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Neutrosophic segmentation of breast lesions for
dedicated breast computed tomography

Juhun Lee,a,* Robert M. Nishikawa,a Ingrid Reiser,b and John M. Boonec

aUniversity of Pittsburgh, Department of Radiology, Pittsburgh, Pennsylvania, United States
bUniversity of Chicago, Department of Radiology, Chicago, Illinois, United States
cUniversity of California Davis Medical Center, Department of Radiology, Sacramento, California, United States

Abstract. We proposed the neutrosophic approach for segmenting breast lesions in breast computed tomog-
raphy (bCT) images. The neutrosophic set considers the nature and properties of neutrality (or indeterminacy).
We considered the image noise as an indeterminate component while treating the breast lesion and other breast
areas as true and false components. We iteratively smoothed and contrast-enhanced the image to reduce the
noise level of the true set. We then applied one existing algorithm for bCT images, the RGI segmentation, on the
resulting noise-reduced image to segment the breast lesions. We compared the segmentation performance of
the proposed method (named as NS-RGI) to that of the regular RGI segmentation. We used 122 breast lesions
(44 benign and 78 malignant) of 111 noncontrast enhanced bCT cases. We measured the segmentation per-
formances of the NS-RGI and the RGI using the Dice coefficient. The average Dice values of the NS-RGI and
RGI were 0.82 and 0.80, respectively, and their difference was statistically significant (p value ¼ 0.004). We
conducted a subsequent feature analysis on the resulting segmentations. The classifier performance for the
NS-RGI (AUC ¼ 0.80) improved over that of the RGI (AUC ¼ 0.69, p value ¼ 0.006). © 2018 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1.014505]
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1 Introduction
In image segmentation problems, the main goal is to distinguish
the foreground from the background in a given image. However,
all natural images (i.e., not simulated or computer-generated)
include various types of noise, which are neither foreground
nor background in segmentation problems. Such noise degrades
the performance of any existing segmentation algorithm.

In dedicated breast computed tomography (bCT), quantum
noise is one of the major sources of noise. Quantum noise cre-
ates a readily visible salt-and-pepper noise in reconstructed bCT
images that can degrade any segmentation algorithms. We can
reduce quantum noise by increasing the radiation dose, but this
may increase the cancer risk to the patient. Thus, one needs to
balance the image quality (or image noise) and radiation dose, to
maximize the patient benefits.

Many ways exist to control the noise in bCT images. One can
use different reconstruction kernels, e.g., smooth kernels for low
noise but low spatial resolution, or sharp kernels for high noise
but high spatial resolution. Researchers are developing iterative
image reconstruction algorithms for bCT,1,2 which can suppress
the image noise while maintaining the spatial resolution and
contrast even in low radiation dose scans. In addition to
these noise control methods in the reconstruction domain, we
can reduce image noise after reconstruction, directly on bCT
images. One may simply smooth the entire image or region
of interest of the image to reduce the effect of the noise.
However, simply smoothing can remove useful information
(e.g., edge of lesion) for segmentation. In this respect, it is ben-
eficial to develop algorithms that suppress image noise while
preserving useful information for segmentation.

This study attempted to distinguish and suppress the noise in
the image after reconstruction, before applying the segmentation
algorithms. Then, we applied a segmentation algorithm to noise-
suppressed images to improve segmentation performance. For
this study, we adopted the neutrosophy theory to achieve the
objective.

Neutrosophy is a branch of philosophy that generalizes dia-
lectics and studies the concept and properties of neutralities.3

Neutrosophy theory considers entity hAi and its relation to
hAnti-Ai and hNeut-Ai, where hAnti-Ai and hNeut-Ai represent
the opposite and the neutrality entity of hAi, respectively.
Neutrosophy covers various concepts, including neutrosophic
logic, neutrosophic probability, neutrosophic set (NS), etc.3

One can consider neutrosophy logic as the generalized version
of fuzzy logic, where it explicitly takes into account the neutral-
ity or indeterminacy of the problem.4

We can consider the noise in the image as a neutral or inde-
terminate element. The classical set and fuzzy set only handle
this neutral or indeterminate element partially, as neutrality or
indeterminacy is absorbed into either the true or false set (or
background or foreground set). Due to the existence of neutral-
ity, one can expect that the neutrosophy set can handle the noise
element in the image effectively.

