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INTRODUCTION

As part of a study of the effect of surf zone hydro-
dynamics on the delivery of larvae to the shore, we
made daily measurements of the concentration of
phytoplankton in the nearshore ocean and the surf
zone and followed barnacle settlement at 2 sites.
Concurrent with this sampling, we collected physical

oceanographic data. These data are being used to
investigate surf zone hydrodynamics and the deliv-
ery of larvae to the shore, but they also allowed us to
investigate at the same place and time the mecha-
nisms of cross-shelf transport of barnacle post larvae
(cyprids) and phytoplankton including the harmful
algal bloom (HAB) species Pseudo-nitzschia spp.; the
cyprids appear to have been transported by the inter-
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ABSTRACT: Identifying biophysical mechanisms of larval transport is essential to understanding
the delivery of larvae to adult habitats. In addition, harmful algal blooms (HABs) can be trans-
ported onshore from populations that form offshore. In summer 2011, we measured sea surface
and bottom temperatures and daily phytoplankton abundance and intertidal cyprid (barnacle post
larvae) settlement at Carmel River State Beach, California, USA. Using time-series analysis, we
compared the abundance of Pseudo-nitzschia spp. and daily cyprid settlement to physical forcing
mechanisms (e.g. internal tides and upwelling-relaxation events) that could generate onshore
delivery. Minimum bottom water temperature was significantly cross-correlated with the
spring−neap tidal cycle; minimum temperatures occurred between neap and spring tides, and
maximum temperatures were recorded around neap tides. When the temperature data were
transformed to remove the relationship between tides and temperature, we found significantly
higher maximum sea surface temperatures during upwelling-relaxation events. We observed 4
pulses in Pseudo-nitzschia spp. abundance. Pseudo-nitzschia spp. chains were longest at the start
of pulses and then decreased, suggesting that they had been transported to shore from a more
productive site offshore, likely the upwelling front. Pulses occurred during periods of maximum
sea surface temperature associated with upwelling-relaxation events. In contrast, cyprid settle-
ment was significantly cross-correlated with the spring−neap tidal cycle, with settlement peaks
occurring during fortnightly periods of cold bottom temperatures; onshore transport of cyprids
appears to have been due to the internal tides.
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Cyprid · Settlement
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nal tides, whereas phytoplankton transport appears
to have been due to upwelling-relaxation events.

Larval settlement is a key determinant of the
dynamics and structure of marine populations and
communities. Due to the effect of changing ocean
conditions on larval production, survival, and trans-
port, settlement is highly variable in space and time
(Morgan 1995, Underwood & Keough 2001, Shanks
et al. 2010). Identifying the biophysical mechanisms
that govern larval transport is essential to under-
standing how variation in ocean conditions affects
recruitment to adult habitats and, ultimately, com-
munity structure. For example, if larvae are trans-
ported to shore by upwelling-relaxation events, then,
in space, settlement may be higher in areas with less
persistent upwelling and, in time, settlement would
be highest during upwelling-relaxation events (Con-
nolly et al. 2001). Determining the multiple processes
returning larvae to adult populations is especially
important in recruitment-limited regions where lar-
val supply more strongly influences the distribution
and abundance of adults than in regions of high
settle ment where density-dependent effects on post-
settlement mortality play a more important role in
structuring adult populations (Morgan 2001, Under-
wood & Keough 2001).

In upwelling regions, blooms of phytoplankton,
including harmful algal species, often form offshore
(Gentien et al. 2005, Adams et al. 2006). HABs that
remain offshore can pose a threat to sea birds and
marine mammals (Fryxell et al. 1997) but pose little
threat to humans. However, if blooms are transported
to shore, they can pose serious health risks for
humans by contaminating shellfish (Tilstone et al.
1994, Adams et al. 2006). A capacity to predict when
blooms might be transported to shore could assist
management of coastal shellfish resources and mini-
mize the health threat posed by HABs.

Larvae and phytoplankton can be transported shore -
ward by a variety of mechanisms (Queiroga et al.
2007). Comparisons of the biological and hydrographic
time series collected for this paper identified 2 domi-
nant transport mechanisms: transport during up welling-
relaxation events and transport by internal tides.

