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A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Environmental Systems

in the

Graduate Division

of the

University of California, Merced

Committee in charge:

Assistant Professor Marie-Odile Fortier, Chair
Professor Sarah Kurtz, Advisor

Assistant Professor Patricia Hidalgo-Gonzalez
Assistant Professor Sam Markolf

Spring 2023
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Chapter 1

Introduction

This chapter serves as an introduction to the overall dissertation work by providing
context and motivation for the research. While each chapter can be read indepen-
dently, they are designed to build upon one another, with Chapters 1 and 2 setting
the stage and summarizing the methodological work and motivation for the research
that is presented in the subsequent chapters. Chapters 2 and 3 include material that
has already been published in peer-reviewed journals, while Chapter 4 is a conference
paper. Finally, Chapter 5 provides the overall conclusion of the research.

1.1 Background and context of the work

Electricity is critical for global development and welfare, and while it can be gener-
ated at different economic sectors (e.g., utility, commercial and residential), it typi-
cally originates from the utility-scale power sector. However, the power sector has the
second largest share of greenhouse gas emissions (Environmental Protection Agency,
2022). Consequently, the power sector has a pivotal role in worldwide efforts to mit-
igate climate change. Decarbonizing the power sector requires significant changes in
the energy production and consumption patterns, which call for appropriate planning
supported by advanced modeling tools. These tools can assist in identifying what is
the optimal mix of technologies to meet future energy demands while ensuring system
reliability and achieving climate goals.

One of the most common used tools for modeling the power sectors is a capacity
expansion models (CEMs). This type of models are widely used in the energy industry
to model the required capacity to meed the future demand while considering differ-
ent technical and policy constraints. CEMs provide a framework for modeling the
future electricity system by using variables such as technological performance, eco-
nomic factors, environmental policies, and system constraints. CEMs are essential
for evaluating the costs, benefits, and risks associated with different energy policies
and investments.

However, CEMs face significant challenges when modeling the decarbonization of
the power sector. One challenge is the uncertainty associated with the deployment
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of low-carbon technologies, such as renewable energy and energy storage. The vari-
able nature of these technologies can cause fluctuations in power supply and demand,
making it difficult to ensure system reliability. Another challenge is the variability
of energy prices, which can significantly affect investment decisions and energy de-
mand. Finally, there are many factors to consider in the transition to a low-carbon
future, including the retirement of existing assets, infrastructure requirements, and
the impact on local communities.

The objective of this thesis is to evaluate the importance of the input assumptions
and the impact and improve existing CEMs for decarbonization in the power sector.
Specifically, this thesis aims to identify the limitations and challenges of existing
modeling tools for energy storage technologies and an emerging long-duration energy
storage (LDES). The research questions guiding this thesis are:

• How do we need to adjust CEMs to be able to better understand new market
opportunities for LDES?

• What are the trade-offs between high-temporal resolution and a simplified ver-
sion in CEMs with energy storage?

• What are the potential impacts of inputs and methodologies of modeling tools
on the decarbonization of the power sector, including the costs, benefits, and
risks associated with different decarbonization scenarios?

1.2 Significance of the research

Understanding the input assumptions is paramount for capacity expansion modeling
because it affects the accuracy and reliability of the model. Capacity expansion mod-
eling is the process of projecting future energy supply and demand and determining
the most cost-effective mix of energy resources to meet that demand over the long
term. Input assumptions are the starting point of the capacity expansion modeling
process, and errors or biases in these assumptions can lead to unreliable projections
and suboptimal investment decisions.

One important input assumption is the cost of energy storage technologies, such
as batteries and pumped hydro storage. LDES is essential in VRE-dominant grids
because it helps to balance the supply and demand of electricity during periods of low
renewable energy production. However, the cost of energy storage technologies can
significantly affect the economics of the power system, and inaccurate cost projections
can lead to suboptimal investment decisions. Not only cost, but the storage balancing
horizon (a concept that we defined further in this dissertation) can widely affect the
amount of storage needed.

Furthermore, the input assumptions for the modeling are crucial to identify mar-
ket opportunities for emerging technologies. These will allow stakeholders to create
programs to incentivize the adoption of new technologies that will help us reach a
low carbon future on a cost-effective way.
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Input assumptions also impact policy decisions related to energy policy mandates
like energy storage mandates, renewable portfolio standards, and greenhouse gas re-
duction targets. Accurately modeling the potential impact of these policies can help
policymakers set realistic targets and develop effective implementation strategies. For
instance, understanding the cost-effectiveness of different long-duration energy stor-
age technologies can help policymakers determine appropriate incentive structures to
promote their adoption.

This dissertation work endeavors to expand the knowledge in the literature for the
emerging LDES technology by examining the input assumptions in CEMs and how
different assumptions can impact the optimal amount of LDES for a VRE dominant
grid. By doing so, this research seeks to expand our understanding of how some of the
input assumptions can change the size of the potential market for LDES technologies.

To achieve this goal, we utilized an open-source CEM to investigate the impact
of different cost assumptions and temporal resolutions on the market size of LDES
technologies. Through a series of scenarios, we examined various cost scenarios for
LDES technologies under different temporal resolutions to determine the optimal
amount for the entire Western Coordinating Council (WECC). By simulating the
performance of LDES technologies under different cost assumptions and temporal
resolutions, we identified key factors that can impact their adoption and diffusion,
such as the cost of the technology, the duration of storage, and the availability of
renewable generation sources.

By using the CEM model, we were able to simulate the performance of LDES
technologies under different cost assumptions and temporal resolutions, providing
valuable insights into their market potential and economic viability. Through our
analysis, we identified key factors that can impact the adoption and diffusion of
LDES technologies, including the cost of the technology, the duration of storage, and
the availability of renewable generation sources.

Furthermore, we explored the Department of Energy’s (DOE) LDES initiative,
which aims to reduce the cost of LDES by 10% of Li-ion technologies by 2030. Under
this cost assumption, we analyzed how LDES technology could interact with other
storage technologies in a future grid dominated by variable renewable generation.
Through this examination, we sought to provide insights into the potential benefits
and challenges associated with integrating LDES technologies into the grid and how
this could impact the overall cost and efficiency of the energy system.

Overall, this research represents a significant contribution to the literature on
LDES technologies and the energy system. By exploring the impact of cost assump-
tions and temporal resolutions on the market size of LDES technologies and their
interaction with other storage technologies, this research offers valuable insights into
the potential benefits and challenges of these emerging technologies. These insights
can inform future policy and investment decisions related to the development and
deployment of LDES technologies, helping to accelerate their adoption and diffusion
in the energy sector.
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1.3 How Small Changes Can Have a Big Impact

on Energy Modeling Results

As discussed in Chapter 1.1, decision-makers in the energy sector often turn to CEMs
to aid in making long-term investment decisions. These models project future energy
market trends over a period of typically more than ten years and estimate the optimal
combination of investments necessary to meet future electricity demand at the lowest
cost. This optimization aims to maximize social welfare, which can be achieved by
minimizing the total system cost, as expressed in eq (1.1). CEMs offer a highly
detailed view of the energy sector, but their reliability depends heavily on input
assumptions. As a result, the input assumptions represent a significant source of
uncertainty and are critical to the accuracy and relevance of the model’s results.
While CEMs can be highly accurate in terms of resolution, the validity of their
output relies on the accuracy of their input assumptions.

This section will provide context on how the different publications that comprise
this dissertation build upon improving the modeling input assumptions to enhance the
accuracy and robustness of CEMs, ultimately improving their usefulness for decision-
making in the power sector. Specifically, the last part of my dissertation focused on
improving the representation of long-duration energy storage technologies and their
associated costs, the characterization of uncertain parameters such as state of charge,
operations and market opportunities. By advancing the state-of-the-art in CEMs
input assumptions, my research aims to provide decision-makers with more accurate
and actionable insights into the long-term energy investment options, and support
the transition towards a more sustainable and resilient energy future.

1.4 Variable Renewable Generation: Paving the

Way for the Future of Electrical Grids

The first part of my dissertation work was to understand the expected capacity fac-
tor of solar photovoltaic energy, which is expected to be the predominant variable-
renewable technology in California. Given the massive deployment of solar energy
in California, with a total online capacity 12.6 GW1 and expected to add 18 GW of
additional capacity by 2032 (California Public Utility commision (CPUC), 2022), it
is crucial to have accurate estimates of its capacity factor to inform CEMs and other
energy planning or reliability tools. To achieve this goal, we used the public forms
from the Energy Information Agency (EIA) from the Department of Energy that
reports the existing data on solar energy capacity as well as plant location (Energy
Information Agency, 2018a) and the production (Energy Information Agency, 2018b)
in the continental US. With this information, we analyzed the full US fleet and re-

1Data from CAISO Oasis: Master Control Area Generating Capability List by participant unit
and photovoltaic technology
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ported a statistical model to estimate the expected capacity factor of solar energy as
a function of key weather and location variables.

In this work we provided an interpretation of the DC to AC ratio, also known
as inverter-loading ratio (ILR), that is a design parameter that is often overlooked
when reporting the characteristics of the solar PV power plant. Increasing the ILR
also increases the alternating current (AC) capacity factor that is beneficial to PV
technology since the intra-hour variability could be reduced by overbuilding the direct
current (DC) side. From the historical data, we observed that as the cost of PV panels
(relative to other system costs) has decreased over time, the ILR has considerably
increased. We observed this increasing trend from the historical data with different
aggregations (e.g., by latitude or longitude, type of mounting). With this information,
we reported an empirical correlation to estimate the expected AC capacity factor for
solar power plants as a function of key weather and geolocations.

Furthermore, we anticipate that the future of solar energy will be hybrid systems,
such as VRE+storage. These types of systems store excess renewable electricity, al-
lowing them to provide power even when the sun is not shining. By incorporating
energy storage into these systems, they are able to produce more reliable and consis-
tent levels of electricity, further increasing the combined capacity factors. As these
hybrid systems become more common, we expect to see significant increases in solar
energy capacity factors when considering the AC plant ratings.

By improving our understanding of solar energy capacity factors, this research was
a first step to understand the importance of the input assumptions of CEMS. Since,
the variable capacity factor is an input assumption of the model and is projected to
the model time horizon, the accuracy of this calculation ultimately affects the results
of the model.

1.5 Meeting the Energy Storage Needs of a

Variable Renewable Energy Dominated Grid

As the world transitions towards a more sustainable future, the importance of re-
newable energy sources like solar and wind power is increasing rapidly. However, the
intermittent nature of these sources poses a significant challenge to power systems,
which must balance supply and demand in real-time. Energy storage is a key solution
to this problem, enabling otherwise curtailed electricity to be stored and used later
when needed. Storage can significantly improve the reliability and resilience of the
power grid while facilitating the integration of additional renewable energy sources.

Despite the many benefits of energy storage, several challenges still need to be
addressed to ensure its reliability and efficacy. For example, from an operator per-
spective, the state-of-charge represents a high uncertainty because with the evolving
market dynamics and other climate effects it is challenging to accurately predict the
amount of energy that can be delivered from a storage system at a given time. Addi-
tionally, capacity credits, which represent the contribution of energy storage to meet-
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ing peak demand, can be difficult to quantify accurately. These challenges require
advanced modeling techniques to ensure that energy storage systems are integrated
into power systems in a way that maximizes their benefits.

