
UC San Diego
UC San Diego Previously Published Works

Title

Multiple Mechanisms of Unfolded Protein Response–Induced Cell Death

Permalink

https://escholarship.org/uc/item/9db9g3kz

Journal

American Journal Of Pathology, 185(7)

ISSN

0002-9440

Authors

Hiramatsu, Nobuhiko
Chiang, Wei-Chieh
Kurt, Timothy D
et al.

Publication Date

2015-07-01

DOI

10.1016/j.ajpath.2015.03.009
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9db9g3kz
https://escholarship.org/uc/item/9db9g3kz#author
https://escholarship.org
http://www.cdlib.org/


The American Journal of Pathology, Vol. 185, No. 7, July 2015
ajp.amjpathol.org
ASIP COTRAN EARLY CAREER INVESTIGATOR
AWARD LECTURE

Multiple Mechanisms of Unfolded Protein
ResponseeInduced Cell Death

Nobuhiko Hiramatsu, Wei-Chieh Chiang, Timothy D. Kurt, Christina J. Sigurdson, and Jonathan H. Lin
From the Department of Pathology, University of California-San Diego, La Jolla, California
Accepted for publication
C

P

h

March 26, 2015.

Address correspondence to
Jonathan H. Lin, Department of
Pathology, University of
California-San Diego, 9500
Gilman Dr, La Jolla, CA
92093-0612. E-mail: jlin@
ucsd.edu.
opyright ª 2015 American Society for Inve

ublished by Elsevier Inc. All rights reserved

ttp://dx.doi.org/10.1016/j.ajpath.2015.03.009
Eukaryotic cells fold and assemble membrane and secreted proteins in the endoplasmic reticulum (ER),
before delivery to other cellular compartments or the extracellular environment. Correctly folded pro-
teins are released from the ER, and poorly folded proteins are retained until they achieve stable
conformations; irreparably misfolded proteins are targeted for degradation. Diverse pathological in-
sults, such as amino acid mutations, hypoxia, or infection, can overwhelm ER protein quality control,
leading to misfolded protein buildup, causing ER stress. To cope with ER stress, eukaryotic cells activate
the unfolded protein response (UPR) by increasing levels of ER protein-folding enzymes and chaper-
ones, enhancing the degradation of misfolded proteins, and reducing protein translation. In
mammalian cells, three ER transmembrane proteins, inositol-requiring enzyme-1 (IRE1; official name
ERN1), PKR-like ER kinase (PERK; official name EIF2AK3), and activating transcription factor-6, control
the UPR. The UPR signaling triggers a set of prodeath programs when the cells fail to successfully adapt
to ER stress or restore homeostasis. ER stress and UPR signaling are implicated in the pathogenesis of
diverse diseases, including neurodegeneration, cancer, diabetes, and inflammation. This review dis-
cusses the current understanding in both adaptive and apoptotic responses as well as the molecular
mechanisms instigating apoptosis via IRE1 and PERK signaling. We also examine how IRE1 and PERK
signaling may be differentially used during neurodegeneration arising in retinitis pigmentosa and prion
infection. (Am J Pathol 2015, 185: 1800e1808; http://dx.doi.org/10.1016/j.ajpath.2015.03.009)
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and R01NS088485 and VA grant BX002284.
Disclosures: None declared.
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Investigator Award recognizes early career investigators with demonstrated
excellence as an investigator with recently established or emerging indepen-
dence and with a research focus leading to an improved understanding of the
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Early Career Investigator Award, delivered a lecture entitled Endoplasmic Re-
ticulum Stress in Disease Pathogenesis on April 22, 2013, at the annual meeting
of the American Society for Investigative Pathology in Boston, MA.
The endoplasmic reticulum (ER) is an essential organelle
responsible for folding of secreted and membrane proteins
and lipid and sterol biosynthesis, and it is a major site of
free calcium storage within the cell. Cells have evolved a
unique homeostatic mechanism, termed the unfolded pro-
tein response (UPR), to ensure that the ER can adapt to
changing environmental and physiological demands of its
functions. In mammalian cells, the UPR is controlled by
the ER resident transmembrane proteins, inositol-requiring
enzyme-1 (IRE1; official name ERN1), PKR-like ER
kinase (PERK; official name EIF2AK3), and activating
transcription factor-6 (ATF6).

IRE1 is a transmembrane protein that controls a UPR signal
transduction pathway conserved from yeast to mammals
(Figure 1).1 IRE1 bears a luminal domain coupled across the ER
membrane to cytosolic kinase and endoribonuclease (RNase)
stigative Pathology.

