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Abstract

Protected Region Radio Map Estimation

Background. Passive radio frequency (RF) sensors and receivers are highly vulnerable to

unintended radio interference from deployment of active RF transmitters in nearby areas of service.

Often, these RF receivers may also be susceptible to overloading damages. High likelihood scenarios

of overloading damages include ultra-sensitive receivers that cannot afford front-end protection, or

receivers deployed while powered down without the ability to measure the environment before

powering on. It is often costly to measure RF signal strength and assess potential interference over

wide urban/suburban areas among various building structures and complex terrains. Moreover,

these passive RF sensors and receivers are sometimes deployed in locations that are difficult to

access and to measure radio signal strength from new RF transmissions or those under planning.

Consequently, it is important in the service planning stage to estimate a wide area radio map from

only limited RF measurement at locations of convenience.

Objective. We propose that a network of cheap and robust RF receivers may be sparsely

deployed in a geographical region to estimate a completed radio map. After receiving power mea-

surements from the sparse network of RXs, several different estimation methods may be applied

to reconstruct the region’s radio map. These estimation methods may be in the form of kernels,

random processes, basis functions, and Machine Learning (ML) algorithms. We aim to provide

a certain level of confidence in multiple estimation methods that may be used for estimating a

completed radio map.

Results. Many of the interpolation methods produced favorable results when estimating a ra-

dio map. The Inverse Distance Weighting (IDW) algorithm performed the best overall due to being

one of the most accurate estimators, having the fastest processing time, and robust performance

with system parameter selection. Overall, the Machine Learning (ML) algorithms processed much

faster than the average interpolation method, but performed worse on average. Iterative Shrinkage

and Thresholding Algorithm (ISTA) Net performed the best due to estimating the most accurate

radio maps.
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CHAPTER 1

Introduction

In this thesis, we will explain the different types of estimation methods for estimating a radio

map. The different estimation methods, input parameters, and RF scenarios will be discussed and

compared. Our findings and comparisons will lead to best practices for estimating radio maps with

sparse power measurements in a given region.

1.1. Motivation for model-free Radio Map Estimation

Often RF recievers (RX) are deployed in regions with little to no knowledge of the region’s RF

activity. In the case of sensitive RF RXs, not knowing the RF acitivty in a region of deployment

will likely cause catastrophic failure to the RX front-end. With some research, a comprehensive

list of current and near future RF transmitters (TX), as well as geometrical data may be compiled

about the region. A straightforward and well-studied approach already exists for predicting RF

RX power in the region with TX and geometrical data, RF propagation models [6]. Models such

as the Free Space Path Loss (FSPL) will quickly and accurately predict how RF energy propagates

to a given location. However, FSPL rarely gives a complete picture of RF propagation as there

are many factors in an environment that affect how RF energy propagates; obstructions, humidity,

reflections, etc. Furthermore, predicting a radio map with a model such as FSPL would require a

calculation at every point in space, which may be time consuming. There are a handful of software

packages on the market today that effectively consider all the factors needed to accurately predict

RF propagation and automate testing multiple points for building radio maps, such as Wireless

inSite [12]. These software packages normally require a powerful computer to calculate radio maps

and may still take multiple hours to finish simulating a single radio map. The power required,

simulation processing time, and cost of these software packages are not feasible for embedded or

distributed real-time calculations.
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Alternatively, model-free estimation methods may be utilized for estimating RF power [1]. This

thesis explores different estimation methods for estimating RF radio maps without needing powerful

computers, expensive software packages and comprehensive knowledge of a region’s RF activity.

Estimation methods have the benefits of estimating radio maps more quickly and more generally

from scenario to scenario when compared to RF propagation models. The estimation methods we

will consider in this thesis will rely on sparse RX measurements from the region for generating

complete radio maps. However, there are some aspects of applying model-free estimation methods

that need to be carefully considered. These aspects include accuracy, processing time, sensor count,

sensor placement, and simply the estimation method which works best for the given environment;

as different environments affect RF propagation differently.

1.2. Thesis Organization

This thesis is organized in the following manner:

• Chapter 2 will discuss model-free radio map estimation more in-depth. This chapter will

discuss the datasets used for our research and the considerations that needed to be taken

into account when working with these datasets. Next, we will discuss how sparse subsets

of our datasets are determined. Last, we will give an in-depth overview of all the different

estimation methods considered for this research.

• Chapter 3 will discuss the performance of each model-free estimation method described

in chapter 2. The main performance categories which will be discussed are how accurate

the radio map estimations are, and how fast the radio map estimations were computed.

This chapter will also discuss a recommended set of parameters for applying model-free es-

timation methods to this problem and similar problems; e.g. recommended sparse dataset,

recommended estimation methods, considerations with the estimation accuracy.

• Chapter 4 will provide a final overview of this research, as well as provide recommended

future work to expand upon this research.

• Appendix A will discuss how a single interpolation radio map estimation is analyzed.

• Appendix B will showcase an example for each ML methods estimation output as the

sparse input increases.
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1.3. Nomenclature

Tables 1.1 and 1.2 provide a list of acronyms and variables respectively, which are commonly

used throughout this thesis.
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Table 1.1. Acronyms used in this Thesis

Acronym Definition

AERPAW Aerial Experimentation and Research Platform for Advanced Wireless
AFE Average Fractional Error
APL Applied Physics Laboratory
BN Batch-Normalization
CNN Convolutional Neural Network
CS Compressive Sensing/Sampling
DCT Discrete Cosine Transform
DCU Dense Compression Unit
ESRGAN Enhanced Super-Resolution Generative Adversarial Networks
FE Fractional Error
GP Gaussian Process
GSP Graph Signal Processing
IDCT Inverse Discrete Cosine Transform
IDW Inverse Distance Weighting
ISTA Iterative Shrinkage-Thresholding Algorithm
ISTA-Net Iterative Shrinkage-Thresholding Algorithm Net
JHU Johns Hopkins University
LBFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno
LDPL Log Distance Path Loss
LIDAR Light Detection and Ranging
LOS Line Of Sight
LReLU Leaky Rectified Linear Unit
MBI Model Based Interpolation
MDA Minimum Distance Algorithm
MSE Mean Square Error
NRMSE Normalized Root Mean Square Error
PAWR Platforms for Advanced Wireless Research
PD Pyramidal Decomposition
PReLU Parametric Rectified Linear Unit
ProSR Progressive Super-Resolution
PSNR Peak Signal-to-Noise Ratio
ReLU Rectified Linear Unit
RBF Radial Basis Function
RF Radio Frequency
RMSE Root Mean Square Error
RRDB Residual in Residual Dense Block
RSS(I) Received Signal Strength (Indicator)
RX RF Receiver
SR Super-Resolution
SRGAN Super-Resolution Generative Adversarial Networks
TX RF Transmitter
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Table 1.2. Variables used in this Thesis

Variable Definition

DB
(k)
v Virtual database spanning over the region of ground truth.

DB(k) Database of RPs selected from the virtual database.

DB
(k)
tr Database of nearest RPs in the ground truth to our selected RPs in DB(k).

IHR Original high resolution image used for Super-Resolution.
ILR Low-resolution copy of IHR, input to Super-Resolution algorithms.
ISR Super-Resolution generated image at the output of the algorithm.
RPtruth Reference Points in ground truth
RPsparse Reference Points in sparse dataset
EPsparse Reference Points to estimate with sparse dataset
RPest Reference Points of radio map estimate
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CHAPTER 2

Model Free Radio Map Estimation

In this chapter we will discuss the data used for our research, the different ways we found sparse

datasets, and the different estimation methods we used for estimating the ground truth. Section 2.1

will discuss the datasets used as RPtruth, the problems encountered with these datasets, and how

these problems are mitigated. Next, section 2.2 will discuss the different methods for generating

RPsparse from RPtruth. Finally, sections 2.3 and 2.4 will discuss the different interpolation and

machine learning methods that accept RPsparse as an input and estimate EPsparse.

2.1. Ground Truth

2.1.1. Applied Physics Lab’s Dataset. The APL dataset used for our research was pro-

vided by Johns Hopkins University Applied Physics Laboratory (JHU APL). The dataset provided

by APL was generated using Wireless inSite Software with Light Detection and Ranging (LIDAR)

information of a region in Atlanta Georgia. The LIDAR data of the region was used in conjunction

with RF propagation models to simulate a radio map with an array of simulated RF Transmitters

(TX). A 16 by 16 array of TX elements were simulated, transmitting a tone at 2.66 GHz. The TX

elements were spaced apart by a half wavelength, which is 56.4 millimeters at 2.66 GHz. The TX

array was simulated at a height of 201 meters. The RF RX antennas were simulated at a uniform

height of 2.01 meters and were spaced apart uniformly by 0.8 meters. Figure 2.1 shows the mean

power plotted from our dataset (left) next to a Google Satellite image of the region (right).

