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1 Introduction

The measurement of cross sections in particle and nuclear physics experiments usually proceeds
as a two step process. First, an observable is constructed and secondly the data are corrected for
detector effects (see e.g., [1]). The latter step is the so-called unfolding and is based on Monte Carlo
event simulations to correct the data for limited resolution, acceptance effects or mis-tagging. The
process begins by defining the observable of interest O𝑝 : R𝑚𝑝 → R𝑛𝑝 , where the particle-level
input 𝑥𝑝 ∈ R𝑚𝑝 can be a list of four-vectors, and usually 𝑛𝑝 = 1. For example, if O𝑝 is the 𝑝𝑇 of the
leading jet, then O𝑝 acts on all the particles in the event, runs jet clustering, and outputs the 𝑝𝑇 of the
hardest jet. Then, an observable O𝑑 : R𝑚𝑑 → R𝑛𝑑 is defined analogously at detector-level, e.g. using
energy-flow objects. The definition of the observable at detector level should yield a reasonable
resolution, corresponding to a strong correlation between the detector-level and particle-level
observables. Next, a histogram is filled at detector level from the event counts. An event simulation
is then used to populate a matrix quantifying detector distortions by linking the event counts between
particle-level and detector-level bins. Unfolding is then the art of regularized matrix inversion (see
ref. [2–5] for recent reviews).

In most cases, O𝑑 is defined using detector-level quantities as input to the equivalent definition
of the observable at particle-level: O𝑑 (𝑥𝑑) ≡ O𝑝 (𝑥𝑑). However, although this often yields sufficient
resolution, a drawback of this approach is that further quantities are commonly not included in the
unfolding, nor in the reconstruction, which then can degrade performance. For example, if the jet
energy response worsens at high pseudorapdity, 𝜂, then the measurement of jet 𝑝𝑇 would not be

– 1 –
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optimal, since 𝜂 is not used in the calculation of O and it is also excluded in the unfolding1. In this
situation, it may be advantageous to consider 𝜂 when defining O𝑑 or to simultaneously unfold 𝑝𝑇

and 𝜂 (as e.g. done in refs. [15, 16]). The same reasoning would apply to any variable driving jet
performance. However, once more variables are involved, this leads to a dimensionality problem, or
to limited statistics of data and/or the simulations.

Matrix-based unfolding methods do not scale well to many dimensions. This is because the
migration matrices become large when many quantities are considered [15–17] or it is technically
challenging to consider migrations in further quantities [18–20]. Thus a variety of multidimensional
machine learning (ML) techniques have been proposed [21–24], and first ML-based unfolding
techniques were already applied to collider data [25]. However, these pose computational challenges,
or are often difficult to implement in existing analysis workflows, and thus low-dimensional unfolding
might still continue to be the most prevalent approach in the near future. Additionally, ML approaches
still focus on the case O𝑑 (𝑥𝑑) = O𝑝 (𝑥𝑑), even if O is multi-dimensional.

We note that there is freedom to define the detector-level quantity O𝑑 , and it need not be a
simple analog of O𝑝. In fact, O𝑑 could even have a different dimensionality than O𝑝. The only core
requirement is that the particle-level observable O𝑝 is linked to theory, and is a useful physics quantity.

We propose to use deep learning to define an improved definition of O𝑑 , given the aim of
measuring O𝑝 and using a large number of inputs to better account for detector effects. We
use a regression model to learn O𝑝 given 𝑥𝑑 , with O𝑝 being the observable for a cross section
measurement.2 Using standard loss functions, direct regression is prior-dependent so we use standard
unfolding techniques to mitigate it.3 Our approach to define O𝑑 is compatible with both binned and
unbinned [21–24, 54–64] unfolding methods. The workflow is schematically displayed in figure 1
and compared to other reconstruction and unfolding procedures.

