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DISSERTATION ABSTRACT 

 

Development of controllable immunostimulants for probing spatiotemporal contributions to 

immune cell activation mechanisms 

 

By 

 

Lalisa Stutts 

 

Doctor of Philosophy in Chemistry 

 

University of California, Irvine, 2015 

 

Professor Aaron P. Esser-Kahn, Chair 

 

 

Toll-like receptors (TLRs) on innate immune cells are important in the early detection of pathogens 

and initiation of immune responses. Spatial and temporal aspects of signaling via these receptors 

are critical in defining unique and effective immune responses. These factors, however, are not 

well-characterized and there are currently no methods yet to probe them. Herein, I describe 

approaches developed by the Esser-Kahn lab to address spatial and temporal activation of immune 

pathways. We have designed photo-labile immunostimulants for controlled activation of cells in 

space and time. Variants of pyrimido indoles (TLR4 agonist), imidazoquinolines (TLR7 and 8 

agonists), and palmitylated-peptides (TLR1, 2, and 6 agonist) were generated with photo-labile 

protecting groups installed at moieties necessary for productive receptor interaction. We 

demonstrate controlled activation using light of the NF-κB pathway in RAW macrophages, bone 

marrow-derived dendritic cells, and TLR-bearing fibroblasts. 
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CHAPTER 1:  Introduction 

 

Overview of the immune system 

The focus of this work surrounds innate immune cell mechanisms, specifically, the initial 

events of molecular recognition of pathogens by Toll-like receptors (TLRs) and subsequent 

activation of immune pathways. Before discussion of the methods I have developed in the Esser-

Kahn group, I first give an overview of the innate immune system. 

 

The innate immune system 

The immune system protects us from harmful pathogens by recognizing and responding to 

foreign bacterial or viral components. The immune system is divided into the innate and adaptive 

systems. The innate immune system is the first line of defense against an infection. Innate cells, 

including dendritic cells (DCs), macrophages, natural killer cells, etc., are critical for the early 

detection of an infection and initial signaling to other immune cells. Recognition of foreign 

components originating from bacteria, viruses, or fungi is signaled by receptors on or within these 

innate cells. Binding of pathogenic molecules to the receptors promotes immune pathway 

activation. Innate cells signal to other innate cells to fight and clear pathogens, and also to adaptive 

immune cells through cytokine release and antigen presentation. Adaptive cells, including B and 

T cells, generate a long-term response by synthesizing antibodies that recognize pathogenic 

antigens. This communication between the two systems is integral for creating appropriate short- 

and long-term responses to pathogens. 

The primary objective of innate immune cells is to recognize foreign, harmful pathogens 

and propagate the initial response to the other immune cells. In identifying pathogens, immune 
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cell receptors need to distinguish “self” from “non-self” molecules. Endogenous molecules 

originate from non-infectious sources, such as damaged or tumorous tissues. These molecules, 

referred to as damage-associated molecular patterns (DAMPs), are generally nuclear or cytosolic 

components from the host, including DNA, RNA, purine-based metabolites, and host proteins.1 

Recognition of these self molecules is important in immunity because it alerts the body when 

there’s an injury and initiates the clearing and rebuilding of tissues. Additionally, the innate and 

adaptive systems use this recognition to provide for continual surveillance and removal of 

developing tumors. 

The immune system’s response to exogenous molecules is as, if not more, important than 

the self recognition aspect. Non-self molecules come from foreign, infectious sources, such as 

bacteria, viruses, and fungi. Immune cells recognize all types of components from foreign cell 

surfaces, cytoplasms, and nuclei. These immune cell agonists are known as pathogen-associated 

molecular patterns (PAMPs), and include small molecules, peptides, proteins, sugars, lipids, and 

nucleic acids. Recognition of PAMPs is conferred through pattern recognition receptors (PRRs) 

on or within innate immune cells, which elicit immune pathway activation. 

There are four subclasses of PRRs that are involved in the innate immune system: the Toll-

like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), and RIG-like 

receptors (RLRs).2 Each plays different roles in the immune system and has varying expression 

levels in different immune cells. TLRs and NLRs are key in the early stages of pathogen 

recognition and initiation of the innate immune response. CLRs are also crucial for pathogen 

recognition, but additionally serve to internalize and process antigens for signaling to and 

activation of the adaptive immune system. RLRs primarily function to detect viral infection. While 

each of the receptor types have unique roles in pathogen detection and immune cell responses, 
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they also cooperate with one another for more specific and efficient control over immune 

activation. This concept of immune synergy will be discussed in more detail later in this section. 

 

Toll-like receptors 

The Toll-like receptors are the most widely studied class of PRRs. They are heavily 

expressed in dendritic cells (DCs), where they survey tissues for pathogens. DCs play a major role 

in the innate immune system through recognition, but also, as a consequence of activation, alert 

the adaptive immune system though inflammatory signals and antigen presentation. The outcomes 

of innate immune activation for the adaptive immune system are highly dependent on which TLRs 

are activated in an infection.  

There are currently ten known TLRs expressed in humans, designated 1,2,…10.3 These 

receptors are membrane-bound and located on a cells outer or endosomal membranes. They are 

horseshoe-shaped receptors that share structural features, including the leucine-rich repeat (LRR) 

regions and Toll-Interleukin-1-Resistance (TIR) domains. The LRR regions are responsible for the 

dimerization of receptor monomers upon ligand binding. The TIR domain, located at the receptors 

cytosolic face, initiates signaling. Upon ligand binding, TLRs dimerize and conformationally shift, 

to bring the intracellular TIR domains together. These events promote interactions with signaling 

adapter proteins, MyD88 and TRIF.  

TLRs are distinguished by their binding pockets, which interact with different types of 

agonists.4 Generally, TLRs that reside on the cell surface recognize structural components from 

bacteria or fungi (i.e. TLR1, TLR2, and TLR6 bind lipopeptides from Gram-positive bacteria, 

TLR4 binds lipopolysaccharides from Gram-negative bacteria, etc). Conversely, TLRs that are 



4 

 

found at the endosomal membrane tend to recognize pathogen genetic components (i.e. TLR3 

binds dsRNA from bacteria, TLR9 binds ssDNA from bacteria, etc.). 

The major pathways involved in innate signaling are the myeloid differentiation primary 

response gene 88 (MyD88) and TIR-domain containing adapter inducing interferon beta (TRIF) 

pathways. These pathways are intricate, but are vital for generating unique activation profiles to 

appropriately respond to each type of pathogen. The result of activation of these pathways is 

transcriptional level control of inflammatory cytokines and interferons, mainly through the 

transcription factors nuclear factor kB (NF-κB) and interferon regulating factors (IRFs). 

Briefly, all TLRs, except TLR3, signal through the MyD88 pathways (Figure 1.1). Upon 

ligand binding and receptor dimerization, the intracellular TIR domains of the TLRs associate with 

MyD88 In TLR1/2/6 and TLR4 activation, a second adapter molecule, MyD88-adapter-like (Mal), 

is also required.5 Activation of MyD88 recruits Interleukin-1-receptor-associated kinases (IRAK)-

4, affording phosphorylation of IRAK-1, and subsequent association with tumor necrosis factor 

receptor-associated factor (TRAF)-6. TRAF6 activation leads to complexation of TAB2, TAB3, 

and TAK1. The next step in the signaling cascade is the activation of mitogen-activated protein 

kinase kinases (MKKs) and Inhibitor of NF-κB kinases (IKKs). Finally, these events lead to the 

activation of the transcription factors NF-κB, activator protein-1 (AP-1), and cyclic-AMP-

responsive element-binding protein (CREB). Activation of transcription factors means they 

translocate from the cytoplasm to inside the nucleus to exert transcriptional control. These factors, 

specifically, cause the production of pro-inflammatory cytokines, such as interleukin (IL)-1, IL-

12, and tumor necrosis factor α (TNF). Additionally, TLR7, 8, and 9 signal through MyD88 to  
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Figure 1.1. MyD88 signaling pathways.  
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cause IRAK-TRAF-IKK complexation and subsequent activation of the transcription factor IRF7. 

This factor promotes transcription of interferons (IFN-α and IFN-β). 

The second signaling pathway, TRIF, is activated by TLR3 and 4 (Figure 1.2). Again, 

TLR4 requires an adapter, toll-like receptor adapter molecule (TRAM), for signaling.6 TLR-TRIF 

association promotes activation of TRAF-3, which interacts with Tank-binding kinase (TBK)-1 

and IKK. These kinases then activate the transcription factor IRF3, which induces IFN-β 

production. Finally, the activation of NF-κB, AP-1, and CREB can also be activated via TRAF3 

through receptor-interacting protein (RIP)-1. 

 

Challenges in immunology 

Immune activation mechanisms and synergies 

 Both the innate and adaptive immune systems are critical for protection and survival. Innate 

immune cells are the first line of defense in these pathways, surveying the body for damage or 

pathogens, and upon recognition of harmful signals, will begin to eliminate and/or alert other 

immune cells of the threat. Over the past three decades, much effort has been put into uncovering 

the biochemical pathways that initiate and propagate signaling in immune cells in response to 

pathogens. As discussed, the major mode of pathogen recognition is through Toll-like receptors, 

which signal through the MyD88 and/or TRIF pathways to ultimately produce inflammatory 

cytokines and interferons. The next challenge in immunology is to elucidate how these pathways 

operate together intra- and intercellularly to then effect diverse responses and efficient activation 

of the immune system. 

  The prevailing theory on how a small number of PRRs is able to detect and afford such 

diversity in response types and intensities is synergy. Immune synergies, sometimes called  
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Figure 1.2. TRIF signaling pathways. 

  



8 

 

inflammatory networks, generally refer to the cooperation that occurs between cells, pathways, or 

agonists that afford a greater than additive response. Unlike initial models of immune stimulation, 

where a single pathogenic ligand would bind and activate one type of receptor to initiate a 

response, this more encompassing and dynamic model of activation synergy takes into account 

that numerous types of pathogenic ligands bind multiple receptors to initiate a complex network 

of immune pathways. This is believed to result in a potent and unique response.7 Immune synergies 

have been observed in many instances, including via high-throughput screening and vaccine 

models, whereby cells are treated with multiple immunostimulants to enhance immune activity 

and immunogenicity of an antigen.8,9 

Spatial and temporal factors in immune activation 

 The biochemical pathways that make up an organism are extensive and complex. Though 

often portrayed as linear pathways, they are extremely dynamic and, as such, highly dependent 

and spatial and temporal aspects of signaling. The immune-related pathways, as outlined above, 

are just as complicated and ill-defined. The first steps in understanding these spatial and temporal 

contributions was to discover which pathways are primarily responsible for activation and what 

stimulates them. Recent work in adjuvant design has determined that immune cells co-treated with 

multiple agonists results in distinct and heightened immune profiles.9,10 The current methods for 

activating the immune system are basically to treat an animal or cell in vitro in bulk with one or 

more immunostimulants. Approaches that control agonists exposure and activation in space and 

time are limited. Generally, agonists are added to cells manually and sequentially, or by application 

to different areas of an animal (i.e. dermal versus injection). There are some recent examples of 

agonist- and/or antigen-loaded nanomaterials for slow release treatments.11–13 These constructs do 

enhance immune activation, however, have some drawbacks in probing spatial and temporal 
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mechanisms, including time-consuming or complicated synthesis and, most importantly, limited 

controllability in vitro and in vivo. 

