
UC Irvine
ICS Technical Reports

Title
Bridging high-level synthesis to RTL technology libraries

Permalink
https://escholarship.org/uc/item/9d8332m6

Authors
Dutt, Nikil D.
Kipps, James R.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9d8332m6
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

BRIDGING IDGH-LEVEL SYNTHESIS
TO RTL TECHNOLOGY LIBRARIES

Nikil. D. Dutt _
Jru-res R. hlp~-

Technical Report 91-28

Information and Computer Science
University of California at Irvine

Irvine, CA 92717

Abstract

The output of high-level synthesis typically consists of a netlist
of generic RTL components and a state sequencing table.
vVhile module generators and logic synthesis tools can be used
to map RTL components into standard cells or layout
geometries, they cannot provide technology mapping into the
data book libraries of functional RTL cells used commonly
throughout the industrial design community. In this paper, we
introduce an approach to implementing generic RTL com­
ponents with technology-specific RTL library cells. This
approach addresses the criticism of designers who feel that
high-level synthesis tools should be used in conjunction with
existing RTL data books. vVe describe how GENUS, a library
of generic RTL components, is organized for use. in high-level
synthesis and how DTAS, a functional synthesis system, is used
to map GENUS components into RTL library cells.

Abstract

The output of high-level synthesis typically consists of a netlist of generic RTL

components and a state sequencing table. vVhile module generators and logic synthesis tools

can be used to map RTL components into standatd cells or layout geometries, they cannot

provide technology mapping into the data book libraries of functional RTL cells used

commonly throughout the industrial design community. In this paper, we introduce an

approach to implementing generic RTL components with technology-specific RTL library

cells. This approach addresses the criticism of designers who feel that high-level synthesis

tools should be used in conjunction with existing RTL data books. vVe describe how GENUS,

a library of generic RTL components, is organized for use in high-level synthesis and how

DTAS, a functional synthesis system, 1s used to map GENUS components into RTL library

cells.

1. Introduction

High-level synthesis systems transform an abstract behavioral specification into a

structure of RTL operators and a state sequencing table. Most high-level synthesis systems

map operators to generic RTL components to effect technology independence. The output of

high-level synthesis is then input to logic- and layout-level synthesis tools to complete the

design. Although abstract component characterization is an important task in high-level

synthesis, most existing high-level synthesis systems have not explicitly addressed this issue.

Traditional high-level synthesis systems either use very abstract components, which provides

crude estimates for delay and area, or use design components from a particular technology

library, which yields good performance estimates but complicates the task of retargetting to

new libraries.

In this paper, we outline a novel method for coupling technology independence in h-igh­

level synthes·is with technology mapping to RTL library cells. Technology independence is

achieved through the use of GENUS and LEGEND, while technology mapping to RTL library

cells is achieved through the use of DTAS. GENUS is a parameterizable library in which

generic components are instantiated by specifying parameters that define their structural.

operational, and performance attributes. LEGEND is language that allows the specification

new GENUS libraries, as well as the customization of existing libraries. DTAS is a rule-based

system for functional synthesis of generic RTL components, such as those found in a GENUS

library.

The combination of GENUS, LEGEND, and DTAS allow us to address the criticism that

high-level synthesis tools are not useful because they do not map designs into the RTL

components available in technology-specific data books. Such components are used in many

existing industrial designs for implementing regular structured logic, such as ALU's,

multipliers, and counters. For this design scenario, current high-level synthesis techniques are

not immediately useful, since there is no automatic path available to map generic components

into technology-specific RTL components. In this paper, we show a path for implementing

generic components from high-level synthesis by tre~ting data book components as RTL

library cells.

2. Previous Work

Some work on characterization of technology-specific components and module databases

has been done at the layout and logic levels [LeTh81] [Wolf86]. However, not much attention

2

has been focused on characterizing generic components at the register-transfer level. \'HDL

[IEEE87] is a proposed standard for design documentation and exchange. Although VHDL

has good constructs for describing specific libraries and component instances, it is unsuitable

for fully describing customized, parameterizable component libraries.

Silicon compilers and behavioral synthesis tools typically use the module generator

approach to RTL component synthesis, where module generators are integrated with logic

synthesis tools [CaTr89]. For instance, the Yorktown silicon compiler [BrCa88] maps

combinational operators to modules; these modules are then input to logic synthesis tools

using ESPRESSO-II [BrHM84]. Similarly, ICDB [ChGa90] uses component generators to

produce logic equations for each functional component; these equations, together with

performance constraints, are input to the MILO logic optimizer [VaGa88]. These systems take

a "procedural" view of RTL synthesis that does not preserve the hierarchical structure of

component design for technology mapping. Hence, technology mapping is done at the logic

level on large flat designs, which requires DAG matching by detecting isomorphism of large

subgraphs [Keut87]. This complicates the task of interfacing to a given cell library that may

consist of large cells at the MSI and LSI level.