During my dissertation work, I participated in multiple research projects aimed at
understanding the energy storage needs of the California market. One recent study,
as documented in (Abido et al., 2022), focused on investigating the seasonal energy
storage requirements for the California grid. In this study, we developed a simple yet
effective energy-balance approach using the historical renewable electricity generated
in California that incorporates a range of realistic varying factors, including weather
patterns, and demand variability. Through our research, we concluded that the winter
season presents a significant challenge for a solar-dominated grid in California, due
to low levels of solar- and wind-electricity generation. This insight is critical to
accurately forecasting energy storage requirements and ensuring that energy storage
could be deployed in a cost-effective and reliable manner.

Similarly, in another study (Mahmud et al., 2023), I participated in understanding
the amount of storage needed in the California grid. For this work, we proposed a
novel, hierarchical approach to estimate the energy storage needs for different gener-
ation energy profiles and the minimum cycling frequency for that storage. Our study
found that depending on the generation profiles and availability of new resources,
such as off-shore wind, the need for diurnal energy storage could be reduced. Fur-
thermore, we found that winter-dominant onshore wind could halve seasonal storage
needs. Our proposed approach could be used as a blueprint for other kinds of studies
like new candidate technologies for CEMs.

To fully understand the potential of energy storage, it is essential to use more com-
prehensive models that can capture the complex interactions between energy storage,
renewable energy sources, and the power grid. These models must also account for
investment decisions that are necessary for energy storage implementation and mar-
ket opportunities that will inform stakeholders. By incorporating different kinds of
energy storage technologies into CEMs, we can determine the optimal amount and
type of energy storage required to meet the future needs of the grid. This approach
enables us to identify market opportunities and the need for energy storage while
achieving a more sustainable and reliable power system. Moreover, implementing en-
ergy storage in the power grid can help reduce greenhouse gas emissions and promote
economic growth.

1.6 Peering into the Future: How Advanced

Modeling Tools are Shaping Long-Term

Planning for the Energy Sector

As mentioned in section 1.3, CEMs are the go-to tool for long-term planning processes.
CEMs have been widely applied in various energy markets worldwide to evaluate
energy policy options and inform energy planning decisions. The goal is to minimize
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the total cost of generation while ensuring that the demand is met. Typically, CEMs
are formulated as linear optimizations where the objective function minimizes the
total system cost across all the investment periods or maximizes the economic wellfare,
as shown in the following equation:

min
∑
p∈P

dp

 ∑
cf∈Cfixed

cfp +
∑
t∈Tp

∑
cv∈Cvar

cvt

 , (1.1)

where cf represents the fixed cost component cf ∈ Cfixed indexed by investment period
(p ∈ P) that includes capital repayment for investments at a fixed financing rate over
the lifetime of each asset, sunk costs from existing infrastructure, as well as fixed
operating and maintenance (O&M) costs, and cv is the variable cost component
cv ∈ Cvar indexed by time (t ∈ T ) that includes fuel costs and variable O&M.

CEMs consist of several components, including economic dispatch, unit commit-
ment, and energy policy constraints. Economic dispatch is a technique used to
allocate generation from different power plants to meet demand at minimum cost
(Chowdhury and Rahman, 1990). It determines the output of each power plant given
the demand and cost of electricity generation. The unit commitment component de-
termines which generators should be online and which should be offline at any given
time to meet demand at minimum cost (Saravanan et al., 2013). It also takes into
account the start-up costs and ramp rates of each generator.

Energy policy constraints refer to any mandate imposed by regulation authority
or policies related to the energy system. These can include renewable energy targets,
greenhouse gas emission limits, and energy efficiency standards. CEMs incorporate
these constraints to ensure that the optimal resource mix aligns with these policies
and regulations. Examples of this energy policy are:

• Energy Mandates: That requires a certain amount of capacity deployed by a
give year or period. One example is California AB-2514 Energy storage systems
(2009), that mandates the utilities to procure a certain amount of energy storage
capacity by a specified deadline.

• Renewable Portfolio Standards (RPS) policies require utilities to generate a
certain percentage of their electricity from renewable sources such as wind and
solar. For example, in the United States, many states have adopted RPS policies
that require a certain percentage of electricity to come from renewable sources
by a specified deadline (National Conference of State Legislatures, 2021).

• Greenhouse Gas Target as a means of mitigating climate change. For example,
the California passed the California AB-32 (2006) ”to reduce GHG emissions
to 60 percent of 1990 levels (40 percent reduction) by 2030.

These policies can influence the deployment and operation of energy systems, and
thus can be included as constraints in capacity expansion models to better reflect
real-world conditions and policy goals.
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CEMs have been adapted to address these specific challenges and opportunities
of each market, and have been used to identify cost-effective and sustainable path-
ways for the expansion of power systems. Examples of these models are RESOLVE,
SWITCH, ReEDS and TEMOA. RESOLVE is CEM developed by Energy + Environ-
mental Economics (E3) and used for energy system planning in California. SWITCH
is another popular CEM that has been used to analyze power systems in various
countries, including the United States, Mexico, and China. Recent studies have used
SWITCH to evaluate the impacts of various policy interventions, such as carbon pric-
ing, renewable energy targets, and energy efficiency measures (He, Avrin, et al., 2016;
Mileva, J. H. Nelson, et al., 2013; Sánchez-Pérez et al., 2022). In particular, with
new energy storage technologies, careful consideration of the trade-offs involved in se-
lecting the appropriate tool for the desired market is essential in long-term planning.
As the energy landscape continues to evolve and new technologies emerge, decision-
makers must weigh various factors when selecting a CEM for long-term planning.
Examples of these factors could be the flexibility of the model, performance, scalabil-
ity, and modeling assumptions. The selection of the most suitable tool for long-term
planning can have significant implications on driving investments for emerging tech-
nologies.

1.7 Emerging energy storage technologies

In recent years, long-duration energy storage (LDES) has gained popularity due to
its ability to store and dispatch electricity for durations of 8 hours or more. The
U.S. Department of Energy has created a program to reduce the cost of LDES, and
the California Energy Commission has also implemented policies to promote LDES
deployment. Despite this growing interest in LDES, many energy system models,
particularly those used for decision-making such as RESOLVE for the Integrated
Resource Plans (IRPs) from California, do not capture the benefits of LDES due to
the simplification in temporal resolution. This modeling gap motivated the next part
of the dissertation work to understand the sensitivity of this kind of asset and provide
best practices for modelers to accurately model the performance of LDES systems
and their role in energy system optimization.

Storage balancing horizon

Modeling power systems typically requires a trade-off between resolution and run-
time. In order to ensure that the models provide useful results, a certain level of
resolution is required. However, as the level of resolution increases, the run-time for
the model can increase, which can lead to longer stakeholder processes and increased
costs. This trade-off between run-time and resolution is particularly important when
dealing with energy storage systems, which can require high levels of resolution to
accurately model the performance of the storage asset over time and identify clear
market opportunities for emerging storage technologies.
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One common approach to simplifying the resolution of energy system models is to
reduce the number of modeled days. By identifying representative days that capture
the key characteristics of weather patterns and load patterns, modelers can reduce the
number of days that need to be modeled while still ensuring that the model captures
the essential features of the market dynamics. However, the assumption that each day
is modeled independently (e.g., 2021 Integrated Resource Portfolio from the CPUC)
can compromise the usefulness of energy storage systems (Sioshansi et al., 2022),
particularly long-duration energy storage systems.

To understand the importance of the temporal resolution for LDES we used
SWITCH (Johnston et al., 2019), an open-source capacity expansion model for power
systems, to work with large shares of variable renewable energy, storage and thermal
power plants. SWITCH is a modular capacity expansion model that minimizes the
net present value (NPV) of the cost for all investment periods and time points for
an electrical grid (Johnston et al., 2019). It optimizes the investment in capacity
(chooses an optimal power system design directly) and it optimizes the operational
costs (evaluating the cost of running the power system design) (Fripp, 2018). It has
been widely used for decarbonization and energy transition scenarios in different re-
gions around the world (J. Nelson et al., 2012; Sanchez et al., 2015; Mileva, Johnston,
et al., 2016; Mileva, J. H. Nelson, et al., 2013; He, Avrin, et al., 2016; He, Lin, et al.,
2020; Hidalgo-Gonzalez, Johnston, and Kammen, 2021; Yin et al., 2021). Using a set
of assumptions of the market, policies and technology, SWITCH optimizes capacity
additions, transmission expansion, and system dispatch while simultaneously being
mindful of the constraints in place, such as carbon targets, RPS (Renewable Energy
Portfolio Standards), etc. This work uses the latest release of SWITCH-WECC 3

capacity expansion model that is formulated as a linear program (LP).
SWITCH models the state of charge by considering the electricity previously

stored, SOCs,t−1, the discharge amount, Ds,t, the charge amount, Cs,t, and the dura-
tion of the time point, ∆t (e.g., 4 h). The following constraint models it:

SOCs,t = SOCs,t−1 +

(
ηcCs,t −

Ds,t

ηd

)
∆t ∀s ∈ S ∀t ∈ T , (1.2)

where S is the set of energy storage assets, ηc and ηd are the charge and discharge
efficiency, respectively. Additionally to (1.2), the storage module incorporates a con-
straint that bounds the beginning SOC, SOCt,0, and end SOCt,f , where f denotes
the last time point of the time series. This constraint is added such that the time
series is treated cyclically, which means that the SOC at 0:00 AM on the first day
of the time series is the same as midnight SOC for the last day of the same times
series. As we change the length of the time series from a week to a whole year, this
modifies the number of consecutive days considered for the storage balancing decision
(see Fig. 1.1).

3This work used an adapted version of SWITCH-WECC v2.0.0. The documentation of the
model is available at: https://github.com/REAM-lab/switch and in the supplemental materials.

https://github.com/REAM-lab/switch
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Figure 1.1: Diagram showing the storage balancing horizon (SBH) concept for three
different lengths: 1 Year, 6 Month and 1 Week. As published in (Sánchez-Pérez et al.,
2022)

1.8 LDES modeling work

Chapter 3 of the thesis focused on analyzing different time horizons for the WECC re-
gion and explored different sensitives for the energy storage price. The latest version
of Switch-WECC uses 2007 as a representative weather year for the VRE genera-
tors since it was year where the most recent irradiance data and wind speed data
were available. For the storage prices, we used the price of Li-ion from the latest
annual technology baseline (National Renewable Energy Laboratory (NREL), 2020)
as a proxy price for LDES technologies and created different scenarios for the energy
cost ($/kWh). In this work and as explained in the chapter, we modeled only the
2050 period using a 4-hr timestep since it is modeling the full WECC with a high
spatial resolution. The reasoning behind this was to understand the optimal energy
storage duration when using the proxy energy cost and how it changed depending on
the balancing horizon. This analysis is important because the time horizon should
be carefully selected to align with the scope of the analysis proposed and the spe-
cific market and policy rules. By comparing the results obtained for different time
horizons, the most appropriate time horizon can be selected for the specific analysis
depending on the projected energy storage technologies.
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Chapter 4 of this dissertation investigated how changing the time step used in
the model could affect the results. Building on this, the work also modeled a LDES
candidate technology for the first time using data from a survey conducted by Shan
et al. (2022). Despite most companies not yet deployed large-scale LDES projects,
the cost data obtained from the survey was used to capture the technology’s projected
costs for the future. The LDES technology was modeled for 2050 to understand its
charging dynamics in a VRE dominant grid. To estimate future LDES costs, the
ratio of the cost of LDES to that of Li-ion was assumed to remain constant for both
capacity and energy prices. The Li-ion cost projections from the National Renewable
Energy Laboratory NREL-ATB for 2050 were used to calculate the cost for LDES. In
addition, this work aimed to explore a low-cost energy storage option, and therefore,
the LDES asset was modeled to have a low round-trip efficiency of 45% to examine
the market opportunities when high-round trip efficiency technology, such as Li-ion,
is also present. To investigate the effect of the time step, the temporal resolution
of the model was varied. The optimal capacity for LDES increased as the time step
was reduced from 4 hours to 2 hours, which highlights the importance of selecting
an appropriate timestep to balance model accuracy with computational cost. This
analysis provides insights into how the time step affects the accuracy of the results
and how to capture important system dynamics.



