particular about the price determination equation, (1)

– see the written experimental instructions in the Appendix for the details on how

this information was presented to subjects. Thus the agents in our model have more
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information than is typically assumed under adaptive learning specifications, but at

the same time, they have all the information they need to be eductive learners. We felt

that, in order to put the two learning approaches on an equal footing for comparison

purposes we would have to eliminate any informational differences between the two

learning approaches, which could serve as a confounding factor in our analysis. Thus

we provide subjects with complete and common information about the model across

all of our six treatments. Further, we did not impose any time limits on subjects’

decision-making so as not to limit the type of introspective reasoning associated with

the eductive approach. Indeed, we captured subjects’ decision time as a variable in

order to better understand whether there were any differences in decision time across

treatments T1−T4, or between individuals and groups in our monopoly and oligopoly

treatments.

4.1 Hypotheses

Based on the theoretical analysis of the section 3, we formulate the following testable

hypotheses. The underlying prior is that agents are adaptive learners, and so the

results favor eductive learning if the hypotheses are rejected.

Hypothesis 1. The market price and price expectations in all treatments converge

to the unique rational expectation equilibrium given in (2).

As in section 2, both adaptive and eductive learning theories predict that market

price forecasts and market prices will converge to the REE in treatments T1−T3. In

treatments T4, the REE is learnable under adaptive learning. It is learnable under

eductive learning in the monopoly design but not in the oligopoly design for the

competitive version of eductive learning. If Hypothesis 1 is rejected, and forecasts

and prices do not converge to the REE in treatment T4, the experimental results

favor eductive learning over adaptive learning.

Hypothesis 2. Given that the market price and price expectations converge to the

REE, convergence never takes place in the first period of the experiment.

Since convergence under adaptive learning takes place more gradually and in real

time while eductive learning happens in notional time, convergence should take place
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in the first real period that is incentivized for monetary payment if agents are eductive

learners, or after a few periods if agents use adaptive learning and depending on initial

conditions. If Hypothesis 2 is rejected, the experimental results favor eductive learning

over adaptive learning.

Hypothesis 3. Agents spend no more time in making their decisions in each period

of treatment T4 as compared with each period of treatments T1− T3 in the oligopoly

design.

Since eductive learning can involve considerable introspective reasoning in notional

time, which we take to be the period prior to the first incentivized market forecasting

period, it may require more time for agents to reach a decision. In particular, the

REE is predicted to be more difficult to learn under eductive learning in treatment

T4 as compared with treatments T1−T3 in the oligopoly design. Since decision time

is a typical measure of the cognitive cost to agents of decision-making, if Hypothesis 3

is rejected, it suggests that making a decision in treatment T4 is indeed more difficult

than in treatments T1− T3, and the results would thus favor eductive learning over

adaptive learning.

4.2 Number of Observations

The experimental data was collected in a number of sessions run at the CREED

Lab of the University of Amsterdam. Subjects had no prior experience with our

experimental design and were not allowed to participate in more than a single session

of our experiment. Each session consisted of 50 periods over which the treatment

parameters for that session were held constant (i.e., we used a “between subjects”

experimental design). Table 1 provides a summary of the number of subjects or

markets (independent observations) for each of our six treatments. Note that in the

monopoly treatment, each subject acted alone in a single market, so the number of

subjects equals the number of independent observations (markets) in that setting. By

contrast, in the oligopoly treatment, each market consisted of three firms (subjects),

so while we have more subjects in our oligopoly treatments, we nevertheless have

fewer 3-firm markets (independent observations) for the oligopoly treatments. Each

session averaged about 1 hour and 10 minutes in duration. The average payoff was

21.9 euros across all four monopoly treatments and 18.8 euros across all four oligopoly
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Treatment Monopoly Oligopoly Total No.

Conditions No. Markets /Subjects No. Markets / Subjects Subjects

T1 14 / 14 10 / 30 44

T2 12 / 12 10 / 30 42

T3 13 / 13 11 / 33 46

T4 14 / 14 10 / 30 44

Totals 53 / 53 41 / 123 176

Table 1: Number of Markets (Independent Observations) and Subjects in the eight

Treatments of the Experiment

treatments.

4.3 Computer Screen

Figure 2 shows the computer screen we developed for the experiment in the treatment

where α = −0.5. Subjects were asked to enter a forecast number in the box and

then to click “send” to submit their forecast in each period. Since the price and

price expectation were restricted to be non-negative, the range of possible prices

should be [0, 60] according to equation (1).14 However, restricting the price forecast

range to [0, 60] would be equivalent to directly imposing the first step in the eductive

learning process. Therefore, we restricted the price forecast range to [0, 100] in the

experiment, which is less suggestive. The subjects are told in the instructions that

neither the price nor their price predictions can be negative. The upper forecast

bound of 100 was not indicated in the written instructions, but subjects would see

a pop-up window indicating that a forecast larger than 100 is not allowed if they

attempted to submit a price forecast that was greater than 100. Notice that the

computer decision screen presented subjects with information and graphs of past

prices, their own prior price forecasts as well as realizations of shocks. The screen

was refreshed with updated information once all subjects had submitted forecasts

and the market price was determined. Notice further that at the top of the decision

screen, the price determination equation (1) with the treatment specific value of α

was always available for subjects to view and it appeared next to the input box where

14If pet > 0 and given that α < 0 it follows that pt = 60 + αpet < 60.
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they were asked to submit their price prediction in each period.

Figure 2: The computer decision screen used in the experiment for the treatment

where α = −0.5 and the subject is a monopolist in the market. Note: the price

and price expectations shown in this figure are random inputs by the authors for

illustration purposes and are not taken from any experimental data.

4.4 Payoff Function

The period payoff function for subjects (in points) is a decreasing quadratic function

of their market price prediction error, and was given by:

Payoff for subject i’s forecast in period t = max

[
1300− 1300

49
(pt − pei,t)2, 0

]
. (5)

This payoff function was carefully explained to subjects in the written instructions.

Notice that subjects earn 0 points if their own, individual price forecast error is greater

than 7 and they earn a maximum of 1300 points for a perfect forecast. Subjects’ point

totals from all 50 periods were converted into to euros at the end of each session at

a known and fixed rate of 1 euro for every 2600 points. Thus, over 50 periods, each

subject’s maximum earnings were (1300×50) / 2600 = 25 euros.
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5 Experimental Results

5.1 Market Dynamics

5.1.1 Monopoly Markets

Figure 3 plots the average price expectation (forecast) against the respective REE

price expectation using data from all markets (individual observations) of each of the

four monopoly treatments. According the theoretical analysis in Section 3, conver-

gence in terms of the market price or in terms of price expectations are equivalent.

We choose to plot the time path of average price expectations instead of the market

prices to limit the influence of the noise term νt.
15 We observe that the mean price

expectation in all four treatments appears to converge to the REE, although at dif-

ferent speeds (we will quantify this speed of convergence later in section 5.2). The

adjustment towards the REE is observed to be fastest in T1 and slowest in T4.