In regions of strong wind-driven coastal upwelling,
Equatorward winds combined with the Coriolis force
push surface waters toward the Equator and offshore
(Ekman transport) while cold, nutrient-rich bottom
waters upwell along the shore, generating high pro-
ductivity. The cold upwelled waters push the war -
mer, less dense surface waters offshore, generating
an upwelling front (Bowman & Esaias 1978). Phyto-
plankton blooms, including HABs, tend to form

around the front where upwelling provides a steady
supply of nutrients and the upwelling front provides
a stable shallow mixed layer (Tweddle et al. 2010). In
addition, it has been hypothesized that zooplankton
(holo- and meroplankton) in surface waters may be
advected offshore by upwelling and accumulate at
the upwelling (Parrish et al. 1981, Roughgarden et al.
1988, Shanks 1995). When upwelling winds weaken
(relax) or reverse, the upwelling front moves shore-
ward and can transport larvae (Shanks et al. 2000,
Narváez et al. 2006) as well as phytoplankton (Til-
stone et al. 1994, Adams et al. 2006) associated with
the front shoreward. Thus, episodic settlement of
invertebrates and the arrival of HABs at the coast
have been hypothesized to be due to onshore trans-
port during upwelling-relaxation events (Yoshioka
1982, Roughgarden et al. 1988, Farrell et al. 1991).

As the tide ebbs off the continental shelf, large in-
ternal waves are generated at the shelf break (Os -
borne & Burch 1980). When the tide changes to flood,
these internal waves propagate toward shore as the
internal tide (Haury et al. 1979, Shearman & Lentz
2004). The internal tide takes the form of large
internal waves and bores, which are common along
all continental shelves (Chereskin 1983). The ampli-
tude of these internal waves varies directly with the
amplitude of the surface tides; larger surface tides
generate larger internal waves (Winant 1974, Hollo -
way et al. 1997, Trevorrow 1998). The internal tides
can transport both larvae (Shanks 1983, 1988 , Kings-
ford & Choat 1986, Pineda 1991, 1994, Leichter et al.
1998) and phytoplankton shoreward (Omand et al.
2011). Shanks & McCulloch (2003) found that peaks in
abundance of Pseudo-nitzschia spp. at the shore were
cross-correlated with warm water events associated
with the internal tides; warm, offshore water and as-
sociated phytoplankton were transported onshore by
the internal tides. Ryan et al. (2005) described the
concentration of a dino flagellate bloom by the pas sa -
ge of large internal waves in Monterey Bay, Cali fornia
(USA); the very high concentration of phytoplankton
in the internal waves suggested that transport of
phytoplankton occurred. Omand et al. (2011) pre-
sented a detailed description of the transport of a
dinoflagellate bloom to the shore by internal waves.

Each of these onshore transport mechanisms has a
different physical signature and can be detected by
establishing the relationship between physical vari-
ables and peaks in the abundance of settlers on the
shore or phytoplankton at the coast. In the nearshore
waters and surf zone, we made daily measurements
of the concentration of cyprids and the HAB species
Pseudo-nitzschia spp., and in addition, we made dai -
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ly measurements of barnacle settle-
ment in the intertidal zone. We then
in ferred mechanisms of onshore trans-
port by statistically comparing the
time series of settlers and phytoplank-
ton concentrations to ocean condi-
tions. If cyprids and phytoplankton
were direct ly ad vected onshore by the
wind, then pulses of these orga nisms
should oc cur during on shore wind
events. If they were transported
onshore by the internal tides, either at
the surface in internal wave conver-
gences, in internal bores, or by
upwelling fronts gen erated by the
tides, then we should see a cross-cor-
relation be tween the maximum daily
tidal range and their abundance. The
internal tides produce both cold and
warm bores (Pineda 1995, Wolanski &
Delesalle 1995, Leichter et al. 1996),
and hence, the abundance of cyprid
settlers or phytoplankton may vary
with cold and warm events, which in
turn vary with the fortnightly periodic-
ity of the tides. If onshore transport
occurs during upwelling-relaxation
events, then plankters should arrive in
pulses of warm water after upwelling-
favorable winds weaken or reverse direction, allow-
ing the warm surface waters that had been pushed
offshore by upwelling to move onshore.

