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Abstract 

The output of high-level synthesis typically consists of a netlist 
of generic RTL components and a state sequencing table. 
vVhile module generators and logic synthesis tools can be used 
to map RTL components into standard cells or layout 
geometries, they cannot provide technology mapping into the 
data book libraries of functional RTL cells used commonly 
throughout the industrial design community. In this paper, we 
introduce an approach to implementing generic RTL com­
ponents with technology-specific RTL library cells. This 
approach addresses the criticism of designers who feel that 
high-level synthesis tools should be used in conjunction with 
existing RTL data books. vVe describe how GENUS, a library 
of generic RTL components, is organized for use. in high-level 
synthesis and how DTAS, a functional synthesis system, is used 
to map GENUS components into RTL library cells. 





Abstract 

The output of high-level synthesis typically consists of a netlist of generic RTL 

components and a state sequencing table. vVhile module generators and logic synthesis tools 

can be used to map RTL components into standatd cells or layout geometries, they cannot 

provide technology mapping into the data book libraries of functional RTL cells used 

commonly throughout the industrial design community. In this paper, we introduce an 

approach to implementing generic RTL components with technology-specific RTL library 

cells. This approach addresses the criticism of designers who feel that high-level synthesis 

tools should be used in conjunction with existing RTL data books. vVe describe how GENUS, 

a library of generic RTL components, is organized for use in high-level synthesis and how 

DTAS, a functional synthesis system, 1s used to map GENUS components into RTL library 

cells. 

1. Introduction 

High-level synthesis systems transform an abstract behavioral specification into a 

structure of RTL operators and a state sequencing table. Most high-level synthesis systems 

map operators to generic RTL components to effect technology independence. The output of 

high-level synthesis is then input to logic- and layout-level synthesis tools to complete the 

design. Although abstract component characterization is an important task in high-level 

synthesis, most existing high-level synthesis systems have not explicitly addressed this issue. 

Traditional high-level synthesis systems either use very abstract components, which provides 

crude estimates for delay and area, or use design components from a particular technology 

library, which yields good performance estimates but complicates the task of retargetting to 



new libraries. 

In this paper, we outline a novel method for coupling technology independence in h-igh­

level synthes·is with technology mapping to RTL library cells. Technology independence is 

achieved through the use of GENUS and LEGEND, while technology mapping to RTL library 

cells is achieved through the use of DTAS. GENUS is a parameterizable library in which 

generic components are instantiated by specifying parameters that define their structural. 

operational, and performance attributes. LEGEND is language that allows the specification 

new GENUS libraries, as well as the customization of existing libraries. DTAS is a rule-based 

system for functional synthesis of generic RTL components, such as those found in a GENUS 

library. 

The combination of GENUS, LEGEND, and DTAS allow us to address the criticism that 

high-level synthesis tools are not useful because they do not map designs into the RTL 

components available in technology-specific data books. Such components are used in many 

existing industrial designs for implementing regular structured logic, such as ALU's, 

multipliers, and counters. For this design scenario, current high-level synthesis techniques are 

not immediately useful, since there is no automatic path available to map generic components 

into technology-specific RTL components. In this paper, we show a path for implementing 

generic components from high-level synthesis by tre~ting data book components as RTL 

library cells. 

2. Previous Work 

Some work on characterization of technology-specific components and module databases 

has been done at the layout and logic levels [LeTh81] [Wolf86]. However, not much attention 
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has been focused on characterizing generic components at the register-transfer level. \'HDL 

[IEEE87] is a proposed standard for design documentation and exchange. Although VHDL 

has good constructs for describing specific libraries and component instances, it is unsuitable 

for fully describing customized, parameterizable component libraries. 

Silicon compilers and behavioral synthesis tools typically use the module generator 

approach to RTL component synthesis, where module generators are integrated with logic 

synthesis tools [CaTr89]. For instance, the Yorktown silicon compiler [BrCa88] maps 

combinational operators to modules; these modules are then input to logic synthesis tools 

using ESPRESSO-II [BrHM84]. Similarly, ICDB [ChGa90] uses component generators to 

produce logic equations for each functional component; these equations, together with 

performance constraints, are input to the MILO logic optimizer [VaGa88]. These systems take 

a "procedural" view of RTL synthesis that does not preserve the hierarchical structure of 

component design for technology mapping. Hence, technology mapping is done at the logic 

level on large flat designs, which requires DAG matching by detecting isomorphism of large 

subgraphs [Keut87]. This complicates the task of interfacing to a given cell library that may 

consist of large cells at the MSI and LSI level. 