While we are not aware of other proposals to use ML for observable reconstruction, a variety of
related ideas have been studied. For example, the Simplified Template Cross Section (STXS) protocol
for Higgs studies [65, 66] identifies bins of O𝑝, but does not specify O𝑑 . Recent ATLAS [67]
and CMS [68] measurements have used Boosted Decision Trees to construct O𝑑 as a classification
problem with the STXS bins as classes. A related idea was presented in ref. [58], with an iterative,
binned unfolding based on ML classifiers. The results ref. [58] are one-dimensional, but the author
mentions adding additional features.

The remainder of this paper is organized as follows. Section 2 provides the technical details of
our approach. We then provide explicit examples using a full detector simulation in section 3. The
paper ends with conclusions and outlook in section 4.

1These effects are suppressed using dedicated energy calibrations that depend on many features to improve their
resolution [6–10]. However, most observables lack dedicated calibrations; for example, ATLAS [11] and CMS [12] do
not have a dedicated calibration for the 𝑛-subjettiness [13, 14].

2Many proposals do this for observables used in other tasks [26–52] (see also ref. [53]).
3There is a close connection between reconstruction and unfolding. When the reconstruction has no noise, then

unfolding is unnecesary. In general, reconstruction moves around the features while unfolding moves around the cross
section (e.g. 𝑥-axis versus 𝑦-axis of a histogram). We thank J. Thaler for many useful discussions about this connection.
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Figure 1. A schematic diagram of unfolding methods, including the one proposed in this paper. The left-hand
side images represent detector-level events while the right-hand side images correspond to particle-level
events. Horizontal arrows correspond to cross section corrections (e.g., via regularized matrix inversion) while
vertical arrows correspond to observable definitions. The traditional path uses the same observable definition
at particle-level and detector-level while we propose to use machine learning to define the detector-level
observable. The middle horizontal arrow correspond to a full phase space unfolding where observables (and
bins) can be constructed after the unfolding (see ref. [21]). Such an approach is complementary to the one
proposed in this paper.

2 Machine learning-assisted reconstruction for better unfolding

2.1 Technical setup

The focus will be on the combination of an ML-based reconstruction of an observable and
the subsequent application of an unfolding algorithm using summary statistics. It was already
demonstrated in ref. [46] that ML-reconstructed observables have the capability to improve the
resolution and reduce the bias when compared to classically calculated observables. Hence, we
build our study upon this previous ML-setup, and extend it to further observables, and study the
unfolding properties of such observables.

The most widely-used regularized unfolding methods are TUnfold [69], Iterative Bayesian
(also known as Lucy-Richardson) [70–72], and SVD [73]. We use TUnfold, which is based on a
least-squares fit that includes Tikhonov regularization [74, 75] to control statistical fluctuations. We
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use version 17.6 of the TUnfold package in the 6.24 distribution of Root [76]. The response matrix
is constructed from 2D histograms with 10 bins in the particle-level value and 20 bins of the detector-
level value. The input to the unfolding is a pseudo-dataset from the MC sample, and the migration
matrix is defined by a statistically independent sample, or, alternatively, using an independent MC
generator. The scan for the optimal value of the regularization parameter 𝜏 is performed with the
ScanLcurvemethod with 30 points [69]. All other settings of TUnfold are set to their default values.

All deep neural network (DNN) models are implemented in Keras [77] and TensorFlow [78]
and optimized using Adam [79] with the Huber [80] loss function as described in our earlier work [46].
The network models use 7 sequential hidden layers with between 64 and 1024 nodes per layer.

The metrics that we will use to compare the standard reconstruction and the ML-based
reconstruction are the statistical uncertainties and global correlation coefficients [69] for the unfolded
distribution. We also compare the response matrices for the methods and the matrix of correlation
coefficients for the unfolded results.

2.2 Simulated datasets

We study simulated data of electron-proton collisions at a center-of-mass energy of
√
𝑠 = 319 GeV

from the H1 experiment at HERA [81, 82]. These simulated data are well understood and all aspects
of the data are in general in good agreement with data from the real experiment, and the H1 detector
simulation includes all sub-detectors and run-dependent effects. The simulated data are the same as
were used in ref. [46] and are briefly described in the following.