  

A method for uncovering the sources of immune synergies 

 The Esser-Kahn group has developed a method for studying immune synergies. We took 

inspiration from the field of neurobiology, which has probed spatial and temporal elements of 

signaling for over three decades through the use of light-activated molecules.14–19 In this work, I 

describe the development of three novel immunostimulants and their applications in probing 

spatial and temporal factors in immune cell activation. These agonists are all based on small 

molecule TLR immunostimulants: pyrimido indole (TLR4 agonist), imidazoquinoline (TLR7 and 

8 agonist), and palmitylated-cysteine-serine-tetralysine (TLR2 and 6 agonist). We generated 

controllable variants of these agonists by installation of photo-labile protecting groups at positions 

critical for receptor interaction and, therefore, activity. These caged compounds are unable to 

productively interact with the receptor until deprotection with UV light. 

 The aims of this work were to 1. design and synthesize light-controlled immunostimulants, 

2. demonstrate their utility in applications of spatially- and temporally-controlled immune 

activation, and 3. make progress towards understanding complex immune signaling and synergies.  
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CHAPTER 2:  Light-controlled agonist for TLR4 

and spatial and temporal control in TLR signaling 

 

Overview of TLR4 signaling 

Receptor structure and agonists 

Toll-like Receptor 4 is a critical receptor in innate immune signaling and is the most highly 

studied receptor of the TLR family. TLR4 is activated by a diverse array of structures, including 

lipids, peptides and proteins, and small molecules. TLR4 was first discovered as the target receptor 

of lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria. Like 

other TLRs, TLR4 is a membrane-bound, horseshoe-shaped receptor that has leucine-rich repeat 

(LRR) regions and Toll-Interleukin-1-Resistance (TIR) domains. TLR4 is structurally distinct 

from other TLRs in that it requires a co-protein, MD2, for functional recognition of agonists and 

activation. The crystal structure of TLR4 with MD2 and LPS shows that the agonist binding pocket 

forms between the receptor and co-protein, with the hydrophobic tails of Lipid A inserted into the 

hydrophobic core of MD2 (Figure 2.1).1 Two such dimers then complex with each other to form 

a tetramer consisting of two TLR4 and two MD2 subunits. The electrostatic interaction of the 4-

phosphate with arginine and lysine residues of TLR4 appears critical for the activity of 

monophosphoryl Lipid A (MPLA) and all other LPS derivatives.2  

The native agonist of TLR4, LPS, is composed of Lipid A (a phosphorylated disaccharide 

with multiple lipid chains) and a long polysaccharide. It has been determined that the 

phosphorylated Lipid A moiety of LPS is responsible for TLR4 activation. Several derivatives of 

monophosphoryl Lipid A (MPLA) have been extracted from various bacteria and synthesized, 

including Eritoran (E5564, an antagonist) and other aminoalkyl glucoaminide 4-phosphates  

(Figure 2.2).3,4 Reduced forms of MPLA have recently been synthesized, including  
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Figure 2.1. Crystal structure of TLR4 with MD2 and lipopolysaccharide (polysaccharide not 

shown for clarity). LPS binding promotes formation of a heterotetramer of two TLR4 receptors 

and two MD2 adapter proteins. The lipid chains of lipidated agonists intercalate into MD2, leaving 

the saccharide head unit to interact with the TLR.  
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glucopyranosyl Lipid A (GLA).5 Substitution at the primary alcohol in Lipid A does not 

seem to interrupt binding, as this is the position connected to the bulky saccharide chain of LPS. 

Synthetic variants of Lipid A have been an invaluable tool in studying ligand-receptor interactions 

and immune pathways, as these molecules are characterized and highly pure. Much confusion and 

debate stemmed from experiments using LPS as an agonist, as bacteria-extracted batches are 

inherently diverse in their polysaccharide and lipid structures.6 

While LPS and its derivatives are widely applied in immunological studies, other types of 

TLR4 agonists have been discovered in recent years. Peptide- and protein-based agonists, with no 

lipid tail or phosphate moieties can signal through TLR4. One notable example is the activation of 

TLR4 by Der p 2, a dust-mite protein that causes dust allergies. The mode of action of Der p 2 has 

not been shown, however, its structural homology to MD2 has been suggested to aid in TLR4 

binding.7,8 Several peptide agonists of TLR4 have been identified via phage display and antibody 

binding assays, however, it has yet to be determined how these peptides activate TLR4 and whether 

a co-protein is necessary for binding.9 Endogenous molecules, such as heat shock proteins 6010 

and 7011, fibrinogen12, fibronectin domain A13, extracellular DNA-binding proteins14, and other 

molecules activate TLR4, but the modes of binding are also unclear. With the promiscuity of this 

TLR, many questions remain in both the design of selective TLR4 ligands, and the mode of action 

of known agonists.  

In addition to lipid and peptide agonists, small molecule TLR4 activators have been 

uncovered by Cottam and coworkers. Using high-throughput cell-based screening, they identified 

pyrimido[5,4 b]-indoles15 and 4-aminoquinazolines16 as highly selective TLR4 agonists (Figure 

2.2). Through in depth SAR studies, they found that substitutions of the pyrimidoindole and 

quinazoline cores were as limiting as those derived from Lipid A. Using in silico docking studies,  
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Figure 2.2. Common TLR4 agonists. Truncated variants of LPS include MPLA and eritoran (an 

antagonist), and are commonly applied in immunological studies. The recently discovered 

pyrimido indoles and aminoquinazolines represent a new class of small molecule agonists that 

activate TLR4 via unique binding modes.  
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they predicted that the indole compounds bind to a unique binding site on the receptor, yet still 

bring together TLR4 and MD2 and signals through the NF-κB pathway. 

 

TLR4 signaling 

The most unique aspect of TLR4 is that it can signal through both the MyD88 and TRIF 

pathways (Figure 2.3). The selectivity in signaling between the two pathways is currently under 

investigation, though it is known that MyD88 activation occurs at the cell membrane, and switches 

to the TRIF pathway upon endocytosis of the receptor. Most exciting is that different TLR4 

agonists change the signaling pathway from predominately MyD88 to TRIF, implying a structural 

basis for the activation of these signaling pathways.17,18 Intriguingly, even the stereo-chemical 

configuration of the Lipid A moiety of lipopolysaccharide can direct the TLR4 downstream 

pathway.19  

The activation outcome of the cell when activated by TLR4 depends on the pathway 

activated (MyD88 or TRIF). MyD88 activation results in NF-κB, AP1, and CREB transcription 

factors to be activated, causing the synthesis and release of pro-inflammatory cytokines. TRIF 

activation results in production of Type I interferons through IRF3. The resulting immune response 

and its magnitude are proposed to be determined by the balance of the two pathways over time.20,21 

Additionally, we hypothesize that TLR4’s dual pathways play a role in immune synergies. 

 

Probing TLR4 activation mechanisms 

Despite the strong spatial and temporal components of TLR signaling22,23, there are few 

examples of controlling immune cells in time or space24–26, and no methods yet exist to modulate 

TLR4 activity. The aim of this work was to generate a controllable agonist that allows us to study  
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Figure 2.3. TLR4 signaling pathways. Activation of TLR4 results in signaling of both MyD88 and 

TRIF pathways, whereby pathway switching is dependent of the immunostimulant and 

endocytosis of the receptor complex. These pathways leads to activation of both inflammatory 

cytokines and interferons. 
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the spatial and temporal contributions of TLR activation. Control over the agonist was achieved 

by protection with a photo-labile protecting group at a position on the agonist critical for receptor 

interaction and, therefore, activity (Figure 2.4). The compound, when protected, would be unable 

to interact with the receptor; however, upon deprotection with light, the agonist can appropriately 

bind TLR4 to initiate the signaling cascade. The goal of this work was to create the first 

controllable TLR4 agonist and simply demonstrate its utility in spatial activation. Here, we 

investigated the spatial aspects of immune activation by selectively stimulating populations of 

cells.  

The agonist chosen for this method was the TLR4 immunostimulant, pyrimido[5,4 b]-

indole. Unlike the native lipopolysaccharide and related agonists, this small molecule can be easily 

synthesized in gram quantities and is easier to handle and characterize. In addition, the structure-

activity relationship (SAR) study of these molecules were thoroughly studied.15 The indole 

nitrogen did not tolerate substitution and, as a functional handle, could be easily modified with a 

protecting group. Furthermore, in silico docking studies predict a hydrogen bonding interaction 

between the indole NH and glutamic acid residue-349 of TLR4.15 Modification of the indole at 

that position would, therefore, interrupt the receptor binding of the agonist. Thusly, we chose the 

indole nitrogen as the site to install the photo-labile cage, 6-nitroveratryloxycarbonyl (NVOC). 

Upon exposure to longwave UV light (NVOC λmax = 340 nm), this protecting group is cleaved to 

form the active TLR4 agonist. Activation was assessed by NF-κB assays in TLR4-bearing cells. 
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Figure 2.4.  Photo-controlled deprotection of caged TLR4 agonist. NVOC-caged pyrimido[5,4-

b]indole 2 is converted to 1 using UV light (365 nm) to activate immune cells via TLR4. 
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Design and characterization of a caged TLR4 agonist 

Synthesis of the TLR4 agonist and caged agonist 

Our development of a light-controlled TLR4 agonist began with the synthesis of the active 

small molecule TLR4 agonist, pyrimido[5,4-b]indole 1, as described previously.15 The caged 

TLR4 agonist was generated by NVOC-protection of 2 (Appendix A). Briefly, 2 was generated 

by deprotonating the indole amine of 1 (200 mg, 0.46 mmol) with NaH (60% dispersed in mineral 

oil, 100 mg, 2.5 mmol) in THF (2 mL), followed by addition of 6-nitroveratryl chloroformate (251 

mg, 0.91 mmol) in THF (10 mL). The mixture was heated to reflux for 3 h. The reaction was 

quenched with water and the product was extracted with excess methylene chloride and purified 

by silica gel column chromatography to obtain 2 in 65.5% yield. Protection at the indole nitrogen 

was confirmed via high-resolution mass spectrometry, and 1H and 13C NMR spectroscopy 

(Appendix B).  

 

Characterization of deprotection 

The deprotection efficiency of 2 was established by UV absorption, combined with HPLC 

analysis of 1 and 2 before and after light exposure. A long wave UV hand lamp (15 W, 365 nm) 

was used as the light source. The UV absorption spectrum of 1 ranges from 250 to 360 nm with 

two local maxima at 250 and 280 nm (Figure 2.5). The spectrum of 2 exhibits only the peak at 

250 nm. Following exposure of 2 to UV light for 30 min, a peak in the spectrum appears at 280 

nm though it did not increase in intensity with further exposure.  