This study, therefore, used the neutrosophy theory, specifi-
cally the neutrosophic set, to tackle segmentation problems
for dedicated breast CT images. This study adapted and modi-
fied the segmentation approach proposed by Guo and Cheng5 to
solve our problem, i.e., segmenting breast lesions in bCT
images. Xian et al. used the original method for segmenting
breast lesions in two-dimensional (2-D) ultrasound images.6
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We extended and modified their method to segment three-
dimensional (3-D) bCT images.

2 Methods

2.1 Dataset

We used a dataset of 122 pathology proven breast lesions (44
malignant and 78 benign) of 111 noncontrast-enhanced bCT
cases collected under an approved Institutional Review Board
(IRB) protocol (Table 1). The prototype dedicated breast CT
system at the University of California at Davis7 was utilized
to obtain all patients’ bCT cases, and operated at 80 kVp with
variable mAs to provide a similar mean glandular dose of stan-
dard two view mammograms. This study used an FeldKamp-
Davis-Kress (FDK) reconstruction algorithm8 to reconstruct
each image.

2.2 Preprocessing: Image Normalization

To reduce false positives, i.e., assigning a nonlesion to fore-
ground, we preprocessed bCT images such that they are within
the range of the possible voxel intensity of breast tissues. We
assumed a range of Hounsfield unit (HU) values for breast tissue
as [−500, 300] HU. −500 HU and 300 HU are the highest HU
number for lung9 and the lowest HU number for cortical bone.10

In fact, a previous study11 showed that HU values for breast tis-
sue in bCT images can range from −350 (adipose tissue at low
tube voltage) to 100 HU (breast cancer at high tube voltage).
Another study12 showed that contrast can enhance malignant
breast lesions in bCT images up to 120 HU. Thus, we can expect
that the range [−500, 300] HU should include all possible values
for breast tissue in bCT images. Any voxels outside of this HU
range were replaced with the averaged HU value of other neigh-
boring voxels.

2.3 Preprocessing: Neutrosophic Image
Enhancement for Breast CT Images

Let xðt; i; fÞ be an element of the NS. t, i, and f refer to the
membership (%) of the element x in the neutrosophic compo-
nents; true (T), indeterminacy (I), and false (F), respectively. In
this study, we treated T, I, and F as foreground, noise, and back-
ground, respectively.

Let Vðx; y; zÞ be a voxel in the bCT image. The neutrosophic
representation of Vðx; y; zÞ is given as VNSðx; y; zÞ ¼
fTðx; y; zÞ; Iðx; y; zÞ; Fðx; y; zÞg, where each neutrosophic com-
ponent is defined as

EQ-TARGET;temp:intralink-;e001;326;429Tðx; y; zÞ ¼ fw½pðx; y; zÞ� −minffw½pðx; y; zÞ�g
maxffw½pðx; y; zÞ�g −minffw½pðx; y; zÞ�g

;

(1)

EQ-TARGET;temp:intralink-;e002;326;373Iðx; y; zÞ ¼ g½pðx; y; zÞ� −minfg½pðx; y; zÞ�g
maxfg½pðx; y; zÞ�g −minfg½pðx; y; zÞ�g ; (2)

EQ-TARGET;temp:intralink-;e003;326;335Fðx; y; zÞ ¼ 1 − Tðx; y; zÞ; (3)

where pðx; y; zÞ is the intensity level of Vðx; y; zÞ, and fwð·Þ
represents the mean filtering of the image with a cubic window
size of w × w × w, and gðkÞ ¼ jk − fwðkÞj. We set w as three
following the choice of a mean filter window size of a previous
study on classifying breast lesions in breast CT.13