MATERIALS AND METHODS

The study was conducted at Carmel River State
Beach (CRSB) in central California (36° 32’ 18”N,
121°55’43”W; Fig. 1). CRSB is a pocket beach that is
located within Carmel Bay at the mouth of the Carmel
River. Rocky outcrops occur at both ends of the beach,
and a large kelp bed was situated offshore of the
northern end of the beach. Small kelp beds were also
present off the southern end of the beach. The Carmel
Submarine Canyon, an arm of the Monterey Subma-
rine Canyon, runs the length of Carmel Bay.

From 11 June through 18 July 2012, barnacle
settle ment was measured on plots (100 cm2) on rocks
at the southern and northern ends of the beach
(Fig. 1). Three plots were monitored at each sample
site. Plots were cleared with a wire brush before the
start of the time series. Counts were made daily using
a hand lens (10× magnification) during daytime low

tides, and new settlers were removed with a tooth-
brush.

From 15 June through 15 July, plankton samples
were collected daily inside the surf zone and at a sta-
tion about 125 m offshore (Fig. 1). Surf zone samples
were collected with a pump system. A hose (6 cm
diameter) attached to pipes that were jetted into the
sand was run through the surf zone from the beach.
A gas-powered pump sampled about 240 l of water
per min for 10 min resulting in 1.2 m3 of water being
filtered for each of 3 replicate samples collected
daily. Samples were collected around high tide, at
which time the intake was usually located ca. 1 m
seaward of the breaking waves. Samples were filter -
ed through a net (200 µm mesh) that was suspended
in a water-filled box. Three replicate phytoplankton
samples (1 l) were collected from the pump system.
In the rocky shore surf zone to the north and south of
the beach (Fig. 1), 3 replicate phytoplankton samples
(1 l) were collected by casting a well sample bailer
into the surf. Samples were collected approximately
10 m from shore.

Offshore samples were collected in the morning
before the onset of stronger afternoon winds. Zoo-
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Fig. 1. Study site at Carmel River State Beach, California, USA. Barnacle set-
tlement was measured on the rocks to the north and south of the beach (NR
and SR, respectively). Phytoplankton samples were also collected at these
sites. Zooplankton and phytoplankton samples were collected with a pump in
the surf zone of the beach (SZ) and offshore at the 125 m mooring. Sea surface
and near bottom temperatures were measured at the most offshore mooring
(white squares). Filled circles along the shore indicate locations of additional
sensors, from which data were not used in this study. The darker water sea-
ward of the NR site is a large kelp bed. A smaller bed was present off the SR 

site. Modified from a Google Earth image
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plankton was collected using a net (200 µm mesh,
0.25 m2 diameter mouth) equipped with a flow meter.
Three replicate zooplankton samples were collected
daily by hauling the net from near the bottom to the
surface of the water column filtering an average of
2 m3 of water. Three replicate phytoplankton sam-
ples (1 l) were collected from approximately 5 m
depth using a well sampling bailer. Zooplankton and
phytoplankton samples were preserved in buffered
formaldehyde and acid Lugol’s solution, respectively.

Zooplankton was enumerated using dissecting
microscopes following the techniques used by
Shanks & Shearman (2009). Briefly, we washed the
samples free of formalin and then added water to the
sample until it reached 200 ml. After agitating the
sample, an aliquot was taken with a Stempel pipette.
Aliquots were counted serially until about 200 cy -
prids had been enumerated. This yielded a sample
standard deviation of about 10% (Venrick 1978).
Cyprids were identified using an identification guide
to west coast larval invertebrates (Shanks 2001).
Pseudo-nitzschia spp. were identified to genus and
counted using standard techniques (Sournia 1978).