Figure 4 plots the disaggregated price expectation paths in each individual market

for each of the four monopoly treatments against the respective REE. As this figure

reveals, it may take 25 periods or more for some markets to converge, e.g., treatments

T3− T4, and there are a lot of extreme outcomes, e.g., price forecasts such as 0 and

60. From these results we preliminarily conclude that adaptive learning is correct in

predicting the convergence outcome across all four treatments including treatments

T3-T4, however the time path of convergence for some markets often resembles a

real-time demonstration of the eductive, introspective learning process, in particular,

the dampened cycling of price expectations over time in some markets. Further, if we

look at self-reported strategies from a questionnaire solicited from subjects following

the end of the experiment (as we do later in section 5.6), it seems that several subjects

directly solved for the REE using pe,∗ = µ
1−α , which indicates that those subjects were

applying eductive reasoning. 16

Table 2 reports the mean and variance of price expectations across all markets in

15The results for market prices are thus very similar to the results for market price forecasts, but

due to the noise term, market prices have a higher variance.
16At the end of one experimental session during the payment phase, a subject commented: “this

experiment is simple; I just solve the linear equation and then give the same prediction in every

period.”
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Figure 3: The average expectation against the REE in each of the four treatments of

the monopoly design.
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Figure 4: Disaggregated price expectations against the REE in each individual market

of the four treatments of the monopoly design.
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each of the four monopoly treatments for the entire sample of 50 periods as well as for

the first 25 and the last 25 periods of the sample. Confirming the impression given

in Figures 3-4, we observe that, on average, price forecasts converged to the REE in

each monopoly treatment and that the variance in these forecasts over all 50 periods

was greatest in treatment T3. When attention is restricted to the last 25 rounds, the

variance is greatest for treatment T4.

Periods 1-50 Periods 1-25 Periods 26-50

Treatment REE Mean Variance Mean Variance Mean Variance

α = −0.5 p∗ = 40 40.02 14.18 39.97 28.30 40.07 0.23

α = −0.9 p∗ = 31.58 31.62 10.79 31.65 17.51 31.60 4.51

α = −2.0 p∗ = 20 21.46 90.76 22.88 172.70 20.03 0.13

α = −4.0 p∗ = 12 12.63 28.40 13.17 49.82 12.09 6.48

Table 2: Mean and variance of price expectations in each treatment (α =

−0.5,−0.9,−2,−4) of the monopoly setting.

5.1.2 Oligopoly Markets

Figure 5 plots the average price expectations (forecasts) against the respective REE

price expectation using data from all markets of each of the four oligopoly treatments.

We see that the average price expectation in all four treatments either converges to

the REE or to a neighborhood around the REE although, again, such convergence

happens at different speeds. The adjustment towards the REE is again observed to

be fastest in T1 and slowest in T4.

Figure 6 plots the disaggregated average price expectations for each of the three-

firm markets (independent observations) against the respective REE price for all four

oligopoly treatments. Compared with the monopoly treatment, the convergence to

REE in the oligopoly setting seems to be faster and more reliable in the eductively

stable treatments, T1−T3. By contrast, in the eductively unstable oligopoly market

treatment T4, the volatility of price expectations appears to be greater and more per-

sistent than in the oligopoly T1-T3 treatments or by comparison with the monopoly

T4 treatment. Indeed, 6 of the 10 oligopoly markets in the T4 treatment failed to

converge to the REE within the 50 periods allowed according to our convergence crite-

rion as described in the next section. This finding suggests that the oligopoly market
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setting may facilitate learning when the REE is eductively stable as this environment

aggregates the already near-rational expectations of other agents and may thus speed

up the achievement of common knowledge of rationality. However, when the REE

is not eductively stable so that the REE is not rationalizable, we frequently observe

non-convergence to the REE or greater volatility in market price expectations that

do converge to the REE.
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Figure 5: The average expectation against the REE price when α = −0.5,−0.9, −2

and −4 (from top to bottom) in the oligopoly design.

Table 3 reports the mean and variance of price expectations across all markets of

each of the four oligopoly treatments for the entire 50 period sample and for the first

25 and last 25 periods of the sample. Consistent with Figures 5-6, we observe that, on

average, price expectations converged to the REE prediction for each treatment and

that the variance in price expectations increases with α, with T1 having the lowest

variance at 1.14 over all 50 periods and treatment T4 having the greatest at 77.91

over all 50 periods. These rankings do not change if attention is restricted to the last

25 periods. Note that under adaptive learning, the value of α should not matter for
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Figure 6: Disaggregated average expectations against the REE price when α =

−0.5,−0.9,−2 and −4 (from top to bottom) in the oligopoly design.
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the variance of price expectations while under eductive learning, REE is either stable

or unstable.

Periods 1-50 Periods 1-25 Periods 26-50

Treatment REE Mean Variance Mean Variance Mean Variance

α = −0.5 p∗ = 40 39.90 1.14 39.74 2.18 40.05 0.08

α = −0.9 p∗ = 31.58 31.60 1.61 31.61 2.82 31.58 0.45

α = −2.0 p∗ = 20 20.46 25.01 20.75 44.37 20.19 6.31

α = −4.0 p∗ = 12 13.98 77.91 15.29 97.66 12.67 55.00

Table 3: Mean price and variance of price expectations in each treatment (α =

−0.5,−0.9,−2,−4) of the oligopoly setting.

5.2 Convergence to REE

We declare that convergence to REE occurs in the first period for which the absolute

difference between the (average) price expectation and the REE price prediction is

less than 3 and stays below 3 forever after that period for the remainder of the 50

period market. We choose a threshold of 3 for two reasons: (1) ideally, one would like

to declare convergence only if the price expectation was exactly equal to the REE,

but if such a criteria were used, almost no market would satisfy that criterion so

that it would not be possible to make any distinctions among our treatments; (2)

the threshold should not be so large that it allows for substantial deviations from the

REE. We choose the two sided range [−3,+3] because it is 10% of the rationalizable

price range, [0, 60], and one-sided deviations from REE larger than 3 (5%) of this

range may be regarded as substantial. We further categorize markets according to

whether convergence happens immediately in period 1, or between periods 2 and 5,

between periods 6 and 10, between periods 11 and 20, between periods 21 and 50 or

the market is non-convergent according to our criterion as of the final period 50 (> 50).

In calculating the average number of rounds to convergence, we use the first round

in which convergence occurred according to our criterion, or if convergence did not

occur within the 50 periods of the experiment, we declared the period of convergence

to be period 51. Our tests for treatment differences using this convergence criterion

(as discussed below) do not depend on the latter assumption because all of our tests

are non-parametric so that only rank matters.
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The results from applying our convergence criterion to each market of each treat-

ment are reported in Table 4. In the final rows of this same table we also report the

mean number of periods to convergence over all markets in each treatment as well as

the variance. Table 4 reveals that it takes fewer periods, on average, for price forecasts

to converge to the REE in treatment T1 as compared with treatments T2-T4 for both

the monopoly and oligopoly settings. There is less of a difference in the mean time

to convergence between the T2 and T3 treatments of the monopoly setting, though

convergence is slightly faster on average in T2 than in T3. Surprisingly, the number of

periods before convergence obtains in treatment T4 of the monopoly design is smaller

than in T2 and T3, though it remains larger than for T1.

As for the oligopoly setting, it is clear that as α becomes more negative in moving

from treatments T1-T4, the mean time to convergence steadily increases. A Wilcoxon

Mann-Whitney test on market-level data (independent observations) suggests that the

differences in the mean time to convergence between treatments T1 and either the T2

or T3 treatments is statistically significant at the 5% level for both the monopoly and

oligopoly treatments while the differences in the mean time to convergence between

treatments T2 and T3 is statistically significant at the 5% level for the oligopoly

treatment but not statistically significant for the monopoly treatment. The mean

time to convergence in treatment T4 is not significantly different at the 5% level from

that of all other treatments in the monopoly design, and is significantly different

from all other treatments of the oligopoly design. The mean time to convergence is

smaller in the oligopoly design than in the monopoly design for the eductively stable

treatments (T1 and T2), where the difference is significant at the 5% for T1 but

not for T2, while it is larger in the oligopoly design than in the monopoly design in

treatments T3 and T4, where the differences are significant at the 5% level for both

treatments.