Two simulated samples of deep-inelastic scattering (DIS) were created by the H1 Collaboration,
each with a different event generator: Rapgap 3.1 [83] or Djangoh 1.4 [84], with beam energies
𝐸𝑒 = 27.6 GeV and 𝐸𝑝 = 920 GeV, for the lepton and proton, respectively. Both generators use the
Heracles routines [85–87] for Quantum Electrodynamic (QED) radiation. The simulated events are
reconstructed in the same way as data. An energy-flow algorithm [88–90] is used to define objects
whose sum yields the Hadronic Final State (HFS) four-vector. The scattered electron candidate
is defined using the standard H1 approach [15, 91, 92]. Standard selections [15, 91] are applied
to suppress backgrounds and mis-measured events. The simulated events are processed by H1’s
computing environment [93]. Altogether, O(108) events were simulated for each generator. The
kinematic region is defined through 𝑄2 > 220 GeV2 and for the purpose of a reduction of QED
initial-state radiation, the reconstructed events must fulfill 45 GeV < 𝐸 − 𝑃𝑧 < 62 GeV, where 𝐸

and 𝑃𝑧 are calculated from the sum of the 4-vectors of the scattered electron and the HFS. This
requirement, as well as detector specific acceptance losses, like those from non-instrumented regions
(cracks), and cuts to reduce backgrounds, will be taken into account as acceptance corrections.

3 Numerical results

In ref. [46], we introduced a ML approach to reconstruct observables, and applied it to reconstruct
the event kinematics in neutral-current DIS events, which are the momentum transfer squared 𝑄2, the
longitudinal momentum fraction 𝑥, and the inelasticity 𝑦. Since the benefit was most distinct in 𝑥 and
𝑦, and the ML-reconstructed observables promised a possible extension of the measurement phase
space, we will focus on these two DIS kinematic observables in the following. Subsequently we will
then study the properties of our method when applied to the 1-jettiness event shape observable 𝜏𝑏1 .

– 4 –
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3.1 Neutral-current DIS kinematic observables

Inputs to the regression DNN are the 4-vectors of the scattered electron, hadronic final state (HFS),
and photons identified as QED radiation candidates. The HFS is defined as the sum of all particle
candidates that are not associated with the scattered electron. Outputs of the regression DNN are the
DIS kinematic variables 𝑄2, 𝑦, and 𝑥. In the presence of QED radiation, the exact definition of the
observables at particle level is described and discussed in ref. [46]. Likewise as in ref. [46], the DNN
method yields better resolution and smaller biases than any other classical reconstruction methods
and the DNN reconstructed observables benefit from the usage of more measured quantities for
the calculation of the observables in comparison to classical measurements, and from the inherent
classification of QED radiative effects.

Next, we study examples of unfolding in one dimension and quantify the properties of
such ML-assisted observables. The 10 × 20 migration matrices are defined for 𝑥 in the range
−2.5 < log10(𝑥) < 1, and for 𝑦 in the range −2.3 < log10(𝑦) < −0.2, and the regularization
parameter is obtained from the 𝐿-curve scan. Figures 2 and 3 show the normalized response matrices
and the results of the unfolding for log10(𝑥) and log10(𝑦), respectively. Each figure compares the
DNN-based reconstruction method with two standard methods: the electron method, and Sigma
method [94]. The electron method only uses the scattered electron to compute the DIS kinematic
quantities, and the Sigma method is built from HFS inputs. At particle level, all three reconstruction
methods use the equivalent particle-level definition for 𝑥 and 𝑦 [46]. Hence, only the definition of 𝑥𝑑
and O𝑑 (𝑥𝑑) changes, but not O𝑝 (𝑥𝑝).

