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Accumulating evidence indicates a functional crosstalk between the HER2 (ErbB2) tyrosine kinase and the TGF-β signaling
mediated by its serine/threonine kinase receptors. In HER2-overexpressing breast cancer, this crosstalk results in increased
cancer cell proliferation, survival and invasion, accelerated cancer progression and metastasis in animal models, and resistance
to chemotherapy and HER2-targeted therapy. The transformed cellular context with constitutively active HER2 signaling, as
a consequence of HER2 gene amplification or overexpression, converts TGF-β from a tumor suppressor to a malignancy-
promoting factor. TGF-β, in turn, potentiates oncogenic HER2 signaling by inducing shedding of the ErbB ligands and clustering of
HER2 with integrins. In addition, TGF-β is associated with resistance to trastuzumab, an anti-HER2 therapeutic antibody. Recent
mechanistic studies indicate that TGF-β and HER2 cooperate through both Smad-dependent and independent mechanisms.
Blockade of HER2:TGF-β crosstalk may significantly enhance the efficiency of conventional therapies in breast cancer patients
with HER2 overexpression.

1. HER2 Is a Proto-Oncogene and a Therapeutic
Target in Breast Cancer

HER2 (ErbB2/Neu) is a member of the ErbB family of
transmembrane receptor tyrosine kinases (RTKs), which
also includes the epidermal growth factor receptor (EGFR,
ErbB1), HER3 (ErbB3), and HER4 (ErbB4). Ligand binding
to the ectodomains of EGFR, ErbB3, and ErbB4 results in the
formation of catalytically active homo- and heterodimers to
which HER2 is recruited as a preferred partner [1]. Although
HER2 cannot bind any ErbB ligand directly, its catalytic
activity can potently amplify signaling by ErbB-containing
heterodimers via increasing ligand binding affinity and/or
receptor recycling and stability [2–5]. Activation of the
ErbB network leads to receptor autophosphorylation of C-
terminal tyrosines and recruitment to these sites of cyto-
plasmic signal transducers that regulate cellular processes
such as proliferation, differentiation, motility, adhesion,
protection from apoptosis, and transformation. Cytoplasmic

signal transducers activated by this network include PLC-
γ1, Ras-Raf-MEK-MAPKs, PI3K-Akt-ribosomal S6 kinase,
Src, the stress-activated protein kinases (SAPKs), PAK-
JNKK-JNK, and the signal transducers and activators of
transcription (STAT) [1]. Several RTKs, including the ErbB
family members, fibroblast growth factor receptors, insulin
receptor, and vascular endothelium growth factor receptor
Flk1/KDR, are known to migrate to the nucleus and act as
transcription factors for certain target genes [6]. Nuclear
HER2 has been found to associate with multiple genomic
targets in vivo, including the cyclooxygenase enzyme COX-
2 gene promoter, and stimulate gene transcription [7].

HER2 gene amplification is reported in ∼20% of
metastatic breast cancers, where it is associated with poor
patient outcome [8]. Studies of HER2-overexpressing breast
cancer cell lines and human tumors have shown constitutive
HER2 phosphorylation [9, 10]. Overexpression of HER2
is associated with mammary epithelial cell transformation
[11, 12] and shorter survival in breast cancer patients [8, 13].
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Trastuzumab (Herceptin), a humanized IgG1 that binds
to HER2 ectodomain, is an approved therapy for treating
HER2-overexpressing breast cancers [14, 15]. Trastuzumab
has been shown to induce tumor regressions in 12%∼35%
of heavily pretreated metastatic breast cancers with HER2
overexpression [16–18]. Meanwhile, most metastatic breast
tumors with HER2 gene amplification and/or very high
levels of HER2 protein do not respond to trastuzumab, and
the majority of those that initially respond relapse later,
suggesting de novo and acquired mechanisms of therapeutic
resistance.