For both the monopoly and oligopoly markets, the variance in the number of

periods before convergence is smallest in treatment T1. In the monopoly market

treatment, the variance in the number of periods required for convergence is larger

in treatment T2 than in treatment T3, but this is due to the random behavior of

just a few subjects in T2 who inexplicably began experimenting with high/low price

predictions after they had converged to the REE for more than 10 periods. For the

oligopoly treatment, the variance in the number of periods required for convergence

is also smallest in treatment T1 and is higher and similar in treatments T2 and
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T3.17 These results generally support the notion that convergence is more difficult

as the absolute value of the coefficient α becomes larger, as larger values of α make

the market more unstable. We have verified, using simulations of adaptive learning

agents (available on request) that the number of periods required for convergence to

the REE is indeed increasing with increases in the value of |α|.

Table 4 also reveals that for all four monopoly market treatments, there is at

least 1 market (and often more) that converges to the REE beginning with the very

first period. As noted earlier, convergence to the REE in the very first period may

be regarded as support for the eductive learning approach. If this eductive learning

criterion is relaxed to allow for convergence within the first 5 periods of the experi-

ment, then more than 60% of all markets in all four monopoly treatments can be said

to be consistent with eductive learning. A similar finding obtains for the eductively

stable treatments, T1-T2, of the oligopoly design. By contrast, in treatments T3 and

T4 of the oligopoly treatment, there are no instances of convergence to the REE in

the very first period of a session and in the T4 oligopoly treatment, 60% of markets

(6/10) failed to satisfy our convergence criterion within the 50 periods allowed by our

experiment. These differences in outcomes between the eductively stable treatments

T1 and T2 and the eductively unstable treatments T3 and T4, suggest that the educ-

tive stability criterion is indeed useful in understanding differences in the behavior of

subjects in our experiment. Furthermore, the significant frequency of non-convergent

outcomes in the T4 oligopoly treatment compared with the T3 oligopoly treatment

(where all markets converged) provides support for Gaballo’s (2013) general eductive

stability requirement based N = 3 firms.

Figure 7 displays cumulative distribution functions (CDFs) of the percentage of

markets in each treatment that have met our convergence criterion by each of the

50 periods of our experiment. For the monopoly treatment (left panel of Figure 7),

these CDFs are closely aligned and intersect one another suggesting that there is not

much difference in the distribution of convergence times across these four monopoly

treatments. Indeed, a non-parametric Kolmogorov-Smirnov test indicates that there

is no significant difference in these distributions at the 5% level for all pairwise com-

parisons of the four monopoly treatments. By stark contrast, in the oligopoly markets

(right panel of Figure 7) it is clear that markets in treatment T1 converge the fastest

17We performed a Siegel-Tukey test and found that none of the differences in variances across

treatments is significant at 10% level.
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Convergence monopoly oligopoly

in period(s) α = −0.5 α = −0.9 α = −2 α = −4 α = −0.5 α = −0.9 α = −2 α = −4

1 21.4% (3) 41.7% (5) 30.8% (4) 7.1% (1) 20.0% (2) 30.0%(3) 0.0% (0) 0.0% (0)

[2, 5] 57.1% (8) 25.0% (3) 30.8% (4) 78.6% (11) 80.0% (8) 60.0%(6) 27.3% (3) 0.0% (0)

[6, 10] 14.3% (2) 16.7% (2) 7.7% (1) 7.1% (1) 0.0% (0) 0.0%(0) 18.2% (2) 0.0% (0)

[11, 20] 0.0% (0) 0.0% (0) 0.0% (0) 7.1% (1) 0.0% (0) 0.0%(0) 18.2% (2) 0.0% (0)

[21, 50] 7.1% (1) 16.7% (2) 30.8% (4) 0.0% (0) 0.0% (0) 10.0%(1) 36.4% (4) 40.0% (4)

> 50 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 0.0%(0) 0.0% (0) 60.0% (6)

Average 4.4 8.2 8.8 5.5 2.1 7.1 17.3 40.9

Variance 29.5 179.8 87.0 47.3 1.1 188.8 289.2 171.7

# Obs 14 12 13 14 10 10 11 10

Table 4: Frequency distribution of the number of periods required for convergence

to the REE in each treatment. Convergence period ranges are given in the left-most

column as bins [ ]. The numbers of observations per bin are indicated in ( ).

followed by treatment T2, then treatment T3 and lastly by treatment T4 where only

40% of markets had satisfied our convergence criterion by the final period 50. A

Kolmogorov-Smirnov test indicates there is no significant difference between the dis-

tribution of periods before convergence in Treatments T1 and T2. However, this same

test indicates that both the oligopoly treatments T3 and T4 are significantly different

from the other treatments (namely, T3 differs from T1, T2, T4, and T4 differs from

T1-T3) at the 5% level.
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Figure 7: The fraction of markets that have converged by each period under the dif-

ferent treatments. The vertical axis measures the percentage of markets that converge

while the horizontal axis reports the period number.

We summarize the findings in the above sections as Results 1-2 addressing Hy-
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potheses 1-2:

Result 1. We do not reject Hypothesis 1 for the monopoly markets as convergence

to the REE obtains in all four treatments of the monopoly design. We do reject

Hypothesis 1 for the oligopoly treatment, in particular for treatment T4 where 60%

of markets (observations) failed to converge to the REE within 50 periods.

Result 2. We reject Hypothesis 2, that when the REE is eductively stable convergence

to the REE occurs immediately as it is more frequently the case that convergence

requires more than a single period.

Results 1-2 suggest, as Evans (2001) posited, that the learning process may be

regarded as a mixture of both adaptive and eductive approaches when the REE is

not learnable under eductive learning.

5.3 Fit of the Two Learning Approaches to the Experimental

Data

We next consider the fit of the two different learning approaches to our experimental

data. For the adaptive learning model, we assume that the model’s predictions coin-

cide with the actual (average) price prediction in the experimental data. To initialize

a simulation of the adaptive learning model we set the initial price prediction, pe1,

equal to the individual (monopoly) or average (oligopoly) forecasts made by subjects

in period 1 (and period 1 only). Thereafter, the adaptive learning model specifies how

all subsequent simulated prices and price predictions are determined. That is, given

pe1, the price for period 1, p1, is determined by equation (1). Given p1 the adaptive

learning model predicts the price for period 2 according to equation (3) and thus

generates a simulated actual price for period 2 again via equation (1). In period 3,

the adaptive model take the average of the simulated prices for periods 1 and 2 and

makes a price prediction for period 3, which is then used to generate the simulated

price for period 3 via equation (1), and so on. Thus, the adaptive learning model uses

its own simulated prices as input to generate simulated market price predictions in

each period. Importantly, this simulation only loads experimental data from period

1, and makes simulated prices and predictions for the remaining 49 periods, so there

are no degrees of freedom in the predictions of the adaptive learning model for each

market observation.
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For the eductive learning model, we assume that for each period, the simulated

price prediction is peedc,t = µ
1−α and thus the actual market price equals the REE

price, µ
1−α + νt in the treatments where eductive learning predicts that the REE

is learnable, namely, all treatments of the monopoly setting, and treatments T1 −
T3 of the oligopoly setting. Note that for treatment T4 in the monopoly setting,

the eductive learning model predicts that the market price equals the REE price

because eductive learning assumes that individuals are perfectly capable of solving

for the REE. Since in the monopoly case, there are no other firms (agents) forming

expectations, there is no strategic uncertainty regarding the decision of others and

so it follows that the market price should equal the REE price even in treatment T4

of the monopoly setting. By contrast, in treatment T4 under the oligopoly setting,

the eductive learning model does not exclude any combination of price predictions

and market prices, strictly speaking for treatment T4 only, given our finite number

of firms. Therefore, the MSE from eductive learning for the T4 treatment of the

oligopoly setting are essentially undefined, or 0 if we consider that the model predicts

that “anything can happen.” For these reasons we did not construct MSEs between

the data and the eductive learning model prediction for the T4 treatment of the

oligopoly setting. However, for the other seven treatments, we can calculate the MSE

between the data and the eductive learning model predictions. We note that, as was

the case for the adaptive learning model predictions, there are again no degrees of

freedom in the predictions of the eductive learning model.