Measuring chain length of the Pseudo-nitzschia
spp. provided valuable information. Four pulses of
Pseudo-nitzschia spp. occurred during the study.
During these pulses, the concentration of Pseudo-
nitzschia spp. increased by a factor of from 3 to 6
times in a day. The in crease was too rapid to be
accounted for by growth of the local population (Par-
son et al. 1984), suggesting that these
pulses were likely due to the trans-
port of a population into the study
area. We present evidence suggest-
ing that phytoplankton was trans-
ported to shore during up welling-
relaxation events. If this was the case,
then the Pseudo-nitzschia spp. may
have been transpor ted from a habitat
favorable to their growth, viz. the
upwelling front, to one less favorable
to their growth, i.e. Carmel Bay.
Under favorable growing conditions,
Pseudo-nitzschia spp. produce long
chains, but under poor growing con-
ditions, i.e. low nutrient concentra-
tions, chains break up (Fryxell et al.
1997). We measured chain length
starting on the first day of each pulse
and for 3 d after.

Temperature was recorded every 5
s from 9 June to 19 July 2011 by CTDs
moored near the bottom and surface

of the water column. The mooring was located
approximately 150 m from shore (Fig. 1). Time series
of wind speed and direction were ob tained from the
NOAA National Data Buoy Center buoy 46042
located seaward of the mouth of Monterey Bay.
Using these data and standard equations (Pedlosky
1987), hourly along- and cross-shore wind stresses
were calculated and averaged to obtain daily wind
stresses. Because a constant drag coefficient was
used, values should be considered pseudo-wind
stresses. We cross-correlated the time series of mini-
mum daily bottom temperature with the daily along-
shore wind stress and the maximum daily tidal range
to determine whether wind-driven upwelling and/or
the internal tides may have delivered cold water
onshore. We also cross-correlated sea surface tem-
perature with the alongshore wind stress and the
maximum daily tidal range to determine whether
upwelling-relaxation and/or large internal waves
may have delivered warm water onshore.

Relationships between physical variables (wind
stress, surface maximum daily temperature, bottom
minimum daily temperature) and daily cyprid settle-
ment and Pseudo-nitzschia spp. concentration were
analyzed with cross-correlations, a standard time
series technique (Emery & Thomson 1997). Prior to
running cross-correlations, settlement densities and
Pseudo-nitzschia spp. concentrations were log trans-
formed. Because the abundance of Pseudo-nitzschia
spp. increased over the course of the time series, the
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data were also detrended. Because maximum daily
sea surface temperature co-varied with the tidal
amplitude cycle, the fortnightly periodicity was re -
moved from the temperature time series by removing
the autocorrelation in the data set. The biological and
physical data were cross-correlated by holding the
physical time series stationary while the biological
data were lagged.

RESULTS

Physical data

At both the surface and bottom, water temperature
varied in a regular pattern (Fig. 2). Temperatures
were high at the start of the time series and around 22

June and 9 July and they were low around 12 June
and 2 July. If internal tidal bores (cold or warm bores)
were present during the study, they should appear as
cold or warm water events cross-correlated with the
fortnightly spring−neap tidal cycle. Cold events
should be most apparent at the bottom thermistor. In-
deed, the minimum daily bottom temperature varied
with the spring−neap tidal cycle (Fig. 3A). Between
the neap and spring tides, temperatures dropped such
that minimum temperatures tended to occur around
spring tides. At or shortly after spring tides, minimum
bottom temperature rose, with the warmest water
present around neap tides. This relationship was sup-
ported by signi ficant negative cross-correlations be-
tween the maximum daily tidal range and the mini-
mum bottom temperature (Fig. 3B). A similar pattern
was apparent in the surface temperature data (Fig. 2).
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Maximum sea surface temperature appeared to be
influenced by both the internal tides and upwelling-
relaxation events (cf. Fig. 3A,C). Significant cross-
correlations were found between the maximum daily
tidal range and maximum sea surface temperature
(r = −0.419 to −0.555, p < 0.05, at lags of 0 to −2 d,
graph not presented), with peak sea surface temper-
atures occurring around neap tides. In addition,
alongshore wind stress and the maximum daily sea
surface temperature were significantly cross-corre-
lated (Fig. 3D), with higher sea surface temperatures
occurring at and several days after upwelling-relax-
ation events (negative cross-correlations) and lower
sea surface temperatures occurring several days
after upwelling-favorable winds (positive cross-
 correlations). We found significant negative cross-
correlations at lags of −1 and 0 d; warm water events

occurred during or just after upwelling-relaxation
events.