The α-mean operation, α½VNSðx; y; zÞ� ¼
fTαðx; y; zÞ; Iαðx; y; zÞ; Fαðx; y; zÞg is defined as

EQ-TARGET;temp:intralink-;e004;326;232Tαðx; y; zÞ ¼
�

Tðx; y; zÞ; Iðx; y; zÞ < α
fw½Tðx; y; zÞ�; Iðx; y; zÞ ≥ α

; (4)

EQ-TARGET;temp:intralink-;e005;326;188Fαðx; y; zÞ ¼
�

Fðx; y; zÞ; Iðx; y; zÞ < α
fw½Fðx; y; zÞ�; Iðx; y; zÞ ≥ α

; (5)

EQ-TARGET;temp:intralink-;e006;326;149Iαðx; y; zÞ ¼
g½Tαðx; y; zÞ� −minfg½Tαðx; y; zÞ�g

maxfg½Tαðx; y; zÞ�g −minfg½Tαðx; y; zÞ�g
:

(6)

If the indeterminacy level of a voxel is higher than α, the
α-mean operation locally smooths the portion around that
voxel. We empirically set α as 0.9.

Table 1 Characteristics of breast CT dataset.

Total number of lesions

All

122

Subject age (years) Mean (min, max) 55.6 [35, 80]

Lesion diameter (mm) Mean (min, max) 13.8 [4, 35]

Breast density (% among
lesions considered)

1 12 (10%)

2 46 (38%)

3 46 (38%)

4 18 (14%)

Diagnosis* Malignant
(% among

malignant lesions
considered)

IDC 55 (71%)

IMC 11 (14%)

ILC 7 (9%)

DCIS 4 (5%)

Lymphoma 1 (1%)

Total 44

Benign (% among
benign lesions
considered)

FA 18 (41%)

FC 7 (16%)

FCC 4 (9%)

PASH 1 (2%)

CAPPS 2 (4%)

Other benign lesions
such as sclerosing
adenosis and cyst

12 (28%)

Total 78

*IDC, invasive ductal carcinoma; IMC, invasive mammary carcinoma;
ILC, invasive lobular carcinoma; DCIS, ductal carcinoma in situ; FA,
fibroadenoma; FC, fibrocystic; FCC, fibrocystic changes; PASH,
pseudoangiomatous stromal hyperplasia; CAPPS, columnar altera-
tion with prominent apical snouts and secretions.
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The β-enhancement operation, β½VNSðx; y; zÞ� ¼
fTβðx; y; zÞ; Iβðx; y; zÞ; Fβðx; y; zÞg is defined as

EQ-TARGET;temp:intralink-;e007;63;730Tβðx; y; zÞ ¼
�

Tðx; y; zÞ; Iðx; y; zÞ < β
h½Tðx; y; zÞ�; Iðx; y; zÞ ≥ β

; (7)

EQ-TARGET;temp:intralink-;e008;63;687Fβðx; y; zÞ ¼
�

Fðx; y; zÞ; Iðx; y; zÞ < α
h½Fðx; y; zÞ�; Iðx; y; zÞ ≥ α

; (8)

EQ-TARGET;temp:intralink-;e009;63;648Iβðx; y; zÞ ¼
g½Tβðx; y; zÞ� −minfg½Tβðx; y; zÞ�g

maxfg½Tβðx; y; zÞ�g −minfg½Tβðx; y; zÞ�g
;

(9)

where hðkÞ ¼
�

2k2; k ≤ 0.5

1 − 2ð1 − kÞ2; k > 0.5
. The β-enhancement

operation enhances the contrast of the given volumetric
image by reducing the intensity level of a voxel when its cor-
responding indeterminacy level is higher than β. We empirically
set β as 0.5.