The mean squared error (MSE) between the simulated and experimental data for

each market (independent observation) are presented in Table 5. The results suggest

that the adaptive learning model is generally a better fit to the experimental data, as

it results in a smaller MSE relative to the experimental data than does the eductive

learning model using that same experimental data; the average MSE for the adaptive

learning model is lower than for eductive learning model in all of the treatments where

this MSE can be calculated. A Wilcoxon signed rank test suggests that the difference

between the MSEs for the adaptive and eductive learning models is significant (in

favor of adaptive learning) at the 5% level for the α = −0.5 and α = −0.9 treatments

of both the monopoly and oligopoly settings, and for the α = −4 treatment of the

monopoly setting. However, there is also some heterogeneity across the different

markets/observations. For example, in the monopoly market with α = −2, the

adaptive learning model generates a higher MSE relative to the eductive learning
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model in markets 2, 6, 8, 9 and 13 but a lower MSE relative to the eductive learning

model in markets 1, 3, 4, 5, 7, 10, 11 and 12. This finding suggests that it is very

likely that some markets are dominated by subjects using adaptive learning, while

others are dominated by subjects using eductive learning. We will provide evidence

for such heterogeneity of types later on in section 5.6.

5.4 Payoff Efficiency

Table 5.4 reports average payoffs and payoff efficiency (payoffs divided by 25 eu-

ros, which was the maximum amount that each subject could earn when they made

no forecasting errors) for each treatment. Payoff efficiency is more than 90% when

α = −0.5 or α = −0.9, and lower, between 50%-90% when α = −2 and α = −4.

Efficiency is higher in the T1 oligopoly treatment as compared with the T1 monopoly

treatment and lower in the T3-T4 oligopoly treatments than in the T3-T4 monopoly

treatments. We performed a Wilcoxon Mann-Whitney Test using individual earnings

data in the monopoly design and average earnings for each market of the oligopoly

design. The results indicate that for the monopoly treatment, there is no difference

in payoff efficiency between the T1, T2 and T4 treatments at the 5% level, but that

payoff efficiency in these treatments is significantly greater than payoff efficiency in

the T3 treatment at the 5% level. In the oligopoly treatment, payoff efficiency is

monotonically decreasing in α, and the difference between each pair of treatments

is statistically significant at the 5% level. The considerably lower payoff efficiency

found in treatment T4 of the oligopoly design suggests that the forecasting task is

more cognitively demanding when the REE is unstable under eductive learning. We

also compare, for the same treatment (same α), whether there is a significant earn-

ings difference between the monopoly and oligopoly settings. It turns out that in

four pairwise comparisons, the difference is only significant at 5% level for the T4

treatment (α = −4), where earnings in the oligopoly setting are substantially lower

than in the monopoly setting.

5.5 Decision Time

We collected data on the time it took subjects to make their decisions. Specifically, we

measured the time, in seconds, from the start of each new period to the time at which
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Learning Monopoly Oligopoly

Model Market α = −0.5 α = −0.9 α = −2 α = −4 α = −0.5 α = −0.9 α = −2 α = −4

Adaptive 1 0.94 0.15 377.75 0.40 0.10 2.21 11.88 18.14

2 0.33 0.38 78.71 9.60 0.18 0.50 1.26 7.15

3 0.17 23.46 42.25 0.31 0.35 0.30 6.98 3.71

4 109.73 0.06 0.93 9.94 0.26 4.63 69.94 182.94

5 0.97 5.15 10.57 98.77 0.12 0.26 62.46 37.64

6 0.16 5.40 0.13 0.45 0.27 0.73 5.40 147.64

7 23.76 8.73 8.03 0.49 0.63 0.57 12.87 129.85

8 0.08 0.70 223.79 0.98 0.57 0.33 25.50 20.32

9 0.79 0.17 31.01 6.27 0.26 0.97 10.19 65.50

10 0.34 3.94 0.67 6.00 0.63 0.28 21.88 88.17

11 0.49 9.67 371.13 1.72 5.51

12 1.49 1.43 1.19 127.85

13 0.03 2.19 13.24

14 9.46 0.66

average 10.62 4.94 88.34 19.76 0.34 1.08 21.29 70.11

Eductive 1 2.52 0.00 384.14 0.27 0.89 2.41 16.70 -

2 0.91 0.09 76.26 18.01 1.04 0.63 3.12 -

3 2.17 52.14 81.08 1.72 0.68 0.42 3.88 -

4 141.14 0.06 1.02 8.82 2.02 6.34 91.21 -

5 3.29 30.14 13.41 121.62 0.19 1.62 63.38 -

6 2.02 5.75 0.00 0.04 0.67 1.30 9.29 -

7 22.05 23.43 45.04 0.28 0.46 1.14 3.96 -

8 0.19 0.69 230.52 0.21 3.12 0.19 26.19 -

9 3.02 0.21 10.81 0.64 0.90 1.60 18.03 -

10 0.15 3.79 0.71 39.17 1.34 0.33 28.67 -

11 0.49 9.76 387.83 15.49 12.75

12 3.62 1.33 4.00 137.22

13 5.01 2.05 50.63

14 13.01 8.59

average 14.26 10.62 95.14 28.77 1.13 1.60 25.20 -

Table 5: MSE between the experimental data and the two learning model predictions

when these models predict convergence to the REE.
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Market Structure α Avg. Payoff Efficiency

Monopoly −0.5 22.9 91.6%

−0.9 22.7 90.8%

−2 20.1 80.4%

−4 21.8 87.0%

Oligopoly −0.5 23.7 94.6%

−0.9 22.6 90.6%

−2 16.7 65.6%

−4 12.6 50.2%

Table 6: Payoffs and payoff efficiency across the eight treatments.

each subject clicked “send” to submit their price forecast for that same period. Such

data can be useful in understanding possible variations in the cognitive difficulty of

decision-making tasks. In particular, Rubinstein (2007) provides evidence that choices

requiring greater cognitive activity are positively correlated with a longer decision

response time. In our experiment, subjects face a more difficult task in treatment T4

as compared with treatments T1 − T3 and so they may be expected to take more

time to make their decisions in treatment T4 than in treatments T1 − T3. At the

suggestion of a referee, we compare the average decision time in the first period only,

since our computer program only advances to the next period when all subjects have

made a forecast, the decision time in later periods may be influenced by subjects’

experience with waiting times in earlier periods, and thus these observations may not

be independent beyond the first period. Table 7 provides descriptive statistics of the

decision time in the first period in each treatment. For the monopoly treatment, the

average decision time is 53.1 seconds in T1, 49.6 seconds in T2, 103.8 seconds in T3

and 148.5 seconds in T4. In the oligopoly treatment, the average decision time is 55.2

seconds in T1, 62.3 seconds in T2, 98.1 seconds in T3 and 89.2 seconds in T4.