Barnacle settlement

During the entire 39 d sampling period, we ob -
served only 1 barnacle cyprid settle at the North rocks
site (Fig. 4A); this 1 settler was observed during a
pulse in barnacle settlement at the South rocks site. At
the South rocks site, barnacle settlement was low but
consistent (Fig. 4A). Settlement at this site was not
correlated with the abundance of cyprids 125 m off-
shore of the study site or the abundance of cyprids in
the pump samples from the surf zone (r = 0.08, p >
0.10, n = 28; r = 0.245, p > 0.10, n = 28, respectively).
Settlement was also not significantly cross-correlated
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with the average daily wave height (r = 0.288, p >
0.05, n = 39). Settlement varied with the tidal ampli-
tude cycle (see below), which may obscure the rela-
tionship between settlement and wave height. We,
therefore, removed the fortnightly signal in settlement
by removing the autocorrelation in these data, but set-
tlement still was not signi ficantly correlated with
wave height (r = 0.079, p > 0.10, n = 39). We observed
3 pulses in settlement (Fig 4B) that occurred 0 to 3 d
after spring tides; settle ment was significantly cross-
correlated with tidal amplitude (Fig. 4C). Settlement
peaked as mini mum bottom temperatures were be-
ginning to rise (Fig. 4D), as evidenced by negative
cross-correlations at lags of 0 to −4 d (Fig. 4E).

Pseudo-nitzschia spp. abundance

The concentration of Pseudo-nitzschia spp. at the
offshore station was positively correlated (p < 0.001)
with the concentrations of all other enumerated
phytoplankton genera including Chaetoceros, Tha-
lassionema, Skeletonema, Thallassiosira, and Rhizo -
solenia. Thus Pseudo-nitzschia spp. are representa-
tive of the phytoplankton community, the members
of which appeared to be responding in a similar way
to the changing ocean conditions.

The concentration of Pseudo-nitzschia spp. in crea -
sed steadily during the study period, and super -
imposed on this increase were 4 pulses in the
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 abundance of Pseudo-nitzschia spp. (Fig. 5A). The
in crease in concentration during each of the pulses
was too rapid (populations increased by a factor of 3
to 6 times in a day) to have been caused by popula-
tion growth; the population increases were likely due
to transport of phytoplankton into the area. The con-
centration of Pseudo-nitzschia spp. at each of the surf
zone sample sites was much lower than offshore
(Fig. 6), usually only a small percentage of that seen
offshore. Despite the much lower concentrations, the
same pulses in phytoplankton abundance were ap -
parent at these surf zone sites as indicated by the sig-
nificant correlations between concentrations offshore
and in the surf zones (Fig. 6).

Peaks in Pseudo-nitzschia spp. abundance tended
to occur during upwelling-relaxation events when
upwelling-favorable winds were weak (Fig. 5B), and
this is supported by a significant negative cross-
 correlation at a lag of −1 d (Fig. 5C). The transformed
Pseudo-nitzschia spp. time series was then cross-
 correlated with the transformed maximum surface
temperature time series. Peaks in Pseudo-nitzschia
spp. abundance tended to occur during periods of
higher sea surface temperature (Fig. 5D), and this
was supported by a significant positive cross-correla-
tion at a lag of −1 d (Fig. 5E).

Chain length was measured at the peak of each
pulse event and on 3 d following the peak (Fig. 7).
In 3 out of the 4 cases, the percentage of chains >2
cells long was higher at the peak than on the subse-
quent days, and the percentage of chains only 1 cell
long was lowest at the peak and increased over
time.