The response matrix for the DNN method is the most diagonal, as expected, since the training of
the DNN was performed against the particle-level observables. In contrast, the two classical recon-
struction methods have not only larger off-diagonal elements, but also some asymmetries. All three
methods have reasonably good resolution at low 𝑥, and at high 𝑦, while the electron and Sigma methods
suffer from poor resolution at high 𝑥 and low 𝑦. The so-called influence matrix or posterior response
matrix can be considered as an alternative representation of the migration matrix and it includes the
effect of the regularization [95]. These matrices, and some properties, are discussed in appendix A.

The unfolded distribution for each method agrees well with the generated (Gen) distribution
within uncertainties, demonstrating good closure of the unfolding. The classical methods have
sizable statistical uncertainties at high 𝑥 or low 𝑦, while those from the DNN method are visibly
smaller. When regarding the related correlation matrices, the electron and Sigma methods show
significant correlations beyond neighboring bins in areas where the resolution is poor, and even
some correlations between distant bins are observed. In contrast, the DNN method has the most
diagonal matrix, where the non-zero off-diagonal elements are mostly small correlations between
neighboring bins, and no correlations between far apart bins is observed. The average global
correlation coefficients 𝜌avg [69] of these matrices are presented in table 1, and a clear reduction
is observed when using the DNN method. In summary, the DNN method directly improves the
resolution, which is seen from reduced correlations, and improves mis-reconstruction (e.g. in the
presence of QED radiation), which is seen from the absence of distant correlations.

Figure 4 examines the statistical errors and the global correlation coefficients [69] of the
unfolding results for the electron, Sigma, and DNN methods in greater detail. At low 𝑥 and high
𝑦, all three methods have good resolution, which results in similar size statistical errors. However,
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Figure 2. Examples of unfolding log10 (𝑥) for samples of 105 events. The response matrix (left), unfolded and
gen distributions (middle), and unfolding correlation matrix (right) are shown for the electron (top), Sigma
(middle), and DNN (bottom) methods.

Table 1. Value of the average global correlation coefficient 𝜌avg for the unfolding of 𝑥 and 𝑦 when using the
electron, Sigma or DNN reconstruction method.

Observable Reconstruction method
electron Sigma DNN

𝑥 0.692 0.611 0.400
𝑦 0.837 0.707 0.442

the uncertainties of the DNN methods are still about 10 % smaller at lowest 𝑥 or highest 𝑦, and the
global correlation coefficient for the DNN method is found to be smaller by about a factor of 2 or
more. At high 𝑥 and low 𝑦, the DNN method shows significantly lower statistical errors and smaller
global correlations in all bins. The uncertainties of the electron method become large, due to the
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Figure 3. Examples of unfolding log10 (𝑦) for samples of 105 events. The response matrix (left), unfolded and
gen distributions (middle), and unfolding correlation matrix (right) are shown for the electron (top), Sigma
(middle), and DNN (bottom) methods.

particularly large global correlation coefficients at low 𝑦. Furthermore, with higher 𝑥 or lower 𝑦 both
classical methods have a successively increasing uncertainty, whereas the DNN shows continuously
reduced uncertainties towards these kinematic regions (except the bin at lowest 𝑦).

Lastly, we study the properties of the unfolding when the migration matrix is obtained from a
different Monte Carlo event generator as the (pseudo-)data sample. Such tests are of great importance
in real data analyses, since a possible bias of the unfolding method due the selection of a certain
physics generator is assessed. The differences of the two Monte Carlo models, when unfolded with the
simulation from the other generator, is commonly considered as an uncertainty in the data analysis and
is denoted as (generator) model systematic uncertainty. In order to reveal generator model systematic
uncertainties at a statistically significant level, the size of the simulated event sample for these studies is
107, which is 100 times larger than those used in figures 2 through 4. The technical closure plots when
using the Rapgap event generator are displayed in appendix B, and an excellent closure of the unfolded
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Figure 4. Comparison of unfolding results for log10 (𝑥) (top) and log10 (𝑦) (bottom) using the electron, Sigma,
and DNN methods. Distributions for the statistical error on the unfolded result (left), the ratio of errors for the
methods (middle), and the global correlation coefficient (right) are shown.