Figure 8 shows the empirical cumulative distribution function (CDF) of decision

time in the first period for treatments T1−T4 of the monopoly setting. We find that

the difference between each of T1 and each of T3− T4, and T2 and T4 is significant

at the 5% level according to a Wilcoxon Mann-Whitney test, while other differences

across treatments are not statistically significant.

In the oligopoly treatment, the difference between each of T1 − T2 and each of
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Monopoly

Treatment T1 T2 T3 T4

Average 53.1 49.6 103.8 148.5

Variance 2956.8 393.7 10569.3 11237.2

Number of Obs. 14 12 13 14

Oligopoly

Treatment T1 T2 T3 T4

Average 55.2 62.3 98.1 89.2

Variance 1246.6 1562.9 14595.2 5507.8

Number of Obs. 30 30 33 30

Table 7: The decision time in the first period in each treatment.

T3 − T4 is significant at the 5% level according to a Wilcoxon Mann-Whitney test,

while the differences between T1 and T2 or T3 and T4 are not significantly different

from one another. These findings support the notion that subjects face a more difficult

task in T4, and therefore require more time to make a decision.

The findings in this section are summarized by Result 3 which addresses Hypoth-

esis 3:

Result 3. We reject Hypothesis 3. When common knowledge of rationality is an issue

as in our oligopoly setting, decision time is always significantly greater in treatment

T4 relative to the other two treatments.

We note additionally that the cognitive cost of decision-making in treatment T4

of our monopoly setting is often significantly larger than in T1− T2.

5.6 Categorization of Subjects into Adaptive or Eductive

Learners

In this section we focus on individual subject price forecasts and we attempt to

categorize each subject in our experiment as one of three types: adaptive learner,

eductive learner or neither. We do this using two different approaches and we examine

the consistency between these two approaches.

The first approach is to make categorizations based on the definition of the two

types of learning. This categorization is performed as follows:
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1. Eductive learners: We consider all subjects who predict the REE in the very

first period to be eductive learners. Since the REE in treatment T2 where

α = −0.9 is 31.58, and not an integer, taking into account that some subjects

may use α = −1 as a proxy, we consider all subjects making predictions in the

range [30, 32] to be eductive learners in T2. For the other three α treatment

values, the REE is an integer value so to be categorized as an eductive learner,

subjects must correctly predict a price of 40 in T1, a price of 20 in T3 and a

price of 12 in T4.

2. Adaptive learners: For each subject we use their first period price forecast to

initialize the adaptive learning model as given in equation (3) and we then cal-

culate the mean squared error between the simulated predictions of that model

and each individual subject’s actual price predictions. If the mean squared er-

ror between the actual and predicted price forecasts is smaller than 1, then the

subject is classified as an adaptive learner. We choose a threshold of 1 as we

wanted the threshold to be as low as possible, but at the same time to allow

for subjects to engage in some rounding of numbers to integer values. Since

adaptive learning does not make assumptions on the initial price prediction,

the probability that one happens to come up with the REE is infinitely close to

0 under adaptive learning.

If a subject meets our criteria for being categorized as both an adaptive and an

eductive learner, then we classify him/her as an eductive learner. If a subject meets

neither criteria, then he/she is classified as “neither”.

Our second approach to type classification makes use of answers that subjects

gave to a post–experimental questionnaire (see the Appendix for details). The ques-

tionnaire asked subjects to characterize the type of price prediction strategy they

used during the experiment. We provided them with four options and we asked them

to choose the option that best described how they made their predictions in the

experiment. Specifically, the four options were:

1. I refer to information about past prices.

2. I make calculations based on the value of α.

3. I eliminate unlikely numbers iteratively.
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4. None of the above.

A subject is classified as an adaptive learner if he chooses option 1, and is classified

as an eductive learner if he chooses option 3. If the subject chooses option 2, it is likely

that he solves the REE directly, and we also classify this type as a an eductive learner,

since, as discussed in section 3.2, the eductive learning model typically starts with the

assumption that agents solve the REE directly from equation (1).18 Subjects choosing

option 4 are classified as “neither”. Due to a technical problem, we lost some data

on self-reported strategies in the first, and relatively larger session of our monopoly

market treatments, (9 markets for treatment 1, 8 markets for each of treatments 2

and 3). Nevertheless, we do have data on self-reported strategies for many of our

subjects and for all eight treatments.

Table 5.6 shows the number of participants who can be categorized as adaptive

or eductive learners in each of our eight treatments using Approach 1 or Approach

2, as well as the overall frequency of each type classification for each treatment.

Tables 10 and 11 in the Appendix report more disaggregated information on each

individual subject’s type using both approaches (where possible). We observe that

using approach 1, classification becomes more difficult as α becomes more negative, as

indicated by the frequency of the ‘neither’ category. Among those subjects who can

be classified using approach 1, overall about 55% can be classified as either adaptive or

eductive learners, with a roughly equal split between the two types. Using approach 2

subjects are more likely to be classified as eductive learners than adaptive learners in

the monopoly treatment, but the reverse generally holds for the oligopoly treatment

where overall, a majority of subjects (55%) can be classified as adaptive learners.

An important exception is the α = −4 oligopoly treatment where a majority of

subjects are classified as eductive learners. We note further that there is a good level

of consistency between the categorizations based on our two different approaches.

For 65 subjects for which both approaches yield a classification of either adaptive

or eductive learners, the two approaches agree on the type assignment in 43 cases,

which means that the two approaches assign the same category with a probability of

43/65 = 66.2%.

In addition to classifying subjects as adaptive or eductive learners, we further

18Here we do not consider the case where subjects use a mixture of observation and calculation

as in Evans and Ramey (1992), though that would be an interesting extension
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Approach 1

Treatment α = −0.5 α = −0.9 α = −2 α = −4 All

Monopoly

Adaptive 8 57.14% 2 16.67% 2 15.38% 5 35.71% 17 32.08%

Eductive 3 21.43% 5 41.67% 3 23.08% 1 7.14% 12 22.64%

Neither 3 21.43% 5 41.67% 8 61.54% 8 57.14% 24 45.28%

Total 14 100.00% 12 100.00% 13 100.00% 14 100.00% 53 100.00%

Oligopoly

Adaptive 17 56.67% 8 26.67% 9 27.27% 0 0.00% 34 27.64%

Eductive 7 23.33% 10 33.33% 8 24.24% 10 33.33% 35 28.46%

Neither 6 20.00% 12 40.00% 16 48.48% 20 66.67% 54 43.90%

Total 30 100.00% 30 100.00% 33 100.00% 30 100.00% 123 100.00%

Approach 2

Treatment α = −0.5 α = −0.9 α = −2 α = −4 All

Monopoly

Adaptive 1 7.14% 1 8.33% 2 15.38% 2 14.29% 6 11.32%

Eductive 3 21.43% 2 16.67% 3 23.08% 10 71.43% 18 33.96%

Neither 10 71.43% 9 75.00% 8 61.54% 2 14.29% 29 54.72%

Total 14 100.00% 12 100.00% 13 100.00% 14 100.00% 53 100.00%

Oligopoly

Adaptive 20 66.67% 23 76.67% 15 45.45% 10 33.33% 68 55.28%

Eductive 10 33.33% 6 20.00% 10 30.30% 16 53.33% 42 34.15%

Neither 0 0.00% 1 3.33% 8 24.24% 4 13.33% 13 10.57%

Total 30 100.00% 30 100.00% 33 100.00% 30 100.00% 123 100.00%

Table 8: Number and percentage of subjects who can be categorized as adaptive or

eductive learners or neither in each treatment. Approach 1 is the approach based

on first period price predictions and the mean squared error of individual price pre-