12

Chapter 2

Capacity Factor Analysis of US PV
System Reliability and
Performance

The text of this chapter is a reprint of the material as it appears in Sanchez-Perez,
Pedro Andres, and Sarah Kurtz. “Capacity Factor Analysis of U.S. PV System
Reliability and Performance.” IEEE Journal of Photovoltaics 10, no. 3 (May 2020):
818–23. https://doi.org/10.1109/JPHOTOV.2020.2968418.

2.1 Introduction

While careful studies of PV system performance are essential for further optimization
of system design and quantitative assessment of performance (IRENA, 2018; Marion
et al., 2005; D. C. Jordan and S. R. Kurtz, 2015; D C Jordan and S R Kurtz, 2014;
Raupp et al., 2016; Moore and Post, 2008; Golnas, 2013; Sharma and Chandel, 2013;
Dirk C. Jordan et al., 2018), there is also value in studying metrics that can be readily
applied to large data sets. Specifically, capacity factor is a metric that grid operators
often track and that can be studied without need for irradiance data. Capacity factor
values for PV power plants typically range from 10% to 35%. Remarkably, the global
average DC capacity factor of utility-scale PV systems increased by 28% between
2010 and 2017, from an average of 13.7% to 17.6% (IRENA, 2018) Understanding
such trends can aid projections of solar electricity.

In this paper, we study performance and reliability using capacity factor as the
key metric. In Section II, we discuss how the choice of using AC or DC system ratings
affects the calculated capacity factor. In Section III, we describe how we use a publicly
available dataset from the U. S. Energy Information Agency (EIA). In Section IV, we
show the results of that analysis, to explore how the AC capacity factor has changed
over time and how it depends on multiple variables. In Section V, we discuss the
challenges of analyzing this dataset, and identify meaningful conclusions including
about reliability.

https://doi.org/10.1109/JPHOTOV.2020.2968418


CHAPTER 2. CAPACITY FACTOR ANALYSIS OF US PV SYSTEM
RELIABILITY AND PERFORMANCE 13

2.2 Capacity factor for solar plants

In the field of conventional power generators, the capacity factor is calculated rela-
tive to the AC nameplate, however, for solar PV the DC nameplate is often used.
Solar PV has both DC and AC nameplate capacity ratings due to the nature of the
technology. The DC nameplate capacity provides information about the number of
modules installed, which has been useful for tracking growth of PV manufacturing
and is used in some databases, though it is not always specified whether DC or AC
nameplate capacities are reported. The AC nameplate capacity value reflects the
capacity of the inverter. The ratio between the DC and AC capacities is often called
the inverter-loading ratio (ILR). Using the DC nameplate capacity to calculate the
capacity factor (we call this “DC capacity factor” even though we use the AC elec-
tricity data in the calculation) yields the same result as the AC nameplate capacity
if the system ILR = 1. However, installations may have higher ILR to increase the
revenue (Bolinger and Seel, 2018).

The theoretical AC capacity factor increases with ILR (see Figure 2.1), approach-
ing 50% as the ILR increases and the system operates at full power when the sun
is up. However, the DC capacity factor decreases with ILR since the denominator
(the wattage of the modules) increases faster than the numerator (the generated
electricity).

To compare PV capacity factors with other power generators, it makes more sense
to use AC capacity instead of DC. For this reason, here we present only AC capacity
factor, but caution the reader from confusing the AC and DC values.

2.3 Methodology

We used data from the U. S. Energy Information Administration (EIA) forms EIA-
860 (Energy Information Agency, 2018a) and EIA-923 (Energy Information Agency,
2018b) to evaluate capacity factor and inverter-loading ratio trends for existing grid-
connected U. S. PV power plants.

The EIA-860 dataset

The EIA-860 has generator-level data for existing and planned generators, identifying
each by a unique generator ID and plant ID, which may apply to multiple generators.
This dataset includes the AC nameplate capacity, location, number of inverters, and
operating date. The DC nameplate capacity, mounting configuration, tilt angle,
azimuth, and technology were added in 2013 as Part 3 3 Solar of the EIA-860 data
files. From this dataset, we extracted the metadata for each PV plant reported in
the form.
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Figure 2.1: DC and AC nameplate capacity factor as a function of inverter-loading
ratio (ILR). Current common ILRs fall between the dashed vertical lines. Electrical
generation data were simulated using the System Advisor Model (SAM) (National
Renewable Energy Laboratory, 2019) and Typical Meteorological Year (TMY) files
from the National Solar Resource Database (NSRDB) (National Renewable Energy
Laboratory, 2018) for Daggett, CA. These data provide an example to illustrate
the general trend; other modeled systems will exhibit different values, but will show
similar trends.

The EIA-923 dataset

The EIA-923 form has plant-level generation for each month. Each plant is identified
by the same unique plant ID given in EIA-860. The form reports the monthly gener-
ation for each plant, however, for this work, we used monthly generation to calculate
the annual generation for the reported year.

Joined dataset

To match the generator-level metadata and the plant generation, we joined the two
datasets as follows: first, we filtered the EIA-860 for data entries where the prime
mover was reported as “PV” to remove generators associated with different technolo-
gies under the same plant ID. Next, for each unique plant ID we summed the total
summer AC (inverter) capacity (which is usually identical to the winter AC capacity)
and total DC (module) capacity for all generators for each reported year. Then, we
matched both datasets using the plant ID and the reported year.
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Analysis

We calculated the annual AC capacity factor for all of the data using the yearly
total electricity generation and the AC nameplate capacity reported for that year.
Additionally, we calculated the ILR by dividing the DC nameplate capacity by the
AC nameplate capacity. Since the DC nameplate capacity values started to appear
in the updated version of the EIA-860 form in 2013, we back-propagated the data
using the plant ID, assuming there was no change in the DC capacity of the plant,
which is not always a good assumption (see Appendix).

We also screened the join dataset to ensure high-quality data. A handful of data
were implausible as described in the Appendix. After screening, <5% of the data
entries had missing critical information. We excluded records for the first (partial)
year of generation. We show the subset of the dataset used in this work for each year
in Fig. 2.2 as indicated by the dark-blue bars labeled as “Legacy”. To minimize the
effects of outliers, we report median values for grouped sets of data. The locations of
the plants included in the 2017 EIA dataset are shown in Fig. 2.3.

We analyzed the relationship between the AC capacity factor and the inverter-
loading ratio using the median values and the binned inverter-loading ratio ranges.
Also, we include an expected range of AC capacity factor using a high insolation
place for the upper limit and a low insolation place for the lower limit.

Furthermore, we analyzed the degradation of the systems by plotting the rela-
tive (to the maximum annual capacity factor) capacity factor as a function of year
since installation. We omitted the data for the first partial year. We tried using
the first full-year generation as defining 100% performance for subsequent years but
found that the reported generation in the first year was sometimes low. Using the
maximum annual generation reported for a plant as the 100% performance metric
gave fewer anomalies in the analysis. We then calculated the performance for each
subsequent year relative to the maximum reported performance, calculating the box-
plot statistics for plants grouped by the number of years installed in the field. We
explored the effect of limiting this analysis to only those plants that have many years
of performance relative to adding data for plants with only a few years in the field.

2.4 Results

We first present the median annual AC capacity factor as a function of system size,
partitioned by mounting configuration and longitude. Fixed-tilt system (see Fig. 2.4a)
show a lower median AC capacity factor than One-axis-tracked systems (see Fig. 2.4b)
for all capacity ranges, as expected, because the tracked system generate more elec-
tricity early and late in the day compared to fixed tilt system. Systems in the western
U.S. show higher capacity factors than in the east, as expected because of the higher
insolation in the southwest, where most western installations are located (Fig. 2.3).
Both mounting configurations and both longitudes show increasing capacity factors
with increasing system size.
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Figure 2.2: Number of PV plants reported in the EIA-860 form for each year (left
axis) and cumulative AC capacity (right axis). Orange “Filtered” bars represent
plants with non-operating status, missing DC capacity or AC generation or low-
quality data. Light blue “New” bars represent plants that were installed during the
indicated year. Dark blue “Legacy” bars represent the data used for each year in
this paper. Data sources: EIA-860 (Energy Information Agency, 2018a) and EIA-
923 (Energy Information Agency, 2018b).

Figure 2.3: Locations of PV power plants documented in the EIA-860 form from 2017
(Energy Information Agency, 2018a). The legend indicates plant size in MW.
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Figure 2.4: Median AC capacity factor a) for fixed-tilt and b) 1-axis-tracked mounting
configurations for western (< -95º longitude) and eastern (> -95º longitude) locations,
binned by AC capacity range. The number of plants is indicated by the point size.

The median annual AC capacity factor is shown in Fig. 2.5 by year, partitioned
by latitude and longitude. The higher latitudes show lower AC capacity factors. In
general, the capacity factor increases with time. The eastern U.S. shows substantially
lower capacity factors for both mounting configurations, especially for the one-axis
tracked configuration (see Fig. 2.5b).

Fig. 2.6 shows that the median ILR has increased with time (Bolinger and Seel,
2018) for all categories. Fig. 2.7 shows the median AC capacity factor as a function
of the ILR. As shown in Fig. 2.7 we expected the AC capacity factor to increase with
ILR, so for comparison we include data from a high-irradiance and a low-irradiance
location to show the anticipated trend. In Fig. 2.8 we plot the relative performance
of plants as a function of the number of years of operation, as described above.
Fig. 2.8(a) shows the analysis for plants with ≥ 3 years of data (after filtering) and
the right side shows data for the plants that had good data for ≥ 9 years. The early
years of Fig. 2.8(a) include analysis of 800 data points, as indicated at the bottom
for each year. Only 19 plants had data for ≥ 9 years. The AC capacity factors for
these 19 plants are shown in Fig. 2.9.

V. Discussion of results
Capacity factor is a simple, yet important, metric for characterizing plant per-

formance. Coal and nuclear plants usually run at full power, resulting in capacity
factors of 80% to 90%. Other plants are intended to meet peak load and operate with
low capacity factors. Thus, utilities use capacity factor as a metric to understand a
plant’s role in supplying the grid with power.

In the case of PV plants, the AC capacity factor reflects not only the system design,



CHAPTER 2. CAPACITY FACTOR ANALYSIS OF US PV SYSTEM
RELIABILITY AND PERFORMANCE 18

Figure 2.5: Median AC capacity factor for binned latitude ranges (solid lines) and for
western (< -95º longitude) and eastern (> -95º longitude) parts of the continental
U. S. (dashed lines). Data points were omitted if the number of plants for that year
was < 15.