result is observed for all three reconstruction methods. Figure 5 shows the results of unfolding a
Rapgap event sample with a response matrix obtained from the Djangoh event generator, and vice
versa, for the electron, Sigma and DNN reconstruction methods. We observe, that the electron method
results show very large fluctuations in areas where the resolution is poor, but without any systematic
trends. Also the results with the Sigma reconstruction method show large significant deviations.
In contrast, the DNN method results in an insignificant model dependence in large parts of the 𝑥 and
𝑦 distributions. Only at highest 𝑥 and lowest 𝑦 some model dependence is observed, albeit smaller
than those of the classical reconstruction methods. Altogether, the DNN reconstruction method
results in reduced generator model systematic uncertainty than the classical reconstruction methods,
and such would yield a significantly less biased physics result when used in analysis of real data.

3.2 Event shapes

As another example of our method, we explore the global event shape observable 1-jettiness [96, 97],
𝜏𝑏1 , which is defined as

𝜏𝑏1 =
2
𝑄2

∑︁
𝑖∈HFS

min{𝑥𝑃 · 𝑝𝑖 , (𝑞 + 𝑥𝑃) · 𝑝𝑖} , (3.1)

where 𝑥 is the DIS kinematic quantity from the last section, 𝑃 is the proton beam four-vector, and 𝑝𝑖

are the four-vectors of the HFS objects. The measurement of 𝜏𝑏1 is clearly limited by the acceptance
and resolution of the measurements of the HFS, while these measurements are important for the DIS
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Figure 5. Generator model systematic uncertainties for the unfolding of 𝑥 (top) and 𝑦 (bottom) for the
electron (left), Sigma (middle) and DNN (right) method.

kinematic observables only at lower 𝑦. The DNN-based reconstruction extends the case shown in
the previous section, and the regression DNN takes into account further input quantities from HFS
4-vector in the current hemisphere (negative 𝜂 in the Breit frame). The direct measurement of 𝜏𝑏1 is
not used as an input quantity to the DNN. The outputs of the regression DNN are 𝑄2, 𝑥, 𝑦 and 𝜏𝑏1 .

Figure 6 shows the response matrices and the results of the unfolding for 𝜏𝑏1 when using the
electron, ISigma [94], and DNN methods. The reconstruction method impacts 𝜏𝑏1 through 𝑄2

and 𝑥 in its definition. The influence matrix is again displayed in appendix A. Note, differently
than for DIS kinematic observables, we select to study the ISigma method instead of the Sigma
method, since it was observed to have superior resolution for 𝜏𝑏1 [98]. The migration matrices of the
ISigma and DNN methods are significantly more diagonal than that of the electron method, whereas
differences between ISigma and DNN methods are small. The closure of the three unfoldings is
found to be unbiased, but the electron method results in large fluctuations due to its poor resolution
for 𝜏𝑏1 . The correlation matrix has sizable off-diagonal elements for the electron method, while
ISigma and DNN are significantly more diagonal. Altogether, the results from the ISigma and DNN
reconstruction appear to be quite similar. However, the global average correlation coefficient 𝜌avg

clearly improves for the DNN method, and it is 0.978, 0.869 and 0.842 for the electron, ISigma and
DNN reconstruction method respectively. A more detailed study is presented in figure 7, where the
ratio of the errors and the correlation coefficients are shown. The DNN method yields significantly
smaller errors in all bins, by about 20 %, and also reduced correlations coefficients.

While the results are not as dramatic as for inclusive DIS, the DNN still outperforms the
traditional methods. In general one can expect that the observables that have a very inhomogeneous
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Figure 6. Examples of unfolding 𝜏𝑏1 in DIS in one dimension for samples of 105 events. The response matrix
(left), unfolded and gen distributions (middle), and unfolding correlation matrix (right) are shown for the
electron (top), ISigma (middle), and DNN (bottom) methods.
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detector response will benefit the most from a DNN-aided unfolding. This is why the benefits for
inclusive DIS are more prevalent than for 𝜏𝑏1 .