dictions from the adaptive learning model. Approach 2 is the approach based on

self-reported strategies.
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considered whether any of our subjects were following näıve expectations, i.e., fore-

casting pet = pt−1. We do not consider such expectations to constitute a real learning

model as the forecast rule does not update over time. Nevertheless we investigate

the existence of näıve types because, as noted earlier in section 3.2, stability under

näıve expectations is a potentially confounding criterion (with eductive stability) in

our model set-up. We classify a näıve forecaster as follows: if the MSE between the

näıve expectations prediction and a subject’s actual price forecast is less than 1 and

this MSE is also less than the MSE of adaptive learning model as well, then that

subject can be regarded as having näıve expectations. Using this criterion, only 2

subjects (3.77%) in the monopoly treatment and 7 subjects (5.69%) in the oligopoly

treatment can be categorized as users of näıve expectations. These numbers are far

smaller than the number of subjects classified as adaptive or eductive learners. We

thus conclude that while there are indeed some followers of näıve expectations in our

experiment, most of our subjects are forming expectations in a more sophisticated

manner.

6 Conclusion

The process by which agents might learn a REE has been the subject of a large

amount of theorizing but surprisingly there has been little empirical assessment of

the leading theories of this learning process. To address this gap, we have designed

and implemented a learning–to–forecast experiment in the context of a simple cob-

web economy with negative feedback where expectations matter and where subjects

are informed about the law of motion for prices. We are particularly interested in

knowing which of two leading approaches to modeling learning – adaptive learning or

eductive learning – provides the better characterization of human learning behavior

in this setting. In particular, we vary the slope parameter of the price determination

equation, α, in such a way that in some of our treatments the REE may not be

learnable (stable under learning) if agents are eductive learners but should always be

learnable if agents are adaptive learners. We further investigate different predictions

between the two learning theories with regard to the speed of convergence. Finally,

our experimental design includes both monopoly and oligopoly settings in order to

better understand the role played by common knowledge of rationality.
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In most (7/8) of our treatments, we always observe convergence of prices to the

REE within the 50 period time frame of our experiment. However, the variance in

market prices is much greater as the α parameter becomes more negative. In the

oligopoly treatment where α = −4 and the REE is unambiguously eductively unsta-

ble, even adjusting for the finite number of firms, we observe that 60 percent of our

markets fail to achieve convergence to the REE within the 50 periods. The latter

finding is supportive of eductive learning as a characterization of subject behavior.

Further, there are many instances of markets that satisfy our criteria for convergence

to the REE in the very first period, which is more in line with eductive rather than

adaptive learning. On the other hand, the observation that most markets take some

time to converge to the REE, and convergence is observed for at least some markets

in all eight of our treatments, including the oligopoly treatment where α = −4 and

the REE is unambiguously eductively unstable, favors adaptive learning as a char-

acterization of subject behavior. Indeed, our efforts to classify subjects as adaptive

or eductive learners reveal a mix of both learning types in all treatments (as well as

many subjects who are unclassifiable). Perhaps, as Evans (2001) suggests, individuals

or populations of individuals use a mixture of both adaptive and eductive learning

approaches.

The cobweb economy that we study is a very simple economic model involving neg-

ative feedback. Our experimental examination of forecasting behavior in this model

provides subjects with complete information about the data generating process. In

this sense, our experiment can be viewed as providing very favorable conditions for

the rational expectation hypothesis and for the eductive learning approach in par-

ticular. Our findings confirm that the rational expectation hypothesis and rational

expectation equilibrium provide a reasonable characterization of the market outcome

in this setting after a period of learning, provided that the REE is both adaptively

and eductively stable. Further comparisons between adaptive and eductive learning

approaches should be conducted in environments where subjects face a more compli-

cated, forward-looking dynamic economic model where forecasts matter for realiza-

tions of future state variables, as in dynamic, stochastic general equilibrium models.

Another extension would be to consider positive feedback systems, as opposed to the

negative feedback system of the Cobweb model. Previous research, e.g., Hommes et

al. (2005, 2008) shows that positive feedback systems tend to generate oscillatory

bubbles and crashes when the slope parameter in an asset pricing model is positive
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and close to 1. Future research might consider the extent to which adaptive and

eductive learning approaches predict individual learning behavior when 0 < α < 1

and both learning theories predict convergence to REE. We leave these extensions to

future research.
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A Experimental Instructions

A.1 Experimental Instructions (Monopoly)

Experimental Instructions

Welcome to this experiment in economic decision-making. Please read these in-

structions carefully as they explain how you earn money from the decisions you make

in today’s experiment. There is no talking for the duration of this session. If you have

a question at any time, please raise your hand and your question will be answered in

private.

General information

Imagine you are an advisor to a farm that is the only supplier of a product in a

local market. In each time period the owner of the farm needs to decide how many

units of the product he will produce. To make an optimal decision each period, the

owner requires a good prediction of the market price of the product in each period.

As the advisor to the farm owner, you will be asked to predict the market price, pt of

the product during 50 successive time periods, t=1,2,...,50. Your earnings from this

experiment will depend on the accuracy of your price predictions alone. The smaller

are your prediction errors, the greater will be your earnings.

About the determination of the market price pt

The actual market price for the product in each time period, t, is determined by a

market clearing condition, meaning that it will be the price such that demand equals

supply for that period.

The amount demanded for the product depends on the market price for the prod-

uct. When the market price goes up (down) the demand will go down (up). The

supply of the product on the market is determined by the production decision of the

farm owner. Usually, a higher (lower) price prediction by you causes the farm owner

to produce a larger (smaller) quantity of the product which increases (decreases) the

supply of the product on the market. Therefore, the actual market price pt in each

period depends upon your prediction, pet , of the product’s market price. More pre-

cisely, equating demand and supply, we have that the market price of the product is
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determined according to:

pt = max(60− αpet + ηt, 0)

This means that the price cannot be below 0. The parameter α is different for different

local markets. You will see the α value for your own local market on your decision page

during the experiment. This α parameter will remain the same for your local market

for all 50 periods of the experiment. ηt is a small random shock to the supply caused

by non-market (demand/supply) factors, for example, weather conditions. This small

shock is randomly drawn each period and is sometimes positive, sometimes negative

and sometimes zero. It is not correlated across periods. This small shock is normally

distributed. The long term mean value of this small shock is 0, and the standard

deviation is 1.

Here is an example: Suppose the parameter α is 0.8 in your local market. Suppose

further that you price prediction for the period is 35, and the realization of the shock

ηt is -0.2. Using the equation given above, the market price is then determined as:

pt = 60− 0.8 ∗ 35− 0.2 = 31.8

Note that in this case your forecast error, |pet − pt|, is 35-31.8=3.2. This forecast

error of 3.2 would determine your points for the period as discussed below.

Please also note that this example is for illustration purposes only. The value of

the parameter α in your local market may be different from 0.8. The precise value of

alpha and the equation for the determination of the market price in your local market

is given on your decision page.