Figure 2.6: Median inverter-loading ratio for binned latitude ranges (solid lines) and
for western (< -95º longitude) and eastern (> -95º longitude) parts of the continental
U.S. (dashed lines). Data points were omitted if the number of plants for that year
was < 15.
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Figure 2.7: Median AC capacity factor for different inverter-loading ratios (ILR).
Shaded areas indicate the expected trend using simulated data as calculated in Fig. 2.1
for Daggett, CA (high-irradiance site top of shaded area) and Coventry, VT (low-
irradiance site – bottom of shaded area).

but also variations in weather and grid outages that may be beyond control of the
plant. Differentiating poor performance because of weather from poor performance
because of poor workmanship is also useful, but there is value in evaluating observed
AC capacity factor, regardless.

The EIA data provide all information needed to calculate the AC capacity factor of
solar PV plants. However, the results depend on multiple variables with correlations
that confound the analysis. For example, the locations of the plants (latitude and
longitude) correlate with insolation (the northeastern U.S. typically experiences less
sunshine than the southwest and most of the plants located north of 40° latitude are
in the northeast). We need to be careful not to draw a conclusion that is accidentally
based on a confounding variable.

From Figs. 2 and 3 we note that the data are dominated by plants installed in
the last couple of years and for geographical locations clustered in California, New
England, and some east-coast states. More careful analysis shows that there is an
increasing trend of new systems in the eastern U.S. We kept these characteristics
of the data in mind for the analysis. Also, there is considerable variability in the
calculated values for AC capacity factors and ILRs that suggest data entry errors.
Therefore, we used median values to reduce sensitivity to these.

There is a strong correlation between the AC capacity factor and the size of the
system (Fig. 2.4). This correlation holds across all categories analyzed in Fig. 2.4.
Part of this difference may be a result of low tilt angles for systems installed on
rooftops and use of latitude tilt for larger ground mount systems. Alternatively,
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Figure 2.8: Boxplot statistics showing the performance relative to the year with the
maximum performance. The number of data points summarized for each year is shown
at the bottom for each year. The line in the middle of the box gives the median, the
extremes of each box indicate the 20th and 80th percentiles and the uncertainty bars
indicate the 5th and 95th percentiles. Outliers are indicated by dots.
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Figure 2.9: Annual AC capacity factor by year for the 19 plants in Fig. 8(b).

it may reflect better maintenance of larger systems or that large plants are more
common in high insolation locations.

Without considering the geographical distribution of the systems, the large de-
crease of the median AC capacity factor for higher latitudes (Fig. 2.5, solid lines) is
quite surprising. However, when one considers that the high-latitude plants are found
mostly in the northeast, the data make sense. Similarly, the median AC capacity fac-
tor for one-axis-tracked systems at high latitudes is considerably lower than at lower
latitudes.

For all the categories analyzed (Fig. 2.5), we observed a slight upward trend in
the AC capacity factor with time. The slight upward trend balances a systematic
increase in ILR (Fig. 2.6) with the trend toward more installations in the eastern
part of the U.S. (data not shown, but the ratio of number of systems in the east
to the west increased from ˜ 1 in 2013 to ˜ 2 in 2017). The strong increase in the
median ILR is very consistent, increasing over time for all latitude and longitude bins
(Fig. 2.6). Interestingly, the ILR converged for all latitudes for the one-axis-tracked
mounting configurations (Fig. 2.6b). An increase of ILR is expected to increase the
AC capacity factor (Fig. 2.7), making it difficult to separate other causes of changing
capacity factor. If the trend toward higher ILR continues, we may expect continuing
increases in AC capacity factor.

We attempted to analyze the frequency of months with zero generation with the
anticipation that these would characterize some types of reliability issues. However,
we found that most of the reports of zero generation were for every month (12 months)
in a given annual report, suggesting that these were a result of reporting methodology
more than of actual performance (see Appendix).

The graphs in Fig. 2.8 both give evidence of slow degradation of the plants over the
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10 years shown, but the evidence changes between the two graphs. Fig. 2.8(a) appears
to imply with substantial confidence that the median performance is degrading with
time and that after nine years, the performance of the median system has degraded by
about 20%. However, the tightness of the data for years one and two reflect the ˜900
systems included in this analysis. The larger boxes on the right side of Fig. 2.8(a)
reflect the smaller number of data points available after ten years. To remove the bias
introduced by having some points reflect ˜900 data points and others ˜20 points, we
repeat the analysis in Fig. 2.8(b), limiting the analysis to plants for which we have
good data for 9 or more years. The smaller data sets result in larger uncertainties
for the early years, giving much less confidence in the linear degradation trend that
appears so clearly in Fig. 2.8(a).

The performance in the first full year of operation shown in Fig. 2.8(b) most
closely matches that of the fourth year. Evidence of degradation in years 9 and 10
appears to be the most convincing, though it would not appear to be the result of a
slow, linear degradation as is often assumed. Fig. 2.9 gives better understanding of
what confidence we can have in the degradation analysis by giving the shapes of the
evolution of performance for the 19 systems documented in Fig. 2.8(b). In Fig. 2.9,
the legend differentiates fixed tilt from tracked systems. Anecdotal evidence suggests
that tracked systems sometimes exhibit inaccurate tracking, leading to inconsistent
performance. Careful inspection of Fig. 2.9 suggests that the fixed-tilt systems tend
to give more consistent performance.

One of the most striking things about Fig. 2.9 is the significant increase in the
reported data for some of the plants in 2016 and 2017. As shown in the Appendix,
we describe our suspicion that the large variation in performance in 2016 was as-
sociated with the bankruptcy of SunEdison. Although an argument could be made
for eliminating such data from the analysis, it is useful to identify reliability issues
that arise when a company goes bankrupt. In this case, we suspect the bankruptcy
prevented accurate reporting of performance in 2016, and that in 2017, when the
company was recovering operations, poor maintenance in the previous year took a
toll. The SunEdison data cause much of the evident decrease in years 9 and 10
shown in Fig. 2.8. Similarly, some data in Fig. 2.9 are suspicious but were retained to
demonstrate how poorly maintained data monitoring hardware could affect income.

Many evaluations of degradation rates can be found in the literature (D. C. Jor-
dan and S. R. Kurtz, 2015; Hasselbrink et al., 2013; Raupp et al., 2016; Bolinger
and Seel, 2018). These typically analyze expected linear degradation, but Fig. 2.9
suggests that the bigger issue with system performance may be intermittent or incon-
sistent performance, consistent with Golnas (2013) conclusion that: “high-resolution
monitoring on the DC side does not seem to be critical as most of the lost energy can
be attributed to outages of mission-critical subsystems such as the inverter and the
AC subsystem”. Thus, our data highlight the importance of looking at more than
linear degradation as evidence of reliability issues, especially as ILRs increase and
inverters, rather than modules, often limit the output of the systems (Golnas, 2013)

At the highest level, our most important observation is that we observe a median
AC capacity factor of ˜20% for the entire dataset with a median AC capacity factor
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of 20.3% for the legacy data in 2017. This is a metric overall for the entire set of
systems that suggests that the majority of systems are working well. Tracking this
metric by year can provide an overall metric for both performance and reliability.
Care must be taken to not confuse this with the DC capacity factors that may be
easily calculated from cumulative installed PV modules relative to solar generation as
documented in many databases. We calculate the median U.S. DC capacity factor in
2017 to be 16%, about 4% lower than the AC value. If ILRs continue to increase, we
expect that the difference between the AC and DC capacity factors will also increase.

In the future, we anticipate that PV plants may be installed in a larger range
of geographical locations, possibly causing the capacity factor to decrease if more
are installed along the coasts, but also, potentially leading to increase in capacity
factor as systems are installed preferentially in sunny locations. As noted above, the
increasing ILR should increase the AC capacity factor. However, perhaps, the most
important cause for higher capacity factors will be the addition of batteries coupled
with very high ILR, enabling plants to inject electricity onto the grid for more hours
each day.

2.5 Conclusion

Capacity factor is a useful metric because it can be evaluated with minimal informa-
tion, while giving a representation of the value of the plant to the grid. The solar
industry’s habit of reporting DC capacity factors leads to a näıve reporting of lower
capacity factors, which will create increasing confusion as ILRs increase.

The AC capacity factor is observed to be higher for larger systems, possibly reflect-
ing better design orientation, better care, or higher insolation for the larger systems.
The decrease in capacity factors reported for higher latitudes in this data set is a
result of the many high-latitude systems in the New England area, which has lower
insolation. The use of one-axis tracking and larger ILRs caused systematic increases
of the observed AC capacity factor.

We expect that the biggest trend in future capacity factors will relate to the
addition of batteries to many systems. We also expect that AC capacity factors will
continue to increase as ILRs continue to increase and as more systems are installed
in sunny locations. However, we also see a possibility that more installations in
low-insolation locations and/or mounting configurations could lead to decreases in
capacity factors.

Finally, consistent with some other studies, we find that the data often show
inconsistent operation, especially for tracked systems, and that this inconsistency
is a greater reliability issue that the linear degradation that is often studied. We
anticipate that utilities and their commissions will find these results useful as they
anticipate the capacity factors them may expect for PV systems in coming years and
as they develop metrics for how to value the dispatchability of PV systems.
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Table 2.1: Summary of data adjustments

Plant Code Adjustment Metric changed
1172 2016 DC capacity increased from 0.3 to 0.9 MW. ILR increased from 0.4 to 1.1
10823 All DC capacity reduced from 0.7 to 0.1 MW. ILR reduced from 7 to 1
56667 2008-2014 DC capacity reduced from 1.2 to 0.1 MW for each of the 12 generators. ILR reduced from 12 to 1.
57776 2011-2013 DC capacity increased from 1.2 to 2.4 MW. ILR increased from 0.5 to 1
58178 2012 Generation increased by a factor of 1000. Total generation from 2 to 2000 MWh
58204 2013-2015 DC capacity increased from 1.3 to 2.5 MW. ILR increased from 0.5 to 1
58422 2015 AC and DC capacity adjusted to match 2016 data. ILR reduced from 2 to 1.75.
58632 2013-2015 DC capacity increased from 1.1 to 3.3 MW to match 2016 data ILR increased from 0.36 to 1.1
60810 2016 AC capacity increased from 0.3 to 2.1 MW ILR reduced from 7 to 1

Appendix

In this work we present data extracted for the years 2007 to 2017. As discussed
in Section 2.3, we found apparent recording mistakes from the EIA-860 data that
resulted in unlikely ILRs and AC capacity factors. To fix these, we manually changed
data entries by taking the last year values and propagating these to earlier years.
Such changes are summarized in Table 2.1.