The presence of 1 following light exposure of 2 was confirmed by HPLC analysis (Figure 

2.6). In these data, 1 and 2 were pure and had elution times of 13.5 and 17.1 min, respectively. 

Confirmation of these LC peaks were performed using mass spectrometry. The compound with an  
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Figure 2.5. Deprotection of the cage on 2 with UV light affords the agonist 1. Deprotection was 

observed by UV-Vis absorption of 2 before (solid blue line) and after 30 min light exposure (15 

W, 365 nm, dashed black line), as compared to 1 (solid red line). 
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elusion time of 13.5 min corresponded to (MTLR4 agonist+1) = 433, and the compound with an elusion 

time of 17.1 min corresponded to (Mcaged agonist+1) = 640. The amount of each species was 

quantified by integrating the area under the correlated LC peak. For solutions where 2 was not 

exposed to UV light, 1 was not detected. For solutions of 2 exposed to UV light, the peak at 17.1 

min decreased, and the peak at 13.5 min appears and grows with increased exposure to UV light 

up to 30 min. Conversion of 2 to 1 reached a maximum of 57% after 30 min of UV light exposure 

(Figure 2.7). HPLC and mass spectrometry analysis of 2 after exposure to UV light showed that 

1 was the major species and that minimal byproducts had formed. The limited conversion is due 

to a fraction of caged compound that does not readily deprotect under the mild conditions used. 

 

Activation of cells using light 

Preliminary assessment of immune activation 

 We confirmed that photo-deprotection of the caged agonist translated to light-controlled 

activation of TLR4 by testing 2 on a model cell line bearing TLRs—RAW-Blue macrophages. 

These cells express the TLR4 signaling machinery and a secreted embryonic alkaline phosphatase 

(SEAP) reporter for NF-κB activation (Figure 2.8). SEAP levels are monitored using a detection 

medium, QUANTI-Blue, affording a colorimetric readout of TLR activation. This assay served as 

an initial examination of immune activity of the unmodified 1 and caged 2 agonists, and was not 

employed to examine spatial or temporal activation. Based on the previous SAR study of 115 and 

our deprotection characterization of 2, we predicted that 1 and 2 after UV light exposure, would 

affect immune activity, while 2 without UV light exposure, would have little to no effect on NF-

κB activity in cells.  
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Figure 2.6. Deprotection of the cage on 2 with UV light affords the agonist 1. HPLC traces of 1 

(A, red line) and 2 before (B, blue line) and after 30 min UV exposure (C, 15 W, 365 nm, black 

line). Samples were eluted using an acetonitrile and water gradient varying from 10:90 to 90:10 

(ACN:H2O) over 20 min at a rate of 5 mL/min. The detector was set at 250 nm for the signal 

acquisition. 1 had an elusion time of 13.5 min (A), and 2 had an elusion time of 17.1 min (B).  
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Figure 2.7.  Deprotection of the cage on 2 with UV light affords the agonist 1. HPLC integrations 

of the major components in a solution of 2 after 30 min UV exposure (15 W, 365 nm (A). Aliquots 

were taken every 5 min of light exposure and combined with an internal standard, methyl indole-

5-carboxylate, then chararcterized by HPLC analysis. Integrations corresponding to the eluted 

compounds are plotted: 1 (red circle), 2 (blue striped circle), and the internal standard (gray 

square).Percent conversion (B) of 2 to 1 following light exposure (15 W, 365 nm) was determined 

by HPLC analysis.  Conversion of the caged agonist reaches 57% after 30 min of UV light 

exposure.  
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RAW-Blue cells were treated with 1 and 2 (10 µM), then exposed to UV light (15 W, 365 

nm) for 10 min. The cells were incubated for 18 h before the culture supernatant was analyzed to 

determine NF-κB activation. We observed the selective activation of cells upon UV light exposure 

(Figure 2.9). Treatment with 2 and exposure to UV light yielded NF-κB activity equivalent in 

concentration to the TLR4 agonist 1. This result was most clearly seen using 10 µM agonist,  and 

is consistent with previous concentration screens of 1, which show a non-linear relationship of 

concentration and NF-κB activity.15 A challenge in innate immunity is that agonist concentration 

is not an absolute measure of immune cell activity. As such, the deprotection kinetics measured 

cannot be directly related to cell experiments and immune activity. Furthermore, shorter light 

exposure times did not lead to comparable activation of cells relative to the positive agonist control. 

This was due to incomplete deprotection of 2.  

We confirmed that UV light did not have an effect on cells. We compared NF-κB activity 

in cells treated with media only, with and without UV light. Additionally, we tested treatment with 

2 and directly exposed to light versus cells treated with a pre-irradiated solution of 2. Direct UV 

light exposure for the time employed did not affect cell activity (Figure 2.10). It is important to 

note that longer light exposure times, different or more intense light sources, or more sensitive 

cells may lead to cell activation, damage, or death. 

Treatment of RAW-Blue cells with 2 without UV light resulted in minimal NF-κB activity. 

This background activity is likely due to enzymatic activity over the time course of the experiment. 

To confirm that enzymatic degradation was producing active agonist, 2 was incubated in culture 

conditions (acellular) with and without serum proteins. Following overnight incubation, the 

samples were analyzed by LCMS. Only one major peak with a mass of 640 (Mcaged agonist+1) was  

  



25 

 

 

Figure 2.8. Scheme of light-controlled NF-κB activation in reporter cells, RAW-Blue 

macrophages. Cells were plated in 96-well plates and treated with unmodified or caged agonist 

and exposed to UV light (365 nm). After overnight incubation, SEAP levels are determined by a 

colormetric assay, whereby the cell supernatant is treated with QUANTI-Blue reagent. 

 

 

  



26 

 

 
Figure 2.9. Light-controlled NF-κB activation in reporter cells, RAW-Blue macrophages. Caged 

agonist 2 does not activate TLR4 until photo-controlled deprotection with UV light to produce the 

active TLR4 agonist 1. Cells were treated with media only (black), LPS (10 ng/mL; gray), 1 (10 

µM; red), 2 (10 µM; solid blue), without (solid) or with (outlined) UV light exposure (15W, 365 

nm light). NF-κB activation was determined using the SEAP colorimetric assay (OD measured at 

620 nm).  Each experiment was performed in replicates of five (*p < 0.05 and **p < 0.001). 
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Figure 2.10. Effect of UV light exposure on light-controlled NF-κB activation in reporter cells.  

RAW-Blue macrophages were treated with 2 (5 and 10 µM) with UV light exposure prior to 

addition of cells (solid white), or in the presence of cells (striped). NF-κB activation was measured 

by taking the OD at 620 nm.  Each experiment was performed in replicates of five (*p < 0.05).  
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detected in samples treated with serum-free media. Conversely, two peaks of masses 433 (M-

agonist+1) and 640 were detected in samples exposed to serum proteins. We confirmed that the 

carbamate linkage between the indole and the protecting group is also enzymatically labile within 

the long time course of the RAW-Blue cell experiments. Enzymatic cleavage, however, does not 

pose an issue in studies probing spatial and temporal activation, as these factors are of importance 

in the minute’s to hours’ time frame. The accumulation of deprotected, active agonist caused my 

enzymatic cleavage is insignificant and would not contribute to background activation. 

Furthermore, as discussed in the next section, we did not observe background activation in 

experiments that probe real time activation of TLR4. 

 

Real-time immune activation 

Activation of TLR4 via light was performed in a second reporter cell line - 3T3 fibroblasts 

expressing p65-DsRed. NF-κB activation was observed in real time via optical microscopy in a 

dose-dependent study using the caged agonist. Here, NF-κB activity is defined as the nuclear 

translocation of NF-κB as measured by the subunit of NF-κB, p65, that is fluorescently labeled - 

p65-DsRed.27,28 This nuclear translocation was observed by confocal microscopy and quantified 

using ImageJ analysis. The discrimination between nucleus and cytoplasm for these experiments 

is afforded by a second fluorescent protein expressed by the cell, H2B-GFP, which is a histone 

protein and is only found in the nucleus.  

Fibroblasts were treated with TLR4 agonist 1 or caged agonist 2 (0.625-5.0 µM) at t=0 and 

images were recorded for 3 h (Figure 2.11-2.12). NF-κB translocation was observed in cells 

treated with 1. When stimulated with 1, the peak translocation of NF-κB occurs after 45 min. 

Translocation was not observed at any time point measured in cells treated with media only or the  
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Figure 2.11. Light-controlled NF-κB activation in fluorescent NF-κB reporter cells. Confocal 

images of p65-DsRed fibroblasts 45 min after treatment with media only (A), TLR4 agonist 1 (B), 

caged agonist 2 (C), caged agonist with 5 min bulk UV light exposure (D), and 5 µM of caged 

agonist 2 exposed to UV light for times ranging from 0.6 to 5 min (E). The scale bar is equal to 50 

µm. 
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Figure 2.12. Quantification of NF-κB activation in fluorescent reporter cells. The red nuclear 

intensity was determined by ImageJ analysis for cells treated with media, 1 or 2, without and with 

5 min light exposure (15 W, 365 nm). See Appendix B for confocal images. 
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equivalent concentrations of caged agonist, 2, without UV light exposure. The dose-dependent 

trend in activation seen with 1 was reestablished by treating cells with varying concentrations of 2 

followed by 5 min UV light exposure (15 W, 365 nm). To further confirm that activation was 

dependent on light, cells were treated with 2 at a fixed concentration and UV light exposure time 

was varied (0.6-5 min). When cells are treated in this manner, the degree of translocation is 

observed to be a function of exposure time. In cells treated with 2 and exposed to UV light, the 

maximal translocation of p65-DsRed occurred at 45 min, the same time as with treatment of 1. 

 

Spatially-controlled immune activation 

To date, our understanding of the immune system is based on bulk methods of activation. 

Work described in a later section focused on immune responses of heterogeneous co-cultures and 

how activation of a cell subset impacts the bulk response.29 With our light-controlled TLR4 

agonist, we sought to address the minimum requirements for immune activation at the population 

level. Here, we aimed to exert spatial control over immune activation by limiting agonist exposure 

to a subpopulation of cells using light. Spatial control was implemented using two methods: by 

light exposure through a pinhole mask (Figure 2.13) and two-photon confocal microscopy. In 

using this method to activate cells, factors involving the cells, agonist, and light are all important. 