The distances shown in figure 2.1 are referenced from the center of the TX array. Looking at

the distances shown in figure 2.1 we may observe that the plotted region is North of the TX array

by about 4600 meters and is East of the TX array by about 150 meters. The total size of the

region is 481× 639meters = 0.308km2. Furthermore, we may overlay the dataset’s power plot on

the Google Satellite image to spot check for consistency, figure 2.2.
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Figure 2.1. APL ground truth RX power (dBm) on the left and Google Satellite
image of the region on the right.

Here we can see some consistency with our dataset. Specifically, the red circle shows how the

broad side of a structure heavily attenuated RF power. The red rectangle shows how RF power

stayed consistently high for the length of a street in the region, due to little obstructions along the

street.

2.1.2. Aerial Experimentation and Research Platform for Advanced Wireless’ Dataset.

Aerial Experimentation and Research Platform for Advanced Wireless (AERPAW) is part of the

National Science Foundation’s (NSF) Platforms for Advanced Wireless Research (PAWR) initia-

tive. Although the AERPAW testbed is currently still under construction, the AERPAW team was

gracious enough to lend us some of their collected data used for calibrating the testbed. While

other PAWR testbeds are focused on fixed RX and TX stations, AERPAW has an emphasis on

testing RX and TX from an aerial platform. The current primary aerial platform uses multirotor
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Figure 2.2. Superimposed image of APL ground truth RX power (dBm) on top
of Google Satellite image of the region. The RX power is averaged over all 256 RX
measurements at each location. It can be seen that ground truth is consistent with
the region, such as the large structure attenuating RF power (red circle) and the
vertical strips of high RF power due to unobstructed paths along the region streets
(red rectangle).

drones, such as the hexacopter. Automating collection of real-world, uniform, and dense RF mea-

surements is ideal for radio map estimation datasets, thus a mobile aerial platoform is an ideal RF

measurement device.

As stated earlier, AERPAW will not be operational at the time of writing this thesis. We will

therefore use a dataset provided by AERPAW which was collected for testbed calibration. Figure

2.3 shows the dataset’s Receiver Signal Strength (RSS) plotted in 3-D space. The drone made two

separate flights, first launching from the TX tower base. The drone flew to an altitude of 50m

then flew out radially 300m and returned next to the TX tower along the same path. Periodic RX

measurements were taken to generate this dataset as the drone was flying. Given that this data

has dense measurements along two legs of 3-D space, 1-D radio map estimations will be considered;

one along the 50m climb and another along the 300m radial arm.

An additional dataset similar to that of figure 2.3, will be considered and will provide more

densely populated planar data for 2-D estimation, see figure 2.4.
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Figure 2.3. AERPAW provided data of two experimental flights on their aerial
drone. The right shows the RSS measurements in Google Earth. The left shows
a color gradient indicating the measured RSS value at a given longitude (x-axis),
latitude (y-axis) and altitude (z-axis).

Figure 2.4. AERPAW collected additional data at their Lake Wheeler Testbed
area. The right shows the RSS measurements in Google Earth. The left shows
a color gradient indicating the measured RSS value at a given longitude (x-axis),
latitude (y-axis) and altitude (z-axis). These images show three different flights at
three different altitudes superimposed.

2.1.3. Grid Conforming. It was necessary that all datasets conformed to some discrete grid

of uniformly spaced nodes such that there would be an upper bound on the number of Reference

Points in (RPtruth) and estimation processing time.
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Upon analysis of the dataset provided by APL, we discovered their data was inconsistent and

did not line up with a uniform grid. Figure 2.5 shows the minor offsets in both the X and Y location

data provided by APL. The plots shown in figure 2.5 are expected to have a continuous column

of RX measurements (left) and a continuous row of RX measurements (right). APL’s dataset was

simulated in multiple patches and later stitched back together, this is one major reason for the

inconsistent measurements displayed in figure 2.5.

Figure 2.5. Inconsistent RX measurement locations in the data provided by APL.
The large gaps in the data along each axis are the result of collecting the data in
multiple simulations in different patches of the region.

The data was fit to a discrete grid of uniformly spaced nodes with equation 2.1, where RXxyz

is the original locations of RPs in RPtruth and resRX is the expected resolution used for generating

the dataset. Equation 2.1 conformed all the data to a consistent grid, but this process would

cause some RPtruth to conform to shared locations; the APL dataset has about 98% of all RPtruth

conforming to a unique location, thus 2% of RPtruth conforms to shared locations. All RPtruth that

were in shared locations after conforming to a grid were averaged together. Furthermore, because

APL removed the RPtruth that effectively measured zero RX power and to prevent error graphs

from being saturated by large errors caused in these regions, we initialized those RPtruth to the

average power of the ground truth. If a few values in a plot are much higher or lower than the

average, the color scheme showing measurement variation would be limited to similar colors, thus

making the graph indiscernible and “saturated.”
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(2.1) DB(k) =

⌊
RXxyz

resRX

⌋
∗ resRX

2.2. Sparse Data

Selecting a subset of RPtruth to build the sparse dataset, RPsparse, is nedded to test our estima-

tion methods. Subsections 2.2.1 to 2.2.3 will discuss how we selected different subsets of RPtruth.

2.2.1. Random Selection. The first method used for selecting RPsparse was a Gaussian

random distribution. This is, of course, a fairly straightforward method of randomly choosing the

desired amount of RPtruth to include into DB(k). Figure 2.6 shows an example of 500 RPtruth

being selected from the pool of possible locations. Furthermore, figure 2.6 shows DB
(k)
tr which has

selected the ground truth points closest to all DB(k) points and saved the corresponding RSS value

at those points. Note that the color scheme in DB
(k)
tr is different from the color scheme in the

ground truth due to the RSS value ranges being different. However, DB
(k)
tr is storing the same RSS

values as the ground truth for the selected locations.

Figure 2.6. Random selection of RPtruth for DB(k) and DB(tr) while also showing
ground truth for comparison. 500 RPtruth were selected for this figure. Note the
data at each RPsparse is consistent with the ground truth, but the color scheme on

DB(tr) and ground truth differ due to the dataset RSS value ranges differing.

2.2.2. Grid Selection. Grid selection finds a uniform grid of points based on the aspect ratio

of the ground truth and the amount RPtruth requested. Grid selection will first find a divisor based

on the aspect ratio of the ground truth, equation 2.2.

11



(2.2) divisoraspect =
range(x)

range(y)

where range(·) refers to finding the range of axis locations. Equation 2.2 is applied when the range

on the x-axis is greater and inverted when the range on the y-axis is greater. Next, the number of

RPtruth to be selected along the smaller axis is found by equation 2.3.

(2.3) RPsmall =

⌊√
RPrequested/divisoraspect

⌋
The number of RPtruth to be selected along the larger axis is found by equation 2.4.

(2.4) RPlarge = ⌊RPsmall ∗ divisoraspect⌋

Finally, the number of RPtruth to be used in the sparse dataset may be found by equation 2.5.

(2.5) RPcount = RPsmall ∗RPlarge

An example of generating a RPsparse with the grid selection method is shown in figure 2.7. In

this example RPrequested = 500.

Figure 2.7. Grid selection of RPtruth for DB(k) and DB(tr) while also showing
ground truth for comparison. 500 RPtruth were selected for this figure.
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For the example presented in figure 2.7, our DB
(k)
v has 604 × 800 possible RPtruth. Here

range(x) = 800 and range(y) = 604 so following equation 2.2, divisoraspect = 800/604 = 1.32.

Next we find the range of the small and large axis for DB(k) using equations 2.3 and 2.4. In our

example, RPsmall =
⌊√

500/1.32
⌋
= 19 and RPlarge = ⌊19 ∗ 1.32⌋ = 25. This will finally lead us to

our RPsparse count using equation 2.5, RPcount = 19 ∗ 25 = 475. We requested a DB(tr) with 500

RPtruth in a uniform grid, and we were given an RPsparse with 475 RPtruth.

2.2.3. Minimum Distance Algorithm. Minimum Distance Algorithm (MDA) finds RPtruth

that are the most spaced apart from all other selected RPtruth. MDA is a low-complexity algorithm

proposed by reference [14] for finding these uniformly spaced RPtruth. First, a virtual grid is

solved, DB
(k)
v , for a list of possible positions to select within the dataset; this is the same virtual

grid discussed in section 2.1.3. Next, One RPtruth is randomly selected to start the process, and

then each additional RPtruth is selected one at a time in a location that is most separated from all

previously selected RPtruth. As each RPtruth is selected from the virtual grid, the selected RPtruth

is removed from the pool of possible selections. MDA will provide the exact number of requested

RPtruth for estimation. The pseudocode for MDA is provided by algorithm 1 and was first proposed

in reference [14].