We also found that the EIA-923 file sometimes reported zero output for some
months. A surprising number ( 50) of annual reports included zeroes for all twelve
months. Neglecting installation years, 92% of the zeroes that are reported in the data
set are for annual reports with all twelve months reporting zero generation. In many
of these cases, the previous year and following year reported normal generation in all
twelve months. Given the improbability of many systems being turned off for exactly
the calendar year, we treated any report with 12 zeroes as missing data. There were
50 such reports. We excluded from the analysis plants 8223, 56228, 56915, and 56966
because of variable AC capacity. It is sometimes difficult to assess when to treat data
as incorrectly entered and when to treat unusual data as “real.” For example, Fig. 2.10
summarizes the data for seven SunEdison systems. SunEdison declared bankruptcy in
2016 and the resulting situation apparently introduced reliability issues. The unlikely
increases in generation reported for some of the plants in 2016 suggest that one of
the first casualties may be the data monitoring/reporting accuracy. However, poor
maintenance may have resulted in real degradation in generation in 2017.
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Figure 2.10: AC capacity factor reported by year for seven (7) SunEdison systems.
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Chapter 3

Effect of modeled time horizon on
quantifying the need for
long-duration storage

The text of this chapter is a reprint of the material as it appears in Sánchez-Pérez,
P. A., Martin Staadecker, Julia Szinai, Sarah Kurtz, and Patricia Hidalgo-Gonzalez.
“Effect of Modeled Time Horizon on Quantifying the Need for Long-Duration Stor-
age.” Applied Energy 317 (July 1, 2022): 119022. https://doi.org/10.1016/j.

apenergy.2022.119022.

3.1 Introduction

Currently, in the U.S., the cumulative energy storage power capacity in the electrical
grid1 surpassed 28 GW with 420 GWh of energy capacity (Sandia National Laborato-
ries, 2021). It is expected that many regions across the U.S. will deploy an additional
10 GW that will come online during 2021-2023 (Energy Information Agency, 2021).
Nevertheless, the required amount and type of energy storage to deliver renewable
electricity to a growing electrical demand with a high level of reliability are still
unclear (Converse, 2012; Hunt et al., 2020; J. Guerra et al., 2020).

Recently, there has been an increased interest in longer duration energy storage
(LDES) in research and industry as a solution to the intermittency challenge and
seasonal imbalance produced under an electrical grid dominated by wind and solar
power (Guerra, 2021). In this vein, the U.S. Department of Energy (DOE) launched
the Long Duration Storage Shot initiative that sets a bold target to reduce the cost
of grid-scale LDES by 90% within the decade (Long duration energy storage Council,
(LDEC), 2021). A study by multiple LDES companies forecasts that around 1.5-2.5
TW and 85-140 TWh will be deployed globally by 2040 from a diverse range of LDES
technologies that are capable of discharging electricity for 8+ hours (Long duration

1Most of it comes from pumped hydro storage with 23 GW and around 2 GW of electrochemical
storage and the rest from other technologies.

https://doi.org/10.1016/j.apenergy.2022.119022
https://doi.org/10.1016/j.apenergy.2022.119022
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energy storage Council, (LDEC), 2021). However, one of the biggest challenges of
these LDES technologies is to store and maintain energy in storage at a cheaper price
point than competing Li-ion technology where the capital energy cost ranges from
247-309 $/kWh (National Renewable Energy Laboratory (NREL), 2020).

The required amount of energy storage to ensure a reliable VRE-grid is not well
understood and will most likely depend on the share of VRE and regional seasonal
energy needs. With this in mind, the design for the duration of energy storage
required will not only depend on daily or weekly balancing of VRE output but also
balancing and shifting energy across longer periods of time. Still, current tools used to
model long-term planning and capacity additions are not designed to capture the full
benefits and operations of a weekly or seasonal storage asset. Accurately modeling
the different types and duration of energy storage is pivotal to finding the least cost
solution to meet clean energy targets and GHG reduction goals.

There is a growing literature related to LDES technologies that spans a wide
variety of electrical markets and modeling assumptions. We identified some works
that focus on understanding the economic valuation of LDES technologies and eco-
nomic opportunities (Albertus, Manser, and Litzelman, 2020; Kittner et al., 2021)
and works using detailed modeling of LDES and its interaction with a VRE-driven
grid (Dowling et al., 2020; J. Guerra et al., 2020; Guerra, 2021; Sepulveda, Jenkins,
Edington, et al., 2021; Gabrielli et al., 2018). Such studies found that LDES can
fulfill a variety of grid services to help balance the grid with discharge capabilities
of consecutive discharge that range from 10-650 hours. The works related to eco-
nomic opportunities for LDES (Albertus, Manser, and Litzelman, 2020; Kittner et
al., 2021) explore LDES technologies with 10 to 100 hours of duration (ratio of energy
capacity to power capacity). Other studies have calculated the required amount of
energy storage to run the entire US using a constrained energy-balance model and
constraining the operations of LDES using a state of charge (SOC) formulation with
an hourly resolution (Dowling et al., 2020). Nonetheless, (Dowling et al., 2020) does
not use a multi-nodal transmission network which could result in an increased need
for LDES. Even though the work considers a full year arbitrage, the authors did not
systematically study the impact of changing the Storage Balancing Horizon (SBH).

Modeling a full 8760 hourly resolution in a capacity expansion model can be
computationally intensive depending on the problem size. Yet, there are multiple
approaches or simplifications in the formulation of the time horizon to address this
(see (Bistline, 2021) for more details of the approaches). Multiple academic works
and models used in long-term planning processes (e.g., (Sepulveda, Jenkins, Sisternes,
et al., 2018; J. Guerra et al., 2020; Gabrielli et al., 2018)) have used these approaches
to simplify the computational burden. However, the research gap remains as we
have not quantified the errors incurred by these simplified approaches; we cannot
truly understand the interactions between LDES and the grid without a full 8760
hourly resolution within a large-scale balancing area with a high geographical nodal
resolution.

Lastly, some authors have highlighted that the availability of zero-carbon firm
technologies could diminish the need for LDES (Baik et al., 2021). Yet, most of
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these types of studies faced challenges in correctly modeling LDES as the temporal
resolution was either using a subset of the year or representative days.In summary,
simplifying the temporal resolution decreases the SBH which ultimately modifies the
utilization of storage and the need of it. To accurately calculate the benefits of LDES
assets it is key that the model includes several consecutive days to properly capture
balancing and shifting energy across longer periods of time.

Statement of Contributions

For this work, we endeavor to understand and build capacity expansion models that
correctly capture the value of LDES toward accelerating decarbonization of the elec-
trical sector. To perform this, we systematically explore how changes in the modeled
SBH or number of consecutive days changes the need and utilization of LDES. We
also analyze, for different LDES cost assumptions, how the different modeled SBH
affect optimal LDES deployment and operation. We create a set of future scenarios
using SWITCH, an open-source capacity expansion model with high spatial resolu-
tion, for various storage balancing horizon lengths and storage energy capacity cost
scenarios. We model future LDES assets by using an energy storage candidate tech-
nology without any duration constraint and let the model identify the optimal LDES
duration for the proposed scenarios. To the best of our knowledge, the impacts of
how different lengths of storage balancing horizons can affect the optimal selected
power and duration of energy storage under a high temporal and spatial resolution
capacity expansion model of the U.S. have not previously been explored.

Manuscript Outline

The structure of this manuscript is as follows: First we introduce the methodology and
input assumptions to formulate the capacity expansion model in Section 3.2. Next, in
Section 3.3 we present the main findings of the different balancing lengths and storage
cost scenarios. Finally, in Section 3.4 we highlight some of the main conclusions on
the importance of the length of the storage balancing horizon in capacity expansion
formulations.

3.2 Methods

To develop this analysis, we use SWITCH (Johnston et al., 2019), an open-source
model for power systems, to work with large shares of variable renewable energy,
storage and thermal power plants. SWITCH is a modular capacity expansion model
that minimizes the net present value (NPV) of the cost for all investment periods and
time points for an electrical grid (Johnston et al., 2019). It optimizes the investment
in capacity (chooses an optimal power system design directly) and it optimizes the
operational costs (evaluating the cost of running the power system design) (Fripp,
2018). It has been widely used for decarbonization and energy transition scenarios
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in different regions around the world (J. Nelson et al., 2012; Sanchez et al., 2015;
Mileva, J. H. Nelson, et al., 2013; Leon Barido et al., 2015; Mileva, Johnston, et al.,
2016; He, Avrin, et al., 2016; He, Lin, et al., 2020; Li et al., 2021; Hidalgo-Gonzalez,
Johnston, and Kammen, 2021; Yin et al., 2021). Using a set of assumptions of the
market, policies and technology, SWITCH optimizes capacity additions, transmission
expansion, and system dispatch while simultaneously being mindful of the constraints
in place, such as carbon targets, RPS (Renewable Energy Portfolio Standards), etc.
This work uses the latest release of SWITCH-WECC 3 capacity expansion model that
is formulated as a linear program (LP). For a detailed explanation of all the variables,
constraints and parameters in the SWITCH model see attached Supplemental mate-
rials.

SWITCH model formulation

SWITCH has different modules that create the capacity expansion and dispatch prob-
lem. Each module incorporates system constraints and parameters on top of the base
formulation allowing the user to expand and customize the functionality of the model
according to the intended analysis. For this work, we use the SWITCH formula-
tion and inputs as described in the Supplemental materials. Here we present a short
summary of the modules we use in this study:

• Timescales - Defines the time horizon for the energy balancing and the multi-
period optimization,

• Financial - Defines the base year for the NPV calculation and the discount and
interest rate for the investments,

• Generator – Optimizes new generation build-out and electricity dispatch based
on fuel costs, variable O&M, and overnight costs,

• Transmission – Handles the operation of the transmission assets and expansion
using a lossy-transport model,

• Storage – Defines energy storage assets, optimizes new power and energy ca-
pacity, and optimizes their operation (e.g. state of charge constraint),

• Hydro – Enforces monthly minimum and average flows for hydro resources for
a given time horizon,

• Policies – Enforces energy policy constraints like RPS and carbon targets, and

• Reserves – Enforces minimum capacity requirements for the system.

3This work used an adapted version of SWITCH-WECC v2.0.0. The documentation of the
model is available at: https://github.com/REAM-lab/switch and in the supplemental materials.

https://github.com/REAM-lab/switch
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Geographical scope.

This analysis considers a tailored version of SWITCH that encompasses the entire
WECC region that we refer to as “SWITCH-WECC.” There are 38 functional Balanc-
ing Authorities (BA) in the WECC, seven of which are generation-only BAs (Western
Electricity Coordinating Council (WECC), 2016). For this model, The geographical
resolution divides the WECC into 50 representative load zones (see Fig S.1). Each
load zone is interconnected according to the (aggregated) existing transmission line
topology and using the latest thermal capacity limits (Wei, Raghavan, and Patricia,
2019). In total there are 126 existing transmission lines connecting the load zones.
We add up the capacity for the different transmission lines that interconnect each
of the load zones such that the capacity for the simplified load zones is the same
as the aggregated thermal capacity of each of the individual transmission lines for
the respective interconnection points. This not only simplifies the model, but also
captures the existing thermal transmission line ratings between zones (see Fig S.2 for
detailed transmission map).

Time resolution and storage balancing horizon

The multi-period analysis commonly used for long-term planning can be easily imple-
mented using the SWITCH timescale module. Under the SWITCH modeling toolkit,
the time resolution is treated using a three-level hierarchy that accounts for the tem-
poral dimension in various scales: periods (P), time series (T ) and time points (t).

Periods.

The periods, which are a set of multi-year timescales, describe the times when the
investment decisions are taken. SWITCH has been frequently framed as a multi-
period optimization across multiple decades. However, the formulation we use in this
analysis considers a single period that stretches 10 years from 2046 to 2055 which we
refer to as 2050. This period uses the load of 2050 and is scaled such that it represents
the length of a 10-year period.

Time series.