3. System Overview 

Figure 1 shows the overall framework of a system that performs high-level synthesis and 

that implements generic components using RTL library cells. The design is initially specified 

in ari abstract behavioral language. The generic component library, GENUS, is generated 

from a LEGEND description. High-level synthesis tools such as state schedulers, component 

allocators, component and connectivity binders, progressively transform the abstract 

behavioral design specification into a state sequencing table and a netlist of GENUS 
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components described using structural VHDL. 

The state sequencing table is accepted by a control compiler that extracts the sequencing 

logic and applies logic-level optimizations and technology mapping techniques. The GENUS 

netlist, consisting of regular-structured data path components such as MUXs, ALUs, and 

registers, is input to DTAS. This netlist is translated into an internal representation that is 

then passed through a phase of functional decomposition and technology mapping. 

RTL 
Cell 

Library 

LEGEND 

GENUS 
Library 

DTAS 
VHDL Translator 

Functional 
Decomposition 

and Technology 
Ma ping 

Logic and 
Layout 

Synthesis 

Design 
Spec 

High Level ynthesis 

I component Allocation I 
I State Scheduling I 
I Component Binding I 
I Connectivity Binding I 

Control 
Compiler 

Figure 1. System Architecture 

4 



The output of DT.-\S is a set of alternati\·e implementations of the input netlist. Each 

implementation is represented as a hierarchical netlist that traces the top-down design of the 

input netlist into subcomponents. Leaves of each hierarchical netlist map the alternative 

design to cells drawn from the given RTL library. Netlists vary by the design styles and 

library cells used in their construction. The hierarchical netlists can be output in structural 

VHDL and passed to other tools for analysis, optimization, and layout. 

4. GENUS and LEGEND 

GENUS [Dutt88] is a framework for maintaining and accessing libraries of generic RTL 

components. LEGEND [Dutt90] is a generator-specification language for describing the 

contents of a GENUS library. Each generic component generator is characterized by a unique 

name and a list of parameterizable attributes. Typical parameters include the component's 

style, functionality, input-output characteristics, size, bit-width, and representation. 

The LEGEND description can be tailored to a particular generic component library by 

specifying the necessary component generator types. In addition, each component generator 

can produce simulatable VHDL behavioral models for the generated components. These 

models can be used to verify the behavior of a synthesized design. Figure 2 shows a typical 

LEGEND description for a generic counter component. 

A GENUS library is composed as a hierarchy of types, generators, components and 

instances. The type class describes the abstract functionality of elements in GENUS. Sample 

type attributes include combinatorial, sequential, inter face, and miscellaneous. 

A generator class is used to generate a family of similar components and instances. 

LEGEND descriptions are used to maintain lists of all possible parameters and definitions for 
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NAME: COUNTER 
CLASS: Clocked 
MAX_FARAMS: 7 
PARAMETERS: GC_cmvlPILER_NA.ME, GCJNPUT_WIDTH (3w), 

GC_i."l"Ul\LFUNCTIONS, GC__FUNCTIONJ,IST, 
GC-5ET_V ALUE, GC-5TYLE, GC_ENABLE__FLAG 

NUM-5TYLES: 
STYLES: 
NU1'IJNPUTS: 

SYNCHRQNOUS, RIPPLE 
1 

INPUTS: I0[3w] 
NID.LOUTPUTS: 1 
OUTPUTS: 
CLOCK: 
Nm.LEN ABLE: 
ENABLE: CEN 

00[3w] 
CLK 

NU:r..LCONTROL: 3 

CONTROL: CLOAD, CUP, CDOWN 
Nm.LA SYNC: 
A SYNC: ASET, ARESET 
Nm.LOPERA TIONS: 3 
OPERATIONS: 

( 

VHDL....MODEL: 
OP _CLASSES: 

(LOAD) 
(INPUTS: IO) 
(OUTPUTS: 00) 
(CONTRO~ CLOAD) 
(OPS: (LOAD: 00 =IO))) 
(COUNT_UP) 
(OUTPUTS: 00) 
(CONTROL: CUP) 
(OPS: (COUNT_UP: 00 = 00 + 1))) 
(COUNTJ)OWN) 
(OUTPUTS: 00) 
(CONTROL: CD OWN) 
(OPS: (COUNTJ)OWN: 00 = 00 - 1))) 

counter_vhdl.c 
default 

Figure 2. LEGEND Counter Generator Description 

every possible operation performed by a generated component. A component is generated by 

passing a list. of parameters to the parent LEG END generator descriptor; some parameters are 

obligatory, others may be assigned a default value. Instances are "carbon-copies" of a 

generated component, with unique names. GENUS component instances are used in the final 

structural design produced by high-level synthesis tools. Since an instance inherits all of its 

attributes from the parent component, only the connectivity of the instance is stored in its 

representation. Table 1 shows some typical components available in the GENUS/LEGEND 

environment. 
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Combinational Sequential 