The γ-plateau operation, γ½VNSðx; y; zÞ� ¼
fTγðx; y; zÞ; Iγðx; y; zÞ; Fγðx; y; zÞg is defined as

EQ-TARGET;temp:intralink-;e010;63;503Iγðx; y; zÞ ¼
u½Tðx; y; zÞ� −minfu½Tðx; y; zÞ�g

maxfu½Tðx; y; zÞ�g −minfu½Tðx; y; zÞ�g ;
(10)

where Tγ ¼ T and Fγ ¼ T. In Eq. (10), u½Tðx; y; zÞ� ¼
jfw½Tðx; y; zÞ� − ΔTðx; y; zÞj and Δ is the Laplace operator.
The γ-plateau operation is a new addition to the original NS
approach proposed by Guo and Cheng that changes the indeter-
minacy set to an edge-enhanced image. When combined with
the α-mean operation and when the voxel intensity is higher
than α, the γ-plateau operation smooths the volume surrounding
the given voxel. As a result, the α-mean operation with the γ-pla-
teau operation smooths the peaks and valleys in the foreground
and, therefore, creates the plateaued (i.e., smoothed) foreground.

Once the true (i.e., T or foreground), indeterminacy (i.e., I or
noise), and false (i.e., F or background) components of the given
image in the NS domain no longer change, which is measured
by the sum of image entropies14 of true, indeterminacy, and false
sets, VNSðx; y; zÞ is transformed back to Vðx; y; zÞ with ðλ; wÞ ¼
ð0.5; 3Þ as

EQ-TARGET;temp:intralink-;e011;326;576Vðx; y; zÞ ¼
�

Tðx; y; zÞ; Iðx; y; zÞ ≤ λ
fw½Tðx; y; zÞ�; Iðx; y; zÞ > λ

: (11)

We set the threshold to stop the enhancement as 0.0001. In
addition, we set the maximum iteration of applying NS enhance-
ment as 50. Figure 1 shows a flowchart of the procedures of the
NS enhancement for bCT images, and Fig. 2 shows the effect of
the NS enhancement on an example bCT image. Note, we
adapted all parameter values from the original study of Guo
and Cheng5 and further optimized to achieve the best segmen-
tation outcomes.

Fig. 1 This diagram illustrates the procedures for the proposed neutrosophic image enhancement for
bCT images. The algorithm transforms the bCT images into NS domain by assigning each voxel’s mem-
bership in true (foreground), false (background), and indeterminacy (noise) sets. After that, three oper-
ations iteratively smooth and enhance the NS image to increase the contrast between true (breast lesion)
and false (other breast tissue) sets by isolating image noise. Once the changes in true, intermediate, and
false sets are stabilized, the algorithm transforms the NS images back to create cleaned or enhanced
bCT images.
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2.4 Neutrosophic Breast Lesion Segmentation

Once the image is enhanced or cleaned, we can use any existing
segmentation algorithms to segment breast lesions in the bCT
images. To show the effectiveness of the NS enhancement,
we selected RGI segmentation, which is an existing algorithm,15

and evaluated the improvement in segmentation performance
with or without the NS enhancement.

The RGI segmentation is a semiautomatic algorithm that
requires a manually allocated lesion center to search the boun-
dary of that lesion. For each image, a research specialist with
over 15 years of experience in mammography provided the
lesion center and the lesion boundary. It was shown that the
RGI segmentation algorithm can successfully segment breast
lesions in bCT images.15 We refer to the RGI segmentation algo-
rithm applied on NS-enhanced images as the NS-RGI segmen-
tation algorithm and corresponding images used for the NS-RGI
segmentation algorithm as NS-RGI images. Similarly, we refer
to the RGI segmentation applied on nonenhanced images as the
RGI segmentation algorithm and corresponding images used for

the RGI segmentation algorithm as RGI images. Figure 3 shows
how we created NS-RGI images and RGI images for the study.
Note that we smoothed bCT images for RGI images. For both
NS-RGI and RGI images, we selected the volume of interest
(VOI) from the lesion center, to reduce false positives and
increase the processing speed for the segmentation algorithm.
We used a cube with an edge length of 35 mm for the VOI.
We used the Dice coefficient16 between the lesion boundary
computed by the algorithm and that of the aforementioned
research specialist as our figure of merit. Figures 2(j) and 2(k)
show the Dice values for an example malignant breast lesion.
Then, we compared the segmentation performance of the
RGI segmentation algorithm on NS-RGI images to that of
RGI images via bootstrap sampling method.

