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Myopia in human and animals is caused by the axial elongationof the eye and is closely linked
to the thinning of the sclera which supports the eye tissue. This thinning has been correlated with
the overproduction of matrix metalloproteinase (MMP-2), an enzyme that degrades the collagen
structure of the sclera. In this short paper, we propose a descriptive model of a regulatory network
with hysteresis, which seems necessary for creating oscillatory behavior in the hybrid model between
MMP-2, MT1-MMP and TIMP-2. Numerical results provide insight on the type of equilibria present
in the system.

1 Introduction

This short paper presents a descriptive model of a genetic regulatory network in the mammalian sclera us-
ing the formalism of hybrid dynamical systems. This model isdeduced from experimental observations
of enzyme interactions that govern the remodeling of the collagen tissue in the sclera. A number of re-
search publications indicate that myopia is closely related to an unbalanced remodeling in sclera [12, 22].
Myopia is an optical condition in which the eye grows abnormally in the axial direction, causing images
to form in front of the retina compared to on the retina, as it normally occurs [9, 12, 13, 18]. The exces-
sive length of the eye is driven by the remodeling of the scleral extra cellular matrix (ECM) (e.g., loss of
Type I collagen, COL1A1), leading the progressive thinningof this tissue [1, 11, 12]. Scleral remodeling
is regulated by a large number of growth factors, membrane receptors, proteases, and protease inhibitors,
which work in concert to optimize the dynamic synthesis and degradation of COL1A1[3, 11, 27]. One of
the most studied actors in sclera remodeling is the Type II matrix metalloproteinase (MMP-2), because
of its role in the degradation of COL1A1 [6, 12, 16]. MMP-2 is regulated by the Type II tissue inhibitor
of the matrix metalloproteinases (TIMP-2), and when the twoenzymes are properly balanced, the sclera
develops normally. MMP-2 regulation by TIMP-2 shows a particular mechanism in which TIMP-2 not
only inhibits the proteolytic activity of MMP-2, but is alsonecessary for the production of this metallo-
proteinase in its active form [12, 24, 26]. Such a mechanism is very important for the balance between
COL1A1 production and degradation in sclera, and hence, should play a key role in a model of a genetic
regulatory network in this tissue.

The remainder of the paper is organized as follows. Section 2introduces the mechanisms govern-
ing the regulatory network of interest and proposes a hybridsystem model. Section 3 presents results
from simulations of the proposed model, which, for a particular set of parameters, identify both isolated
equilibria and limit cycles. Final remarks and a discussionof the current efforts appear in Section 4.
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2 Modeling

We develop a model of a regulatory network in mammalian sclera from the following experimental obser-
vations. Sufficient high levels of MMP-2 protein cause the expression of TIMP-2 [12, 21] (considering
expression as the result of transcription, translation andactivation of the protein latent form). When
the concentration of TIMP-2 exceeds a minimum threshold, this protein indirectly modulates the incre-
ment of MMP-2: TIMP-2 triggers the expression of active membrane-type I matrix metalloproteinase
(MT1-MMP) [12, 21, 24], which is necessary for the activation of latent MMP-2 [12, 24, 26]. When the
concentration of TIMP-2 protein is sufficiently high, TIMP-2 inhibits the proteolytic activity of MMP-2
and MT1-MMP [12, 19, 21, 24, 26]. As we mentioned above, MT1-MMP triggers the activation of latent
MMP-2 when sufficiently high [5, 15]; therefore, by blockingMT1-MMP, TIMP-2 is also inhibiting the
activation of latent MMP-2 [12, 24, 26]. In fact, [12, 26] argue that the increased TIMP-2 mRNA and
protein levels are significant as TIMP-2 is not only a proteininhibitor of both the active and latent form
of MMP-2 but also paradoxically essential for the MT1-MMP dependent activation of MMP-2. The
genetic network capturing these mechanisms is depicted in Figure 1.

mmp-2 timp-2 mt1-mmp

MMP-2 TIMP-2 MT1-MMP

Figure 1:Proposed genetic regulatory network for sclera. Lowercasenames refer to genes, uppercase
names refer to proteins. Lines ending in arrows represent expression triggers and lines ending in flat-
heads refer to inhibition triggers.