The next level of granularity is the time series that denotes blocks of consecutive time
points within a period. An individual time series could represent a single day, a week,
a month, or an entire year. A time series also limits the length of time energy may
be stored. For example, if a time series is composed of 7 days it means that energy
can be stored on day 1 and be discharged on any day from 1 to 7, but the model does
not allow any surplus or deficit to be carried into a later time series.
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Storage balancing horizon.

To properly account for the energy stored in each of the storage assets, the storage
module of SWITCH includes a state of charge formulation that keeps track of the
current state of charge (SOC) based on the time series provided. This is one of
the main constraints that captures the usage of energy storage assets (s). The set
of all the assets in the model is denoted by S. The state of charge is modeled by
considering the electricity previously stored, SOCs,t−1, the discharge amount, Ds,t,
the charge amount, Cs,t, and the duration of the time point, ∆t (e.g., 4 h). The
following constraint models it:

SOCs,t = SOCs,t−1 +

(
ηcCs,t −

Ds,t

ηd

)
∆t ∀s ∈ S ∀t ∈ T , (3.1)

where ηc and ηd are the charge and discharge efficiency, respectively. Additionally
to (3.1), the storage module incorporates a constraint that bounds the beginning
SOC, SOCt,0, and end SOCt,f , where f denotes the last time point of the time series.
This constraint is added such that the time series is treated cyclically, which means
that the SOC at 0:00 AM on the first day of the time series is the same as midnight
SOC for the last day of the same times series. As we change the length of the time
series from a week to a whole year, this modifies the number of consecutive days
considered for the storage balancing decision (see Fig. 3.1).

The duration of the SBH should be selected to align with the scope of the analysis
proposed and the specific market and policy rules. We have identified that most of
the existing models focus on short-duration storage (up to 4 hours of consecutive
discharge) and using a subset of consecutive number of days to represent the entire
year. There is no standardization of how to select the appropriate balancing horizon
to understand the role of long-duration energy storage. The selection of the storage
balancing horizon mostly depends on the purpose of the modeling, but can also be
related to the type of load shape and storage utilization. The ideal scenario will run
a single time series with 8760 hours, yet this could be computationally intensive for
large-scale capacity expansion models. For this work, we use four storage-balancing
horizons: 1 week, 2 months, 6 months, and 1 year. This is done by changing the
input file that is handled under the timescale and storage module. Each time series
scenario has a different ending for the SOC as illustrated in Fig. 3.1.

Time points.

Finally, time points describe unique time steps within a time series. The duration and
number of time points per time series depends on the analysis intended but they are
typically on the order of one or more hours. Time points are the smallest timescale
in the model and are used to index exogenous variables such as electricity demand
and renewable energy generation profiles. All of the time series scenarios used in this
study include exactly the same days (364 days) with a 4-hour resolution, producing a
total of 2,184 data points per year. The evaluation of the same 2,184 data points for
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Figure 3.1: Diagram showing the storage balancing horizon (SBH) concept for three
different lengths: 1 Year, 6 Month and 1 Week.

each of the horizons avoids variability in the results dependent on which input data
(e.g., sampled hourly loads, capacity factors, etc.) are or are not included.

Existing and candidate generator and cost data.

The list of existing generators in the WECC is from the latest version of the form EIA-
860 (Energy Information Agency, 2018a) geolocated to its respective load zone using
the latitude and longitude reported. The overnight costs for each of the candidate
plants were provided using the baseline scenario from the NREL-ATB 2020 (National
Renewable Energy Laboratory (NREL), 2020). From this source, we extracted the
overnight, energy and O&M costs as shown in Table 3.1. For the capacity expansion,
SWITCH-WECC provides one candidate resource per non-variable technology (see
Table 3.1) per load zone. In total, there are 7,149 candidate locations for new power
plants (from which approximately 6,000 correspond to solar and wind sites). The cost
numbers represent an average of the projected cost for the 10-year period (2046-2055)



CHAPTER 3. EFFECT OF MODELED TIME HORIZON ON QUANTIFYING
THE NEED FOR LONG-DURATION STORAGE 33

Table 3.1: Cost assumptions for each of the candidate technologies provided to
SWITCH. Data are shown for the 2050 period

Category Technology
Overnight cost1

($/kW)
Energy cost

($/kWh)
Fixed O&M

($/kW)
Fuel cost
($/unit)

Lifetime
(years)

Zero-emissions technologies
Fixed tilt solar (20-33% CF) 703 - 8.29 - 20
Wind (23-46% CF) 1042 - 33.70 - 30
Off shore wind (30% CF)2 2227 - 112.30 - 20
Geothermal 6970 - 173.11 - 20
Biogas – ICT3 2118 - 64.38 0.00 20
Bioliquid - ST 3226 - 80.01 0.01 40
Biosolid - ST 3226 - 80.01 0.32 20

Conventional technologies4

CCGT 925 - 12.86
6.31 - 7.36

40
CCGT - Cogen 103 - 5.31 20

Energy storage
4hrs Li-ion 113 130 15.80 - 10

Note: Overnight, energy and fixed O&M cost numbers (National Renewable Energy Laboratory (NREL),
2020) represent the average of the selected period to study from 2046-2055 year range.
1 The overnight capital cost is the capital expenditure required to achieve commercial operation of a plant,
excluding the construction period financing cost and the interconnection cost.
2 Offshore technology is only available for California load zones.
3 For the baseline scenario there is no fuel cost associated with using biogas.
4 Natural gas price varies according to the load zone.

modeled.

3.3 Results

All the input files for each of the scenarios are constructed and run individually in a
server with 24 cores, 2.8 GHz clock speed, and 512 GB of RAM memory located at
UC San Diego. We use Gurobi (Gurobi Optimization, LLC, 2021) as the solver for
all the runs using one thread and crossover as the solving mechanism. On average,
the solutions to the optimization problems are found in 4-5 hours.

First, we show the results of the optimal online capacity and transmission expan-
sion for the entire WECC using the baseline energy cost scenario as shown in Fig. 3.2.
From Fig. 3.2, we observe that most of the western load zones are dominated by both
solar and storage technologies. In the south-west region, i.e. California and Arizona,
we observe that utility-scale solar and energy storage dominate the share of capacity
with up to 80% of the installed capacity. Three out of five load zones with highest
annual electrical demand are located in this region. Wind energy is deployed in the
northern part of the WECC in the load zones of Alberta and British Columbia with
up to 70% and 50% of the new capacity additions respectively. Also, in the same
region, new transmission is needed to balance and transmit wind and solar energy.
For biomass, only one load zone located in the Northern part of Oregon expands this
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Figure 3.2: Map of optimal online capacity and new installed transmission for a zero-
carbon WECC in 2050. Cost assumptions correspond to the baseline storage energy
cost scenario using a 1-week SBH. Solar and storage dominate the capacity mix in
most of the WECC. Additional transmission is required in the northern balancing
zones to accommodate extra capacity selected.

technology due to low solar and wind annual capacity factors for this zone (10% for
solar and 20% for wind) in comparison with other regions of the WECC.

The results of the optimal new built capacity are shown in Fig. 3.3. The ratio of
solar to wind remains almost constant across the different scenarios with an average
ratio of 3. The maximum capacity deployed for solar power is 17% of the poten-
tial available capacity WECC-wide, while the maximum capacity deployed for wind
power is 11%. From these results, we observe that the 1-Week SBH always results
in additional solar and storage being deployed in comparison with longer SBH where
the optimal power capacity remains almost constant in all cost scenarios as seen in
Fig. 3.3a. This overbuild from both solar and storage is required to adjust the energy
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balance constraint to meet the high load week that occurs from July to August. We
observe a similar overbuild in all cost scenarios and in particular in the 6-month SBH
scenarios as seen in both Fig. 3.3b and Fig. 3.3c where the first week of the second
SBH coincides with the summer peak. Changing the storage energy capacity cost did
not substantially change the total installed power capacity until reaching 1% of the
cost. In this case, we observe a decrease in total power capacity from 766 GW (1W
SBH) to 707 GW (1 Year SBH) as seen in Fig. 3.3c. Another interesting trend is that
wind power is deployed less as we reduce the cost of storage energy capacity. In the
baseline energy capacity cost scenarios the installed capacity for wind power ranges
from 118 GW to 141 GW, while in the 1% energy cost scenarios, the capacity ranges
from 92 GW to 120 GW.

Next, we present results related to the optimal duration for the storage technolo-
gies. As we explain in section 3.2, the model is able to optimize both the power and
energy ratings of each of the storage candidate assets for each load zone. The opti-
mal cumulative number of storage assets is shown in Fig. 3.4. For the baseline cost
scenario we observe that 50% of the storage assets have 7 or fewer hours of duration.
Furthermore, we also observe that for the baseline cost scenario, the SBH length does
not change the optimal storage duration.

As the storage energy cost decreases, we obtain that the optimal duration deploy-
ment depends on the length of the time series. We observe this behavior in both 10%
and 1% of the baseline cost scenarios with the latter showing the biggest difference
and longer duration with up to 600 hours of duration. For the 10% cost scenario, we
observe that there is a shift of the 50th percentile to at least 8+h duration with up
to 24 hours for all SBH lengths as shown in Fig. 3.4. Although the 10% cost scenario
represents an aggressive cost reduction, by 2050 such a low cost may be a reasonable
assumption especially if the DOE is successful in reaching this cost in 2030. For both
the 10% and 1% costs, the model finds optimal seasonal storage duration with up to
a month of energy discharge capacity.

Moreover, results show that the length of the balancing horizon reduces the
amount of renewable curtailment. For all the scenarios, we observe the peak of
curtailment occurring between April and May, mostly from solar energy. We observe
a reduction in the total amount of curtailed electricity as we increase the number of
consecutive days modeled in the 10% and 1% cost scenarios with a higher reduction
in the latter as shown in Fig. 3.5. For the 1% energy cost scenario, the curtailment
is highest for the 1-week SBH with up to 171 TWh and lowest for the full year hori-
zon with 43 TWh. In both these cases, most of the curtailment comes from solar
technologies. For these low-cost storage scenarios, the model finds it optimal to store
additional energy instead of building new VRE capacity, in particular in load zones
where both VRE generation profiles are low.

The utilization of storage also changes with the balancing horizon. For the baseline
cost, most of the short duration (5-8 hours) storage selected is being utilized for daily
arbitrage to balance solar and wind generation. The model also selects 8+ hour
duration at baseline cost that is also utilized mostly for daily arbitrage, but only in
4 load zones. In Fig 7 a) the model selects 5-10 hour storage (orange line) and some
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(a) Baseline energy cost – $130/kWh
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Figure 3.3: Optimal selected capacity mix for a zero-carbon WECC in 2050 consider-
ing the different lengths of storage balancing horizons and storage energy costs with
the storage cost being a) $130/kWh, b) $13/kWh, and c) $1.3/kWh.
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Figure 3.4: Cumulative number of storage assets selected by the model for the optimal
energy storage duration (energy to power ratio). The different panels show results
depending on the storage energy capacity cost assumption: the left corresponds to
the baseline cost, the middle panel corresponds to $13/kWh, and the right panel
corresponds to $1.3/kWh. Each color represents a different storage balancing horizon
(SBH) where the blue line represents the 1-week, orange 2-month, green 6-month and
red 1-year. We observe an increase in optimal storage duration deployment as the
storage energy capacity costs decrease.

weekly storage (green line) and, for both, the amount of energy in storage reaches up
to 1 TWh for the entire WECC.