Algorithm 1 MDA

Require: the area P , the distance λ(k) between neighbor virtual RPs is DB
(k)
v , the number n(k)

of RPs want to select.
Ensure: select RPs every λ(k) meters in P to build DB

(k)
v

Ensure: randomly select RPc from DB
(k)
v , DB(k) = RPc

1: while DB(k) ̸= n(k) do

2: for all RPi ⊂ DB
(k)
v do

3: Calculate Mi

4: end for
5: RP = argmin

RPi⊆DB
(k)
v

Mi

6: DB(k) ← RP
7: end while

13



Figure 2.8. MDA selection of RPtruth for DB(k) and DB(tr) while also showing
ground truth for comparison. 500 RPtruth were selected for this figure.

2.3. Interpolation Estimation

2.3.1. Uniform Localization. Due to the many obstructions in the region where the APL

dataset was generated, discussed in section 2.1.1, we found that localizing the interpolation estima-

tions performed better than global interpolations. The interpolation estimations only considered

the Q closest RPsparse when estimating EPsparse. This type of localization will generate a Voronoi

diagram like the one shown in figure 2.9.

Figure 2.9. Qth-order Voronoi diagram where Q = 2. This diagram shows
the regions of unknown locations that need to be estimated with the two closest
RPsparse. For example, unknown location L2 falls into the region where RPsparse,3

and RPsparse,6 are the closest RPsparse [10].
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All the sparse data selection methods discussed in section 2.2 find uniformly spaced RPtruth.

Therefore, we may make a valid assumption of uniformly spaced RPsparse when selecting the order

of Q.

Selecting the order of Q was achieved by simply considering the average area covered by a

single RPsparse, and by specifying the diameter of localization we want to consider when estimating

EPsparse. For example, APL’s dataset was collected in a region filled with trees and buildings. The

RX was placed at a height of 2 meters which is about 6ft or the height of a tall human. Therefore,

all the obstructions in this region will affect RF propagation and we cannot assume Line Of Sight

(LOS) propagation. If we consider that this region has a grid of streets, we may reasonably consider

an EPsparse localization of 9 meters in diameter (about the width of a neighborhood street). This

will give us a localization area of pi ∗
(
9m
2

)2
= 63m2. Now considering the area covered by each

RPsparse may be determined by equation 2.6.

(2.6) RParea =

(
RPtruth

RPsparse

)
∗ rx ∗ ry

where RPsparse and RPtruth are the number of RPs in the total dataset and sparse dataset respec-

tively, and rx and ry are the x and y resolution of our virtual database, DB
(k)
v , respectively. We

finally determine the order of our localization, Q, by using equation 2.7.

(2.7) Q =

⌈
localizationarea

RParea

⌉
If we consider our example with the APL dataset and assume a sparse dataset of 25% , then

we will find an RParea = (4.0) ∗ 0.82 = 2.56m2, where rx = ry = 0.8 in the APL dataset. Finally

finishing this example, we will find that the order of Q will be Q =
⌈
63m2/2.56m2

⌉
= 25.

2.3.2. Gaussian Process. A 2-dimensional Gaussian Process (GP) will be derived and ap-

plied for estimating the ground truth. The derivation of the GP will follow the works described

in [3] and [14]. Consider a vector of realistic and noisy measurements of y that was measured at

locations X ∈ Rd. Taking n measurements will result in y equalling a vector with n values and X

15



being a d × n matrix. A key GP property is that each measurement in y has some correlation to

the neighboring measurements [3]. For this GP derivation, the assumed correlation between radio

map mean RSS values will be the Gaussian Kernel as described in equation 2.8

(2.8) κ(xp, xq) = σ2
fexp

(
− 1

2l2
|xp − xq|2

)
where σ2

f is the signal variance, l is the length scale (this determines the correlation strength drop off

between points [3]) and xp/xq are two dataset points. The variables σ2
f and l are hyperparameters

and may be estimated based on the sparse dataset provided to the GP. σ2
f and l denote the

signal variance and length scale of RPsparse respectively. These hyperparameters determine the

correlation of one RP’s RSS measurement to neighboring RPs [14]. Section 2.3.2.1 will discuss how

to estimate the GP hyperparameters. Using the Gaussian kernel as the correlation between points,

the covariance of a single data point from the sparse dataset may be written as equation 2.9.

(2.9) cov(yp, yq) = κ(xp, xq) + σ2
nδpq

where σ2
n is the variance with all measurements in the sparse dataset and δpq equals 1 when p = q

and 0 otherwise. More appropriately, the covariance matrix of the entire sparse dataset may be

written as equation 2.10.

(2.10) cov(y) = K+ σ2
nI

where K is a n × n matrix composed of the evaluated kernel between all the points in the sparse

dataset, K[p, q] = κ(xp, xq). Given the correlation between measurements have an assumed correla-

tion following the Gaussian Kernel, all measurements in y are jointly Gaussian with y proportional

to N (0,K+ σ2
nI) [3]. However, the more important observation is that an estimated measurement

at any arbitrary position, x∗, may be modeled as a Gaussian random variable defined by equation

2.11 [14].
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(2.11) p(RSS(x∗)|x∗,X,y) = N (RSS(x∗);µx∗ , σ
2
x∗)

whereRSS(x∗) simply refers to an RSS measurement at x∗, µx∗ is the mean of the RSS measurement

at x∗ defined by equation 2.12, and σ2
x∗ is the variance of the RSS measurement at x∗ defined by

equation 2.13.

(2.12) µx∗ = k⊤
∗ (K+ σ2

nI)
−1y

(2.13) σ2
x∗ = κ(x∗, x∗)− k⊤

∗ (K+ σ2
nI)

−1k∗

2.3.2.1. Gaussian Process Hyperparameter Estimation. Hyperparameters need to be estimated

for the GP based on the set of input data, y and X. The hyperparameters are estimated by

maximizing the log-likelihood of y as defined in equation 2.14 [15]. Equation 2.14 is finding the

(2.14) logp(y|X, θ) = −1

2
y⊤(K+ σ2

nI)
−1y− 1

2
log|K+ σ2

nI| −
n

2
log2π

where θ = ⟨σ2
n, l, σ

2
f ⟩ and σ2

n is the variance of measurements y while l and σ2
f are the two hy-

perparameters that must be estimated. Equation 2.14 will be used to find the hyperparameters,

θ, maximizing the probability that our sparse data, y, may be evaluated by our location data,

X. Equation 2.14 may be maximized using conjugate gradient descent [3]. Maximizing the log-

likelihood via conjugate gradient descent may be accomplished with algorithms such as the Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) and will require the partial derivatives of the

log-likelihood function with respect to all parameters in θ as defined by equation 2.15 [3].

(2.15)
∂

∂θj
logp(y|X, θ) =

1

2
tr

(
(K−1y)(K−1y)⊤

∂K

∂θj

)
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where the partial derivatives of K are the partial derivatives of the Gaussian Kernel with respect

to all parameters in θ and are defined by equations 2.16 - 2.18.

(2.16)
∂K

∂σ2
f

= 2σfexp

(
−1

2

(
d

l

)2
)

(2.17)
∂K

∂l
= σ2

fexp

(
−1

2

(
d

l

)2
)

d2

l3

(2.18)
∂K

∂σ2
n

= 2σnδpq

where d = xp − xq. The most complex computation when estimating the GP hyperparameters is

the matrix inversion of K in equation 2.15. This computation has the complexity of O(n3), where

n denotes the number of RPsparse in y. Furthermore, this same matrix inversion is needed when

estimating each x∗ as defined in equation 2.12. Section 3.5 will show estimating with the GP has

significant processing time when compares to all other estimation methods.

2.3.3. Radial Basis Function. The Radial Basis Function is similar to the Gaussian Process

in section 2.3.2 and will be applied for estimation in a similar fashion. The key difference with the

RBF is the kernel used. Equation 2.8 defined a Gaussian Kernel, where equation 2.19 defines the

RBF kernel.

(2.19) κ(xp, xq) = exp

(
− 1

2l2
|xp − xq|2

)
Furthermore, what is apparent when using the RBF for estimation is that there is one less

hyperparameter to estimate with our sparse dataset. The RBF only needs to estimate the length-

scale, l, and does not have the signal variance hyperparameter, σ2
f . A slightly different derivation

for applying the RBF to RSS estimation is provided in reference [7].
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2.3.4. Discrete Cosine Transform Basis. Due to the sharp edges of APL’s dataset, we

then tried to use the Discrete Cosine Transform (DCT) as a basis. Using the DCT as a basis was

originally posed to bring back some of the sharpness in our dataset estimation which the GP did

a poor job on estimation. This was accomplished by using the information provided by the sparse

dataset to solve for DCT coefficients. As a simple example, suppose A is a 3 × 3 matrix to be

estimated with a DCT basis. Figure 2.10 showsA and how each value ofA is indexed. Furthermore,

figure 2.10 shows a sparsely sampled version of A, where only 3 RPtruth were selected, As.

Figure 2.10. A should be considered an example matrix that stores some ground
truth. As is a sparsely sampled matrix of the ground truth A.

If A is known, then finding B is trivial. Simply take the 2-D DCT of A. However, finding some

estimated matrix of coefficients for the original ground truth is not quite as trivial. Consider the

definition of the 2-D Inverse DCT (IDCT) given in equation 2.20 [4] [11].