The mechanisms of resistance to trastuzumab are not
fully understood. However, recent reports suggest that over-
expression of the IGF-I receptor [19] or activated EGFR
[20] as well as aberrant PI3K/Akt signaling [21] or PTEN
deficiency [22] may all result in acquired resistance to
trastuzumab. Lately, intragenic somatic mutations in the
HER2 gene were reported in <10% of non-small-cell lung
cancers (NSCLCs) [23, 24]. These involve in-frame dupli-
cations/insertions in a small stretch within exon 20 that
correspond to the identical nine-codon region in exon 20 of
the EGFR gene, where duplications/insertions have also been
reported. Because of the location of these insertions at the
C-terminal end of the C-helix in the tyrosine kinase domain,
it has been postulated that they result in a conformational
change and shift in the helical axis, thus narrowing the ATP-
binding cleft and increasing kinase activity over that in wild-
type receptors [23]. HER2 kinase domain mutations within
exons 18–22 are identified in 5% of gastric carcinomas, 3% of
colorectal carcinomas, and <5% of breast carcinomas from
Asian patients [25]. Mechanistic studies indicate that the
mutant HER2 induces constitutive transphosphorylation of
EGFR and activation of the downstream signal transducers
in a ligand-independent manner, resulting in increased
tumorigenicity and decreased sensitivity to trastuzumab and
EGFR inhibitors in cells carrying these mutations [26].

2. HER2 Converts TGF-β from a Tumor
Suppressor to a Tumor Promoter

The TGF-β ligands are a family of multitasking cytokines
that play important roles in cell proliferation, lineage
determination, extracellular matrix production, cell motility,
apoptosis, and modulation of immune function [31]. These
ligands bind to a heteromeric complex of transmembrane
serine/threonine kinases, the type I and type II receptors
(TβRI and TβRII) [31]. Upon ligand binding to TβRII, TβRI
is recruited to the ligand-receptor complex. This allows for
the constitutively active TβRII kinase to transphosphorylate
and activate the TβRI kinase which subsequently phospho-
rylates the transcription factors Smad2 and Smad3 [32].
Smad2/3 then associate with a common mediator Smad,
Smad4, and translocate to the nucleus where as a heteromeric
complex, they regulate gene transcription [33]. In addition
to Smads, other signaling pathways have been implicated in
TGF-β actions in the recent studies. These include the extra-
cellular signal-regulated kinase (ERK, MAPK), c-Jun NH2-
terminal kinase (JNK), p38MAPK, phosphatidylinositol-3

kinase (PI3K), and Rho GTPases (reviewed in [34, 35]).
The critical role of these non-Smad pathways on mediating
the cellular effects of TGF-β remains to be fully characterized.

TGF-β was originally reported to induce anchorage-
independent growth of mouse fibroblasts [36]. Subsequent
studies indicated that TGF-β is a potent inhibitor of cell
proliferation and therefore, a tumor suppressor [37, 38].
Consistent with its tumor suppressor role, many cancers
lose or attenuate TGF-β-mediated antimitogenic action by
mutational inactivation of TGF-β receptors or their signal
transducer Smads [39–44]. Studies using transgenic mice
with conditional knockout of TβRII indicate that loss of
TβRII in the context of polyomavirus middle T antigen
(PyVmT) expression results in a shortened median tumor
latency and an increased formation of pulmonary metastases.
On the other hand, increasing evidence shows that excess
production and/or activation of TGF-β in tumors can accel-
erate cancer progression by a combination of autocrine and
paracrine mechanisms, resulting in enhancement of tumor
cell motility and survival, increase in tumor angiogenesis
and production of extracellular matrix and peritumoral
proteases, and the inhibition of immune surveillance mech-
anisms in the cancer host (reviewed in [34, 35, 45]).

TGF-β has been shown to synergize with transforming
oncogenes in cancer progression. For example, overexpres-
sion of active TGF-β1 or active mutant of TβRI (Alk5) in
the mammary gland of bigenic mice also expressing mouse
mammary tumor virus (MMTV)/Neu (ErbB2) accelerates
metastases from Neu-induced mammary cancers [46–48].
In transgenic mice bearing PyVmT-expressing mammary
tumors, inhibition of TGF-β with the soluble fusion protein
TβRII:Fc results in increased apoptosis of tumor cells
and a reduction in both circulating tumor cells and lung
metastases [49]. In the same transgenic model, conditional
induction of active TGF-β1 in mice bearing established
mammary cancers increases lung metastases by >10 folds
without a detectable effect on mammary tumor proliferation
or size [50]. Mice expressing soluble TβRII under the
regulation of the MMTV/LTR promoter exhibit high levels
of the TGF-β antagonist in the circulation which suppress
metastases from Neu-induced mammary tumors as well
as metastases resulting from injected B16 melanoma cells
[51].