Boolean Gates Comparator 
Register 

LU ALU 

Mux Shifter Register File 

Selector Barrel Shifter Counter 

Decoder 
Multiplier Stack/FIFO 

Encoder Memory 
Divider 

Adder/Subtractor 

Interface Miscellaneous 

Port Bus 

Buffer Delay 

Clock Driver Switchbox Concat 

Schmidt Trigger Switchbox Extract 

Tristate 
Clock Generator 

Wired-or 

Table 1. Typical LEGEND/GENUS Generic Components 

5. DTAS 

GENUS component instances are mapped into technology-specific designs by DTAS 

[KiGa91]. The input to DTAS is a netlist of instanti~ted GENUS components (or modules L 

which is passed through a phase of functional decomposition and technology mapping. 

Functional decomposition is implemented with a rule-based system that expands the space of 

component decompositions. This design space is represented as an acyclic graph. Nodes 

consist of component specifications and alternative component implementations. Each 
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component implementation corresponds to a library cell or to a netlist of modules. A netlist 

represents one level of component decomposition; its modules represent connected 

subcomponents. Each module is described by a component specification and will be mapped 

to one implementation of that specification. The output of DTAS is a set of hierarchical, 

library-specific netlists that represent alternative implementations of the components in the 

input netlist. 

Technology mappmg 1s performed usmg the functional specJfication of library cells, as 

opposed to a DAG description of their Boolean behavior. The functionality of library cells, 

i.e., their type, bit-width, and other characteristics, is described with the same representation 

language used in recognizing and decomposing GENUS components. During decomposition, 

component specifications are compared to the functional specification of available library cell; 

matching cells are mapped into the design space. For example, after DTAS decomposes a 16-

bit adder into four 4-bit adders, it examines the cell library for a cell of type ADD with two 

4-bit inputs plus carry-in and a 4-bit output plus carry-out. If such a cell exists, it is mapped 

into the design as an alternative implementation of the 4-bit adder. By performing a 

functional match, we avoid the complexity of subgraph isomorphism inherent in DAG 

matching. 

If unconstrained, the size of the design space for a given input netlist is the product of 

the number of alternative implementations for each module in the netlist. Even for 

components of modest size, such as a 16-bit adder, there can be several hundred thousand to 

several million alternative designs, o:Uly a small percentage of which are of any real interest. 

Thus, some form of search control is required to limit the size of the design space. vVe 

constrain design space expans10n m two ways. First, we ignore netlist implementations 
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containing two or more modules with the same component specification that are not instances 

of the same component implementation. Second, i.;ve apply performance .filters to eliminate 

all but the "best" alternative implementations of each component specification in the design 

hierarchy. These two search control principles reduce the design space to a manageable size. 

For instance, the design space of a 16-bit adder is reduced to ten alternatives designs. 

6. Perforllllllce Results 

Figure 3 shows a comparison of five alternative designs for a 64-bit, 16-function ALU. 

These designs were generated by DTAS usmg a subset of 30 cells from LSI Logic Inc. 's 

macrocell data book (LSIL87]. This set includes 2-to-1, 4-to-2i and 8-to-4 multiplexers, 1-l 2-, 

and·4-bit adders plus 4-bit carry look-ahead generators, a 2-bit adder/subtractori D flip flops, 

and 4- and 8-bit data registers. 

The performance filter used m this example accepts all design alternatives that make 

favorable tradeoffs between area (in equivalent N AND gates) and delay (in nanoseconds). 

The fastest design alternative is 34 percent larger than the smallest but reduces delay by 81 

percent. More significantly, DTAS finds two other alternative designs that r.educe delay 

nearly as well as the fastest but suffer only a 14 percent increase in area. DTAS generated 

this design space in less than 15 minutes of real time on a SUN-3 workstation. 

7. Status and Future Direction 

The GENUS/LEGEND generic component library environment is implemented in 

C/UNIX and Lex/Yacc on SUN workstation environment. High-level synthesis tools such as 

VSS (LiGa88] currently use generic components from this environment. The output of the 

high-level synthesis tools is a VHDL structural netlist of GENUS components, and a state 
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Delay 

134.3 • (03,0%) 

69.1 

33.1 
27.8 
26.1 

Component Specification 

ALU.O.O(A-64 s-s4 CI s-4) 
co-64 co R) 

:OPERATIONS (ADD SUB INC DEC EQ LT GT ZEROP 

• (133,-49%) 

• (143,-75%) 
• (143,-79%) 

AND OR NAND NOR XOR XNOR LNOT LIMPL) 

(34%,-81 %) • 
...__,----------.--~----------------Area 
4879 5503 5578 6526 

Figure 3. Alternative Designs for 64-Bit ALU 

table in control-based BIF [DuHG90] that controls these GENUS components and that 

sequences the design. 