(2.20) As(m,n) =

P−1∑
p=0

Q−1∑
q=0

B(p, q)ϕ(p,m, P )ϕ(q, n,Q)

where B is the DCT coefficient matrix, P is the total length of the first axis, and Q is the total

length of the second axis (in figure 2.10’s example, P = Q = 3), and where ϕ(·) is defined by

equation 2.21.

(2.21) ϕ(p,m, P ) = αmcos
π(p)(2m+ 1)

2P
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where αm is defined by equation 2.22.

(2.22) αm =


1√
P

m = 0√
2
P 1 ≤ m ≤ P − 1

A system of equations may be built to solve for some estimated coefficient matrix, Bs. The

system of equations to solve for Bs is shown in equation 2.23.

A(0, 0) = B(0, 0)ϕ(0, 0, P )ϕ(0, 0, Q) +B(0, 1)ϕ(0, 0, P )ϕ(1, 0, Q) + ...+B(2, 2)ϕ(2, 0, P )ϕ(2, 0, Q)

A(0, 2) = B(0, 0)ϕ(0, 0, P )ϕ(0, 2, Q) +B(0, 1)ϕ(0, 0, P )ϕ(1, 2, Q) + ...+B(2, 2)ϕ(2, 0, P )ϕ(2, 2, Q)

A(2, 1) = B(0, 0)ϕ(0, 2, P )ϕ(0, 1, Q) +B(0, 1)ϕ(0, 2, P )ϕ(1, 1, Q) + ...+B(2, 2)ϕ(2, 2, P )ϕ(2, 1, Q)

(2.23)

The system of equations in equation 2.23 is underdetermined and has many solutions, not just

one. This example has
(
9
3

)
= 84 different solutions, assuming that only 3 coefficients are solved

for and all other coefficients are set to 0. The underdetermined nature of this problem is how the

DCT is being used as the basis for estimating the ground truth. The final step is choosing which

DCT coefficients to solve for with our estimation. The answer to this question simply is to choose

the lower frequency, and more impactful, DCT coefficients. These are the DCT coefficients in the

upper left corner due to how the indexing of the DCT works. Figure 2.11 shows the pattern for

selecting DCT coefficients with ascending frequency (i.e. lower frequency coefficients first).

In this example, the DCT coefficients that are selected to be solved for areBs = {B(0, 0),B(0, 1),B(1, 0)}.

The final step for estimating the ground truth, is simply to take the 2-D IDCT of Bs.

2.3.5. Model Based Interpolation. As a mediation between model free and model based

estimation methods, we wanted to look at the performance of a Log Distance Path Loss (LDPL)

Model Based Interpolation (MBI) method. This method begins with the LDPL model shown in

equation 2.24 and makes a parameterized version of this model shown in equation 2.25 [10].
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Figure 2.11. The order for choosing which DCT coefficients to solve for when
using a DCT basis for estimating ground truth.

(2.24) P (d) = P (d0)− 10θlog10(d/d0)

where P (d), θ, d0, P (d0) denote an EPsparse at a distance d, path loss exponent, reference distance

for an RPsparse, and RSS value respectively.

(2.25) Zk(x, y) = ĉk − 10θ̂klog10

(√
(x̂k − x)2 + (ŷk − y)2

)
where k denotes the kth TX. Zk(x, y), θ̂, ĉk denote the P (d), θ, P (d0) when estimating for the kth

TX. Lastly, the TXk
EP distance from the kth TX is represented as the Euclidean distance. Fortunately

in this problem, there is only 1 TX and the location of that TX is known, so equation 2.25 then

becomes equation 2.26.

(2.26) Z(x, y) = ĉ− 10θ̂log10

(√
(xTX − x)2 + (yTX − y)2

)
Using equation 2.26, the unknown parameters of the problem may be directly solved with

RPsparse by using equations 2.27, 2.28 and 2.29.
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(2.27) (θ̂, ĉ) = argmin
θ,c

N∑
i=1

wi∑N
j=1wj

γ2i

where wi denotes residual weighting and γi denotes the residual for RPsparse,i.

(2.28) wi =
1

|si|p

where si denotes RSS value at RPsparse,i, and p denotes the power parameter for residual weighting.

Selection of the power parameter takes special care to obtain expected parameters.

(2.29) γi = si − c+ 10θlog10

(√
(xTX − xi)2 + (yTX − yi)2

)
where xi, yi denotes the x location and y location respectively for RPsparse,i. Once the best param-

eters θ̂, ĉ are solved for with the provided sparse dataset, we then use these parameters to estimate

all EPsparse.

2.3.6. Inverse Distance Weighting Interpolation. Inverse Distance Weighting (IDW) in-

terpolation, also known as Shepard’s method, is a simple interpolation method where EPsparse are

calculated by the sum of RPsparse RSS values multiplied by a normalized weight. The weight is

determined by Euclidean distance between any given EPsparse and RPsparse. Equations 2.30 and

2.31 show the definition for IDW interpolation as presented in [8].

(2.30) Pr(l, bj) =
1∑

li∈Lwi

∑
li∈L

(wi × vi,j)

where li is the RPsparse,i from the RPsparse, vi,j is the RSS value from the jth TX at the RPsparse,i,

and wi is defined by equation 2.31.

(2.31) wi =∥ l, li ∥−λ
2
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where l is the location of an EPsparse, li is the location of the RPsparse,i and λ is identified as the

system paramter. Typically λ > 0 and is usually set to a samll value such as 0.01 [8].

Similary to the LDPL-MBI method in section 2.3.5, we may reduce equation 2.30 to equation

2.32 because our datasets only have a single TX.

(2.32) Pr(l, b) =
1∑

li∈Lwi

∑
li∈L

(wi × vi)

2.4. Machine Learning Estimation

A few Machine Learning (ML) algorithms were considered for estimating the region’s radio

map. In the next few sections, each ML algorithm will be discussed and compared, as well as how

the input and output for ML algorithms were generated.

2.4.1. Enhanced Super-Resolution Generative Adversarial Networks.

2.4.1.1. Super-Resolution Generative Adversarial Networks. Enhanced Super-Resolution Gen-

erative Adversarial Networks (ESRGAN) [17] provided follow on work to the project Super-

Resolution Generative Adversarial Networks (SRGAN) [9]. The main contributions made by SR-

GAN are to generate natural images that do not look like they were generated by a computer. Many

SR algorithms prior to SRGAN would generate high-resolution images by minimizing pixel com-

parison error metrics between the generated high-resolution image and the original high-resolution

image (i.e. RMSE or PSNR). SRGAN proposed that these algorithms generate the most accu-

rate high-resolution images, but that the generated images lose a lot of perceptual features that

would allow the human eye to recognize the image as computer-generated. Therefore, SRGAN

developed a new way of generating high-resolution images that not only has a network for gener-

ating the high-resolution images (Generative Network), but also a second network to discriminate

between images that look computer-generated and images that look authentic and natural (Adver-

sarial/Discriminator Network).

The generative network is developed as a feed-forward Convolutional Neural Network (CNN),

denoted as GθG , that is parameterized by θG [9]. The parameters, θG = {W1:l, b1:l}, define the

weights and biases of an L-layer deep network [9]. θG may be obtained by optimizing the generative

23



network with a specific loss function, lSR [9]. Given high resolution images, IHR
n , n = 0, 1, ..., N

(ground truth), and corresponding low resolution copies, ILRn , n = 0, 1, ..., N , equation 2.33 shows

how SRGAN obtains θ̂G when training [9].

(2.33) θ̂G = argmin
θG

1

N

N∑
n=0

lSR(GθG(I
LR
n ), IHR

n )

Here θG are the parameters being trained by minimizing the average loss function of a generated

high resolution image, ISR, and the corresponding original high resolution image, IHR. θ̂G is simply

the best generative network parameters found by equation 2.33. The loss function, lSR, used in

SRGAN was the main contribution made by reference [9]. SRGAN defined their lSR in equation

2.34.

(2.34) lSR = lSRX + 10−3lSRGen

where lSRX is the “content loss” described by equation 2.35 and lSRGen is the “adversarial loss” de-

scribed by equation 2.36.

(2.35) lSRV GG/i,j =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(ϕi,j(I
HR)x,y − ϕi,j(GθG(I

LR))x,y)
2

(2.36) lSRGen =

N∑
n=1

−logDθD(GθG(I
LR))

The term “VGG” in equation 2.35 was simply the name of a 2nd place team in the ILSVRC-2014

competition [16]. The CNN used by the team, VGG, has since become the name for the CNN itself.

In equation 2.35 VGG19 is used, which is a pre-trained 19 layer VGG CNN [9]. Here ϕi,j denotes

the feature map obtained by the j-th convolution (after activation) before the i-th max-pooling

layer within the VGG19 CNN; this information is a given with the pre-trained VGG19 network [9].

24



Lastly, the terms Wi,j and Hi,j in equation 2.35 describe the dimensions of the respective feature

maps within the VGG network [9].