Once the volumetric segmentation was completed, we cre-
ated a 3-D surface representation of the segmented result,
using an existing algorithm (isosurface in MATLAB®), to com-
pute 3-D surface image features explained in the next section.
As the mean resolution of bCT images is around 350 μm (i.e.,

Fig. 2 This figure illustrates how the proposed method enhances or cleans the given image for segmen-
tation. (a)–(c) Input image in coronal, axial, and sagittal view. (d)–(f) Images in NS domain after one
iteration. (g)–(i) Output image in coronal, axial, and sagittal view. (j)–(k) Segmentation results in coronal
view for RGI and NS-RGI. It is clear that the NSmethod was able to clean the noise from the image, while
retaining other information (e.g., lesion edge information) in the image, thus resulted in better
segmentation.
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0.35 mm), small lesions with a diameter less than 10 mm only
have less than 30 vertices in each dimension for their 3-D sur-
face representation. This resulted in crude 3-D surface represen-
tations of small breast lesions [e.g., Fig. 4(a)]. Thus, we
interpolated the vertices of the 3-D surface of a small lesion
such that it can have at least 30 vertices available in each dimen-
sion. For this, we used a mesh-subdivision algorithm17 to inter-
polate the vertices of the 3-D surface representation of small
lesions. We treated any lesions with maximum diameter smaller
than 10 mm as small lesions (following the criteria used in a
previous study18) and applied the vertex interpolation method
explained above. Figure 4 shows the effect of mesh-subdivision
on a small benign breast lesion (max diameter is 4.6 mm). One
can see the smoother representation of the given lesion after the
mesh-subdivision [Fig. 4(b)].

2.5 Quantitative Image Feature Analysis

We conducted quantitative feature analysis to determine if
the cleaned image and the associated improved segmentation
actually resulted in improved classification. We extracted 23
quantitative image features from the segmented lesions, which

were used in previous studies on breast CT.13,19,20 The quanti-
tative image features included: (1) four histogram features,
which quantify the gray-value distribution in and around a breast
lesion, (2) seven shape features, which summarize the overall
shape of a breast lesion, (3) five margin features, which quantify
the morphology in a breast lesion’s margin, (4) four texture fea-
tures, which are 3-D versions of a gray-level co-occurrence
matrix, and (5) surface features, which summarize the variations
over a lesion’s surface.

Using the leave-one-out cross-validation (LOOCV), we
selected the most salient features for classifying breast lesions
using a feature selection algorithm (sequentialfs in MATLAB®).
Then, we trained a linear discriminant analysis (LDA) classifier
using the same training samples in LOOCV. We tested the
trained classifier using the held-out sample. We used the area
under the receiver operating characteristic curve (AUC) as a fig-
ure of merit. We compared the AUC values of the classifier
trained on NS-RGI images and those of RGI images. We
used the Delong’s method21 to compare the AUC values of
two classifiers (i.e., one is trained on NS-RGI cases, and another
is trained on RGI cases). In addition, we estimated the 95% con-
fidence interval for AUC values of both NS-RGI and RGI clas-
sifiers. We refer to the classifier trained on NS-RGI images and
RGI images as the NS-RGI classifier and the RGI classifier,
respectively.

3 Results
The mean and standard deviation of Dice coefficients for the
NS-RGI segmentation algorithm and the RGI segmentation
algorithm were [0.80, 0.12] and [0.82, 0.09], respectively.
The difference between the Dice values of the NS-RGI and
RGI segmentation algorithms was statistically significant
(p value ¼ 0.004) (Table 2).

As breast density can affect the segmentation performance,
we compared the segmentation performances of the NS-RGI
and RGI segmentation algorithms in terms of breast density lev-
els following BI-RADS.23 The NS-RGI segmentation algorithm
achieved better segmentation performance in terms of the aver-
age Dice value than that of the RGI segmentation algorithm for
all density levels (Table 2). However, only density level 2
showed a statistically significant improvement.

