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Genome Sequence of Lichtheimia ornata, an Emerging
Opportunistic Mucorales Pathogen

Terrance Shea,a Jason T. Mohabir,a Tania Kurbessoian,b Brittany Berdy,a James Fontaine,a Andreas Gnirke,a Jonathan Livny,a

Jason E. Stajich,b Christina A. Cuomoa

aInfectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
bDepartment of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California, USA

ABSTRACT Lichtheimia ornata is an emerging opportunistic Mucorales pathogen that is
associated with fatal infections in immunocompromised individuals. While these environ-
mentally acquired infections have rarely been reported to date, cases were noted in a
recent analysis of coronavirus disease 2019 (COVID-19)-associated mucormycosis in India.
Here, we report the annotated genome sequence of the environmental isolate CBS 291.66.

L ichtheimia ornata is an opportunistic fungal pathogen that is an emerging cause of
invasive disease. L. ornata is taxonomically classified in the order Mucorales, which

includes other Lichtheimia and Rhizopus species (1). These species live in the environ-
ment as saprotrophs, and many can grow at high temperatures, which is an advantage
for growth at human body temperature (1). Infections by these species can be very dif-
ficult to treat and consequently have high mortality rates (2). L. ornata was recently
detected among cases of coronavirus disease 2019 (COVID-19)-associated mucormyco-
sis (CAM) in India in 2021 (3).

The CBS 291.66 isolate of L. ornata was obtained from the Westerdijk Fungal Biodiversity
Institute. The website entry for this isolate reports that it was collected from a bird dung
sample in India in 1961. This isolate was cultured in malt extract-yeast extract (MEYE) agar at
20°C for .1 week until full hyphal growth reached the edges of the plate. Genomic DNA
was isolated using a standard fungal cetyltrimethylammonium bromide (CTAB) extraction
protocol (4) with collected fungal hyphal material, which yielded 136 ng/mL genomic DNA
dissolved in water.

From genomic DNA, two Oxford Nanopore Technologies (ONT) libraries were con-
structed using the 1D ligation kit (catalog number SQK-LSK109), and each was loaded in a
FLO-MIN106D flow cell on a GridION instrument. Base calling was performed using Guppy
v6.0.7 (for SRA accession number SRR23855900) and Guppy v6.1.5 (for SRA accession num-
ber SRR23855899). Illumina sequencing was performed on the sample using two different
library construction methods. One library was prepared using a standard NEBNext Ultra II
protocol and sequenced on a HiSeq X Ten system with 300 cycles. The other, which was a
set of four transposase enzyme-linked long-read sequencing (TELL-Seq) libraries for which
reads from the same bead-bound genomic DNA molecule shared the same barcode (5),
was constructed from genomic DNA depleted of ,10-kb fragments using the Pacific
Biosciences (PacBio) short-read eliminator (SRE) XS kit. Libraries from 0.33 and 0.67 ng of
input DNA were constructed using the TELL-Seq kit (Universal Sequencing Technologies).
Five- or 10-mL aliquots of the 20-mL bead-bound library were amplified by 13 to 15 PCR
cycles and sequenced on a NovaSeq SP system with 300 cycles. Total coverage of 4� was
generated with ONT reads (106,228 reads [read N50, 5.2 kb]), 25� with Illumina 150-bp
paired-end reads, and 3,800� with TELL-Seq reads.

The TELL-Seq libraries were processed with TELL-Read analysis pipeline software (5),
and the four libraries were merged into single index I1 read, R1 read, and R2 read fastq files
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and then converted into 10�-compatible format using the ust10x tool (https://www
.universalsequencing.com/software/). Reads were assembled using Supernova v2.1.1 (6)
with the following parameters: –accept-extreme-coverage, –maxreads=300000000 scaf-
folds .=500 bases. Gaps were closed by running three iterations of LR_Gapcloser (unver-
sioned) (7) using ONT reads, followed by one iteration of Pilon v1.23 (8) using Illumina
(NEBNext Ultra II library) reads and then three more iterations of LR_Gapcloser with ONT
reads. Finally, the assembly was polished through three iterations of Pilon v1.23 using
Illumina (NEBNext Ultra II library) reads. Scaffolds were aligned with the NCBI nucleotide
database using BLAST v2.12.01 (–task blastn); along with GC content and read coverage
analyses, 93 scaffolds were identified as bacterial sequences and removed from the final as-
sembly. The assembly of CBS 291.66 consists of 603 scaffolds (795 contigs), with a scaffold
N50 value of 386 kb (contig N50, 151 kb) and a total length of 37.5 Mb.

The genome was annotated using a data set of 35,966 proteins from three Lichtheimia
species (Lichtheimia corymbifera JMRC:FSU:9682 [9], Lichtheimia ramosa JMRC:FSU:6197 [10],
and Lichtheimia hyalospora FSU:10163 [11]), which were used with BRAKER2 (12) to identify
candidate gene structures in the assembly that had been masked using RepeatMasker v4.1
(13). Genes containing Pfam domains found in repetitive elements or overlapping tRNA/
rRNA features were removed. Genes were named and numbered sequentially. Protein-cod-
ing genes were named from Pfam/TIGRFAM database (searched with HMMER) and Swiss-
Prot and KEGG database (searched with BLASTp) products (14–16). A total of 13,172 genes
were predicted, and BUSCO v3 (17) identified 99.3% of the mucorales_odb10 gene set.

Data availability. The sequence, assembly, and annotation reported here are avail-
able in GenBank under BioProject accession number PRJNA909826. The Illumina reads
from the TELL-Seq libraries are available under SRA accession numbers SRR23705169
to SRR23705174. The Illumina reads from the NEBNext Ultra II library are available
under SRA accession number SRR23705175. The ONT reads are available under SRA
accession numbers SRR23855899 and SRR23855900. The genome assembly is available
under GenBank accession number JARTCD000000000.
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