3. System Overview

Figure 1 shows the overall framework of a system that performs high-level synthesis and

that implements generic components using RTL library cells. The design is initially specified

in ari abstract behavioral language. The generic component library, GENUS, is generated

from a LEGEND description. High-level synthesis tools such as state schedulers, component

allocators, component and connectivity binders, progressively transform the abstract

behavioral design specification into a state sequencing table and a netlist of GENUS

3

components described using structural VHDL.

The state sequencing table is accepted by a control compiler that extracts the sequencing

logic and applies logic-level optimizations and technology mapping techniques. The GENUS

netlist, consisting of regular-structured data path components such as MUXs, ALUs, and

registers, is input to DTAS. This netlist is translated into an internal representation that is

then passed through a phase of functional decomposition and technology mapping.

RTL
Cell

Library

LEGEND

GENUS
Library

DTAS
VHDL Translator

Functional
Decomposition

and Technology
Ma ping

Logic and
Layout

Synthesis

Design
Spec

High Level ynthesis

I component Allocation I
I State Scheduling I
I Component Binding I
I Connectivity Binding I

Control
Compiler

Figure 1. System Architecture

4

The output of DT.-\S is a set of alternati\·e implementations of the input netlist. Each

implementation is represented as a hierarchical netlist that traces the top-down design of the

input netlist into subcomponents. Leaves of each hierarchical netlist map the alternative

design to cells drawn from the given RTL library. Netlists vary by the design styles and

library cells used in their construction. The hierarchical netlists can be output in structural

VHDL and passed to other tools for analysis, optimization, and layout.

4. GENUS and LEGEND

GENUS [Dutt88] is a framework for maintaining and accessing libraries of generic RTL

components. LEGEND [Dutt90] is a generator-specification language for describing the

contents of a GENUS library. Each generic component generator is characterized by a unique

name and a list of parameterizable attributes. Typical parameters include the component's

style, functionality, input-output characteristics, size, bit-width, and representation.

The LEGEND description can be tailored to a particular generic component library by

specifying the necessary component generator types. In addition, each component generator

can produce simulatable VHDL behavioral models for the generated components. These

models can be used to verify the behavior of a synthesized design. Figure 2 shows a typical

LEGEND description for a generic counter component.

A GENUS library is composed as a hierarchy of types, generators, components and

instances. The type class describes the abstract functionality of elements in GENUS. Sample

type attributes include combinatorial, sequential, inter face, and miscellaneous.

A generator class is used to generate a family of similar components and instances.

LEGEND descriptions are used to maintain lists of all possible parameters and definitions for

5

NAME: COUNTER
CLASS: Clocked
MAX_FARAMS: 7
PARAMETERS: GC_cmvlPILER_NA.ME, GCJNPUT_WIDTH (3w),

GC_i."l"Ul\LFUNCTIONS, GC__FUNCTIONJ,IST,
GC-5ET_V ALUE, GC-5TYLE, GC_ENABLE__FLAG

NUM-5TYLES:
STYLES:
NU1'IJNPUTS:

SYNCHRQNOUS, RIPPLE
1

INPUTS: I0[3w]
NID.LOUTPUTS: 1
OUTPUTS:
CLOCK:
Nm.LEN ABLE:
ENABLE: CEN

00[3w]
CLK

NU:r..LCONTROL: 3

CONTROL: CLOAD, CUP, CDOWN
Nm.LA SYNC:
A SYNC: ASET, ARESET
Nm.LOPERA TIONS: 3
OPERATIONS:

(

VHDL....MODEL:
OP _CLASSES:

(LOAD)
(INPUTS: IO)
(OUTPUTS: 00)
(CONTRO~ CLOAD)
(OPS: (LOAD: 00 =IO)))
(COUNT_UP)
(OUTPUTS: 00)
(CONTROL: CUP)
(OPS: (COUNT_UP: 00 = 00 + 1)))
(COUNTJ)OWN)
(OUTPUTS: 00)
(CONTROL: CD OWN)
(OPS: (COUNTJ)OWN: 00 = 00 - 1)))

counter_vhdl.c
default

Figure 2. LEGEND Counter Generator Description

every possible operation performed by a generated component. A component is generated by

passing a list. of parameters to the parent LEG END generator descriptor; some parameters are

obligatory, others may be assigned a default value. Instances are "carbon-copies" of a

generated component, with unique names. GENUS component instances are used in the final

structural design produced by high-level synthesis tools. Since an instance inherits all of its

attributes from the parent component, only the connectivity of the instance is stored in its

representation. Table 1 shows some typical components available in the GENUS/LEGEND

environment.