These factors include cell density over the culture area, cell media composition, agonist 

concentration, light exposure time and area, and the wavelength and power of the light. We 

predicted that exposure time in these experiments would play a critical role. We expected that 

under exposure would not produce a high enough local concentration of agonist to activate cells; 

conversely, over exposure would produce too high of an agonist concentration across the culture 

that could activate more than the desired subpopulation. Both of these results are possible because  
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Figure 2.13. Scheme of light-controlled NF-κB activation in fluorescent reporter cells, p65-DsRed 

fibroblasts. Cells were plated in coverslip-bottomed 8-well plates and treated with caged agonist 

2 and exposed to UV light (365 nm). Following light exposure, the pinhole mask was removed 

and cells were imaged by confocal microscopy. 
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of the rapid diffusion of molecules in and out of the region of interest (diffusion of a small molecule 

in water is ~10-5 cm2/s).  

The first attempt at spatially-controlled deprotection and resulting activation of cells was 

performed using the pinhole mask method using the same UV lamp source (15 W, 365 nm) as used 

in the initial experiments with RAW-Blue cells. Fibroblasts expressing p65-DsRed were treated 

with 2 (10 µM) and spatial control was implemented by light exposure through a pinhole mask 

(3.1 mm2 exposure area in a 80.1 mm2 well). The exposure area resulted in the direct exposure of 

some 200 cells for the cell density used in these experiments. Here, NF-κB translocation occurred 

in cells within the pinhole area, and the degree to which activation occurs tapered as a function of 

distance from the pinhole (Figure 2.14-2.15). To be expected, cells adjacent to the light-exposed 

area (x-coordinate of 2000-2500 µm) would exhibit similar levels of NF-κB translocation because 

of rapid diffusion of the active agonist. To achieve this result, the light exposure time was longer 

than in the bulk deprotection experiments (15 min compared to 5 min). This difference confirmed 

our hypothesis regarding the diffusion of the active agonist. 

Ongoing research in our group focuses on using the techniques developed herein to afford 

controlled activation, down to the single cell level, for which these initial results are the first step. 

Smaller regions of interest are selectable using our light-based method, however, we did not 

observe translocation using smaller pinholes for light exposure. Potential reasons for this finding 

include low local concentrations of the agonist, low light source power, and/or non-optimal light 

source wavelength (lamp λmax = 365 nm; NVOC λmax = 340 nm). Other attempts to improve 

deprotection and achieve selective activation over a small number of cells using the pinhole mask 

method, including using higher concentrations of 2 (20 µM or greater) or longer exposure times  

  



34 

 

 

Figure 2.14. Light-controlled NF-κB activation in fluorescent NF-κB reporter cells. Confocal 

images of p65-DsRed fibroblasts 45 min after treatment with caged agonist 2 and 15 min UV light 

exposure through a pinhole mask. Light exposure was confined to a 3.1 mm2 pinhole (dashed white 

line, A). Cells within the exposed pinhole (B) show high degrees of NF-κB translocation, while 

cells further from the pinhole (C and D) have less. The scale bar is equal to 50 µm. 
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Figure 2.15. Light-controlled NF-κB activation in fluorescent NF-κB reporter cells. Confocal 

images of p65-DsRed fibroblasts were taken follow selective light exposure. Quantification of 

translocation of the fluorescent transcription factor was performed using ImageJ analysis (see 

Appendix A-B for image acquisition and quantification protocol).  
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(20 min or more), resulted in cell damage and death due to toxicity of high agonist concentrations 

and over-exposure to UV light. 

We employed confocal microscopy to optimally deprotect the caged agonist and observe 

in real time the activation of small clusters of cells. Specifically, two-photon excitation was used 

to uncage 2 at a wavelength nearer to the λmax of NVOC. The variables of two-photon excitation 

are numerous, including laser power, number of scans, and residence time. Additionally, the 

exposure area can be digitally selected on the microscope computer setup, affording us greater 

spatial control of the light. Here, the two-photon exposure area spanned the area of ~10-20 cells. 

The light source was set to the lowest possible two-photon setting of 710 nm. This meant that cells 

in the focal plane would be exposed to light of 710/2 nm = 355 nm. Fibroblasts expressing p65-

DsRed were treated with 2 (10 µM) and immediately subjected to the light exposure. Preliminary 

results showed that we were able to achieve some translocation of NF-κB in cells surrounding an 

exposure area (Figure 2.16). Cells directly in the light path, however, were observed to die and 

separate from the culture surface. This immediate cell death observed was due to the cells 

experiencing an intense, focused flash of light that likely superheated the solution surrounding the 

cells, leading to damage. Studies performed treating cells only with light and no agonist gave this 

result. Working continuing in the group focuses on finding the balance between light intensity and 

total exposure time to yield the desired localized activation of cells. 
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Figure 2.16. Light-controlled NF-κB activation in fluorescent NF-κB reporter cells. Confocal 

images of p65-DsRed fibroblasts 45 min after treatment with caged agonist 2 and UV light 

exposure using the two-photon deprotection method. Light exposure was confined to a 0.04 mm2 

pinhole (dashed white line). Cells surrounding the light-exposed area showed NF-κB translocation 

60 min after light exposure (activated cells are indicated with white arrows). The scale bar is equal 

to 10 µm.  



38 

 

Summary of spatially-controlled immune activation using a caged TLR4 agonist 

Here we show the synthesis of a photo-controlled TLR4 agonist and a method that controls 

spatial activation of innate immune cells. Protection of the critical indole nitrogen of pyrimido[5,4-

b]indole with a photo-labile group reduced TLR activity to background levels. Upon exposure to 

UV light, compound 1 was regenerated, which then activated NF-κB signaling pathways via 

TLR4. We showed activation of innate immune cells, RAW macrophages, is mediated by UV light 

exposure of the caged agonist. Furthermore, we demonstrate for the first time the selective 

activation of a subpopulation of cells (~200 cells) within a larger population (1000’s of cells) by 

confining light exposure of the caged agonist through a pinhole. Preliminary results have been 

obtained for the selective activation of smaller clusters of cells (<20 cells) using two-photon 

confocal microscopy. 

With this and similar tools, we plan to explore how immune activation propagates from an 

origin of inflammation, as well as how TLR synergies can be modulated both spatially and 

temporally. We aim to understand how TLR signaling contributes at different levels to both 

positive and deleterious immune responses. 
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CHAPTER 3:  Light-controlled agonists for TLR7 and 8 

and progress towards TLR4-7,8 synergy studies 

 

Overview of TLR7,8 signaling 

Receptor structure and agonists 

Toll-like Receptors 7 and 8 are related PRRs that mediate responses to viral pathogen 

ligands. TLR7 and TLR 8 detect single-stranded RNA (ssRNA), as well as nucleoside-like small 

molecules, including imidazoquinoline, thiazoquinoline, and benzoazepine derivatives.1–3 Some 

of these small molecule activators, imiquimod (R837) and resiquimod (R848) are used in topical 

treatment of tumors. Like other TLRs, TLR7 and 8 are membrane-bound, horseshoe-shaped 

receptors that have leucine-rich repeat (LRR) regions and Toll-Interleukin-1-Resistance (TIR) 

domains. The unique aspect of these receptors is that they exist as a homodimer prior to ligand 

recognition and activation. The crystal structure of TLR8 indicates that prior to agonist binding, 

the C-terminal domains of the dimer pair are 53 Å apart, a distance that prevents association of the 

TIR domains (Figure 3.1).4–6 Upon agonist binding, the subunits undergo a conformational shift, 

which brings the C-terminal domains to 23 Å apart to afford dimerization of the TIR domains. 

This event allows for the interaction of the TLR complex to the signaling protein MyD88.  

Single-stranded RNAs induce an interferon response in dendritic cells through TLRs. 

Specifically, polyuridylic acid and other U-rich strands are the most active ssRNAs.1 The binding 

mode of ssRNAs with these receptors has not been characterized, and much of what we know 

about these receptors and the progress towards developing disease treatments and vaccines has 

been achieved through use of the small molecule immunostimulants (Figure 3.2). The 

imidazoquinoline family of agonists are potent and have been derivatized for many applications.  
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Figure 3.1.  Crystal structure of TLR8 with resiquimod. Imidazoquinoline agonist associate with 

binding pockets at the receptor dimer interface, but the primary interactions occur via hydrogen 

bonding with the D543 and T574 residue of one receptor. 
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Figure 3.2.  Common TLR7 and 8 agonists. Imidazoquinoles, imiquimod, resiquimod, and 

gardiquimod, and others have specificity of TLR7 or 8 binding and activation.  
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The TLR7 agonist 9-benzyl-8-hydroxy-2-(2-methoxyethoxy) adenine was modified for 

conjugation to a phospholipid, PEG, and phospholipid-PEG via the benzoic acid functional group 

of the agonist.7 The conjugates with 18-unit or longer PEG chains showed improved agonistic 

activity. Phospholipid conjugation enhanced activity over 100-fold relative to the unmodified 

agonist.8 Modifications to a TLR8 agonist, thiazolo[4,5-c]quinoline prove that alkyl chains at the 

C2 position of up to 3 carbons increase potency, while alkylation of any kind at C4 was not 

tolerated.9 Dimeric and dendritic agonists of imidazoquinolines linked at C4, C8, and N1-aryl 

positions have also been synthesized and activate via TLR7 and 8.10 Dendrimers linked at N1-aryl 

positions had greater potency than the single, unmodified agonist. These findings imply that spatial 

factors in the nano- and microscale are of consequence in immune activation. 

 

TLR7 and 8 signaling 

TLR7 and 8 are endosomal receptors that signal through the MyD88 pathway (Figure 3.3). 

The transcriptional outcomes of the endosomal MyD88 pathway are simultaneous activation of 

NF-κB, AP1, and CREB, as well as Interferon Regulating Factor 7 (IRF7). The former three 

activators elicit a pro-inflammatory response, while IRF7 elicits a viral response through Type I 

interferons. 

 

Probing TLR7 and 8 activation mechanisms 

Similar to work described in an earlier section, the goal of this research was to study the 

spatial and temporal contributions of TLR activation using a light-controlled agonist. We 

strategically chose to generate controllable TLR7 and 8 agonists alongside the caged TLR4 

agonists because these receptors, or pathways they individually activate, have been identified as  
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Figure 3.3.  TLR7 and 8 signaling pathways. Activation of endosomal TLR7 and 8 results in 

signaling of the MyD88 pathway. This pathway leads to activation of both inflammatory cytokines 

and interferons. 
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strong synergistic pairing.11 

Again, manipulation of the agonist was achieved by protection with a photo-labile 

protecting group at a position on the agonist critical for receptor interaction. The compound, when 

protected, would be unable to activate the receptor; however, upon deprotection with light, the 

agonist will induce the dimer conformational change and initiate the signaling cascade. The goal 

of this work was to create the first controllable TLR7 and 8 agonists and apply them in experiments 

with the orthogonal light-controlled TLR4 agonist.  