DTAS is implemented in Common Lisp and Rack [Kipp90] and is capable of synthesizing 

a wide range of RTL components, including bitwise logic gates and multiplexers, binary and 

BCD decoders and encoders, n-bit adders and comparators, n-bit arithmetic logic units, 

shifters, n-by-m multipliers, and up/down counters. These components are supported by 86 

rules written in the DT AS Design Language. DTAS requires nine library-specific design rules 
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to fully utilize the subset of cells from LSI Logic mentioned above. 

To ease the task of moving DTAS into new cell libraries, we are developing LOLA (Logic 

Learning Assistant) [KiGa90). The purpose of LOLA is to partially automate the 

maintenance of DTAS's library-specific rules. LOLA is invoked when DTAS is presented with 

a new cell library or as technology upgrades cause changes in a familiar library. LOLA applies 

abstract design principles to generate library-specific rules. LOLA then uses these generated 

rules to modify DT AS 's rule base so that DT AS can take advantage of the library changes. 

8. Acknowledgements 

This research was supported in part by NSF RIA MIP-9009239 and SRC Contract 90-

DJ-146. The authors would especially like to thank Prof. Daniel D. Gajski for his insightful 

discussions and guidance. 

9. References 

[BrHM84] R.K. Brayton, et al., "ESPRESSO-UC: Logic Minimization Algorithms for VLSI 

Synthesis," Kluwer Academic Publishers, Netherlands, 1984. 

[BrCa88] R.K. Brayton, et al., "The Yorktown Silicon Compiler System," Silicon 

Compilation, D. Gajski (ed.), Addison-vVesley, 1988. 

[CaTr89] R. Camposano, and L.H. Trevillyan, "The Integration of Logic Synthesis and 

High-Level Synthesis," ISCAS 89. 

[ChGa90] G.D. Chen and D.D. Gajski, "An Intelligent Component Database for Behavioral 

Synthesis," 27th DA.C, Orlando, July 1990. 

11 



[Dutt88] :\'".D. Dutt. "GE:\'TS: A Generic Component Library for High Level Synthesis," TR 

88-22, U.C. Irvine, Sept. 1988. 

[Dutt90] N.D. Dutt, :'LEGEND: A Language for Generic Component Description," 1990 

IEEE International Conference on Computer Languages, New Orleans, March 

1990. 

[DuHG90] N.D. Dutt, T. Hadley and D.D. Gajski, "An Intermediate Representation for 

Behavioral Synthesis," 27th DAG, 1990. 

[IEEE87] IEEE Standard 1/HDL Language Reference lvlanual, IEEE, 1987. 

[Kipp90] J.R. Kipps, "RACK: A Parser Generator for AI Languages," IEEE International 

Conference on Tools for A.I, 'Washington DC, Nov. 1990. 

[KiGa90] J.R. Kipps and D.D. Gajski, "The Role of Learning m Logic Synthesis," 

International Journal of Pattern Recognition and Artificial Intelligence, Vol. 4, 

No. 2, World Scientific Press, June 1990. 

[KiGa91] J.R. Kipps and D.D. Gajski, "Automating Technology Adaptation m Design 

Synthesis," Applications of Learning and Planning Nlethods, N.G. Bourbakis 

(ed.), ·world Scientific Press, 1991. 

[Keut87] K. Keutzer, "DAGON: Technology Binding and Local Optimization by DAG 

rvfatching," 24th DAG, 1987. 

[LeTh81] G.vV. Leive and D.E. Thomas, "A Technology Relative Logic Synthesis and 

Module Selection System," 18th DAG, 1981. 

[LSIL87] LSI Logic, Inc., "Databook: 1.5-Micron Compacted Array Technology," 1987. 

12 



[LiGa88] J.S. Lis and D.D. Gajski, "Synthesis From VHDL," ICCD 88, Oct. 1988. 

[VaGa88] N. Vander Zanden and D.D. Gajski, "MILO: A Microarchitecture and Logic 

Optimizer," 25th DAG, 1988. 

[\Volf86J vV. \Volf, "An Object-Oriented Procedural Database for VLSI Chip Planning," 

23rd DAG, 1986. 

13 