The Discriminator Network, denoted as DθD , also is a parameterized CNN much like the gen-

erative network with similar parameters, θD = {W1:l, b1:l}. The discriminator network is trained

simultaneously with the generative network. Equation 2.37 shows how the discriminator network

is trained with respect to the trained parameters of the generative network, θG [9] [5].

(2.37)

min
θG

max
θD

lSRDis(θD, θG) = EIHR∼ptrain(IHR)

[
logDθD(I

HR)
]
+ EILR∼pG(ILR)

[
log(1−DθD(GθG(I

LR)))
]

Equation 2.37 essentially shows that the Generative Network is trying to minimize θG such

that the Generated image is indistinguishable from a real image (i.e. ISR ∼= IHR), while the

discriminator network is trying to maximize θD such that the network probability of accuracy for

discriminating IHR from ISR increases.

Figure 2.12. SRGAN Generative Network (top) and Adversarial/Discriminator
Network (bottom) block diagrams [9].

Figure 2.12 shows the block diagrams for both the generative network (top) and discriminator

network (bottom) used in SRGAN. The Generative Network is comprised of what are called “B
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residual blocks” which all have identical layouts. Each B residual block is comprised of two con-

volutional layers with small 3 × 3 kernels and 64 feature maps followed by Batch-Normalization

(BN) layers and Parametric Rectified Linear Unit (PReLU) as the activation function [9]. Finally,

the generative network increases the resolution of the input image with two trained sub-pixel con-

volution layers [9]. The discriminator network is comprised of eight convolutional layers with an

increasing number of 3×3 filter kernels, doubling filter kernels layer by layer, from 64 to 512. Seven

of the convolutional layers are followed by a BN layer, and all convolutional layers are followed by

a Leaky Rectified Linear Unit (LReLU) activation layer with α = 0.2 [9]. Finally, the resulting

512 feature maps are followed by two dense layers and a sigmoid activation function to obtain a

probability used for input image classification [9].

2.4.1.2. Enhanced Super-Resolution Generative Adversarial Networks. ESRGANmade four ma-

jor adjustments to SRGAN. First, ESRGAN modified the architecture of SRGAN as shown in figure

2.13.

Figure 2.13. ESRGAN update to the B residual blocks (left), and block diagram
of RRDB [17].

The BN layers were removed from the B residual blocks in SRGAN. The BN layers were

removed because these layers may increase computational complexity, introduce undesired artifacts

when the network is deeper and trained under GAN, and reduce performance stability as well

as generalization of the network [17]. Also, ESRGAN added Residual in Residual Dense Blocks

(RRDB) in their deeper model with β as a residual scaling parameter (a multiplier at the output

of each Dense Block). RRDB was used on ESRGAN’s deeper model because the authors observed

that more layers and connections could boost performance.

Next, ESRGAN adjusted the discriminator network and based it on a Relativistic GAN. The

discriminator network in SRGAN estimated the probability that an image is generated or real,
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where a relativistic discriminator network predicts the probability of how much more IHR is real

relative to ISR. SRGAN may be expressed as DθD(I
SR) = σ(C(ISR)), where σ is the sigmoid

activation layer used in the discriminator network and C(·) is the non-transformed discriminator

output. However, ESRGAN may be expressed as DθRa
(IHR, ISR) = σ(C(IHR) − EISRC(ISR)),

where EISR represents the expectation of all the generated images in a batch of inputs. With this

information, the discriminator loss function then becomes equation 2.38.

(2.38) lRa
Dis = −EIHR

[
log(DθRa

(IHR, ISR))
]
− EISR

[
log(1−DθRa

(ISR, IHR))
]

The adversarial loss, which SRGAN defines by equation 2.36, then becomes equation 2.39.

(2.39) lRa
Gen = −EIHR

[
log(1−DθRa

(IHR, ISR))
]
− EISR

[
log(DθRa

(ISR, IHR))
]

One key difference with ESRGAN is that the adversarial loss takes advantage of the gradients

from both generated data, ISR, and real data, IHR [17].

ESRGAN also adjusted the perceptual loss function which SRGAN previously defined by equa-

tion 2.34. Equation 2.34, specifically the adversarial loss defined by equation 2.36, operates on the

feature maps obtained by the j-th convolution after the activation layer. The feature map after the

activation layer is very sparse, especially after a very deep network, which provides weak supervi-

sion and leads to inferior performance [17]. Therefore, ESRGAN proposes a generative network

loss function defined by equation 2.40.

(2.40) lG = lSR + λlRa
Gen + ηl1

where l1 = Exi(∥G(xi)− y∥)1 is the content loss that evaluates the L1-norm distance between the

estimated image ISR and the ground truth IHR, and λ,η are the coefficients to balance different

loss terms [17].
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Lastly, ESRGAN adjusted the generative network parameters, θG. ESRGAN gave a set of

parameters that are a hybrid of the optimized parameters for a GAN solution, θGAN
G , and a PSNR

solution, θPSNR
G . The hybrid parameters, θINTERP

G , are defined in equation 2.41 [17].

(2.41) θINTERP
G = (1− α)θPSNR

G + αθGAN
G

where α ∈ [0, 1] is the interpolation parameter. The generative network interpolation was used

in ESRGAN because the interpolation did not introduce any artifacts and fine-tuning a balance

between optimal accuracy and perceptual quality does not require retraining the network.

2.4.2. Progressive Super-Resolution. Progressive SR (ProSR) developed a model using a

Pyramidal Decomposition (PD). Figure 2.14 shows the composition of ProSR’s network and the

PD construction is apparent with smaller and deeper layers (u0) becoming progressively larger and

shallower (u2).

Figure 2.14. ProSR Block Diagram [18].

ProSR comes with a pre-trained model without GAN and a pre-trained model with GAN.

For the focus of this research, we are comparing the model without GAN as this will generate

images with minimal error and maximum PSNR. In this application of SR, minimizing error is

more important than generating high perceptual quality. This is because our application is trying
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to generate a radio map as accurately as possible, and is not trying to generate a natural image to

fool a human into believing the generated image is a real image.

ProSR begins by trying to solve some upscaling function u such that u(ILR) = ISR ∼= IHR.

However, the larger the upscaling ratio, the more complex the parameterization of u is required.

For this reason, ProSR proposes to use a PD scheme where each level will refine the feature

representation and upscale the input image by a factor of 2. That is, u is broken up into simpler

levels u0, u1, ..., un for this PD architecture. As shown in figure 2.14, each level is comprised of a

Dense Compression Unit (DCU) and followed by a sub-pixel convolutional layer. The DCUs have a

similar structure as the B Residual blocks used in ESRGAN, figure 2.13; 1× 1 convolutional layer,

Rectified Linear Unit (ReLU) layer, 3 × 3 convolutional layers. Furthermore, the PD architecture

proposed by ProSR follows an asymmetric structure where the first level, u0, will have the most

DCUs, and the number of DCUs will progressively decrease going into the higher levels. This

architecture differs from a symmetric structure because symmetric structures will have a symmetric

number of DCUs with respect to the level number. Due to ProSR’s asymmetric structure having

more DCUs with smaller inputs, ProSR will decrease memory consumption, decrease run-time and

increase the quality of ISR due to an increased receptive field with respect to IHR [18]. ProSR

also uses two scale-specific sub-networks, denoted by vn and rn, which allow for an individual

transformation between scale-varying image space and a normalized feature space [18]. ISR may

be solved by first finding the residuals with equation 2.42.

(2.42) Rn(I
LR) = (rn ◦ un ◦ ... ◦ u1 ◦ u0 ◦ vn)(ILR)

where A ◦ B denotes the output of block B will be the input of block A. For ProSR, we have

the ability for a x2, x4 and x8 resolution increase. Therefore we will have the following residuals,

R0(I
LR) = (r0 ◦ u0 ◦ v0)(ILR), R1(I

LR) = (r1 ◦ u1 ◦ u0 ◦ v1)(ILR), and R2(I
LR) = (r2 ◦ u2 ◦ u1 ◦

u0 ◦ v2)(ILR). Then adding the residuals with a fixed upsampling of the input, φ(ILR), will result

in a generated image, equation 2.43. The upsampling of the input, φ(ILR), may be a bicubic

interpolation for example.

29



(2.43) ISR = Rn(I
LR) + φ(ILR)

For an example where we want to have a x8 resolution increase, our ProSR output will have

the following formula, ISR = (r2 ◦ u2 ◦ u1 ◦ u0 ◦ v2)(ILR) + φ(ILR).