Here, two imidazoquinoline agonists were chosen for protection and light-activation: 

imiquimod (R837, 3) and resiquimod (R848, 4; Figure 3.4). In addition to being commonly used 

immunostimulants, these small molecules are synthetically less challenging than the native ssRNA 

targets of TLR7 and 8. Additionally, SAR studies with both TLR7 and 8 agonists and 

crystallographic data have identified residues critical for activity. The aromatic rings of 

imidazoquinolines stack with Phe residues on both TLR8s of the dimer. Alkyl and/or ether chains 

attached to the imidazoquinoline can protrude into a hydrophobic pocket. Within the binding 

pocket of TLR8, Asp543, is essential for ligand recognition, and the C4 amine of 

imidazoquinolines has been shown to play a critical role in binding to D543 and T574 positions 

(Figure 3.1).6,12 Modification of imiquimod and resiquimod C4 amines would, therefore, interrupt 

agonist-receptor binding and conformational change. In this work, we chose to install the photo-

labile cage, 2-(2-nitrophenyl)propyloxycarbonyl (NPPOC). This protecting group is labile to UV 

light (NPPOC λmax = 365 nm). Light-controlled activation of TLR7 and 8 was assessed using a 

NF-κB reporter cell line, RAW-Blue macrophages. 
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Figure 3.4.  Photo-controlled deprotection of caged TLR7 and 8 agonists. NPPOC-caged 

imiquimod 5 and resiquimod 6 is converted to 3 and 4, respectively, using UV light (365 nm) to 

activate immune cells via TLR7 or 8. Imiquimod (R1 = H, R2 = H). Resiquimod (R1 = -

CH2OCH2CH3, R1 = OH). 
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Design and characterization of caged TLR7 and 8 agonists 

Synthesis of the TLR7 and 8 caged agonists 

The synthesis and characterization of caged imiquimod 5 and caged resiquimod 6 was 

performed by Keun Ah Ryu. Briefly, imiquimod (30 mg, 0.2 mmol) was stirred in anhydrous 1,4 

dioxane at 10 °C. 2-(2-nitrophenyl)propyloxycarbonyl chloride (NPPOC-Cl, 61 mg, 0.4 mmol) in 

anhydrous 1, 4 dioxane was added dropwise to the agonist solution. The reaction mixture was 

heated to 50 °C for 6 hr. The solution was concentrated under vacuum and purified by silica gel 

column chromatography to obtain 5 (38 % yield). Similarly, resiquimod (30 mg, 0.1 mmol) was 

stirred in anhydrous 1,4 dioxane at 10 °C. NPPOC-Cl (47 mg, 0.2 mmol) was diluted in anhydrous 

1, 4 dioxane and added dropwise to the agonist solution. The reaction mixture was heated to 50 °C 

for 6 hr. The solution was concentrated under vacuum and purified by silica gel column 

chromatography to obtain 6 (16 % yield). Protection of the C4 nitrogen for both imiquimod and 

resiquimod was confirmed via high-resolution mass spectrometry, and 1H and 13C NMR 

spectroscopy.13 

 

Activation of cells using light 

Preliminary assessment of immune activation 

 We confirmed that photo-deprotection of the caged agonist translated to light-controlled 

activation of TLR7 and 8 by testing 5 and 6 on a model cell line bearing TLRs—RAW-Blue 

macrophages. These cells express TLRs, including TLR7 and 8, and a secreted embryonic alkaline 

phosphatase (SEAP) reporter for NF-κB activation (Figure 2.8). SEAP levels are monitored using 

a detection medium, QUANTI-Blue, affording a colorimetric readout of TLR activation. This 

assay served as an initial examination of immune activity of the unmodified 3 and 4 and caged 5 
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and 6 agonists. Based on the previous SAR study of 3 and 414 and crystallography data of 4 with 

TLR8, we predicted that 5 and 6 after UV light exposure, would affect immune activity, while 5 

and 6 without UV light exposure, would have little to no effect on NF-κB activity in cells.  

RAW-Blue cells were treated with 3, 4, 5 and 6 (2 and 20 µM), then exposed to UV light 

(4 W, 365 nm) for 20 min. The light exposure times here differ from those discussed in light-

controlled TLR4 activation, as the power of the UV light sources were different. The cells were 

incubated for 18 h before the culture supernatant was analyzed to determine NF-κB activation. We 

observed the selective activation of cells upon UV light exposure (Figure 3.5). Treatment with 5 

and 6 with exposure to UV light yielded NF-κB activity equivalent in concentration to the 

corresponding parent agonists.  Treatment of RAW-Blue cells with X without UV light resulted in 

non-significant NF-κB activity relative to cells treated with media only.  

 

Real-time immune activation 

Activation of TLR7 via light was performed in bone marrow-derived dendritic cells 

(BMDCs). These are primary cells obtained from mice, and are considered more relevant in 

assessing immune activation. In these experiments, we measured activation via endocytosis, rather 

than a single pathway or cytokine. Dendritic cells constantly undergo endocytosis and 

phagocytosis as a method of surveying their surroundings and detecting pathogens. Upon initiation 

of immune pathways, such as NF-κB, the cells speed up this process to enhance pathogen update 

and antigen presentation.15 This stage of dendritic cell maturation can be visualized using 

microscopy within 15 minutes of TLR ligand exposure. As a reference, translocation of NF-κB 

occurs after 30-45 min after stimulation, and generally cytokine analysis occurs hours after. 
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Figure 3.5.  Light-controlled NF-κB activation in reporter cells, RAW-Blue macrophages. Caged 

agonists 5 and 6 do not activate cells until photo-controlled deprotection with UV light to produce 

the active agonists 3 and 4, respectively. Cells were treated with media only (black), 5 (2 or 20 

µM; red), 3 (2 or 20 µM; solid blue), without (solid) or with (outlined) UV light exposure (4W, 

365 nm light, A). NF-κB activation was determined using the SEAP colorimetric assay (OD 

measured at 620 nm).  Each experiment was performed in replicates of five (*p < 0.047 and **p < 

0.0001). 
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To observe activation of BMDCs in real time, cells were treated with a fluorescently-

labeled dextran along with the agonist (Figure 3.6). We hypothesized that cells treated with the 

active agonists 4 and those treated with 6 with UV exposure would show rapid endocytosis 

compared to the control samples, media only or 6 without UV exposure. We expected that some 

amount of endocytosis would be observed in the control samples, as the process occurs to some 

extent in quiescent cells. Cultures were imaged before and for 1-2 hr after treatment. We first 

observed that cells treated with media only did show a low level of endocytosis, 0-5 endosomes 

per cell (Figure 3.7). In samples treated with 4 and 6 with UV light, cells appeared to become 

stimulated within 15-30 min. In addition to increased number of endosomes, 10 or more per cell, 

changes in cell morphology and increased motility were seen. 

 

Progress towards orthogonal light-induced activation 

The ultimate goal of this work is to create tools to better understand immune activation 

mechanisms. Ongoing research in the Esser-Kahn group aims to combine these and other light-

controllable agonists described previously to uncover the spatial and temporal aspects of signaling, 

specifically in synergies. The work described herein is the first step toward generating agonists 

that can be used orthogonally to generate synergies in a controlled manner. The synergy between 

TLR4 and 7, 8 activation pathways is evident in immune cells treated with both TLR4 and 7,8 

agonists (Figure 3.8), and has been confirmed in other studies.11,16 The next steps are to synthesize 

caged agonists with two-photon photo-labile protecting groups, such as courmarin-based cages,17 

and use two-photon deprotection to selectively uncage these molecules, controlling time and/or 

space, to determine the source of the synergistic interactions (Figure 3.9). 
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Figure 3.6.  Scheme of light-controlled endocytosis in BMDCs. Cells were treated with caged 

agonist 6 in media supplemented with fluorescent (FITC) dextran, and sandwiched between 

coverslips. Cells were exposed to UV light (365 nm) and immediately imaged by confocal 

microscopy. 

 

 

 

Figure 3.7.  Light-controlled endocytosis in BMDCs. Cells were treated with media supplemented 

with fluorescent (FITC) dextran without agonist (A), with TLR7 and 8 agonist 4 (B), or TLR7 and 

8 caged agonist 6 without (C) and with UV light exposure (D). The scale bars are equal to 20 µm 

(insets 10 µm). Cells treated with 6 without UV light exposure showed a small number of 

endosomes. Activation of cells was observed as early as 10 min after treated with 4 or 6 with UV 

light exposure, showing a change in cell morphology and a large number of endosomes. 
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Figure 3.8.  Activation of NF-κB pathway in RAW-Blue macrophages after treatment with TLR4 

and 7 agonists. Cells were treated with media only (black), 1 (1 or 10 µM; purple), 3 (1 or 10 µM; 

green), or a combination of 1 and 4. NF-κB activation was determined using the SEAP colorimetric 

assay (OD measured at 620 nm).  Each experiment was performed in replicates of three. Activation 

of NF-κB was greatest in cells treated with both agonists. Responses that were more than additive 

of those of the individual agonists imply immune synergies or inflammation networks. 
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Figure 3.9. Scheme of activation pathways using orthogonal caged TLR agonists. Immune 

synergies may be characterized by activating cells controlling spatial and temporal aspects through 

selective deprotection of caged agonists. 
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Summary of spatially-controlled immune activation using a caged TLR7 and 8 agonists 

In this work, I described the synthesis and an example of photo-controlled activation of 

TLR7 and 8. Protection of the critical nitrogen’s of imiquimod and resiquimod with photo-labile 

groups reduced NF-κB activity to background levels. Upon exposure to UV light, the parent 

agonists were regenerated, which then activated NF-κB signaling pathways via TLR7 or 8. We 

showed activation of innate immune cells, RAW macrophages and BMDCs, can be mediated by 

UV light exposure of the caged agonist.  
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CHAPTER 4:  Cell labeling and controlled activation with TLR1, 2, and 6 agonists 

 

Overview of TLR1, 2, and 6 signaling 

Receptor structure and agonists 

 Toll-like receptor 2 is an outer-membrane bound PRR that detects cell wall components of 

Gram-positive bacteria. Dissimilar to other known TLRs, TLR2, upon ligand binding, pairs with 

either TLR1 or TLR6 to form a functional heterodimer. Activators of TLR1/2 are primarily lipid-

based molecules, while TLR2/6 interact with lipid and some non-lipid agonists through polar 

binding regions of TLR6.1,2 The hydrophobic binding pockets of TLR1 and 2 interact with lipid 

chains of bacterial lipidated peptides and proteins (Figure 4.1). A lipid moiety of an agonist 

associates with both of the TLRs of the 1/2 heterodimer pair, but only TLR2 of the 2/6 pair. 