We considered Dice value of 0.7 or higher as a good segmen-
tation outcome.24 Based on this criterion, the NS-RGI segmen-
tation algorithm showed similar segmentation performances for
the breast lesion cases with an RGI segmentation performance
of 0.7 or higher. However, the NS-RGI segmentation algorithm
showed better segmentation performances for 11 out of 17 cases
where the RGI segmentation failed (black circles in Fig. 5, Dice
values < 0.7). For the remaining 6 of 17 cases, both the NS-RGI
and RGI showed similar performance. From this, we can
conclude that the proposed method can clean or enhance the
given image such that it allows the RGI algorithm to segment
the breast lesions that previously failed without the NS
enhancement.

The AUC values for the NS-RGI and RGI classifiers
obtained from LOOCV were 0.8 (95% CI: [0.73, 0.88]) and
0.69 (95% CI: [0.6 0.78]), respectively (Table 3). The difference
in the AUC values of the NS-RGI and RGI classifiers was 0.11
with 95% CI of [0.032 0.19]. The differences between the two
AUC values were statistically significant with a p-value of
0.006.

Fig. 3 This diagram illustrates how we created NS-RGI and RGI
cases for this study. For both NS-RGI and RGI cases, bCT images
were first preprocessed. For NS-RGI cases, bCT images were
cleaned or enhanced via the proposed NS enhancement and then
the RGI segmentation algorithm was applied to the resulting
enhanced images. For RGI cases, bCT images smoothed with 3 × 3 ×
3 cube to reduce the effect of the noise and then the RGI segmenta-
tion algorithm was applied on the smoothed images.

Fig. 4 This figure illustrates how mesh-subdivision improves the sur-
face representation of small breast lesions less than 10 mm. (a) A
small benign lesion with a maximum diameter of 4.6 mm. (b) The
small lesion after the mesh-subdivision. One can see the improve-
ment in the surface representation of the breast lesion, especially
on spiculated margins.
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Among the 23 features we considered, a total of six features
were selected for the NS-RGI classifier and a total of eight fea-
tures were selected for the RGI classifier. All six features for the
NS-RGI classifier were selected 99% to 100% in each LOOCV

loop, and the feature appearance frequencies for the RGI clas-
sifier were varied from 39% to 100% (Table 4). These features
were irregularity,19,20 ellipsoid axes min-to-max ratio,19,20

relative margin distance variation,20 margin volume,20 radial

Table 2 Segmentation performance comparison for NS-RGI and RGI.

NS-RGI RGI Difference

p-valueMean [95%CI] Mean [95%CI] Mean [95%CI]

All 0.82 [0.8, 0.83] 0.80 [0.78, 0.81] 0.019 [0.007, 0.033] 0.004*

Density level 1 0.84 [0.78, 0.88] 0.79 [0.68, 0.85] 0.05 [0.01, 0.2] 0.27

Density level 2 0.83 [0.81, 0.85] 0.82 [0.79, 0.84] 0.016 [0.004, 0.028] 0.01*

Density level 3 0.81 [0.78, 0.83] 0.79 [0.77, 0.82] 0.014 [−0.002, 0.03] 0.057

Density level 4 0.78 [0.72, 0.82] 0.77 [0.69, 0.82] 0.02 [−0.032, 0.093] 0.53

*Statistically significant with the corrected significance levels by Holm method.22

Fig. 5 This figure shows the scatter plots for Dice values for the NS-RGI and RGI segmentation algo-
rithms in terms of breast density. The diameters of circles in the plot are proportional to the maximum
lesion diameter measured by the expert. For all density levels, the average Dice values of the NS-RGI
segmentation algorithm were higher than those of the RGI cases, while only density level 2 showed a
statistically significant difference. For cases with DiceRGI higher than 0.7, DiceNS-RGI showed similar per-
formances. For many cases with DiceRGI less than 0.7, DiceNS-RGI showed improved segmentation per-
formance. There were two cases (with asterisk marker) that DiceNS-RGI showed inferior segmentation
performance than DiceRGI.
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gradient index,20,25 margin strength,20 total curvature,13

Gaussian curvature,13,26,27 and mean curvature.13,26,27 Five fea-
tures were in common for NS-RGI and RGI cases (Table 4).