6

Combinational Sequential

Boolean Gates Comparator
Register

LU ALU

Mux Shifter Register File

Selector Barrel Shifter Counter

Decoder
Multiplier Stack/FIFO

Encoder Memory
Divider

Adder/Subtractor

Interface Miscellaneous

Port Bus

Buffer Delay

Clock Driver Switchbox Concat

Schmidt Trigger Switchbox Extract

Tristate
Clock Generator

Wired-or

Table 1. Typical LEGEND/GENUS Generic Components

5. DTAS

GENUS component instances are mapped into technology-specific designs by DTAS

[KiGa91]. The input to DTAS is a netlist of instanti~ted GENUS components (or modules L

which is passed through a phase of functional decomposition and technology mapping.

Functional decomposition is implemented with a rule-based system that expands the space of

component decompositions. This design space is represented as an acyclic graph. Nodes

consist of component specifications and alternative component implementations. Each

7

component implementation corresponds to a library cell or to a netlist of modules. A netlist

represents one level of component decomposition; its modules represent connected

subcomponents. Each module is described by a component specification and will be mapped

to one implementation of that specification. The output of DTAS is a set of hierarchical,

library-specific netlists that represent alternative implementations of the components in the

input netlist.

Technology mappmg 1s performed usmg the functional specJfication of library cells, as

opposed to a DAG description of their Boolean behavior. The functionality of library cells,

i.e., their type, bit-width, and other characteristics, is described with the same representation

language used in recognizing and decomposing GENUS components. During decomposition,

component specifications are compared to the functional specification of available library cell;

matching cells are mapped into the design space. For example, after DTAS decomposes a 16-

bit adder into four 4-bit adders, it examines the cell library for a cell of type ADD with two

4-bit inputs plus carry-in and a 4-bit output plus carry-out. If such a cell exists, it is mapped

into the design as an alternative implementation of the 4-bit adder. By performing a

functional match, we avoid the complexity of subgraph isomorphism inherent in DAG

matching.

If unconstrained, the size of the design space for a given input netlist is the product of

the number of alternative implementations for each module in the netlist. Even for

components of modest size, such as a 16-bit adder, there can be several hundred thousand to

several million alternative designs, o:Uly a small percentage of which are of any real interest.

Thus, some form of search control is required to limit the size of the design space. vVe

constrain design space expans10n m two ways. First, we ignore netlist implementations

8

containing two or more modules with the same component specification that are not instances

of the same component implementation. Second, i.;ve apply performance .filters to eliminate

all but the "best" alternative implementations of each component specification in the design

hierarchy. These two search control principles reduce the design space to a manageable size.

For instance, the design space of a 16-bit adder is reduced to ten alternatives designs.

6. Perforllllllce Results

Figure 3 shows a comparison of five alternative designs for a 64-bit, 16-function ALU.

These designs were generated by DTAS usmg a subset of 30 cells from LSI Logic Inc. 's

macrocell data book (LSIL87]. This set includes 2-to-1, 4-to-2i and 8-to-4 multiplexers, 1-l 2-,

and·4-bit adders plus 4-bit carry look-ahead generators, a 2-bit adder/subtractori D flip flops,

and 4- and 8-bit data registers.

The performance filter used m this example accepts all design alternatives that make

favorable tradeoffs between area (in equivalent N AND gates) and delay (in nanoseconds).

The fastest design alternative is 34 percent larger than the smallest but reduces delay by 81

percent. More significantly, DTAS finds two other alternative designs that r.educe delay

nearly as well as the fastest but suffer only a 14 percent increase in area. DTAS generated

this design space in less than 15 minutes of real time on a SUN-3 workstation.