 The exogenous ligands of TLR1, 2 and 6 are palmitylated lipopeptides and proteins 

(Figure 4.2). The number of lipids decorated on peptide or protein agonists vary. In general, 

agonists composed of tri-palmitylated lipopeptide sequences bind and potently activate TLR1 

complexes. TLR2 binds more promiscuously to mono-, di-, and tri-palmitylated sequences, 

including lipoteichoic acids (LTA) and lipoarabinomannans.3 Lipoteichoic acids are also 

recognized by TLR6 and are a mixture of acylated glycopeptides composed of N-

acetylglucosamine (GlcNAc) and alanine residues along a polymeric phosphate backbone.4 

In addition to native immunostimulants, a variety of synthetic mimics have also been 

developed to activate TLR1, 2, and 6 (Figure 4.2). Commonly used agonists are synthetic 

palmityl-substituted cysteine-serine-lysine (PAM2CSK4 and PAM2CSK4) derivatives of the native 

agonists.5 Variations to the lipid chains of TLR1 agonists have been explored.6,7 Potency of 

agonists with a triacylated N-terminal cysteine was found to be greatest with acyl chains 16 carbons  
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Figure 4.1.  Crystal structure of TLR2/6 with Pam2CSK4. The lipid chains of lipopeptide agonists 

interact with TLR2, while the peptide residues bind TLR6. The N-terminal cysteine reside of 

Pam2CSK4 hydrogen bonds with L318 of TLR6 and is critical for activation. 
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Figure 4.2.  Common TLR1, 2, and 6 agonists. Palmityl-substituted peptide agonists and others 

have specificity of TLR1/2 or 2/6 binding and activation. In TLR1/2 activation, two palmityl 

chains of Pam3CSK4 interact with TLR2, leaving the other to interact with TLR1. Conversely, the 

two palmityl chains of Pam2CSK4 only interact with TLR2 in the TLR2/6 heterodimer. 
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long. Diacyl chains of 6-18 carbon length bind TLR2, and C-16 lipids, again, are the most potent 

stimulators.8 

Other, non-lipid agonists have been shown to activate through TLR1, 2, and 6. Zymosan 

(a mixture of β-1,3 glucans), and other polysaccharides activate through polar interactions with 

the receptors.9–11 

 

TLR1, 2, and 6 signaling 

TLR1, 2, and 6 activation pathway occurs through MyD88 (Figure 4.3).12 Like TLR4, 

TLR1/2 and TLR2/6 complexes require the Mal adapter for signal transduction.13 Upon ligand 

binding and receptor dimerization, Mal and MyD88 associate with the TIR domains. These 

signaling molecules stimulate downstream pathways involving IRAKs, TRAFs, and MKKs. The 

end results of TLR1, 2, 6 activation is the activation of the pro-inflammatory-related transcription 

factors NF-kB, AP1, and CREB. 

 

Probing TLR2 activation mechanisms 

 An interesting facet of TLR signaling is that some non-immune cells express TLRs, 

including TLR1, 2, and 6, and corresponding activation and transcriptional proteins. The proposed 

explanation for this is that tissues contribute to inflammatory signaling to help activate and recruit 

immune cells.14 TLR activation in non-immune cells has been observed in the skin, and respiratory 

and intestinal tracts. Non-immune cells known to express TLRs include epithelial, endothelial, 

smooth muscle, and fibroblast cells. The mechanisms of non-immune cells cooperate with the 

immune system to produce robust inflammatory signals is unknown. As such, studying  
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Figure 4.3.  TLR1, 2, and 6 signaling pathways. Activation of TLR1/2 and 2/6 results in signaling 

of the MyD88 pathway and upregulations of inflammatory cytokines. 
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inflammation using traditional immunostimulants is complicated by paracrine and autocrine 

signaling that obscures the origin and propagated response.  

Here, a novel immunostimulant was designed using the same light-controlled approach 

described in previous sections. The TLR2/6 agonist, PAM2CSK4, was modified with a photo-labile 

protecting group, NPPOC, at a position critical for receptor activation to employ the agonist in a 

light-controlled manner (Figure 4.4).  Structure-activity studies indicated substitution at the N-

terminus is not tolerated.15 Additionally, analysis of the TLR2/6 crystal structure showed that the 

interaction between the L318 residue of TLR6 and the N-terminus of Pam2CSK4 is important for 

binding and dimerization (Figure 4.1).16 We hypothesized that protection of the N-terminal amine 

to a photo-labile protecting group would disrupt TLR2/6 dimerization, and therefore, activation. 

The palmityl chains Pam2CSK4 were purposely left unmodified to allow the molecules to still 

interact with the lipid binding pockets. This docking afforded specific cell labeling with the caged 

agonist without activation. The four lysine residues of Pam2CSK4 do not interact with either 

receptor, and therefore, was installed a 5/6-carboxyfluorescein (FAM) fluorophore to the terminal 

residue to track the probe in cell experiments.17  

The aim of developing and applying this caged agonist deviates from those described 

previously relating to spatial and temporal activation. This probe was used to label either immune 

or mural cells, and control the origins of inflammation in a heterogeneous culture of immune and 

non-immune cells (Figure 4.5). With the caged TLR agonist capable of both cell labelling and 

controlled activation, we hoped to better understand the roles of non-immune cells in immune 

signal propagation. 
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Figure 4.4.  Photo-controlled deprotection of caged TLR2/6 agonist. NPPOC-caged 

Pam2CSK5(FAM) 8 is converted to 7 using UV light (365 nm) to activate immune cells via 

TLR2/6. 
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Figure 4.5.  Scheme of light-controlled activation in co-cultures of BMDCs and fibroblasts. One 

cell type was labelled with caged TLR2/6 agonist 8, combined with the second cell type, and the 

co-culture was deprotected with UV light (365 nm). Inflammation was assessed by TNF secretion, 

as determined by ELISA of cell supernatant. 
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Design and characterization of a caged TLR2/6 agonist 

Synthesis of the caged TLR2/6 agonist 

 The synthesis and characterization of caged TLR2/6 agonist 8 was performed by Dr. Rock 

Mancini. Briefly, caged di-palmitylated cysteine was synthesized in 8% yield from cystine di-t-

butyl ester over 5 steps. The synthesis began with addition of NPPOC-chloroformate to di-tert-

butyl cystine. This reaction was followed by reduction of the disulfide and addition of excess 1-

bromo-2,3-propanediol to afford in 42% yield (2 steps). Subsequent palmitylation and removal of 

the tert-butyl protecting group provided the terminal amino acid, NPPOC-di-palmityl-cysteine in 

21% yield (2 steps). Wang resin pre-loaded with N-ε-(FAM)-lysine was used to install the serine-

tetra-lysine (SK4) sequence before capping with the caged-palmityl-cysteine over 24 h. Global 

deprotection and resin cleavage provided the fluorescent, photo-caged sequence NPPOC-

C(Pam)2SK5(FAM)-OH 8. Protection of the N-terminus of Pam2CSK4 was confirmed via high-

resolution mass spectrometry, and 1H and 13C NMR spectroscopy.18  

Deprotection of 8 to form the parent compound 7 was verified by UV/Vis and HPLC 

analysis. Formation of 7 was reformed (over 90% conversion) after 15 min irradiation with UV 

light (4 W, 365 nm).18 

 

Cell labelling and activation using light 

Preliminary assessment of immune activation 

 Activation of the NF-kB pathway in immune cells using the light-controlled agonist was 

tested in RAW-Blue macrophages (Figure 2.8). We predicted minimal activity in cells treated 

with caged agonist, as the dimerization would be obscured by protection of the agonists N-

terminus. Removal of the NPPOC protecting group would afford active agonist and elicit an 
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immune response. Cells were treated with 8 (1 and 10 ng/mL) with and without UV light exposure 

4 W, 365 nm) for 10 min. Treatment with 8 and exposure to UV light resulted in high levels of 

NF-kB activity, while 8 without UV exposure showed basal levels of activation (Figure 4.6). 

 

Cell labelling and light-controlled activation with caged TLR2/6 agonist 

 To study the origins of inflammation in heterogeneous cell cultures, immune and non-

immune cells were first labelled with the caged TLR2/6 agonist. In these experiments, the immune 

cells were bone marrow-derived dendritic cells (BMDCs) and the non-immune cells were 

fibroblasts. Both cell types express TLR2 and 6. Cell labelling was observed by confocal 

microscopy. The fluorescent tag of the caged agonist was seen in cells treated with 8, primarily 

distributed on cell surfaces (Figure 4.7). 

 The contribution of different signaling molecules in fibroblast-immune cell signaling, such 

as TNF or prostanoids remain ill-defined.19,20 Here, immune activation was assessed by the 

measurement of a common pro-inflammatory cytokine, tumor necrosis factor α (TNF). TNF 

secreted by co-cultures of BMDCs and fibroblasts, where one cell type was labelled with caged 

agonist, was measured (Figure 4.8). This approach allowed quantification of TNF production due 

to direct activation of BMDCs with immunostimulant relative to activation via TLR-activated 

fibroblast intercellular signaling. We expected that cooperativity would be observed in 

heterogeneous cell cultures and elicit a greater immune response compared to homogeneous cell 

cultures. 

 Differences in TNF secretion were observed depending on the initiating cell type. BMDCs 

that were labelled and stimulated alone produced TNF (48 pg/mL) while fibroblasts that were 

labelled and stimulated alone did not produce a detectable amount of cytokine. BMDCs that were  
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Figure 4.6.  Light-controlled NF-κB activation in reporter cells, RAW-Blue macrophages. Caged 

agonist 8 does not activate TLR2/6 until photo-controlled deprotection with UV light. Cells were 

treated with media only (black), 8 (1 or 10 ng/mL; blue), without (solid) or with (outlined) UV 

light exposure (15W, 365 nm light). NF-κB activation was determined using the SEAP 

colorimetric assay (OD measured at 620 nm).  Each experiment was performed in replicates of 

five (*p < 0.01). 
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Figure 4.7.  Cell labelling using the caged TLR2/6 agonist 8. Fibroblasts and BMDCs were 

labelled with Pam2CSK5(FAM) and stained with Hoescht Blue. Cell labelling was observed by 

confocal microscopy (bright field, left; fluorescent channels, right). Labelled cells are denoted with 

a *. The scale bar is equal to 10 µm. 
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Figure 4.8.  TNF secretion by labelled and activated BMDC and fibroblast homo- and 

heterogeneous cultures. Labelled cells are denoted with a *. Deprotected caged agonist 8 causes 

secretion of TNF in cultures of labelled BMDCs, but not labelled fibroblasts. Differences in 

activation are observed in mixed cultures. Each experiment was performed in replicates of six (*p 

< 0.025 and **p < 0.001). 
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labelled and stimulated in the presence of fibroblasts, showed a significantly lower amount (30 

pg/mL) of TNF than the BMDC alone samples. Interestingly, fibroblasts that were labelled and 

stimulated in the presence of BMDCs yielded the most amount of TNF (56 pg/mL). This result 

indicates that inflammation is sensitive to the originating TLR signal. This finding could imply 

that targeting mural cells, such as fibroblasts, rather than or in addition to immune cells might be 

a better approach in designing adjuvants and/or treating inflammation. 