4 Summary and outlook

We have argued that the common practice of requiring analogous definition of observables at particle
and detector level is not necessary. In fact, abandoning the usual constraint grants us freedom
to define the observable at detector level using a large number of inputs to better account for
detector effects and nuisance physical phenomena like QED radiation. We have proposed to define
observables at detector level with deep learning and we have shown that this improves traditional
unfolding methods by providing a more diagonal response matrix. Consequently, this results in
smaller correlations between bins and smaller uncertainties of the unfolded results. Furthermore,
the DNN reconstructed observables exhibit a smaller model dependence, which would reduce the
related systematic uncertainties and provide less biased results. While our examples have focused
on inclusive observables in DIS with full detector simulations of the H1 experiment at HERA, this
approach can be generalized to any unfolding analysis. The benefits will be largest when there is a
highly inhomogeneous detector response and there are many observables that govern this response
which are not explicitly part of the unfolding.

Our approach deconstructs unfolding into two steps: the construction of observables and then
the correction for detector effects. The first step can be viewed as an event-by-event correction for
detector effects, but the second step is still necessary to mitigate prior dependence. Our approach
is complementary to proposes for using machine learning to implement detector corrections [21–
23, 57–64]. A combination of both methods would result in an even more precise and flexible
analysis. The ultimate approach would be to unfold all observables simultaneously using all the
available information at detector-level [21]. The approach discussed in this paper is much simpler
and will likely yield immediate benefits while many of the statistical and computational challenges
are being addressed for the full phase space methods.
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A The influence matrix

The properties of the influence matrix 𝑃 [4, 99], which is also called posterior response matrix, were
recently studied as an indicator of an unfolding problem in ref. [95]. The matrix 𝑃 describes how
the unfolding result is distorted with respect to the truth, and it can be regarded as the quadratic
response matrix including the effect of the regularization. The influence matrix 𝑃 for the electron,
Sigma and DNN reconstruction methods when unfolding the observables 𝑥 and 𝑦 are displayed in
figure 8, and for the observable 𝜏𝑏1 in figure 9.
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Figure 8. Influence matrices for the unfolding of 𝑥 (top) and 𝑦 (bottom) are shown for the electron (left),
Sigma (middle) and DNN (right) reconstruction methods.
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Figure 9. Influence matrices for the unfolding of 𝜏𝑏1 for the electron (left), ISigma (middle) and DNN (right)
reconstruction methods.

The influence matrices of the DNN-based reconstructed observables are more diagonal than those
of the classical reconstruction methods. The ‘chessboard’ like structure, which is introduced by the
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regularization, is more regular for the DNN observables than for the classical reconstruction methods
(note the logarithmic scaling of the color coding). The traces of these matrices normalized to the
number of particle-level bins, tr(𝑃)/𝑛, are displayed in table 2, and are seen to increase for the DNN
method. The Pearson’s correlation coefficients of these matrices are found to similar and close to one.

Table 2. Value of the traces of the influence matrices normalized to the number of bins (𝑛 = 10) for the
unfolding of 𝑥, 𝑦 and 𝜏𝑏1 when using the electron, (I)Sigma or DNN reconstruction method.

Observable Reconstruction method
electron (I)Sigma DNN

𝑥 0.744 0.816 0.823
𝑦 0.621 0.806 0.813
𝜏𝑏1 0.863 0.904 0.906

B Closure tests for rapgap

Figure 10 shows the technical closure tests of the unfolding for the Rapgap sample, where the
matrix and pseudo-data are obtained from statistically independent Rapgap samples. A sample of
107 events generated from the Rapgap sample observed distribution is unfolded with the Rapgap
response matrix. The closure test is successful with the difference between the unfolding result and
the generated distribution consistent with zero for all methods and all bins.
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Figure 10. Closure tests for the unfolding of 𝑥 (left) and 𝑦 (right) when using the Rapgap event sample.
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