DISCUSSION

Potential transport mechanisms

Variations in ocean temperature at our study sites
were correlated with both the tidal amplitude cycle
and alongshore winds; both the tides and winds pro-
duce potential mechanisms for transporting water as
well as zoo- and phytoplankton onshore. Internal tidal
waves are trapped and intensified in Monterey
Canyon as they propagate toward the canyon head
(Kunze et al. 2002, Hall & Carter 2011), which can re-
sult in very large internal waves as has been reported
for other submarine canyons (Gordon & Marshall
1976). Internal waves propagating up the Carmel
Canyon should behave similarly, and the waves could
transport water into the study area; this likely genera -
ted the fortnightly variation in temperature at our
mooring. Pineda (1995) described fortnightly cycles in
tidally driven upwelling at a number of sites along the
west coast of North America, in cluding Pacific Grove,
which is located just north of Carmel Bay and ad -
jacent to the Monterey Submarine Canyon. The sum-
mer cycle in temperature at Pacific Grove is nearly
identical to that observed in Carmel Bay. At both sites,
seawater temperatures reach a minimum around
spring tides and a maximum around neap tides.

Our thermistors were in shallow water (10 m depth)
where the signature from the internal tides is likely
highly modified by interaction with the bottom, mak-
ing interpretation of the data more difficult. More im-
portantly, we had a chain of only 2 thermistors, and
this did not provide enough vertical resolution to de-
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fine the shape of internal waves or bores passing the
mooring. Given what has been observed at other lo-
cations (Pineda 1995, Kunze et al. 2002, Hall & Carter
2011), we hypothesize that during the period of
falling temperatures, temperature was driven down
by cold internal tidal bores propagating up the
canyon and onto the shelf. As tidal energy decreased
following the spring tide, the internal waves likely
became smaller, causing less disruption of the
thermo cline until the thermocline reformed near
neap tide (Cairns & LaFond 1966, Kropfli et al. 1999),
whereupon the internal waves were evident as waves
of depression on the thermocline (Lee 1961). We hy-
pothesize that these waves transported warm water
up the canyon and onto the shelf, generating the
warm periods in the fortnightly temperature cycle.

Carmel Bay is oriented roughly perpendicular to
prevailing northwesterly winds of spring and summer.
These winds produce upwelling along the open coast
and at the mouth of the bay but do not cause up -
welling within the bay. Because the study site was
located close to the head of Carmel Bay, it is unlikely
that the pulses of cyprids and phytoplankton were
due to alongshore transport; alongshore flow should

tend to move across the mouth of the bay rather than
penetrate deeply into the bay. The temperature sig-
nal characteristic of upwelling and relaxation events
was more subtle than that generated by the tides,
making it necessary to remove the tidal signal to
more clearly detect the effect of the wind on seawater
temperature. Following this transformation, there
was a clearer signal of pulses of higher temperatures
occurring during upwelling-relaxation events. Dur-
ing relaxation events, the upwelling front and warm
water seaward of the front propagate toward shore
as gravity currents (Shanks et al. 2000). When this
front propagates all the way to shore, the shore is
bathed with warm water. Depending on the winds,
relaxation events may be brief or last days. None of
the events that we witnessed appeared to last longer
than 2 d (Fig. 2).

Barnacle settlement

Both the North and South rocks sites are reflective
surf zones, and settlement was orders of magnitude
lower than has been observed on rocks at dissipative
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beaches (Shanks et al. 2010). Our research (unpubl.
data) suggests that the exchange of surfzone water
with offshore water, which would enable competent
larvae to cross the surf zone, is more efficient in dis-
sipative than reflective surf zones. At dissipative
beaches, the exchange of surfzone water with off-
shore water is highest during large wave events,
resulting in greater barnacle settlement on rocks
 following these events (Shanks et al. 2010). In con-
trast, barnacle settlement was not related to wave
height at the South rocks, a reflective shore. Lower
cyprid settlement at reflective shores appears to be
due to weaker onshore transport through the surf
zone; the surf zone appears to impede the onshore
transport of competent larvae.