4 Discussion
Although the segmentation results of NS-RGI showed similar
segmentation performances to RGI alone for most cases,
there were a couple of cases where NS-RGI showed inferior seg-
mentation performance compared to RGI alone. The cases
included one with density level 3 and another with density
level 4, where Dice values of the NS-RGI segmentation algo-
rithm were lower than 0.7, and Dice values of the RGI segmen-
tation algorithm were higher than 0.7 (the cases with an asterisk
in Fig. 5). For these two cases, we found that the NS enhance-
ment did not stop when it should have, such that the NS algo-
rithm incorrectly included neighboring parenchymal tissue as
the foreground and kept applying smoothing operations. The
visible lesion boundary was lost as a result, and therefore the
NS-RGI algorithm failed to stop at the true lesion boundary
(Fig. 6). It is possible that one may observe similar failures
for lesions surrounded by complex parenchymal tissues,
which is typical for dense breasts (density level 3 or higher).
In fact, the above two failure cases were from density level 3
or higher subgroup. As the NS-RGI segmentation algorithm
showed at least similar performance compared to the RGI seg-
mentation algorithm for other dense breast cases, we might

conclude that the above two cases are special cases where
NS enhancement failed. However, one could reduce these fail-
ures by adjusting the maximum number of iterations in the NS
enhancement for dense breasts, to terminate the process before it
smooths key information for segmentation. It will require a
future study to explore the optimal maximum iteration number
for dense and fatty breasts.

There are two possible reasons that lesion classification
based on NS-RGI segmentation showed better classification per-
formance than the RGI segmentation-based classifier. The first
possible reason is the number of strong features used for the
classifier. We showed that six and eight features were frequently
selected for NS-RGI and RGI classifiers, respectively (Table 4).
However, the NS-RGI classifier held only strong features (six
features with 98% or higher selection frequency), whereas
the RGI classifier included weak features (four weak features
with 50% or less selection frequency). The existence of weak
features for the RGI classifier is a possible reason for having
an inferior classification performance than the NS-RGI classi-
fier. This makes sense as weak features cannot build a classifier
that can be generalizable for unseen data. This supports the find-
ing of our previous study,28 where we showed that a classifier
trained with a set of a few strong features can achieve better
classification performance than classifiers trained with a set
of weak features.

In addition, we note that the selection frequencies of the cur-
vature-related features (e.g., total curvature and mean curvature)

Table 3 Classification performance of trained LDA classifiers using
LOOCV for NS-RGI and RGI cases.

Performance comparison (AUC) Difference in AUC

NS-RGI RGI

AUCL–AUCR [95% CI] p-valueAUCL [95% CI] AUCR [95% CI]

0.80 [0.73, 0.88] 0.69 [0.6, 0.78] 0.11 [0.032, 0.19] 0.006

Table 4 List of frequently selected features under LOOCV.

Selected features for
NS-RGI

Selection
frequency

(%)
Selected features for

RGI

Selection
frequency

(%)

Radial gradient index* 100 Ellipsoid axes min to
max ratio*

100

Total curvature* 100 Radial gradient index* 100

Ellipsoid axes min to
max ratio*

99 Margin volume* 98

Margin volume* 99 Irregularity 97

Gaussian curvature 99 Total curvature* 52

Mean curvature* 98 Mean curvature* 48

Margin strength 1 44

Relative margin distance
variation

39

*Features that appeared for both NS-RGI and RGI classifiers.