The model does not add additional energy capacity for any of the balancing hori-
zons as it becomes more expensive than overbuilding solar or wind capacity. On the
other hand, we observe a complete utilization of storage for the 10% and 1% energy
cost scenarios. The model selects LDES starting from the 2-month horizon at 10%
cost and for all horizons at 1% of the energy cost (see Fig. 3.6). In particular, for the
1-year scenario at 1% energy cost, the model selects two types of storage only: weekly
and seasonal. The weekly storage is also used for daily arbitrage and is capable of
discharging up to 2 TWh while maintaining a minimum SOC of 1 TWh throughout
the year. The seasonal storage is also being used for daily arbitrage but it is opti-
mized to meet two main discharge events that match the summer and winter peaks
of the entire WECC with a total of 12 TWh of energy in storage.

Finally, we show the storage capacity difference obtained by changing the SBH
for the baseline energy cost as shown in Fig. 3.7. Overall throughout the WECC, the
1-week SBH requires additional storage power capacity up to 4 GW per load zone
(shown in dark red). On the other hand, 15 balancing zones, mostly in the eastern-
WECC (shown in dark blue), show the need to add more storage capacity up to 2
GW mostly to balance the different usage of storage in neighboring zones. In total,
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Figure 3.5: Total solar and wind curtailment for the $1.3/kWh energy capacity cost
scenario for each SBH scenario. Curtailment is defined as the difference of the avail-
able dispatch capacity at each time point and dispatch decision. Curtailment is
reduced as the SBH duration increases.

5 out of the 50 zones did not see any change from the different SBH.

3.4 Conclusions and future work

In this work, we systematically explore the impact of extending the SBH to longer
time frames and how the initial assumption of SBH changes the role of low-cost LDES
in a capacity expansion formulation. From our results, we conclude that shortening
the SBH undermines the true potential of LDES technologies for seasonal storage or
energy shifting. While LDES technologies are still in early stages, we expect that
their costs will further decrease and anticipate them playing a bigger role to support
additional VRE deployment.

When we compare extreme scenarios, i.e., a full year of consecutive days for stor-
age balancing using $1.3/kWh as the cost for energy capacity versus one week of
consecutive days at $130/kWh, the installed storage energy capacity varies by up to
13%. We also find that the total amount of energy required to balance the WECC
increases as the SBH increases. Moreover, we find that the amount of storage needed
for an optimal WECC ranges from 2.47 TWh for the 1-Week SBH at $113/kWh
scenario to 16.05 TWh for the 1-Year SBH at $1.3/kWh scenario.

In terms of energy storage duration, we find that the model adds weekly (10-100 h)
and seasonal (100+ h) energy storage for the $13/kWh and $1.3/kWh energy capacity
cost scenarios, respectively. The length of the SBH increases the optimal deployment
of storage duration from a maximum of 8 hours in the baseline cost scenario up to 620
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Figure 3.6: Aggregated state of charge for all energy storage technologies installed
throughout the WECC region. a) For the 1-week SBH using $130/kWh and b) for
the 1-year SBH using $1.3/kWh. Duration of energy storage is classified according
to its optimal range of duration (energy to power ratio). The range between 10-100
hours is classified as weekly and 100+ hours is classified as seasonal. In panel b) we
observe seasonal storage to balance summer and winter peak.

hours when the cost is $1.3/kWh. When we model 1-Year SBH for each of the energy
capacity cost scenarios, we obtain a total optimal energy capacity WECC-wide that
ranges from 1.5 TWh to 12 TWh for the 10% and 1% energy capacity cost scenarios,
respectively.

An accurate power system modeling of LDES technologies is key to understand
the importance of LDES for a high-VRE electrical grid. This work takes the first step
towards correctly modeling LDES in capacity expansion models and understanding
the errors incurred and differences found when not modeling a full year of consecutive
days for storage balancing. We expect that this work will not only identify limita-
tions of existing models in capturing the value of low-cost LDES technologies, but
also motivate new work related to capacity expansion formulation. Additionally, the
approach we present in this work aims to inspire energy modelers to adopt a year-long
SBH for LDES technologies in their capacity expansion models.
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baseline energy cost for each of the WECC regions.



41

Chapter 4

Effect of Time Resolution on
Capacity Expansion Modeling to
Quantify Value of Long-Duration
Energy Storage

The text of this chapter is a reprint of the material as it appears in Sanchez-Perez,
P. A., Sarah Kurtz, Natalia Gonzalez, Martin Staadecker, and Patricia Hidalgo-
Gonzalez. “Effect of Time Resolution on Capacity Expansion Modeling to Quantify
Value of Long-Duration Energy Storage.” In 2022 IEEE Electrical Energy Storage
Application and Technologies Conference (EESAT), 1–5. Austin, TX, USA: IEEE,
2022. https://doi.org/10.1109/EESAT55007.2022.9998031.

4.1 Introduction

In capacity expansion modeling, it is common to find model formulations that simplify
the temporal resolution to reduce the computational time. The above statement is
true for different models that cover a large geographical area and have a substantial
number of generators, making it challenging to model 8760 hours of simulations over
multiple periods. Since the results of capacity expansion models are meant to assist
long-term planning processes, the capability to quickly modify and assess a wide
variety of sensitivity scenarios is highly valuable.

Recently, there has been enthusiastic interest in energy storage assets capable
of storing energy for a duration longer than current Li-ion technologies (more than
10 hrs rather than up to 4 hrs). This type of energy storage, long-duration energy
storage (LDES) technologies, could be used as a commodity for system operators to
reduce renewable curtailment and shift electricity across multiple weeks or seasons.
There is a wide variety of emerging LDES technologies. Reference (Shan et al., 2022)
has already explored the different kinds of emerging LDES technologies with a wide
assortment of methods to store energy (e.g., electrochemical, gravitational, and ther-

https://doi.org/10.1109/EESAT55007.2022.9998031
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mal) with different efficiencies and operational constraints. The wide variety of types
of LDES creates uncertainty for modelers on how most kinds of LDES technologies
will participate in the future electrical market and how the different assumptions will
change the modeled optimal size and need for LDES assets.

Multiple authors have already explored LDES in capacity expansion models or
simplified models (Sepulveda, Jenkins, Edington, et al., 2021; J. Guerra et al., 2020;
Dowling et al., 2020) and how changing the temporal resolution can yield different
optimal solutions (Bistline, 2021; Hoffmann et al., 2020; Sánchez-Pérez et al., 2022).
However, to our knowledge, no work has explored the change in storage usage and
optimal capacity for temporal simplifications with LDES assets, mainly when aiming
for a future dominated by variable renewable generation. From our perspective,
understanding how LDES could be used in future grids will: 1) shape the design and
configuration of energy storage assets, 2) strengthen current efforts to invest in LDES,
3) build certainty for stakeholders in long-term planning around LDES technologies,
and 4) improve the understanding of temporal constraints for LDES assets.

In this work, we evaluated the sensitivity of LDES technologies in future vari-
able renewable energy (VRE) grids with different temporal resolution simplifications.
We studied the storage deployment, utilization, and curtailment reduction for three
different temporal resolution scenarios and contrasted them against a future where
LDES is not in the capacity mix. This manuscript is organized as follows: first,
we detail in the methodology section the modeling framework used and the baseline
scenario constructed to test our different temporal scenarios, then we examine some
of the main findings regarding the storage deployment and utilization in the results
section, and finally, we outline some of the main conclusions.

4.2 Methodology

This work aims to understand the change in the total capacity and usage of LDES
assets in capacity expansion models under different timescales resolution. To ex-
plore this, we used the Switch 2.0 model, an open-source power system planning tool
that co-optimizes transmission/capacity additions and operations over multiple in-
vestment periods (Johnston et al., 2019). The objective function is to minimize the
total system cost over multiple investment periods, including generation and trans-
mission capacity additions and operations subject to operational constraints, policy,
and emission constraints. We selected Switch as our main modeling framework due
to its flexibility and modularity in creating different timescales, a key feature for
this work’s implementation. Furthermore, Switch has a built-in module to model
energy storage assets, including idle losses, state of charge (SOC), discharge/charge
efficiency, and minimum energy to power constraint.

Switch is a Python-based model that requires a set of input assumptions in “.csv”
format to create the optimization problem. For this work, we used Switch-California,
which is derived from the input assumptions of the Western Electrical Council branch
of Switch (“Switch-WECC”). Results using Switch-WECC were published first in (J.
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Nelson et al., 2012) and updated in (Sánchez-Pérez et al., 2022). The input as-
sumptions include the network topology (load zones) and transmission lines, existing
and candidate generators for each load zone, technical operation of the generator as-
sets, build cost per period, predetermined builds, investment periods and timescales,
and transmission limits. This work created a subset formulation based on the the
Switch-WECC model just for California with newly updated assumptions for storage
technologies, including LDES assets and timescale scenarios. We detail the changes
made in the input assumptions in the following subsections.

Geographical resolution

For this work, we selected the study region to be California due to its high variable
renewable energy penetration, geographical diversity, energy policy goals, and current
interest in LDES. The model includes a total of 12 load zones that represent most of
the load-serving entities and investor-owned utilities within the California footprint,
as shown in Fig. 4.1. Since this version of the model considers only California zones,
all the new infrastructure investment required to meet the future load needs to be
in-state; therefore, any imports or exports are outside the scope of this work.

Candidate generators cost assumptions

The list of existing and candidate generators comes from the Switch-WECC version
derived from the existing power plants listed on the EIA-923 form. Each generator
asset belongs to the corresponding load zone based on its location. For energy storage
assets, the baseline scenario considers only Li-ion technology. As mentioned in the
introduction, there is a considerable variety of LDES technologies. To explore LDES
technologies, we added LDES to the candidate technology mix for each load zone
that will compete with the Li-ion. We took the capacity and energy cost numbers for
LDES reported in (Shan et al., 2022) and projected that the exact cost ratio (LDES
vs. Li-ion) would remain constant in the modeling period. The previous statement is
one of the main biases of the work, and we are aware that different cost numbers yield
different results. However, we used this assumption due to the lack of cost projection
for LDES technologies.

For the operational characteristics of the LDES assets, we include an asset repre-
senting a low-cost and long-duration (> 100hr) LDES product with 45% round-trip
efficiency and 1%/day idle losses. We summarize the cost assumption and technical
parameters for energy storage in Table 4.1.

State policies

Additionally to the list of pre-existing generators, we included an offshore wind can-
didate technology with a capacity of 10 GW located in “CA PGE S”. This candidate
technology will be online by the 2050 period and was included in accordance to the
latest AB-525 bill from the California government (California AB-525 2021) . For
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Figure 4.1: Grid topology proposed for California. The shape and area of the load
zones are similar to those previously developed by the Switch-WECC team.
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numbers are the projection for the 2050 period.

Technology Power
capac-
ity cost
($/kW)

Energy
capac-
ity cost
($/kWh)

Round-
trip
efficiency
(%)

Idle losses
(%)

Minimum
duration
(hrs)

Li-ion 113.22 130.03 95 0.10 4
LDES 48.68 16.90 45 1.00 100

the generation profiles, we used the latest leasing area for the Morro Bay area (Bu-
reau of Ocean Energy Management, 2021), then we calculate hourly capacity factors
using the 2019 year dataset for offshore wind in California from the Wind Tool Kit
developed by NREL (Draxl et al., 2015) and the 2020 offshore wind reference tur-
bine power curve from the NREL-ATB (see National Renewable Energy Laboratory,
2021).