Internal tides, rather than upwelling-relaxation
events, appeared to have transported cyprids on -
shore. Seawater temperature at the study site varied
with both the tidal amplitude and upwelling-relax-
ation cycles, indicating that either internal waves
and bores or relaxation events could transport
cyprids onshore. Relaxation events, however, did not
appear to transport cyprids onshore because settle-
ment was not correlated with either alongshore
winds or pulses of warm seawater, both indicators of
upwelling-relaxation events. In contrast, settlement
was significantly cross-correlated with the spring−
neap tidal cycle and with low surface and bottom
seawater temperatures, both of which also varied
with the spring−neap tidal cycle. We conclude that
variation in barnacle settlement was not driven by
shoreward transport of cyprids by upwelling-relax-
ation events, but rather was driven by their shore-
ward transport by the internal tides.

Although larvae can be transported shoreward
either in an internal tidal bore (Pineda 1991, Leichter
et al. 1998) or in the convergence over tidally gen -
erated internal waves (Shanks 1983, 1988), we do not
have the data needed to differentiate between these 2
transport mechanisms. Large internal waves are usu-
ally associated with internal tidal bores, but we could
not describe the shape of the waves or bores that pas -
sed our mooring, which only had thermistors near the
surface and bottom of the water column. Settlement,
however, clearly peaked following minimum tempera-
tures during the spring tide as temperatures were be-
ginning to rise. Thus, internal tides take a form that is
conducive to the shoreward transport of cyprids soon
after spring tides, as has been observed elsewhere
along the west coast of North America (Shanks 1983,
1986, 2009, Pineda 1991, Ladah et al. 2005).

We did not find a relationship between settlement
and the abundance of cyprids sampled offshore

(125 m from shore) or in the adjacent sandy beach
surf zone (about 100 m north). This is somewhat sur-
prising, as others have noted a relationship between
water column larval abundance and settlement rate
(Bertness et al. 1996). The lack of a relationship in our
data is likely due to the way in which we measured
cyprid abundance and the mechanism of delivery of
the cyprids to the shore (Pineda 2000). We measured
water column cyprid abundance once per day from
zooplankton samples collected offshore with a zoo-
plankton net and in the surf zone from pump sam-
ples. In contrast, studies that have found a relation-
ship between larval abundance and settlement rate
have used sample methods that integrate larval
abundance over all or much of a day (e.g. larval tube
traps or intertidal larval traps; Bertness et al. 1996,
Castilla & Varas 1998). The likely delivery mecha-
nism active at our study site, i.e. internal waves or
bores, would deliver pulses of larvae to the shore
over brief intervals; the odds of our sampling zoo-
plankton during these brief events is minimal, but a
sampling mechanism that integrated larval abun-
dance over much of the day would capture this signal
and, if we had used an integrative sampling system,
we may have found significant correlations between
larval abundance and settlement.

Phytoplankton pulses

A phytoplankton bloom often forms around the
upwelling front where cold upwelled water contacts
the displaced warm surface waters. During down-
welling or upwelling-relaxation conditions, cold up -
welled water sinks and the warm surface water flows
back toward shore as a gravity current (Simpson
1997). Shoreward transport of a phytoplankton bloom
associated with the upwelling front during relaxation
or downwelling events is likely one of the primary
mechanisms for HABs in offshore waters to reach the
coast. For example, work on the Washington coast
indicates that HABs formed in the Juan de Fuca eddy
were carried to the coast during downwelling events,
during which they entered the surf zone and contam-
inated razor clams leading to closure of that fishery
(Adams et al. 2006). A similar pattern of shoreward
transport of an offshore bloom was observed in Spain
(Tilstone et al. 1994).