Fig. 6 This figure shows the cases (in coronal view) that NS-RGI
showed lower segmentation performances (Dice value lower than
0.7), while RGI showed successful segmentation outcomes (Dice
value higher than 0.7). The breast density level of first (a and b)
and second (c and d) row lesions are levels 3 and 4, respectively.
Left column subimages (a and c) are the bCT cases without NS
enhancement and right column subimages (b and d) are those
with NS enhancement. As the lesions (highlighted as green outline)
are connected with breast parenchymal tissue, the NS enhancement
incorrectly includes the neighboring parenchymal tissue as fore-
ground, and therefore it kept applying the enhancement operations
to the case. The resulting segmentation outcome (b and d) from
NS-RGI showed leaked boundary compared to those of RGI.
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increased from 48% to 50% (for the RGI classifier) to 98% to
100% (for the NS-RGI classifier), respectively. This is another
possible reason as to why NS-RGI segmented lesions resulted in
better classification performance than RGI segmentation alone.
Our previous study13 showed that curvature features, especially
total curvature feature, hold useful information for classifying
benign and malignant breast lesions in bCT images. In addition,
Kuo et al.19 showed that increased classification power of mor-
phological features due to improved segmentation of breast
lesions can lead to improved performance of the classifier.
Note that the curvature features are morphological features,
that are specifically related to the surface of the segmented
breast lesions. Based on these, we may draw a conclusion
that the NS enhancement resulted in changes in segmentation
outcomes, and such change improved the morphological repre-
sentation (especially on the surface) of breast lesions and there-
fore caused the curvature features to provide more useful
information to the NS-RGI-based classifier than the RGI-
based classifier. This improvement in curvature features
might remove subtle features from consideration during training
of the NS-RGI-based classifier, such that the classifier retained
only strong features.

There are some limitations to our study. We used the same
dataset to select operating variables such as α, β, and γ for the
NS enhancement, feature selection for the classifier, training,
and testing the classifier. Although we used the LOOCV to
evaluate the performance of the NS-RGI and RGI classifiers,
the fact that we selected operating variables for the enhancement
from the same dataset might bias our results. An independent
dataset is required to check if the operating variables selected
for this study are the global optimum or just a local optimum.
In fact, there exists a noise simulator29,30 that can be used to
thoroughly study how the NS enhancement would handle vari-
ous levels of noise, as well as to search the optimal operating
variables for bCT images. It is therefore worthwhile to conduct a
future study to find the optimal operating variables for the NS
enhancement with an independent dataset and the above noise
simulator.

We used one reconstruction algorithm, i.e., FDK
reconstruction, which can be an additional limitation of this
study. There are other image reconstruction algorithms, specifi-
cally, iterative image reconstruction algorithms, available for
breast CT.1 It is possible that state-of-the-art iterative image
reconstruction algorithms can successfully reduce the noise in
the image such that the proposed NS enhancement is less effec-
tive. We or others need to conduct further research to determine
how the proposed NS enhancement performs on images recon-
structed with different algorithms.

Another limitation is that we tested only one segmentation
algorithm, RGI segmentation, as an example to show the effec-
tiveness of the NS enhancement. As there exists other algo-
rithms for bCT images (e.g., extended versions of RGI
segmentation using active contour by Kuo et al.31), one
might get different results using those other algorithms. In addi-
tion, deep convolutional neural network (CNN) is becoming
state-of-the-art for many image analysis tasks, including seg-
mentation. Although most previous publications on deep
CNN for segmentation is on 2-D images,32,33 3-D extensions
exist.34 Testing the proposed NS enhancement on other segmen-
tation algorithms, such as breast CT-specific algorithms and
more generic CNN algorithms, should be done in the future.
Since the NS enhancement works as a preprocessing step to

clean up the image, however, we expect that our proposed
enhancement method may improve the performance of other
segmentation algorithms.

In conclusion, we introduced an NS enhancement method as
a preprocessing step to denoise or enhance bCT images in order
to improve the performance of computer segmentation algo-
rithms. We showed that the proposed method could improve
the computer segmentation performance, as well as the com-
puter classification performance, when trained on features
extracted from segmented breast lesions.
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