2.4.3. Iterative Shrinkage-Thresholding Algorithm Net. Iterative Shrinkage-Thresholding

Algorithm Net (ISTA-Net) attempts to use CNNs to solve the general underdetermined problem

presented in Compressive Sensing (CS). CS proposes the idea of reconstructing a dataset that was

undersampled less than Nyquist-Shannon’s famous theorem. Imagine having a vector x ∈ RN , such

as an image. Then a severely undersampled (less than 50% of the data) vector of x is produced as

y = Φx ∈ RM . Here Φ ∈ RMxN is the sampling matrix of x. In some situations, x may be a known

vector, but using CS to reduce data size may be important, such as compressing an image [21]. In

other situations x could not feasibly be a known vector and CS would be a necessary tool, such as

sampling RX values in every square meter of a square kilometer of space. In the latter scenario,

y could not be solved directly, but rather a placement of multiple RXs to take a measurement

simultaneously will generate y. In this situation, the locations of RXs will be the definition of Φ.

After y and Φ are determined, a new vector x̃ that is the same size as x, will be used as the variable

for reconstructing x in y = Φx̃. However, solving for x̃ is an underdetermined system of equations

with infinitely many solutions. Fortunately, given that a Φ sampling matrix is chosen under the

correct conditions, x may be reconstructed best by solving for equation 2.44.

(2.44) argmin
x̃

1

2
∥ Φx̃− y ∥22 +λ ∥ Ψx̃ ∥1

Here Ψ is an N ×N matrix of a basis and λ is a regularization parameter. Ψ may be the basis

of the FFT, DCT, or Wavelets for example [2]. Reconstruct x is done best by solving for an x̃

with the minimum l1 norm (as depicted in equation 2.44), Φ needs to be sufficiently incoherent

with the basis matrix Ψ and must obey the Restricted Isometry Property [2]. Some examples of

a Φ following these conditions are a random Gaussian Distribution, a Bernoulli Distribution, or

30



a partial Fourier Matrix [2]. Keep in mind that a Φ following a Gaussian Distribution or partial

Fourier Matrix will generate weighted samples with weights ∈ [0, 1] when normalized, whereas Φ

following a Bernoulli Distribution will have weights ∈ {0, 1}.

A common way to solve the minimum l1 norm is with an algorithm called Iterative Shrinkage-

Thresholding Algorithm (ISTA). By applying ISTA algorithms to solve for equation 2.44, equations

2.45 and 2.46 would be applied iteratively until an acceptable minimum ∥ x̃ ∥1 is computed.

(2.45) r(k) = x̃(k−1) − ρΦ⊤(Φx̃(k−1) − y)

(2.46) x̃(k) = argmin
x̃

1

2
∥ x̃− r(k) ∥22 +λ ∥ Ψx̃ ∥1

where k denotes which iteration of ISTA the result is on and ρ denotes a constant step size for

the ISTA algorithm [20]. Furthermore, r(k) may be regarded as some type of noisy observation of

x [21]. Solving for the term ∥ Ψx̃ ∥1 in equation 2.46 presents the greatest complexity when solving

equation 2.44 with ISTA [20] [21].

Therefore, ISTA-Net proposes to reduce the complexity of an ISTA algorithm by replacing the

l1 norm minimization in equation 2.46 with CNNs. Specifically, ISTA-Net will replace the l1 norm

minimization with two CNNs and a ReLU as an activation function. See figure 2.15 for a block

diagram of ISTA-Net.

ISTA-Net replaces the term Ψ with F(·), where F(x) = BReLU(Ax) (A and B correspond to

the two CNNs for each phase shown in figure 2.15). By replacing Ψ in equation 2.46, ISTA-Net

reconstructs x by following equation 2.47.

(2.47) x̃(k) = argmin
x̃

1

2
∥ x̃− r(k) ∥22 +λ ∥ F(x̃) ∥1

2.4.4. Semantic Image Inpainting with Deep Generative Models. Semantic inpainting

algorithm attempts to fill in a complete region of missing data which has been removed from

an image. Similar to sections 2.4.1 and 2.4.2, Semantic Image Inpainting uses generative and
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Figure 2.15. ISTA-Net block diagram. x is the original input image, y is the
undersampled vector of x, k is the phase/iteration number for each iteration of ISTA,

NP is the total number of ISTA iterations, r(k) is an iterative noisy observation of
x, and x(k) is an iterative reconstruction of x [20]

discriminator networks. The generative network will train by generating images and receiving

feedback from whether or not the discriminator network was fooled. Figure 2.16 shows a block

diagram overview of the Semantic inpainting algorithm.

Figure 2.16. a) shows the proposed GAN network proposed by Semantic Inpaint-
ing and b) shows the encoding manifold that is traversed when iteratively updating

ẑ using backpropagation. z(0) will be randomly initialized, z(k) denotes the kth it-
eration, and ẑ denotes the final solution [19]

Figure 2.16 may be implemented by first considering equation 2.48.
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(2.48) ẑ = argmin
z
{Lc(z|y,M) + Lp(z)}

where Lc denotes the “content loss”, y denotes the image with lost data due to a mask M , and

Lp denotes the loss of the prior generated image (penalizing unrealistic images). Furthermore, we

have the content loss defined by equation 2.49.

(2.49) Lc(z|y,M) =∥W⊙ (G(z)− y) ∥1

where G(z) denotes the output of the generative network given the latest iteration of z, ⊙ denotes

an element wise multiplication, and W is defined by equation 2.50.

(2.50) Wi =


∑

j∈N(i)
(1−Mj)
|N(i)| ifMi ̸= 0,

0 ifMi = 0

where i denotes the pixel index, and N(i) the set of neighbors to pixel i in a local window, and

|N(i)| denotes the cardinality of N(i) [19]. Semantic Inpainting uses a window size = 7 [19].

The prior loss, Lp, is the second term in equation 2.48 and is defined by equation 2.51.

(2.51) Lp(z) = λlog(1−D(G(z)))

where D(·) denotes the discriminator network, and λ denotes a parameter used by Semantic In-

painting to balance between the two loss functions, Lc and Lp. Without taking the prior loss

function into account when iteratively solving for ẑ, the final solution may result in a perceptually

implausible result [19]. For estimating our dataset, we will keep Lp in our iterative solution.

Finally, after iteratively solving for ẑ, Semantic Inpainting may be tested simply by running

G(ẑ) and re-inserting y. However, [19] determined that the output of the trained generative network

may not correctly predict the same intensities as the surrounding pixels in y. Therefore, a Poisson

blending is performed on the output for a final result described in equation 2.52.
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(2.52) x̂ = argmin
x
∥ ∇x−∇G(ẑ) ∥22 s.t.xi = yiforMi = 1

where ∇ denotes the gradient operator.

2.4.5. Machine Learning Input.

2.4.5.1. Super Resolution Input. SR algorithms main objective is to read in a low-resolution

image and expand on the image while still maintaining the same detail as accurately as possible.

Therefore, to test the estimation performance on different SR algorithms, an image was generated

from RPsparse based on the watt and dBm power levels. The size of each SR input image was

determined by the sparsity of each test, and the reduction of the dataset was determined by

equation 2.53.

(2.53) Divisor =

⌊√
RPtruh

RPsparse

⌋

where RPtruth represents the total count of power measurements in the total dataset, and RPsparse

represents the total count of power measurements in the sparse dataset. The Divisor calculated

in equation 2.53 shows how many power measurements from the ground truth to average together

along each axis and form a low-resolution input for the SR algorithms.

After the ground truth has been averaged together based on equation 2.53, then the averaged

data is used for generating an 8-bit and grayscale image. The minimum and maximum power levels

need to be saved along with each SR image such that the up-scaled output from the SR algorithm

may convert 8-bit pixel values back to power levels. Some noise is introduced to the SR algorithms

in the form of encoding 64-bit floating-point power measurements to integer 8-bit pixel color values.

Figure 2.17 shows an input image with a Divisor factor of 5 (25 ground truth measurements averaged

together) before (left) and after (right) being expanded from SR algorithms. The top two photos

show grayscale images of RF measurements in watt, and the bottom two photos show grayscale

images of RF measurements in dBm.

34



Figure 2.17. SR algorithm input and output. The left photos show grayscale
images of the RF ground truth averaged down to 1/25 the amount of data. The
right photos show grayscale images of SR algorithm output. The top photos were
generated with watt data and the bottom photos were generated with dBm data.
Proportional sizes of left and right photos are not accurate, in order to have an
appropriately sized figure.

2.4.5.2. ISTA-Net Input. ISTA-Net’s algorithm generatedRPsparse by selecting RPs fromRPtruth

based on the selected CS ratio. Therefore we simply provided ISTA-Net with an image of the entire

dataset’s watt and dBm measurements.

2.4.5.3. Semantic Inpainting Input. Semantic Inpainting was designed to accept a maximum

sized grayscale image with 96 × 96 pixels. Moreover, Semantic Inpainting does not perform any

up-scaling or growth to the input image as the SR algorithms do. Therefore, we split up the ground

truth into multiple blocks of 96 × 96 RPs from RPtruth. The watt and dBm measurements of an

input block were converted to grayscale images for processing.