About your task

Your only task in this experiment is to correctly predict the market price in each

time period as accurately as possible. The only constraint on your predicted price is

that it cannot be less than zero (negative), since the actual price itself can never be less

than zero. At the beginning of the experiment you are asked to give a prediction for

the price of your farm’s product in period 1. Note that, while there are several farms

being advised by a forecaster like you in each period, these different local markets

are totally separate from your own so what happens in other markets does not have

any influence on your market. After all forecasters have submitted their predictions
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for the first period, the local market price for period 1 will be determined and will

be revealed to you. Based the accuracy of your prediction in period 1, your earnings

will be calculated. Subsequently, you are asked to enter your prediction for period

2. When all forecasters have submitted their predictions for the second period, the

market price for that period in your local market will be revealed to you and your

earnings will be calculated, and so on, for all 50 consecutive periods.

Information

Following the first period, you will see information on your computer screen that

consists of 1) a plot of all past prices together with your market predictions and 2)

a table containing the history of your past forecasts and payoffs, as well as realized

market price and the shock term ηt.

About your payoff

Your payoff depends on the accuracy of your price forecast. The earnings shown

on the computer screen will be in terms of points. When your prediction is pet and

the market price is pt your payoff is a decreasing function in your prediction error,

namely the distance between your forecast and the realized price.

Payofft = max[1300− 1300

49
(pet − pt)2, 0]

Recalling the example above, if your forecast error for the period t, |pet − pt|,
was 3.2, then according to the payoff function you would earn 1028.33 points for the

period.

Notice that the maximum possible payoff in points you can earn from the fore-

casting task is 1300 for each period, and the larger is your prediction error, |pet − pt|,
the fewer points you earn. You will earn 0 points if your prediction error is larger

than 7. There is a Payoff Table on your desk, which shows the points you can earn

for various different prediction errors.

At the end of the experiment your total points earned from all 50 periods will be

converted into Euros at the rate of 1 Euro for every 2600 points that you earned.

Thus, the more points you earn, the greater are your Euro earnings.

Questions?
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If you have questions about any part of these instructions at any time, please raise

your hand and an experimenter will come to you and answer your question in private.

A.2 Experimental Instructions (Oligopoly)

Welcome to this experiment in economic decision-making. Please read these instruc-

tions carefully as they explain how you earn money from the decisions you make in

today’s experiment. There is no talking for the duration of this session. If you have

a question at any time, please raise your hand and your question will be answered in

private.

General information

Imagine you are an advisor to a farm that is one of the three main suppliers of a

product in a local market. In each time period the owner of the farm needs to decide

how many units of the product he will produce. To make an optimal decision, the

owner requires a good prediction of the market price of the product in each period.

As the advisor to the farm owner, you will be asked to predict the local market price,

pt of the product during 50 successive time periods, t = 1, 2, 3, ...50. Your earnings

from this experiment will depend on the accuracy of your price predictions alone.

The smaller are your prediction errors, the greater will be your earnings.

About the determination of the market price pt

The actual market price for the product in each time period,t, is determined by a

market clearing condition, meaning that it will be the price such that demand equals

supply for that period.

The amount demanded for the product depends on the market price for the prod-

uct. When the market price goes up (down) the demand will go down (up). The

supply of the product on the market is determined by the production decision of the

farm owners. Usually, a higher (lower) price prediction by the advisors causes the

farm owners to produce a larger (smaller) quantity of the product which increases

(decreases) the supply of the product on the market. Therefore the actual market

price pt in each period depends upon the average prediction, pet of the product’s mar-

ket price. For example, if the predictions made by the advisors are pe1,t, p
e
2,t and pe3,t

respectively, pet = 1
3
(pe1,t + pe2,t + pe3,t). Equating demand and supply, we have that the
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market price of the product is determined according to:

P (t) = 60− αpet + ηt

This means that the price cannot be below 0. The parameter α will be shown

on your decision page during the experiment. This α parameter will be the same for

all three farms in your local market and for all 50 periods. Note also that ηt is a

small random shock to the supply caused by non-market (demand/supply) factors,

for example, weather conditions. This small shock is randomly drawn each period and

is sometimes positive, sometimes negative and sometimes zero. It is not correlated

across periods. This small shock is normally distributed. The long term mean value

of this small shock is 0, and the standard deviation is 1.

Here is an example: Suppose the parameter α is 0.8 for all three farms in your

market. Suppose further that you prediction for the price is 30 and the predictions

by the other two advisors in your market are 35 and 40 respectively. Finally, suppose

that the realization of the shock, η, is -0.2. The market price is in your three farm

local market is then determined as follows:

pt = 60− 0.8× 1

3
(30 + 35 + 40)− 0.2 = 31.8

Note that in this case your forecast error (the distance between your forecast and

the market price), |pet − pt|, is |30− 31.8| = 1.8. This forecast error would be used to

determine your points for the period as discussed below.

Please also note that this example is for illustration purposes only. The value of

the parameter may be different from 0.8. The precise value of α and the equation for

the determination of the market price in your local market are given on your decision

page.

About your task

Your only task in this experiment is to correctly predict the market price in each

time period as accurately as possible. The only constraint on your predicted price is

that it cannot be less than zero (negative), since the actual price itself can never be

less than zero. At the beginning of the experiment you are asked to give a prediction
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for the price in period 1. There are several markets of various products and each

of them consists of 3 farms, and each of the farms is advised by a forecaster like

you. These different local markets are totally separate from your own market so

what happens in other markets does not have any influence on your market. After all

forecasters have submitted their predictions for the first period, the local market price

for period 1 will be determined and will be revealed to you. Based on the accuracy

of your prediction in period 1, your earnings will be calculated. Subsequently, you

are asked to enter your prediction for period 2. When all forecasters have submitted

their predictions for the second period, the market price for that period in your local

market will be revealed to you and your earnings will be calculated, and so on, for

all 50 consecutive periods.

Information

Following the first period, you will see information on your computer screen that

consists of 1) a plot of all past market prices together with your market price forecasts

and 2) a table containing the history of your past forecasts and payoffs, as well as

realized market prices and the shock term, ηt.

About your payoff

Your payoff depends on the accuracy of your price forecast. The earnings shown

on the computer screen will be in terms of points. When your prediction is and the

market price is your payoff is a decreasing function of your prediction error, namely

the distance between your forecast and the realized price. Specifically:

payoff = max[1300(1− (pet − pt)2
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), 0]

Notice that the maximum possible payoff in points you can earn from the fore-

casting task is 1300 for each period, and the larger is your prediction error, the fewer

points you earn. You will earn 0 points if your prediction error is larger than 7.

There is a Payoff Table on your desk, which shows the points you can earn for various

different prediction errors.

At the end of the experiment your total points earned from all 50 periods will

be converted into Euros at the rate of 1 Euro for every 2600 points that you earned.

Thus, the more points you earn, the greater are your Euro earnings.
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Questions?

If you have questions about any part of these instructions at any time, please raise

your hand and an experimenter will come to you and answer your question in private.
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B Payoff Table

Table 9 is the payoff table used in this experiment.