At the coast, the arrival of an offshore bloom due to
an upwelling-relaxation event would appear as an
abrupt increase in phytoplankton concentration as -
sociated with warmer water, which is exactly what
we saw. Peaks in abundance of Pseudo-nitzschia spp.
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tended to occur during or a day after winds that
would favor downwelling-relaxation events and dur-
ing peaks in sea surface temperature that were likely
the indication of the arrival of the upwelling front at
the shore. When this occurs, phytoplankters are
transported from ideal growing conditions at the
front to less favorable conditions at the shore. At the
front, chain-forming species should produce long
chains as a result of vigorous growth. After they
arrive at the shore, due to less favorable growing
conditions, chain length may decrease. If this sce-
nario is correct, then at the shore we should see max-
imum chain length at the beginning of a pulse and
shorter chains thereafter. In 3 of the 4 pulses of
Pseudo-nitzschia spp., chain length followed exactly
this pattern, which is consistent with our interpreta-
tion that the pulses were due to shoreward transport
from an offshore bloom.

The combination of data reported in this paper,
detailed seawater temperature data from the study
site, daily settlement of cyprids at 2 intertidal sites,
daily measurements of cyprid abundance in the near-
shore and surf zone, and daily phytoplankton abun-
dance in the nearshore and within the surf zone, is
unique and provided us with the opportunity to
investigate at the same place and time the mecha-
nisms of delivery to the shore of larvae of an inter-
tidal organism (barnacle cyprids) and phytoplankton
as represented by the HAB species Pseudo-nitzschia
spp. A number of studies have presented data pur-
ported to demonstrate that cyprids are transported
onshore by upwelling-relaxation events, reviewed
by Shanks (2009), but these studies followed recruit-
ment at weekly or longer intervals and suffer from
aliasing as well as an unknown amount of mortality
between settlement and the recruitment measure-
ment (Shanks 2009). Many studies that have meas-
ured cyprid settlement daily have, however, found
significant correlations between settlement and the
fortnightly tidal cycle (Shanks 1986, 2009, Pineda
1991, Pineda & Caswell 1997, Ladah et al. 2005,
Tapia & Navarrete 2010), suggesting that transport
was due to the internal tides. These studies found
weak or no evidence to support delivery of cyprids by
upwelling-relaxation events, although Hawkins &
Hartnoll (1982) ob served higher settlement during
onshore winds. A proponent of the hypothesis that
upwelling-relaxation transports cyprids to shore might
argue that relaxation events did not occur  during
those studies, which documented fortnightly perio-
dicity in settlement. Here we have temperature data
that clearly indicate that we had transport of water by
the internal tides and by upwelling- relaxation events.

These 2 transport mechanisms are easi ly distin-
guished from one another due to the differential tim-
ing of their physical forcing (tidal cycle and wind
direction, respectively). Both transport mechanisms
were active at the study site, but cyprid delivery to
the shore was only correlated to the fortnightly tidal
cycle; delivery to the shore appears to have been due
to the internal tides not upwelling- relaxation. The
reverse was true for Pseudo-nitzschia spp.; this taxon
and the associated phytoplankton community ap -
peared to have been delivered to the shore by
upwelling-relaxation events, not by internal tides.

This begs the question why cyprids would have
been transported onshore by one mechanism while
Pseudo-nitzschia was transported onshore by a dif-
ferent one. Recent studies have demonstrated that in
the California Current, cyprids as well as the larvae
of many intertidal invertebrates are primarily found
within a few kilometers of shore (Shanks & Brink
2005, Morgan et al. 2009, Shanks & Shearman 2009).
Our data suggest that cyprids were transported
onshore by the internal tides and, at our study site,
these were likely generated just offshore in the
Carmel Submarine Canyon; the cyprids were likely
present only close to shore as was the transport
mechanism. In contrast, the likely source of the
Pseudo-nitzschia was offshore at the upwelling front
as has been seen in other locations (Gentien et al.
2005, Adams et al. 2006). This would place them well
seaward of the likely generation site for the internal
tides at this study site. At this distance from shore,
the only active onshore transport mechanism would
have been the upwelling front propagating toward
shore during upwelling-relaxation events. In Ore-
gon, USA, both cyprids and Pseudo-nitzschia were
transported onshore by the internal tides, but in Ore-
gon, internal waves are generated at the shelf break
and, hence, both the likely source of the Pseudo-
nitzschia, the upwelling front, and cyprids were in
the path of internal waves.
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