The mechanisms described above can be encoded in a piecewise-linear differential equation follow-
ing the modeling technique in [6, 14]. However, the resulting model of the genetic network in sclera
would not incorporate hysteresis, which is a key player in genetic regulatory networks [2, 7, 10, 20].
To incorporate hysteresis, we follow the approach in [23] and propose a hybrid system model in the
framework of [4]. To this end, we define the state of the hybridsystem as

z= [x1,x2,x3,q1,q2,q3,q4]
⊤ (1)

wherez∈Z :=R
3
≥0×{0,1}4. The continuous statesx1,x2,x3 represent the protein concentrations, where

x1 represents the protein concentration of TIMP-2,x2 the concentration of MT1-MMP, andx3 the con-
centration of MMP-2. Positive constantsγ1,γ2,γ3 define the decay rates andk1,k2,k3 define the growth
rates, respectively, for each of the concentrations. The discrete states (logic variables)q1,q2,q3,q4 define
the boolean value (1 or 0) of the hysteresis functions associated with each of the thresholdsθ1,θ2,θ3,θ4

and the hysteresis half-width constantsh1,h2,h3,h4 associated with each of the thresholds, respectively.

Threshold Definition
θ1 TIMP-2 level for MT1-MMP expression
θ2 MT1-MMP level for MMP-2 expression
θ3 TIMP-2 level for MT1-MMP/MMP-2 inhibition
θ4 MMP-2 level for TIMP-2 expression

Table 1: Definition of protein thresholds in the genetic regulatory network for sclera.
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Following the definitions in Table 1, the thresholds and hysteresis half-width constants are used to
determine when, for current values of the protein concentrations and of the logic variables, changes of
the logic variables should occur. For instance, according to the mechanisms described above, ifq4 = 0
andx3 is small, thenx1 should decay according to its decay rateγ1. However, ifq4 = 0 andx3 becomes
large (i.e., the concentration of MMP-2 is large) thenq4 should change to 1 andx1 should be expressed
according to its own growth ratek1. The continuous evolution ofx3 can be captured mathematically by
the differential equation

ẋ1 = k1q4− γ1x1

while the discrete change ofq4 can be captured by the difference equation

q+4 = 1−q4 when q4 = 0 andx3 ≥ θ4+h4, or q4 = 1 andx3 ≤ θ4−h4

In this way, theflow mapof the hybrid system defining the continuous dynamics ofz is given by

F(z) :=









k1q4− γ1x1
k2q1(1−q3)− γ2x2
k3q2(1−q3)− γ3x3

04×1









(2)

Changes of the variables occur whenz is in thejump set, which is conveniently written as

D :=
4
⋃

i=1

Di

where
D1 := {z : q1 = 1,x1 ≤ θ1−h1}∪{z : q1 = 0,x1 ≥ θ1+h1}

D2 := {z : q2 = 1,x2 ≤ θ2−h2}∪{z : q2 = 0,x2 ≥ θ2+h2}

D3 := {z : q3 = 1,x1 ≤ θ3−h3}∪{z : q3 = 0,x1 ≥ θ3+h3}

D4 := {z : q4 = 1,x3 ≤ θ4−h4}∪{z : q4 = 0,x3 ≥ θ4+h4}

The right-hand side of the difference equation discretely updating the logic variables is given by the
jump map

G(z) =



























g1(z) z∈ D1\ (D2∪D3∪D4)

g2(z) z∈ D2\ (D1∪D3∪D4)

g3(z) z∈ D3\ (D1∪D2∪D4)

g4(z) z∈ D4\ (D1∪D2∪D3)

ĝ(z) z∈ D1∩D2∩D3∩D4

(3)

where

g1(z) =




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











x1
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q2
q3
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




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

, g2(z) =


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
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and ĝ(z) = {g1(z),g2(z),g3(z),g4(z)}. Note thatx1 and its associated logic variablesq1 andq3 are the
only “inputs” to the dynamics ofx2, which suggests thatθ1 + h1 < θ3 − h3 should hold forx2 to ever
grow. Moreover,x1 and its associated logic variableq3 are “inputs” to the dynamics ofx3, while x3 and
q4 are “inputs” to the dynamics ofx1, in what resembles to a feedback interconnection.