Payoff Table for Forecasting Task

Your Payoff=max[1300− 1300
49

(Your Prediction Error)2, 0]

2600 points equal 1 euro

error points error points error points error points

0 1300 1.85 1209 3.7 937 5.55 483

0.05 1300 1.9 1204 3.75 927 5.6 468

0.1 1300 1.95 1199 3.8 917 5.65 453

0.15 1299 2 1194 3.85 907 5.7 438

0.2 1299 2.05 1189 3.9 896 5.75 423

0.25 1298 2.1 1183 3.95 886 5.8 408

0.3 1298 2.15 1177 4 876 5.85 392

0.35 1297 2.2 1172 4.05 865 5.9 376

0.4 1296 2.25 1166 4.1 854 5.95 361

0.45 1295 2.3 1160 4.15 843 6 345

0.5 1293 2.35 1153 4.2 832 6.05 329

0.55 1292 2.4 1147 4.25 821 6.1 313

0.6 1290 2.45 1141 4.3 809 6.15 297

0.65 1289 2.5 1134 4.35 798 6.2 280

0.7 1287 2.55 1127 4.4 786 6.25 264

0.75 1285 2.6 1121 4.45 775 6.3 247

0.8 1283 2.65 1114 4.5 763 6.35 230

0.85 1281 2.7 1107 4.55 751 6.4 213

0.9 1279 2.75 1099 4.6 739 6.45 196

0.95 1276 2.8 1092 4.65 726 6.5 179

1 1273 2.85 1085 4.7 714 6.55 162

1.05 1271 2.9 1077 4.75 701 6.6 144

1.1 1268 2.95 1069 4.8 689 6.65 127

1.15 1265 3 1061 4.85 676 6.7 109

1.2 1262 3.05 1053 4.9 663 6.75 91

1.25 1259 3.1 1045 4.95 650 6.8 73

1.3 1255 3.15 1037 5 637 6.85 55

1.35 1252 3.2 1028 5.05 623 6.9 37

1.4 1248 3.25 1020 5.1 610 6.95 19

1.45 1244 3.3 1011 5.15 596 error ≥ 0

1.5 1240 3.35 1002 5.2 583

1.55 1236 3.4 993 5.25 569

1.6 1232 3.45 984 5.3 555

1.65 1228 3.5 975 5.35 541

1.7 1223 3.55 966 5.4 526

1.75 1219 3.6 956 5.45 512

1.8 1214 3.65 947 5.5 497

Table 9: Payoff Table for Forecasters
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C Alternative Proof of the Stability Condition of

Adaptive Learning based on Mathematical In-

duction

Without loss of generality, let pe1 = p∗ + ∆, where ∆ is the difference between the

period 1 prediction and the REE. Substituting this forecast into equation (1), we

obtain p1 = µ + α(p∗ + ∆). Since p∗ = µ + αp∗, this expression simplifies to p1 =

p∗ + α∆. In period 2, the prediction is the price in period 1, pe2 = p1 = p∗ + α∆.

Substituting this prediction into equation (1) and simplifying, yields p2 = µ+ αpe2 =

p∗ + α2∆. In period 3, the prediction should be the average price in periods 1 and

2, pe3 = p1+p2
2

= p∗ + 1
2
α(α + 1)∆. Substituting this prediction into equation (1)

and simplifying yields p3 = µ + αpe3 = p∗ + 1
2
α2(α + 1)∆. By iterating in this

fashion it is not difficult to find that in general, for period t, pet = 1
t−1

∑t−1
s=1 ps =

p∗ + α(α+1)(α+2)...(α+t−2)
1×2×3...(t−1)

∆ and so pt = µ+ αpet = p∗ + αα(α+1)(α+2)...(α+t−2)
1×2×3...(t−1)

∆.

Clearly this system converges to the REE whenever the ratio α(α+1)(α+2)...(α+t−2)
1×2×3...(t−1)

goes to 0. This ratio consists of t − 1 components in both the numerator and the

denominator. We can pair the components in the numerator and the denominator

according to the sequence, namely, let α be paired to 1, α + 1 be paired to 2, ...,

α+ t− 2 be paired to t− 1. When α > 1, each component of the numerator is larger

than its paired number in the denominator. Therefore α(α+1)(α+2)...(α+t−2)
1×2×3...(t−1)

will increase

over time with t, diverging away from 0. When α = 1, the ratio is exactly equal to 1.

When −1 < α < 1, each component in the numerator has a smaller absolute value

than its paired number, so the ratio will decrease with t, and goes to 0 as t→∞.

When α < −1, we make a slightly different re-matching of the components in the

numerator and the denominator. First, let m be an integer such that α+m− 1 < 0

and α+m > 0. We re-state the ratio as α(α+1)(α+2)...(α+m−1)(α+m)(α+m+1)...(α+t−2)
1×2×3...(t−m−1)(t−m)(t−m+1)...(t−1)

. We

then “cut” the numerator into two parts, N1 = α(α + 1)(α + 2)...(α + m − 1) and

N2 = (α+m)(α+m+1)...(α+t−2), and we also cut the denominator into two parts,

D1 = 1× 2× 3...(t−m− 1) and D2 = (t−m)(t−m+ 1)...(t− 1). We pair N2 to D1,

namely, α+m to 1, α+m+1 to 2, ... α+t−2 to t−m−1. It is not difficult to see that

each item in N2 is smaller than the paired item in D1 (α+m < 1, α+m+ 1 < 2, ...

α+ t− 2 < t−m− 1), and therefore that (α+m)(α+m+1)(α+m+2)...(α+t−2)
1×2×3...(t−m−1)

decreases with

t, and goes to 0 as t→∞. There remain m extra components in both the numerator
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and the denominator. In the numerator, |N1| = |α(α+1)(α+2)...(α+m−1)| < |αm|
is a finite number, while in the denominator, D2 = (t−m)(t + m + 1)...(t− 1) goes

to infinity as t→∞. Therefore, the remaining fraction α(α+1)(α+2)...(α+m−1)
(t−m)(t−m+1)...(t−1)

also goes

to 0 as t → ∞. It follows that, under adaptive (least squares) learning, the system

converges to the REE provided that α < 1 and diverges from the REE only if α > 1.
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D Categorization of Subjects

α = −0.5 α = −0.9 α = −2 α = −4

Categorized Reported Categorized Reported Categorized Reported Categorized Reported

exp1 A E A E

exp2 A A E

exp3 A A E

exp4 E E A E

exp5 A

exp6 A E A A

exp7 A E

exp8 E A E E

exp9 A E E A E

exp10 E E E E A E

exp11 E E E E

exp12 A A A E

exp13 A E E E A

exp14 E A E

Table 10: Categorization of subjects into adaptive and eductive learners in the

monopoly setting. “A” means adaptive learner. “E” means eductive learner. We

leave the cell blank for subjects we cannot categorize into either of the two types.

“Categorized” means categorization according to the first approach where we use the

definition of the learning rules. “Reported” means categorization is done according

to the second approach based on self-reported strategies.
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α = −0.5 α = −0.9 α = −2 α = −4

Categorized Reported Categorized Reported Categorized Reported Categorized Reported

exp11 E E E E

exp12 A A A E

exp13 A A A E E

exp21 A E A A E A

exp22 E E A A E A

exp23 A A A A A E E

exp31 A E A A A E

exp32 A A E A E E E E

exp33 A A A E

exp41 A A A E E E

exp42 A A A E E

exp43 A E A E

exp51 E E A A A E

exp52 A A A E A E A

exp53 A A E E A

exp61 E A A E E

exp62 A A A E A

exp63 A E A E A

exp71 A A A A E E

exp72 A E E A A

exp73 A A A E E E

exp81 A A E E E

exp82 E E E A A E E

exp83 A E E E E E

exp91 A A A E E

exp92 E A E E A

exp93 A E A A E E

exp101 A E A A A

exp102 A A E A A

exp103 E E A A A A

A

A

E

Table 11: Categorization of subjects into adaptive and eductive learners in the

oligopoly setting. “A” means adaptive learner. “E” means eductive learner. We

leave the cell blank for subjects we cannot categorize into either of the two types.

“Categorized” means categorization according to the first approach where we use the

definition of the learning rules. “Reported” means categorization is done according

to the second approach based on self-reported strategies.
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