7. Status and Future Direction

The GENUS/LEGEND generic component library environment is implemented in

C/UNIX and Lex/Yacc on SUN workstation environment. High-level synthesis tools such as

VSS (LiGa88] currently use generic components from this environment. The output of the

high-level synthesis tools is a VHDL structural netlist of GENUS components, and a state

9

Delay

134.3 • (03,0%)

69.1

33.1
27.8
26.1

Component Specification

ALU.O.O(A-64 s-s4 CI s-4)
co-64 co R)

:OPERATIONS (ADD SUB INC DEC EQ LT GT ZEROP

• (133,-49%)

• (143,-75%)
• (143,-79%)

AND OR NAND NOR XOR XNOR LNOT LIMPL)

(34%,-81 %) •
...__,----------.--~----------------Area
4879 5503 5578 6526

Figure 3. Alternative Designs for 64-Bit ALU

table in control-based BIF [DuHG90] that controls these GENUS components and that

sequences the design.

DTAS is implemented in Common Lisp and Rack [Kipp90] and is capable of synthesizing

a wide range of RTL components, including bitwise logic gates and multiplexers, binary and

BCD decoders and encoders, n-bit adders and comparators, n-bit arithmetic logic units,

shifters, n-by-m multipliers, and up/down counters. These components are supported by 86

rules written in the DT AS Design Language. DTAS requires nine library-specific design rules

10

to fully utilize the subset of cells from LSI Logic mentioned above.

To ease the task of moving DTAS into new cell libraries, we are developing LOLA (Logic

Learning Assistant) [KiGa90). The purpose of LOLA is to partially automate the

maintenance of DTAS's library-specific rules. LOLA is invoked when DTAS is presented with

a new cell library or as technology upgrades cause changes in a familiar library. LOLA applies

abstract design principles to generate library-specific rules. LOLA then uses these generated

rules to modify DT AS 's rule base so that DT AS can take advantage of the library changes.

8. Acknowledgements

This research was supported in part by NSF RIA MIP-9009239 and SRC Contract 90-

DJ-146. The authors would especially like to thank Prof. Daniel D. Gajski for his insightful

discussions and guidance.

9. References

[BrHM84] R.K. Brayton, et al., "ESPRESSO-UC: Logic Minimization Algorithms for VLSI

Synthesis," Kluwer Academic Publishers, Netherlands, 1984.

[BrCa88] R.K. Brayton, et al., "The Yorktown Silicon Compiler System," Silicon

Compilation, D. Gajski (ed.), Addison-vVesley, 1988.

[CaTr89] R. Camposano, and L.H. Trevillyan, "The Integration of Logic Synthesis and

High-Level Synthesis," ISCAS 89.

[ChGa90] G.D. Chen and D.D. Gajski, "An Intelligent Component Database for Behavioral

Synthesis," 27th DA.C, Orlando, July 1990.

11

[Dutt88] :\'".D. Dutt. "GE:\'TS: A Generic Component Library for High Level Synthesis," TR

88-22, U.C. Irvine, Sept. 1988.

[Dutt90] N.D. Dutt, :'LEGEND: A Language for Generic Component Description," 1990

IEEE International Conference on Computer Languages, New Orleans, March

1990.

[DuHG90] N.D. Dutt, T. Hadley and D.D. Gajski, "An Intermediate Representation for

Behavioral Synthesis," 27th DAG, 1990.

[IEEE87] IEEE Standard 1/HDL Language Reference lvlanual, IEEE, 1987.

[Kipp90] J.R. Kipps, "RACK: A Parser Generator for AI Languages," IEEE International

Conference on Tools for A.I, 'Washington DC, Nov. 1990.

[KiGa90] J.R. Kipps and D.D. Gajski, "The Role of Learning m Logic Synthesis,"

International Journal of Pattern Recognition and Artificial Intelligence, Vol. 4,

No. 2, World Scientific Press, June 1990.

[KiGa91] J.R. Kipps and D.D. Gajski, "Automating Technology Adaptation m Design

Synthesis," Applications of Learning and Planning Nlethods, N.G. Bourbakis

(ed.), ·world Scientific Press, 1991.

[Keut87] K. Keutzer, "DAGON: Technology Binding and Local Optimization by DAG

rvfatching," 24th DAG, 1987.

[LeTh81] G.vV. Leive and D.E. Thomas, "A Technology Relative Logic Synthesis and

Module Selection System," 18th DAG, 1981.

[LSIL87] LSI Logic, Inc., "Databook: 1.5-Micron Compacted Array Technology," 1987.

12

[LiGa88] J.S. Lis and D.D. Gajski, "Synthesis From VHDL," ICCD 88, Oct. 1988.

[VaGa88] N. Vander Zanden and D.D. Gajski, "MILO: A Microarchitecture and Logic

Optimizer," 25th DAG, 1988.

[\Volf86J vV. \Volf, "An Object-Oriented Procedural Database for VLSI Chip Planning,"

23rd DAG, 1986.

13