With the definitions mentioned before, a hybrid systemH = (F,C,G,D) in the framework of [4]
capturing the mechanism in the genetic network of sclera with hysteresis is given as

H : z∈ Z

{

ż= F(z) z∈C := Z\D
z+ ∈ G(z) z∈ D

(4)

3 Simulation Results

We simulate the hybrid model of the scleral genetic network within a Matlab/Simulink toolbox [20]. Un-
less otherwise stated, the growth rateki and decay ratesγi , i = 1,2,3 for the three proteins are identically
set to 1 and the hysteresishi , i = 1,2,3,4 are set to 0.01.

3.1 Isolated Equilibrium Points

Figure 2(a) and Figure 2(b) present simulation results in which the hybrid system evolves to the equilib-
rium point atx∗ = (0,0,0). Under these initial conditions and protein thresholds, the concentration of
TIMP-2 (x1) is not sufficiently high to permit continued expression of the MT1-MMP (x2) and MMP-2
(x3) genes. The protein concentration associated with the MMP-2 gene continues to grow, but when the
MT1-MMP gene is inhibited, MMP-2 will become inhibited withtime.

Figure 2(c) and Figure 2(d) show that the solution of the hybrid system goes toward the equilibrium

point atx∗ =
(

k1
γ1
,

k2
γ2
,

k3
γ3

)

. With the given initial conditions and parameters, the concentration of TIMP-2

(x1) is not high enough to inhibit the expression of the MT1-MMP (x2) and MMP-2 (x3) genes. This
situation can be a cause of high myopia [12, 17].

3.2 Limit cycles

Figure 3(a) and Figure 3(b) illustrates the oscillatory behavior in the hybrid system when the concentra-
tion of TIMP-2 exceedsθ1 and the concentration of MMP-2 exceedsθ4 recurrently. In this scenario, the
discrete state behavior stabilizes to a periodic orbit. It is apparent that the TIMP-2 protein as modeled
here has a stabilizing effect on the other two protein concentrations when it is at a sufficiently high level.
In this scenario, the sclera develops normally. To illustrate that such normal development of the sclera
is only possible when hysteresis is present, the previous simulation is repeated for half-width hysteresis
constants equal to zero. Figure 3(c) and Figure 3(d) show thecorresponding system response. The
solution to the hybrid system converges to an isolated equilibrium point.

4 Conclusion

A mathematical model of a regulatory network with hysteresis to describe the mechanisms in the mam-
malian sclera was introduced. The model captures the interaction between MMP-2, MT1-MMP, and
TIMP-2. Numerical results indicate that the system can haveboth isolated equilibria and limit cycles
in the 3-dimensional space of protein concentrations. For the arbitrarily chosen parameters, numerical
results seem to suggest that hysteresis is needed for normaldevelopment of sclera. Current efforts in-
clude characterizing the type of equilibria in terms of the values of the systems constants using the hybrid
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(a) θ1 = 0.4,θ2 = 0.5,θ3 = 0.6,θ4 = 0.7,x1(0) =
0.15,x2(0) = 0.45,x3(0) = 0.8,q1(0) = 1,q2(0) =
1,q3(0) = 0,q4(0) = 1, ∗ is the initial point.
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(b) θ1 = 0.4,θ2 = 0.5,θ3 = 0.6,θ4 = 0.7,x1(0) =
0.15,x2(0) = 0.45,x3(0) = 0.8,q1(0) = 1,q2(0) =
1,q3(0) = 0,q4(0) = 1, ∗ is the initial point.
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(c) k1 = 0.55,k3 = 0.9,θ1 = 0.4,θ2 = 0.5,θ3 = 0.6,θ4 =
0.7,x1(0) = 0.45,x2(0) = 0.6,x3(0) = 0.8,q1(0) =
1,q2(0) = 1,q3(0) = 0,q4(0) = 1, ∗ is the initial point.
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(d) k1 = 0.55,k3 = 0.9,θ1 = 0.4,θ2 = 0.5,θ3 = 0.6,θ4 =
0.7,x1(0) = 0.45,x2(0) = 0.6,x3(0) = 0.8,q1(0) =
1,q2(0) = 1,q3(0) = 0,q4(0) = 1, ∗ is the initial point.

Figure 2: Solutions toH for different parameters and initial conditions. For the chosen values, solutions
converge to isolated equilibrium points.

systems techniques employed in [23] and the design of in-vivo experiments to identify the parameters of
the genetic model.
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