Timescale

Switch includes a module that defines the temporal resolution with three timescales
for decision making: periods of one or more years where investment decisions are
made, time points within each period when operational decisions are made, and time
series that group time points into chronological sequences (Johnston et al., 2019)
for storage arbitrage. For the scope of this work, we model only the 2050 period,
which considers a future zero-carbon California grid with most of the electricity being
supplied by either VRE or non-emitting firm assets. This 2050 period considers
a single time series (from January 1st till the end of the year, December 31st) of
sequential modeling time points. To create the different time scale scenarios, we took
the load projection from the Switch-WECC model for California that is on an hourly
resolution and sampled every 4-hr, 2-hr, and 1-hr resolution starting from the first
modeling timepoint of the time series. This sample only considers a snapshot of the
current status of the load and the matching VRE generation at the same timestamp.

Additional modeling details

In addition to the previous changes, we retained the default module configurations
for the planning reserve assumptions. For all the scenarios explored, we used a
conservative 15% planning-reserve margin (PRM) for each load zone. Also, all the
generators can provide reserves for the load zone, and this assumption resulted in
some capacity being online by 2050, even though it is not dispatched. Removing the
gas capacity to be applicable for planning reserves could yield an opportunity for
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Scenario name LDES included Time resolution No. time points
Baseline 4hr -

4hrs 2190
LDES 4hr ✓
Baseline 2hr -

2hrs 4380
LDES 2hr ✓
Baseline 1hr -

1hr 8760
LDES 1hr ✓

energy storage; however, further analysis is required on how storage and LDES will
provide planning reserves and is out of the scope of this work,

To run the model, we used the solver Gurobi (Gurobi Optimization, LLC, 2021)
on an M1 Macbook pro machine with 32 GBs of RAM for all the scenarios. The run
time falls between 30 minutes for the 4-hr runs up to 480 minutes for the 1-hr runs.

4.3 Findings

First, we present the online capacity by period for each scenario as shown in Fig. 4.2.
We obtained that VRE generation and storage for all scenarios constitute the highest
share of online capacity. The remaining capacity comes from geothermal, biomass,
pumped-hydro, and non-pumped hydro. As mentioned in Section 4.2, the gas capacity
(combined-cycle gas turbines) is only present in the solution for planning reserves
purposes and is not dispatched. We observe from Fig. 4.2 a systematic increase in
the total installed capacity as we increase the number of timepoints modeled (from
4-hr resolution to 1-hr). Likewise, we observe the same pattern in both baseline and
LDES scenarios. Increasing the number of time points in the model increases the
number of time points without solar generation, driving the model to build more
VRE and storage to maintain a higher state of charge. Furthermore, we obtained
less installed capacity when including LDES in the capacity mix compared with the
baseline scenario. This reduction comes mainly from solar and energy storage due to
shifting some needs of power capacity to energy capacity.
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Figure 4.2: Optimal online capacity in the California model broken out by technology
type for the 2050 period. Only the capacity component for energy storage, LDES and
pumped-hydro storage (PHS) is included in this graph.

We show results of the optimal power and energy capacity in Table 4.3. The
LDES scenarios included 10 to 20 GW of new LDES capacity. We obtained that
Li-ion’s capacity and energy requirements increase with the temporal resolution for
the baseline scenarios. The highest LDES energy capacity required was for the 2-
hr scenario with 2,087 GWh and the lowest for the 4-hr scenario with 987 GWh.
Interestingly, the 2-hr scenario resulted in a higher energy capacity needed than
the 1-hr scenario. The increased energy capacity results for the the 2-hr scenario
yielded an overall increased load. This result is expected since the sampling strategy
considered evenly spaced time points, therefore the 2-hr scenario have more VRE
lulls than the 4-hr and 1-hr scenarios. In any LDES scenarios, the model did not find
it optimal to add additional duration rather than the minimum duration included
(100hr).

Fig. 4.3 shows the dispatch for the different scenarios during the peak load days
in July. In both 1-hr scenarios, the surplus electricity, mainly from solar, is being
redirected to energy storage and being utilized to supply electricity during nighttime.
Also in Fig. 4.3 a), some biomass and geothermal capacity are utilized in conjunction
with energy storage to supply nighttime demand. For the LDES scenarios, the LDES
dispatch replaces a fraction of the Li-ion energy storage and geothermal and biomass
contribution. We also obtained that for the LDES scenario, the amount of daily
charging is considerably less than for Li-ion storage. The charging behavior could
further be analyzed in the state of charge plot as shown in Fig. 4.4.
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Power capacity (GW) Energy capacity (GWh)

Scenario Li-ion LDES Li-ion LDES

Baseline 81.42 - 543.22 -
Baseline 2hrs 94.89 - 584.83 -
Baseline 1hrs 98.01 - 588.23 -
LDES 4hr 66.27 9.88 504.80 987.81
LDES 2hr 63.96 20.66 365.98 2065.68
LDES 1hr 68.05 19.26 387.32 1925.67
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Figure 4.3: Aggregated electrical dispatch during the summer peak event. a) Baseline
scenario with 1-hr resolution, b) LDES scenario with 1-hr resolution. Dashed lines
represent the load which is the same for both scenarios. Negative areas represent
charging while positive discharging.

Fig. 4.4 shows the aggregated state of charge for all the Li-ion and LDES assets.
We observe that, in general, the model optimizes the SOC for two full discharge
events in the summer and one the winter. Since the model has perfect foresight
of the demand and VRE generation, it charges the LDES assets ahead of the peak
demand. From Fig. 4.4, we observed two main differences: 1) there is a substantial
change in the charging behavior for the winter peak between the different temporal
resolutions, 2) the 4-hr scenario optimizes for an earlier discharging event during
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Figure 4.4: Normalized aggregated state of charge for all LDES technologies for the
three different temporal resolutions.

February and March, which is not present in the 1-hr and 2-hr scenarios, and 3) the
2-hr scenario maintains a higher average SOC during the year. Notice that the 4-hr
scenario shows almost a 0.8 SOC during February and March while the other two
scenarios only get to 0.5 in that time frame. This is explained because the latter
scenarios roughly double the energy capacity built in the 4-hr scenario as shown in
Table 4.3, hence, all three scenarios charge a similar amount of energy in February
and March.

Finally, Fig. 4.5 shows the net load duration curve constructed by adding the
charge from the batteries to the load and subtracting the VRE generation and the
discharge of the batteries leaving the generation from biomass, geothermal and hydro
left. Fig. 4.5 highlights firm capacity requirements to run the electrical grid that
can come from firm or dispatchable generators. For our scenarios, this capacity is
supplied mainly by biomass, geothermal and hydroelectric. Also, we observe the
model’s sensitivity for different time resolutions between the 0-20% range, which is
the region for peak demand. The 4-hr scenario has lower peak demand values than the
2-hr and 1-hr, with the latter having the highest peak. Furthermore, adding LDES
to the capacity mix reduces the total peak load compared to the baseline for all
temporal resolution scenarios. We obtained the lowest capacity needs for the LDES
- 4hr scenario. We explain this as an artifact of the sampling method not capturing
some of the peak demand time points.
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Figure 4.5: Net-load duration curve constructed by adding the charging for both
Storage and LDES (for LDES scenarios) to the demand and subtracting the VRE
generation.

4.4 Conclusions

Capacity expansion models are excellent tools for exploring long-term capacity needs.
In this work, we analyzed a capacity expansion formulation for California with LDES
candidate technology under different temporal resolutions. We explored how the
temporal resolution impacts capacity expansion models’ results for low-cost LDES
technologies and obtained that it changes the capacity, energy and utilization pat-
terns.

We obtained that LDES is affected depending on the number of time points. The
maximum LDES energy capacity requirements were obtained for the 2-hr scenario,
with need for up to 2 TWh of aggregated energy capacity. The most significant
difference was between the 4 to 2 hours scenarios where 10 GW more of LDES power
capacity was selected in the latter case.

A limitation of this study pertains to how time was sampled. Originally, the
sampling of the time was designed to capture demand peak hours across the WECC,
while the study focused only in California (assuming peak hours would coincide).

We conclude that time sampling can yield different LDES needs, and modelers
should also explore additional scenarios. We obtained that having a lower number of
time points can underestimate two elements, the peak demand events, and the firm
capacity requirements. We obtained different state of charge patterns and optimal
power capacity and energy capacity values. If LDES becomes an essential technology,
we need improved modeling and assumptions since, ultimately, the results of the
capacity expansion will likely drive the design of these assets.
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Chapter 5

Conclusions

In this dissertation work, I have explored the input assumptions utilized in the long-
term capacity planning process, especially focusing on their impact on the optimal
selection of energy storage technologies. Given the increasing dominance of variable
renewable energy technologies in the energy mix, energy storage has become a critical
player that will help to balance the energy supply, reduce the variability of VRE
and increase their value to the electrical grid. Moreover, as new energy storage
technologies like LDES become widely available and cost competitive, there is a
potential to further accelerate decarbonization efforts. Therefore, it is imperative
for those responsible for updating planning models to have a deep understanding
of the input assumptions and simplifications employed in the framework to identify
pathways for adoption of new technologies.

Limitations of existing models in capturing the value of LDES technologies have
been identified, highlighting the need for further work in capacity expansion formu-
lation. The approach presented in this dissertation aims to inspire energy modelers
to understand the storage balancing horizon for LDES technologies and its impact in
capacity expansion models. It emphasizes the importance of carefully considering in-
put assumptions, as they can significantly impact the results. Constructive feedback
loops among modelers, in terms of sharing insights and experiences, can enhance the
accuracy and reliability of capacity expansion models, especially when considering
emerging technologies like LDES.

Capacity expansion models are powerful tools for understanding the impacts of
climate policies on power systems, but they need to be adapted to accurately model
the unique characteristics of emerging technologies.

Furthermore, the research identifies that different state of charge patterns and
optimal power capacity and energy capacity values can be obtained based on mod-
eling assumptions. Given the pivotal role expected for LDES technologies in future
power systems, continuous improvement of modeling techniques and assumptions is
imperative, as the results of capacity expansion models are likely to influence the
design and deployment of these assets.
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5.1 Future work

Moving forward, there are numerous opportunities for further research in the realm
of modeling LDES technologies. While this dissertation has shed some light on the
potential benefits and some limitations of these systems, there are still many open
questions that require further exploration. For example, multi-period optimization
with LDES could be a promising area of research, as it would enable us to better
understand when and where it might become more feasible to install LDES in different
locations. Another example would be to analyze particular load regions of interest
where LDES could be implemented. Additionally, modeling different types of LDES
technologies in conjunction with each other could provide valuable insights into how
these systems can be optimized and integrated with other grid technologies.

Another important area for future research is the development of new strategies
for creating additional synergies between energy storage and VRE technologies. This
could include exploring how hydrogen interacts with low-cost LDES, as well as iden-
tifying a proper methodology to quantify the capacity credit for low-cost LDES and
how to model the reserve capacity services they can provide. Ultimately, by address-
ing these and other open questions and opportunities for further research, we can gain
a deeper understanding of the potential benefits of LDES technologies and how they
can be optimized and integrated with other grid technologies to help us transition
towards a more sustainable energy future.
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