 

Summary 

 In this work, we showed the synthesis and application of a light-controlled 

immunostimulant of TLR2/6. We studied the origin of inflammation in heterogeneous cell 

populations, where one of two of the cell types were labelled and activated using a light-controlled 

TLR2/6 agonist, Pam2CSK4. This approach mirrors inflammation in tissues during infection, 

which is proposed to occur through both immune and mural cells. Measurements of the 

inflammation-associated cytokine, TNF, secreted from co-cultures of BMDCs and fibroblasts 

demonstrated that activation of immune cells can occur indirectly though TLR-stimulated mural 

cells, in addition to the conventional direct method of TLR-stimulation of the immune cells.  
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CHAPTER 5:  Final remarks 

 

 Research in the field of immunology has greatly expanded in recent decades. The major 

contributions have been in the discovery of receptors, including Toll-like receptors (TLRs), and 

signaling proteins involved in activation cascades. Additionally, a number of immunostimulants 

have been identified and synthetically elaborated upon to better understand pathogen binding and 

the effects on immune activation. An overarching theme in studying both ligands and pathways is 

that of immune synergies. It is hypothesized that, like many other biochemical pathways, feedback 

loops and synergistic networks are the source of the complex activation outcomes resulting from 

multiple agonists and pathways acting on a cell. 

 Research in the Esser-Kahn group has focused on generating chemical tools for studying 

the immune system. Herein, I have described the development of small molecules for elucidating 

spatial and temporal details of immune activation. Spatial and temporal control of activation is 

achieved by installation of photo-labile protecting groups to TLR agonists. Inspired by and 

elaborating upon structural-activity studies, crystallographic data, and in silico docking 

experiments of various TLR immunostimulants, we first determined the most crucial moieties of 

these molecules for receptor interaction. Next, we targeted these functional groups for protection 

with photo-labile protecting groups. We found that caging the indole nitrogen of pyrimido indole 

(TLR4 agonist), the primary amine of imidazoquinolines (TLR7 and 8 agonists), and the N-

terminus of PamCSK (TLR2/6 agonist) rendered them non-stimulatory in immune cells. 

Deprotection of the cage via UV light exposure, reestablished activation of the major immune 

signaling pathway, NF-κB, comparable to levels in cells treated with the active parent agonists. 
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The first example of a photo-controlled agonist described herein was designed around a 

small molecule TLR4 agonist, pyrimido[5,4-b]indole. Agonists for TLR4 were targeted because 

this receptor has been identified as critical for effective immune responses. Additionally, the 

downstream signaling pathways of TLR4 are unique and complex, and the spatial and temporal 

components of these pathways are not well understood. Protection of the critical indole nitrogen 

with a photo-labile group, 6-nitroveratryloxycarbonyl (NVOC), reduced NF-κB activity to 

background levels in two TLR4-bearing NF-κB reporter cell lines, RAW-Blue macrophages and 

p65-DsRed fibroblasts. Light-controlled spatial activation was demonstrated by selective exposure 

of a subpopulation of cells using a pinhole mask. This resulted in NF-κB stimulation of select 

patches of cells.  

Next, I showed the development and application of photo-controlled TLR7 and 8 agonists. 

These receptors were targeted because they are proposed to act in synergy with TLR4, presumably 

via simultaneous activation of their disparate signaling pathways. We hypothesized that order and 

timing of these pathway relative to one another play a very important role in eliciting strong 

immune responses. Protection of the critical nitrogen’s of imiquimod and resiquimod with photo-

labile groups, 2-(2-nitrophenyl)propyloxycarbonyl (NPPOC), reduced immune activity to 

background levels. We showed that activation of innate immune cells, RAW macrophages, as well 

as primary dendritic cells (BMDCs), is mediated by UV light exposure of the caged agonist.  

A light-controlled immunostimulant of TLR2/6 is also described. With a lipid-based caged 

Pam2CSK4 variant, we labelled cells and used light to control the origin of inflammation in 

heterogeneous cell populations. Co-cultures of BMDCs (innate immune cells) and fibroblasts 

(non-immune cells prevalent in many tissues) demonstrated that activation of immune cells can 

occur indirectly though TLR-stimulated mural cells, in addition to the conventional direct method 
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of TLR-stimulation of the immune cells. Through this approach, we sought to replicate in vitro the 

inflammation in tissues on the onset of infection, where TLR-bearing non-immune cells are 

thought to be a major contributor in facilitating the initial response against a pathogen. 

This preliminary work designing and testing NVOC- and NPPOC-protected agonists has 

successfully established a method for spatial and temporal control of TLR-based immune 

activation. Progress towards elaborating upon caged agonists is continued by other members of 

the Esser-Kahn group. The future work involves the generation of agonists with orthogonally-

photo-labile cages. The aim is to utilize the high degree of control and precision of two-photon 

microscopy to deprotect agonists in vitro. Selective activation of receptors can be achieved within 

populations of cells, or even in a single cell. These tools and methods have the potential to be 

widely applied by immunologists to elucidate the many unknowns of individual pathways, 

synergies and global immune system activation. 
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APPENDIX A 

Materials 

Chemical reagents, as well as Fetal Bovine Serum (FBS) and Heat-Inactivated FBS (HI-

FBS), were purchased from Sigma-Aldrich, unless otherwise specified.  Cell culture reagents were 

purchased from Life Technologies. The RAW-Blue 264.7 Macrophages, Zeocin, and QUATI-Blue 

reagent were purchased from Invivogen. The p65-DsRed fibroblasts were donated by Prof. Markus 

Covert. Agonists were stored in DMSO, maintained at -80 °C with a minimal number of 

freeze/thaw events. 

 

Synthesis 

Synthesis of TLR4 agonist 1 

The TLR4 agonist, pyrimido[5,4-b]indole 1 was synthesized and purified as described 

previously.[1] 

Synthesis of caged TLR4 agonist 2 

In a flame-dried flask, 1 (200 mg, 0.46 mmol) was combined with NaH (60% dispersed in 

mineral oil, 100 mg, 2.5 mmol) in 2 mL dry THF and stirred at room temperature for 30 min. 4,5-

dimethoxyl-2-nitrobenzyl chloroformate (251 mg, 0.91 mmol) was dissolved in 10 mL dry THF 

and added to the reaction flask. The mixture was heated to reflux for 3 h. The reaction was 

quenched with water and the crude product was extracted with methylene chloride. The product 

was purified by column chromatography with methylene chloride/20% acetonitrile to obtain 164 

mg 2 (53.1% yield). 

Synthesis of TLR7 agonist 5 

Imiquimod (0.03 g, 0.2 mmol, LKT Technologies) was stirred with 3 mL of anhydrous 1,4 
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dioxane and the solution was cooled to 10 °C. 2-(2-nitrophenyl)propyloxycarbonyl chloride 

(NPPOC-Cl, 0.0608 g, 0.4 mmol,) was diluted with 1 mL of anhydrous 1, 4 dioxane (2 mL). The 

NPPOC-Cl solution was added dropwise to the agonist solution. The resulting solution was heated 

to 50 °C for 6 hr. Reaction was monitored via TLC. The resulting products were purified by column 

chromatography (10% MeOH/DCM) and concentrated under vacuum. Resulted in 0.020g (38 % 

yield) as yellow oil. 

Synthesis of TLR7 and 8 agonist 6 

Followed same reaction procedures as NPPOC-imiquimod with adjusted amounts of 

reagents. Resiquimod (30 mg, 0.1 mmol) was stirred in anhydrous 1,4 dioxane at 10 °C. NPPOC-

Cl (47 mg, 0.2 mmol) was diluted in anhydrous 1, 4 dioxane and added dropwise to the agonist 

solution. The reaction mixture was heated to 50 °C for 6 hr. The solution was concentrated under 

vacuum and purified by silica gel column chromatography to obtain 6 (16 % yield). 

 

Characterization of deprotection of caged TLR4 agonist 

The uncaging efficiency of 2 was examined by UV absorption and HPLC of the TLR4 

agonist 1 and caged agonist 2 before and after UV exposure. Solutions for both methods were 

prepared in 10:1 (v:v) DMSO:H2O. Samples were exposed to direct light (15 W, 365 nm), with 

the lamp positioned 1 cm from the sample. 

To characterize the major species in solution, we performed HPLC analysis of 1, 2 before 

and after UV exposure. Samples were eluted using an acetonitrile and water gradient varying from 

10:90 to 90:10 (ACN:H2O) over 20 min at a rate of 5 mL/min. The detector was set at 250 nm for 

the signal acquisition, consistent with the UV-Vis characterization that showed local maxima at 

250 nm for both 1 and 2 with and without UV light exposure. 1, 2 had elusion times of 13.5 and 
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17.1 min, respectively. Confirmation of these LC peaks were performed using mass spectrometry. 

The compound with an elusion time of 13.5 min corresponded to (MTLR4 agonist+1) = 433, and the 

compound with an elusion time of 17.1 min corresponded to (Mcaged agonist+1) = 640. The amounts 

of 1 and 2 was determined by integrating the area of LC trace corresponding to each species. 

Percent conversion was calculated using these integrated values. The 30 min deprotection 

experiment was performed in replicates of three. HPLC and MS characterization did not detect the 

significant formation of side products. Additionally, to confirm consistent sample preparation and 

instrument injection, an internal standard, methyl indole-5-carboxylate, was added to sample 

before HPLC analysis. 

 

Cell culture 

RAW-Blue 264.7 macrophages 

RAW-Blue cells were cultured in complete culture media, consisting of Dulbecco’s 

Modified Eagle Medium (DMEM, high glucose) supplemented with 10% FBS, 10,000 U/mL 

penicillin, 10 mg/mL streptomycin, 25 µg/mL amphotericin B, and 200 µg/mL Zeocin. Cells were 

maintained at 37 °C and 5% CO2 and used within passage 4-8 for all experiments.  Complete test 

media for these cells was composed of DMEM (high glucose) supplemented with 10% HI-FBS. 

3T3 fibroblasts 

Fibroblasts were cultured in complete culture media, consisting of DMEM (high glucose) 

supplemented with 20% FBS, 10,000 U/mL penicillin, 10 mg/mL streptomycin, and 25 µg/mL 

amphotericin B. Cells were maintained at 37 °C and 5% CO2. Complete test media for these cells 

was composed of DMEM with 4.5 g/L glucose and 1% HI-FBS. 

Bone marrow-derived dendritic cells 
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BMDCs were harvested from 6-week-old C57Bl/6 mice (Jackson Laboratory). Femur 

bones were removed from mice and the bone marrow was extracted into phosphate-buffered saline 

(PBS) buffer. The cell suspension was made into a homogeneous solution using a pipette and 

subsequently filtered through a 70 μm cell strainer. The cell solution was centrifuged at 300 RCF 

for 10 min at RT. The supernatant was removed, and ACK Lysing Buffer (3 mL, Lonza) was added 

to the cell pellet and incubated for 2 min at RT. PBS buffer (13 mL) was then added to the cell 

suspension, and the cell solution was centrifuged at 300 RCF for 10 min at RT. In a washing step, 

the cell pellet was resuspended in Roswell Park Memorial Institute 1640 media (RPMI 1640, 

Fisher Scientific) and centrifuged (300 rcf, 10 min). The cell pellet was resuspended in BMDC 

complete media composed of RPMI 1640, 10% heat-inactivated FBS, 20 ng/mL granulocyte-

macrophage colony-stimulating factor (GM-CSF, donated by the Cahalan Lab), 2 mM L-glutamine 

(Life Technologies), 10,000 U/mL penicillin, 10 mg/mL streptomycin, 25 μg/mL amphotericin B, 

and 50 μM beta-mercaptoethanol. Harvested cells were plated at 1x106 cells/mL in 100 mm petri 

dishes (10 mL total media) and incubated at 37 °C in a CO2 incubator (day 0 of cell culture). On 

day 3, 10 mL of fresh BMDC primary media was added to each petri dish. On day 5, BMDCs were 

released by repeated pipetting, centrifuged at 300 RCF for 10 min at RT, and plated in 24-well 

plates at 1.2x106 cells/mL for cell surface marker activation, cytokine profile flow cytometry, and 

confocal microscopy experiments.  