2.4.6. Machine Learning Output.

2.4.6.1. Super Resolution Output. Some SR algorithms worked with 24-bit color images. There-

fore, we needed to convert the 24-bit color images back to 8-bit grayscale images before converting

the data back to power levels for performance measurements. This was accomplished with Python’s

Pillow library which converts color images to grayscale images with the ITU-R 601-2 luma trans-

form.
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Additionally, due to the nature of some of these SR algorithms, the final output image may

have been too small or too large for a direct comparison to the ground truth. Mismatched dataset

sizes were caused by the limited integer expansion of each axis for a given low-resolution image. If

the output image were smaller than the ground truth, then the SR algorithm was simply applied to

the output image again until a large enough image was generated. If the output image was larger

than the ground truth, then evenly spaced rows/columns were identified and averaged with their

neighboring row/column. Averaging the rows/columns were executed until the SR output image

matched the size of our ground truth exactly.

2.4.6.2. ISTA-Net Output. The output of ISTA-Net matched the input image size exactly. The

output of ISTA-Net is a 24-bit color image which was converted back to an 8-bit grayscale image

with the ITU-R 601-2 luma transform.

2.4.6.3. Semantic Inpainting Output. The output of Semantic Inpainting matched the input

image size exactly. The output of Semantic Inpainting is a 24-bit color image which was converted

back to an 8-bit grayscale image with the ITU-R 601-2 luma transform.
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CHAPTER 3

Performance Evaluation

This chapter will define key metrics for evaluating performance in Section 3.1, discuss how

different key parameters are chosen in Section 3.3, discuss the performance of all estimation methods

in Section 3.4 and finally discuss the processing time of all estimation methods in Section 3.5. The

performance and processing time discussed in this chapter shows that some methods perform more

favorably than others; this is true for the interpolation methods and the ML methods. Moreover,

localization shows optimal performance and processing time across all methods with smaller locales.

IDW and ISTA-Net provided the best overall performance for the interpolation and ML methods

respectively.

3.1. Performance Metrics

This section will discuss the key performance metrics for comparing the estimation methods.

3.1.1. Fractional Error. The fractional error is defined by equation 3.1.

(3.1) FE =
|RPtruth,i −RPest,i|

RPtruth,i

where RPtruth,i, RPest,i refer to the ith RP in the ground truth and estimation respectively. Fur-

thermore, we can define the average fractional error by taking the mean of all fractional errors,

equation 3.2.

(3.2) AFE = mean(FE) = mean

(
|RPtruth,i −RPest,i|

RPtruth,i

)
3.1.2. Root Mean Square Error. First, we defined the Squared Error (SE) by equation 3.3.
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(3.3) SE = (RPtruth,i −RPest,i)
2

Then equations 3.4 and 3.5 define the Mean Squared Error (MSE) and Root Mean Squared

Error (RMSE) respectively.

(3.4) MSE = mean
(
(RPtruth,i −RPest,i)

2
)

(3.5) RMSE =
√
mean ((RPtruth,i −RPest,i)2)

Finally the Normalized RMSE (NRMSE) is defined by equation 3.6.

(3.6) NRMSE =
RMSE

RPtruth,max −RPtruth,min

3.1.3. Peak Signal to Noise Ratio. Peak Signal to Noise Ratio is defined by equation 3.7.

(3.7) PSNR = 20 ∗ log10
(
max(RPtruth)

RMSE

)
where max(RPtruth) is the maximum possible value in the ground truth.

3.2. Dataset Reduction

3.2.1. Interpolation Methods. Due to the size of our datasets and the complexities of some

algorithms, we needed to reduce our datasets primarily for ensuring we have feasible processing

times.

3.2.1.1. APL’s Dataset. The JHU APL dataset used for our research covered a large region

and was very dense. Therefore the results presented in this section will be processed with (1/100)th

of the original ground truth. Figure 3.1 shows the block of ground truth that is used for all the

interpolation results presented in this chapter unless otherwise stated.
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Figure 3.1. The block of ground truth used for interpolation estimations. This
block size was selected to allow feasible processing times. This block of the ground
truth was selected for the signal diversity.

3.2.1.2. AERPAW’s Dataset. This dataset is too sparse and not suitable for the ML algorithms.

3.2.2. Machine Learning Methods. There is no concern for processing time with the ML

algorithms. As previously stated in section 2.4.5, all ML methods were tested with an image

generated from watt measurements and dBm measurements.

3.2.2.1. APL’s Dataset. Semantic Inpainting will only accept a 96× 96 pixel image, so we may

only consider blocks of 96 × 96 RPs from RPtruth. Therefore, all the ML methods will be tested

with a block of 96×96 RPs from RPtruth. Figure 3.2 shows the 50th block of 96×96 RPs in RPtruth.

This block was chosen for the diverse RF power measurements, similarly to why we selected the

block shown in figure 3.1.

However, the performance on the 50th block seemed quite poor. This result prompted us to also

test the performance of the 13th block. This block was selected due to how smooth and consistent

the RF power measurements are. Figure 3.3 shows the RF power measurements for the 13th block

of RPtruth.

3.2.2.2. AERPAW’s Dataset. This dataset is too sparse and not suitable for the ML algorithms.
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Figure 3.2. The 50th block of 96 × 96 RPs in RPtruth used for ML estimations.
This block size is limited by the max input for Semantic Inpainting. This block of
the ground truth was selected for the signal diversity.

Figure 3.3. The 13th block of 96 × 96 RPs in RPtruth used for ML estimations.
This block of the ground truth was selected for signal uniformity.

3.3. Parameter Consideration

The localization diameter and some interpolation methods had parameters without a clear

indication for how to set them. In this section we will discuss how these parameters were explored.
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3.3.1. LDPL-MBI Power Parameter. Figure 3.4 shows how the performance of LDPL-

MBI changes when adjusting the power parameter, p.

Figure 3.4. LDPL-MBI estimation performance with respect to setting the power
parameter, p. Figures A to C shows increasingly larger values of p where the per-
formance increases linearly with p increasing.

As the power parameter increases, the performance of the estimation increases. Around p = 3

the performance increase starts to plateau with increased p. Furthermore, we also observed that

for large values of p, such as p = 10, the performance starts to suffer.

3.3.2. IDW System Parameter. Figure 3.5 shows how the performance of IDW changes

when adjusting the system parameter, λ.

Figure 3.5. IDW estimation performance with respect to setting the system pa-
rameter, λ. Figures A to C shows increasingly larger values of λ where the perfor-
mance increases linearly with λ.
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As the system parameter increases, the performance of the estimation increases. We have

observed that any value greater than λ = 5 or less than λ = 0.1 results in similar performance to

λ = 5 and λ = 0.1 respectively.

3.3.3. Interpolation Localization. We discovered that localization of our interpolation meth-

ods yielded better results, but how much we needed to localize our methods was not clear. In order

to determine how localized we wanted our interpolation method for the best performance, we plot-

ted the performance of our interpolation methods with sparse dataset density on one axis and

varying localization diameters on the other axis, figure 3.6.

What can be observed from figure 3.6 is that our interpolation methods perform the best when

localization is minimized. One caveat to this observation is that if we had non-uniformly spaced

RPsparse, there would be a risk of making EPsparse localization so small such that some EPsparse

will have no RPsparse in their localized diameter. In this case, we suspect that performance will

start to dramatically decrease. Fortunately for our sparse datasets, we have uniformly distributed

RPsparse and will not run into this issue. For the performance discussed in section 3.4, a localization

diameter of d = 6m was selected.

Figure 3.7 shows an intriguing behavior exhibited by the IDW interpolation method when

adjusting the system parameter.

As the system parameter is set sufficiently large enough, localization no longer has an impact

on the performance of our estimations.

3.4. Estimation Performance

Figure 3.8 shows the performance of all interpolation methods described in Chapter 2.

All of the legend labels should be clear after discussing the different interpolation methods.

Additionally, a baseline is plotted in the performance graphs which consist of the performance

when no estimation is computed. In this case, we are graphing the performance of strictly the

sparse dataset padded with zeros. Figure 3.8 shows the same error, but with different metrics

to consider. Furthermore, the performance shown in figure 3.8 was generated from 10 different

RPsparse selected randomly and then averaged together.
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Figure 3.6. Interpolation performance as we sweep through increasing orders of
localization. This graph shows how lower orders of localization and higher RPsparse

densities both produce better performance. More importantly, this graph shows
that there is no dependence between localization order and RPsparse density.

We also wanted to consider the performance when different methods of selecting RPsparse were

used, as described in Chapter 2. Figure 3.9 shows how well the interpolation methods performed

with different methods for selecting our sparse dataset.

The performance data shown in figure 3.9 was generated from averaging 10 random RPsparse

(A), a single grid RPsparse (B) and averaging 10 MDA RPsparse (C). When RPsparse is selected at

random or with MDA, then averaging the performance of multiple RPsparse will approach the true

mean performance of a given density. However, when RPsparse is selected with the grid method,

43



Figure 3.7. Sufficiently large λ for the IDW method will generate consistent esti-
mation performance regardless of the localization order.