In breast cancer models, a functional synergy between
TGF-β and HER2 has been characterized. Exogenous as
well as transduced TGF-β confer motility and invasiveness
to MCF10A nontransformed human mammary epithelial
cells (HMECs) stably expressing transfected HER2 [52, 53].
Indeed, a genetic modifier screen in these cells identified
TGF-β1 and TGF-β3 as molecules that cooperate with
HER2 in inducing cell motility and invasion [37, 52].
Taken together, these data suggest that oncogenic signals,
such as overexpression of HER2, are permissive for TGF-
β-induced signals associated with tumor cell motility and,
potentially, metastatic progression. Inhibition of HER2 with
trastuzumab blocks the promigratory effect of TGF-β on
HER2-overexpressing HMEC [53], suggesting that onco-
gene function is required for the transforming effect of
TGF-β.
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Figure 1: Tumor-promoting function of TGF-β in HER2-overexpressing cancer cells is mediated by TGF-β-driven autocrine and paracrine
ErbB ligands (figure modified from [27]).

3. The Crosstalk between HER2 and TGF-β
Occurs at Various Levels

Our recent studies demonstrate that TGF-β and HER2
cooperate at various levels, including (1) transcriptional
regulation of the Smad target genes and pathways; (2)
activation of the PI3K/Akt pathway in a Smad-independent
manner; (3) modification of the tumor microenvironment
by inducing the secretion of TGF-β, ErbB ligands, and
angiogenic mediators.

We have utilized a cell culture model overexpressing
HER2 (MCF10A/HER2) or empty vector (MCF10A/vec)
to investigate synergy of HER2 overexpression and TGF-β
signaling. A chromatin immunoprecipitation-(ChIP-) based
screen was carried out to identify chromatin Smad targets
(ChSTs) in TGF-β-treated MCF10A/HER2 cells [54]. The
regulatory regions of several potential TGF-β target genes
are identified from the ChST DNA pool established in this
study. These genes include the receptor-type phosphatase κ
(PTPRK), serine/threonine kinase 24 (STK24), integrin α9
(ITGA9), and vimentin-similar genes. Interestingly, TGF-β
induces binding of Smads to some of these gene promoters
only in MCF10A/HER2 but not in MCF10A/vec cells [54].
This suggests that cofactors regulated by HER2 signaling

modulate Smad-mediated transcription and, thereby, the
biological functions of TGF-β in HER2-overexpressing cells.
Further investigation on PTPRK, a Smad target gene inden-
tified in this study, indicates that while TGF-β upregulates
PTPRK expression in both tumor and nontumor mammary
cells, HER2 overexpression downregulates PTPRK. RNA
interference of PTPRK accelerates cell cycle progression,
enhances response to EGF, and abrogates TGF-β-mediated
antimitogenesis [54], suggesting a tumor-suppressive role of
PTPRK. Therefore, by suppressing PTPRK expression, HER2
abrogates the ability of TGF-β to induce antimitotic factors.

Another example of altered regulation of Smad target
genes is the mutS homolog 2 (MSH2), a tumor suppres-
sor and central component of the DNA mismatch repair
(MMR) system. TGF-β upregulates MSH2 expression in
non-tumor cells through promoter activation mediated by
Smads and p53. However, overexpression of HER2 impairs
p53 function and increases the level of miR-21, a microRNA
that targets and downregulates MSH2 transcripts [55]. As
a result, in HER2-transformed cells, TGF-β fails to activate
MSH2 promoter but decreases MSH2 expression by further
stimulating miR-21 [55]. This downregulation of MSH2
by TGF-β also contributes to resistance to DNA-damaging
chemotherapy agents in cancer cells, as MSH2 is required
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Figure 2: Continued.
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Figure 2: Alk5TD signature is associated with clinical outcome in women with breast cancer (figure adapted from [27]). (a) Hierarchical
clustering of 295 breast tumors [28, 29] using 90 overlapping genes with the 271-gene Alk5TD signature. (b) Kaplan Meier plots for
recurrence-free survival (RFS) and overall survival (OS) comparing the two groups of tumors with and without a correlation with the
Alk5TD signature. (c) Hierarchical clustering of 22 breast tumors from patients who were treated with navelbine and trastuzumab [30] using
190 overlapping genes with the 271-gene Alk5TD signature. Cluster 2 shows a positive correlation with the Alk5TD signature. (d) Box-and-
Whisker plot of standard pearson correlation between the Alk5TD signature and clusters determined in (c).

for the recognition of drug-induced DNA damages, which
triggers apoptosis [55].