 

In vitro cell studies 

RAW-Blue assays 

RAW-Blue macrophages were plated at 50,000 cells/well in black-walled 96-well plates 

(Nunc) in complete test media.  Stock solutions of agonists were prepared in complete test media 
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and sterile-filtered through a 0.2 µm filter immediately prior to addition to cell media. The agonists 

were added to the cell media at the final concentration indicated, with a total volume per well of 

200 µL. For light-controlled experiments, cells were exposed to UV light immediately following 

addition of agonist. Optical sealing tape was affixed to the well plate and the light source was 

placed on top of the plate. Treated cells were incubated at 37 °C with 5% CO2 for 18 h. After the 

incubation period, supernatant was analyzed for SEAP expression using QUANTI-Blue detection 

medium according to the manufacturer’s protocol. 

Fibroblast imaging 

Fibroblasts were plated in coverslip-bottom 8-well plates (Thermo Sci.) at 5,000 cells/well 

in complete media and cultured for 48 h. One hour prior to imaging, media was exchanged for 

complete test media and the cells were equilibrated for 30 min at 37 °C with 5% CO2 prior to 

adding agonist and imaging. Cells were treated with agonist at t=0 and imaged for 3 h at 37 °C 

with 5% CO2. For light-controlled experiments, cells were exposed to UV light immediately 

following addition of agonist. The light source was placed underneath the coverslip wells. 

Following light exposure, cells were incubated at 37 °C with 5% CO2 until imaging. 

NF-kB activation of subpopulations of fibroblasts was performed similarly. Cells were 

plated and prepared as before. Light masks were made from black PEEK film (0.25 mm thick), 

with circular pinholes (area = 3.1 mm2). The masks were aligned and affixed with tape to the 

bottom of the coverslip-bottom well plates. The plates were left undisturbed for 5 min following 

light exposure through the pinhole. Following light exposure, cells were incubated at 37 °C with 

5% CO2 until imaging. 

The degree of NF-kB activation was determined by calculating the nuclear intensity of 

DsRed using ImageJ analysis of fluorescent images. The raw images were split into red and green 
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fluorescent channels. The fluorescence of the H2B-GFP (green channel) was used to set the limits 

of the nuclei. The green fluorescent channel was first processed by noise despeckling, median filter 

(2 px), and Gaussian blur (2 px). The threshold of the green fluorescent channel was set and 

watershed to create a binary image of individual particles (nuclei).  Particles in this channel were 

measured, with the minimum particle size set equal to the minimum pixel area of a nuclei (varies 

between images sizes). To determine the amount of p65-DsRed in the nucleus, the measurement 

(mean intensity) was then redirected to the red fluorescent channel. The mean intensity of the entire 

red fluorescence image was also measured in order to normalize data and compare time points. 

The nuclei mean intensity was averaged and normalized to the mean image intensity. 

Endocytosis assay 

BMDCs were washed with RPMI. The cell pellet was resuspended at approximately 

2x104 cells/µL complete media supplemented with 10% heat-inactivated FBS. Agonist and 

protected agonist solutions were prepared in FITC-dextran-containing complete media 

supplemented with 10% heat-inactivated FBS. To visualize endocytosis following activation by 

an agonist, cells were imaged as time series (100 frames, 3.15 µs pixel dwell) on a Zeiss 780 

confocal microscope using a 63x oil immersion. The BMDC suspension was combined with the 

agonist solution containing FITC-dextran 1:1 by volume, sandwiched between glass coverslips, 

and imaged without further incubation. For deprotection of 6, the samples were exposed to UV 

light by opening the mercury lamp (120 W) shutter for 2 min. 

Cell labelling protocol 

Labelling of BMDCs and fibroblasts was accomplished by incubation of cells with caged 

TLR2/6 agonist 8. A total of 1x107 cells were added to a 15 mL centrifuge tube and diluted to a 

total volume of 10 mL in complete DMEM media.  The caged agonist 8 was added at a final 
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concentration of 10 nM and the cells were allowed to incubate for 3 h with constant agitation. The 

cells were extensively washed with FACS buffer (PBS, 10% HI-FBS, 0.05% EDTA). In a typical 

wash step, the labelled cells were centrifuged (300 rcf, 10 min, 0C), media or buffer removed, 

and suspended in 10 mL FACS. This process was repeated 5 additional times. Cells were 

suspended in 1 mL DMEM complete media and counted by flow cytometry. For BMDCs and 

fibroblasts, cells were seeded in a 24-well plate format at a total cell density of 2x105 cells/well 

(1x105 cells/well of each cell type) according to the reported data. DMEM complete media (500 

L) was added to each well immediately followed by the light exposure steps outlined above. 
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APPENDIX B 

 

TLR4 agonist 1 

1H NMR (500 MHz, DMSO-d6) δ ppm 1.12-1.28 (m, 5 H), 1.53-1.75 (m, 5 H), 3.53 (broad 

s, 1 H), 3.91 (s, 2 H), 7.28 (t, J = 7.28 Hz, 1 H), 7.48-7.63 (m, 6 H), 8.09 (d, J = 8.09 Hz, 1 H), 

8.20 (d, J = 8.19 Hz, 1 H), 12.13 (s, 1 H). 13C NMR (500 MHz, DMSO-d6) δ ppm 24.93, 25.66, 

32.85, 37.25, 48.44, 113.35, 119.75, 120.55, 120.84, 127.80, 130.04, 130.35, 136.56, 137.72, 

139.41, 153.03, 155.44, 166.22. HRMS calc’d for C24H24N4O2SNa (M + Na)+, 455.1512; found, 

455.1511. 

 

Caged TLR4 agonist 2 

1H NMR (500 MHz, DMSO-d6) δ ppm 1.11-1.15 (m, 3 H), 1.31-1.37 (m, 2 H), 1.58-1.66 

(m, 3 H), 1.92-1.93 (m, 2 H), 3.68 (s, 3 H), 3.79-3.81 (m, 1 H), 3.88 (s, 2 H), 3.98 (s, 1 H), 5.95 

(s, 2 H), 7.01 (d, J = 7.01 Hz, 1 H), 7.38-7.40 (m, 2 H), 7.54 (t, J = 7.54 Hz, 1 H), 7.63-7.64 (m, 3 

H), 7.72-7.75 (m, 2 H), 7.80 (s, 1 H), 8.13 (d, J = 8.13 Hz, 1 H), 8.44 (d, J = 8.451 H). 13C NMR 

(500 MHz, DMSO-d6) δ ppm 24.63, 25.43, 29.76, 32.92, 36.32, 48.57, 56.38, 56.84, 67.18, 

107.78, 111.41, 116.25, 117.83, 120.58, 123.00, 124.47, 126.57, 129.05, 130.00, 130.54, 130.89, 

135.62, 139.53, 140.34, 144.92, 148.11, 150.96, 153.91, 153.97, 159.70, 167.10. HRMS calc’d for 

C34H33N5O8SNa (M + Na)+, 694.1948; found, 694.1942.  

 

TLR7 agonist 5 

1H NMR (CDCl3, 500MHz) δ 8.23 (d, J = 7.4 Hz, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.89 (s, 

1H), 7.84 (d, J = 8.0 Hz, 1H), 7.68 (dd, J = 14.9, 7.7 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 
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7.5 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 4.52 (t, J = 7.2 Hz, 2H), 4.39 (d, J = 6.8 Hz, 2H), 3.87 (dd, 

J = 13.2, 6.8 Hz, 1H), 2.49 – 2.36 (m, 1H), 1.51 (d, J = 6.9 Hz, 3H), 1.10 (d, J = 6.4 Hz, 6H); 13C 

(CDCl3, 500MHz) δ 150.44, 144.34, 142.92, 137.33, 136.95, 133.31, 132.76, 132.15, 128.33, 

127.44, 126.89, 124.99, 124.27, 123.54, 120.09, 119.82, 69.15, 55.23, 33.34, 28.88, 19.86, 17.94; 

MS m/z calc’d for C24H25N5O4 [M+Na] 470.18; Observed [M+Na] 470.1.  

 

TLR7 and 8 agonist 6 

1H NMR (CDCl3, 500MHz) δ 8.31 (s, 1H), 8.22 (d, J = 8.4 Hz, 1H), 8.18 (d, J = 8.1 Hz, 

1H), 7.84 (d, J = 8.0 Hz, 1H), 7.71 – 7.61 (m, 4H), 7.53 (t, J = 5 Hz, 1H), 7.42 (t, J= 5 Hz, 1H), 

4.96 (s, 3H), 4.84 (s, 2H), 4.52 (d, J = 6.5 Hz, 2H), 3.85 (dd, J = 13.3, 6.7 Hz, 1H), 3.72 (d, J = 

7.1 Hz, 2H), 1.50 (d, J = 6.9 Hz, 3H), 1.38 (s, 6H), 1.32 (d, J = 6.8 Hz, 3H). 13C (CDCl3, 500MHz) 

δ 174.49, 151.45, 150.59, 150.38, 144.53, 143.93, 137.41, 135.44, 132.84, 130.47, 128.39, 128.49, 

124.59, 124.33, 119.82, 116.82, 110.00, 71.50, 69.07, 66.76, 64.96, 56.47, 33.43, 29.76, 27.97, 

18.15; MS m/z calc’d for C27H31N5O6 [M+Na] 544.21; Observed [M+Na] 544.21. 
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In vitro cell studies 

 
Figure 7.1. Time course of NF-κB activation in fluorescent reporter cells. Fibroblasts expressing 

p65-DsRed (NF-κB) and H2B-GFP (nuclei) were treated at t=0 with media, 1 or 2, with and 

without 5 min light exposure (15 W, 365 nm), and images by fluorescence microscopy for up to 3 

h. Scale bar is equal to 50 µm. 
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Figure 7.2. Flow diagram of ImageJ analysis for quantifying NF-κB activation in fluorescent 

reporter cells. The fluorescence of the H2B-GFP (green fluorescent channel) was used to set the 

limits of the nuclei (B-E). The amount of p65-DsRed in the nucleus is determined by redirecting 

the measurements to the red fluorescent channel (F-G).  

 

 

 