Figure 3.8. The error of the interpolation methods. Figure A shows AFE, figure
B shows the NRMSE, and figure C shows the PSNR.
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Figure 3.9. The interpolation estimation performance for the three ways to select
RPsparse discussed in Chapter 2.

then RPsparse will never change for a given density and averaging performance will be the same as

a single estimation. Figure 3.9 shows that the GP is the most affected by how we select RPsparse.

RBF and MBI are slightly affected by how RPsparse is selected, and IDW shows the most tolerance

to how RPsparse is selected.

Figures 3.10 and 3.11 shows the performance for the different ML methods when estimating

the 13th and 50th block of 96× 96 RPs from RPtruth.

Figure 3.10. The error of the ML methods when estimating the 13th block. Figure
A shows AFE, figure B shows the NRMSE, and figure C shows the PSNR.
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Figure 3.11. The error of the ML methods when estimating the 50th block. Figure
A shows AFE, figure B shows the NRMSE, and figure C shows the PSNR.

RPsparse density used for ESRGAN and ProSR has an upper bound of 25%, ISTA-Net has an

upper bound of 50%, and Semantic Inpainting has an upper bound of 100% (these upper bounds

are determined by how the algorithms are designed). From the results presented in figures 3.10

and 3.11, we can see that ISTA-Net clearly performs the best out of all the ML methods. ProSR

shows promising performance as more data is added to RPsparse, but has poor performance with

small RPsparse densities. Semantic Inpainting shows consistent performance as we add more data to

RPsparse, but still has much worse performance when compared to ISTA-Net. ESRGAN exhibits

the worst overall performance, showing inconsistent trending and the worst accuracy of all ML

methods. The trend in performance for any estimation method is expected to decrease in error

as the denisty of RPsparse increases. However, ESRGAN has severely inconsistent trending in

performance than what we would expect.

We used pre-trained models for ESRGAN and ProSR. These models were trained on natural

images. Moreover, as stated in sections 2.4.1 and 2.4.2, ESRGAN and ProSR algorithms are trained

to upscale with high perceptual quality rather than accurate predictions of additional pixels based

on the value of input pixels. We believe that these two reasons are the cause of severe inconsistent

trending in ESRGAN’s performance as well as some inconsistent trending in ProSR’s performance.
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3.5. Processing Time

Figure 3.12 shows the processing time required by the interpolation methods.

Figure 3.12. The processing time required by interpolation methods in millisec-
onds.

The GP method takes the longest amount of time to compute, an order of magnitude longer than

the next interpolation method. Many of the graphs in this chapter do not include the GP as this

method is prohibitively too long to compute. Furthermore, the methods requiring parameter fitting

seemed to RPsparse requiried the most processing time. The parameter fitting for these methods

came in the form of maximizing or minimizing interpolation error with RPsparse while adjusting

the targeted parameter, and we believe that this process is what adds the most processing time

in these methods. The IDW and DCT methods, which do not require parameter fitting, were the

fastest interpolation methods tested. Figure 3.13 shows the processing time vs localization and

RPsparse density for the IDW, MBI, and RBF methods respectively.

Clearly, the more global an interpolation method becomes, the more processing time is required.

Increased processing time with increased localization is expected as each interpolation method will

now consider more RPsparse when estimating each EPsparse. Furthermore, the hump observed in
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Figure 3.13. The processing time required by interpolation methods with varying
localization diameters in milliseconds.

Figure 3.12 and Figure 3.13 along the RPsparse density axis is an expected phenomenon. When

the EPsparse ≫ RPsparse, then there will be few unique localization groups (these are the outlined

groups in a Voronoi diagram, such as in Figure 2.9). All EPsparse belonging to a unique localization

group are processed quickly with matrix operations rather than loop operations. As the RPsparse

count increases, so will the amount of unique localization groups, and each unique group adds an

additional inefficient loop iteration of our interpolation methods. Finally, as RPsparse ≫ EPsparse,

then there will be much less EPsparse to estimate as well as much less unique localization groups.

The processing time for all ML methods is about the same. The ML methods would estimate

RPest on the order of seconds to 10s of seconds, but always less than 1 minute. This processing

time was true regardless of the chosen RPsparse density.
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CHAPTER 4

Conclusion and Future Directions

4.1. Conclusion

In this thesis, we explained different types of estimation methods for predicting a radio map.

Our focus was on comparing different model-free estimation methods when provided with limited

input data. We observed that many of the interpolation methods performed favorably for estimating

RPest with a sparse input, RPsparse. From the performance shown, we show that IDW is an

ideal candidate for processing our dataset. IDW showed the most favorable interpolation method

accuracy, computation time, and tolerance to system parameters. The success of IDW also indicates

that our dataset has some underlying graph properties and may be a good candidate for Graph

Signal Processing (GSP) [13]. The GP was the worst candidate to consider for our application. GP

had the worst accuracy, worst computation times, and the performance is susceptible to parameter

variation. The absolute difference between all performance metrics in IDW and GP was surprising

because no trade-offs need to be considered which is usually the case. The favorable performance

with MBI suggests that our dataset has little RF interference in the LOS path between the TX

and RX. MBI performing favorably suggest that our dataset is well described by RF models and

our analysis may benefit from using models (as a hybrid model-free and model analysis).

Moreover, we explored different types of ML methods used for estimating RPest. The perfor-

mance results from all the ML methods clearly show that ISTA-Net performs much better than

the rest of the ML methods. ISTA-Net performing the best was not a surprising observation, as

ESRGAN, ProSR, and Semantic Inpainting are focused on generating perceptually accurate im-

ages rather than numerically accurate images. ESRGAN, ProSR, and Semantic Inpainting all used

GANs to improve the perceptual quality of the output images while disregarding the numerical

accuracy of the output images. Of the three worst performing ML methods, Semantic Inpainting

did provide well trending results as RPsparse density increased. Overall ISTA-Net was the best
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ML method as all ML methods had the same processing time, ISTA-Net showed well trending

results with increased RPsparse densities, and ISTA-Net performed comparably to IDW (the best

performing interpolation method). The favorable performance of ISTA-Net suggests that APL’s

dataset may be composed of a few basis from the basis matrix Ψ, as described in section 2.4.3.

4.2. Future Work

4.2.1. Model and Model-Free Hybrid Analysis. Our dataset may be well defined by

RF propagation models such as the LDPL model. The LDPL-MBI interpolation method fits a

parametric LDPL model to the dataset which performed well with estimating EPsparse. This

indicates that the TX had good LOS to the RX. Using simple RF propagation models without

the need to consider complex RF interference may be a viable option for estimating our dataset.

Furthermore, a model plus model-free hybrid analysis may show promising results.

4.2.2. Tailoring ISTA-Net’s Φ. ISTA-Net comes with pre-optimized sampling matrices, Φ,

for natural images. We may be able to achieve better performance from ISTA-Net if we tailor Φ

for different RF environments (ie. tailor the RX placement).

4.2.3. Graph Signal Processing. Our dataset may be a good candidate for Graph Signal

Processing. the IDW method was the best performing interpolation method. As defined in Chapter

2, IDW estimates EPsparse based on the spatial relationship with RPsparse. This observation

implies that there is a strong correlation between the RSS data and the spatial rleationship of RXs.

Therefore, this observation also indicates that our dataset should have some underlying graph

features and yield favorable results when analyzing with GSP.
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APPENDIX A

Interpolation Radio Map Estimation

Figure A.1 shows what a single estimation looks like when provided RPsparse.

Figure A.1. Single IDW estimation where RPsparse has a density of about 10%.
The RSS Uncertainty plot shows how much FE there is at each RX location. From
this plot, we can observe that RXs just to the bottom right of the center will
contribute the most to our estimations AFE.

Figure A.1 shows an IDW estimation with a RPsparse that has 500 RPs from RPtruth. In this

case, RPtruth has about 4880 RPs, therefore RPsparse density is about 10%. RPsparse is shown in

figure A.2.

The IDW estimation follows the same parameters as discussed in Chapter 3, λ = 10, and

localization diameter is 6m. The Voronoi diagram is apparent in the IDW estimation.
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Figure A.2. RPsparse used for the IDW estimation displayed in figure A.1. This
RPsparse contains 500 RPs from RPtruth
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APPENDIX B

ML Radio Map Estimation

Figures B.1 to B.4 shows the progression of ESRGAN, ProSR, ISTA-Net, and Semantic In-

painting respectively. The figures are showing the output of each ML method as the desnity of

RPsparse is increased. These figures are showing the estimation of the 13th block of 96 × 96 RPs

from RPtruth.

Figure B.1. Progression of ESRGAN estimating RPest as the density of RPsparse

increases (as labeled by percentage values).
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Figure B.2. Progression of ProSR estimating RPest as the density of RPsparse

increases (as labeled by percentage values).

Figure B.3. Progression of ISTA-Net estimating RPest as the density of RPsparse

increases (as labeled by percentage values).
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Figure B.4. Progression of Semantic Inpainting estimating RPest as the density
of RPsparse increases (as labeled by percentage values).
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