In another study, we show that addition of exoge-
nous TGF-β or expression of constitutively active TβRI
(Alk5T204D) induces motility of MCF10A/HER2 cells but
not MCF10A/vec cells [53]. This is mediated by PI3K acti-
vation and involves HER2 translocation to cell membrane
protrusions, where it colocalizes with Vav2, Rac1, Pak1, and
actin skeleton, resulting in prolonged Rac1 activation and

enhanced cell survival and invasiveness [56]. By anchoring
HER2 to actin skeleton, TGF-β also induces clustering of
HER2 and integrin α6, β1 and β4, which is mediated
by focal adhesion kinase (FAK) and required for TGF-
β-induced motility and oncogenic signaling of HER2 in
breast cancer cells (Figure 1) [57]. We further investigated
the mechanism through which TGF-β activates PI3K in
HER2-overexpressing cells and found that treatment with
TGF-β or expression of Alk5TD induces phosphorylation
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of the TACE/ADAM17 sheddase and its translocation to
cell surface, resulting in increased secretion of TGF-α,
amphiregulin, and heregulin. In turn, these ligands enhance
association of PI3K p85 subunit with ErbB3 and activate
PI3K/Akt (Figure 1) [27]. In addition, activation of TGF-
β signaling in HER2-overexpressing breast cancer cells also
reduces their sensitivity to trastuzumab, as a result of PI3K
activation [27].

While TGF-β induces shedding of ErbB ligands into
the microenvironment, HER2 signaling also induces the
expression and secretion of TGF-β1 and TGF-β3 through
a mechanism involving Rac1 activation and JNK-AP1-
dependent transcription [58]. Vascular endothelial growth
factor (VEGF), a target of the TGF-β-Smad transcriptional
regulation, is synergistically induced by HER2 and TGF-β
[58]. Thus, the crosstalk between HER2 and TGF-β not only
alters intracellular signaling in cancer cells but also influences
other components of the tumor microenvironment through
inducing several proinvasive growth factors, which may serve
as extracellular targets of novel therapeutic strategies directed
at both cancer-driving oncogenes and the modified tumor
microenvironment.

4. Clinical Relevance of the Crosstalk
between HER2 and TGF-β

To understand the clinical relevance of the HER2:TGF-β
crosstalk, we mapped an Alk5T204D-induced gene expression
signature to a previously published 295-array data set by
van de Vijver et al. [29] and Chang et al. [28]. The Alk5TD

signature reflects biological and clinical differences in the
295 tumors. The tumors with a positive correlation with the
active TβRI signature are mostly HER2 positive, Basal-like,
and some Luminal B tumors while the tumors with a negative
correlation are predominantly Luminal A and normal-like
tumors (Figure 2(a)) [27]. Cancers with a positive correlation
with the Alk5TD signature show a worse recurrence-free
survival (RFS) and overall survival (OS) compared to
tumors with a negative correlation (Figure 2(b)). We further
explored possible correlation of the Alk5TD signature with
resistance to trastuzumab by mapping this gene expression
signature to an array data set reported by Harris et al.
[30] obtained from 22 patients with HER2-overexpressing
breast cancer treated with neoadjuvant trastuzumab and
vinorelbine. Hierarchical clustering analysis shows that all 3
patients who achieved pathological complete response do not
share similar expression with the TGF-β signature (Figures
2(c) and 2(d)) [27], which supports a role of TGF-β in
inducing clinical resistance to trastuzumab.

As indicated by the studies reviewed herein, the cell
readouts of the multifunctional TGF-β signaling is context
dependent and largely edited by the overexpression of HER2,
which is one major dysregulation in breast cancer. In HER2-
transformed cells, TGF-β, in turn, further stimulates HER2
signaling to promote malignancy and induces resistance
to anti-HER2 therapy. Documented evidence suggest that
blockage of HER2:TGF-β crosstalk may significantly enhance
the efficiency of conventional therapies in breast cancer
patients with HER2 overexpression.
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