.

domains.1 In response to ER stress, IRE1 undergoes oligomeric
assembly, transautophosphorylation by its kinase domain, and
activation of its distal RNase activity.2,3 In metazoans, the
RNase activity of activated IRE1 and the RtcB tRNA ligase
splice out a small intron from the X-box binding protein-1
(Xbp1) mRNA to produce XBP1s transcription factor.4e8
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Figure 1 Endoplasmic reticulum (ER) stress activates inositol-requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription
factor-6 (ATF6) intracellular signal transduction pathways of the unfolded protein response (UPR). In normal condition, the UPR transducers, IRE1,
PERK, and ATF6, associate with BiP to prevent UPR. On accumulation of misfolded proteins in the ER lumen, BiP dissociates to activate UPR
transducers. IRE1 bears a luminal domain coupled across the ER membrane to cytosolic kinase (K) and endoribonuclease (RNase) domains (R). In
response to ER stress, IRE1 undergoes oligomeric assembly, transautophosphorylation by its kinase domain, activating its distal RNase activity.
Activated IRE1 splices out small intron from the X-box binding protein-1 (Xbp1) mRNA to generate active transcription factor XBP1s. The PERK
protein bears luminal domain coupled across the ER membrane to K. In response to ER stress, PERK dimerizes and subsequently activates its
cytosolic kinase domain. PERK’s kinase recognizes and phosphorylates eukaryotic translation initiation factor 2 subunit alpha (eIF2a), leading to
attenuation of global protein translation. ATF6 bears an ER-tethered transcription factor. In response to ER stress, ATF6 migrates from the ER to
the Golgi apparatus, where site 1 and 2 proteases (S1P and S2P, respectively) cleave its luminal and transmembrane domains, and release the
cytosolic portion of ATF6 containing the bZIP transcriptional activator domain. Cleaved ATF6 fragment translocates to the nucleus to serve as a
transcription factor.

UPR in Disease Pathogenesis
The transcriptional targets of XBP1 are highly enriched
for ER-associated protein degradation (ERAD) factors, ER
chaperones, and enzymes required for lipid biosynthesis
and protein glycosylation across diverse mammalian cell
types.9e14 Up-regulation of these molecules by IRE1-to-
XBP1s induction therefore enhances the ER’s capacity to
better fold new proteins as well as target irreparably
damaged proteins for retrotranslocation out of the ER for
degradation by proteasomes in the cytosol (Figure 1).

The ER transmembrane protein PERK regulates another
UPR signaling pathway in metazoans15 (Figure 1). On ER
stress, PERK oligomerizes and activates its cytosolic kinase
domain.15 PERK’s kinase phosphorylates eukaryotic trans-
lation initiation factor 2 subunit alpha (eIF2a) on Ser51,
inhibiting the guanine nucleotide exchange factor eIF2B, which
converts inactive GDP-bound eIF2 to its active GTP form.15,16

Active eIF2 complex is needed to form the GTP-tRNAMet

ternary complex required for translation initiation. Therefore,
eIF2a phosphorylation leads to translation inhibition that helps
alleviate ER stress by reducing the load of new polypeptides
that require assembly and folding in the ER compartment.17

ATF6 bears an ER-tethered bZip transcription factor that
regulates a third UPR signal transduction pathway18

(Figure 1). In response to ER stress, ATF6 migrates from
the ER to the Golgi apparatus, where site 1 protease and site
2 protease cleave its luminal and transmembrane domains to
release the cytosolic portion of ATF6.18,19 The cytosolic
The American Journal of Pathology - ajp.amjpathol.org
portion of ATF6 contains the bZIP transcriptional activator
domain, and after cleavage, this ATF6 fragment migrates to
the nucleus to transcriptionally up-regulate ER chaperones
and ERAD components, thereby enhancing ER protein-
folding capacity and efficiency of ERAD.10,12,18,20 Inter-
estingly, ATF6 also transcriptionally up-regulates Xbp1,
thereby facilitating IRE1 signal transduction by increasing
levels of IRE1’s RNase substrate, Xbp1 mRNA.21

Put together, these initial transcriptional and translational
effects of IRE1, PERK, and ATF6 signaling help cells adapt
to ER stress by enhancing the fidelity of protein folding,
increasing the degradation of damaged/misfolded proteins,
and suppressing new protein synthesis. However, if these
actions fail to restore ER homeostasis and ER stress persists,
UPR signaling consequently triggers maladaptive proapo-
ptotic programs, many of which are specifically activated
through the IRE1 and PERK pathways.
IRE1 Signaling through RIDD, c-Jun N-Terminal
Kinase, and BCL2

Seminal mechanistic studies from the laboratory of Walter
and colleagues have revealed that IRE1 undergoes dynamic
conformational and functional changes as a function of the
duration of ER stress. In response to acute ER stress, IRE1
quickly forms oligomeric clusters in the ER plane, but IRE1
1801
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Figure 2 Consequences of acute and chronic inositol-requiring enzyme 1 (IRE1) activation. In response to acute endoplasmic reticulum (ER) stress, IRE1
undergoes oligomeric assembly, undergoes transautophosphorylation by its kinase domain, and activates its distal RNase activity. Activated IRE1’s RNase
splices out a small intron from the X-box binding protein-1 (Xbp1) mRNA to produce the active transcription factor XBP1s. IRE1-to-XBP1s induction enhances
the ER’s capacity by up-regulation of gene sets involved in ER-associated protein degradation (ERAD), ER chaperones, lipid biosynthesis, and protein
glycosylation. In the chronic phase of IRE1 activation, IRE1’s RNase domain cleaves ER-targeted mRNAs in a phenomenon termed regulated IRE1-dependent
mRNA decay (RIDD). Most RIDD-targeted mRNAs are disposed. In contrast, IRE1-dependent cleavage of the 30 untranslated region of BiP mRNA in Schizo-
saccharomyces pombe stabilizes BiP mRNA, thereby increasing BiP protein levels to cope with ER stress. There is likely a regulated IRE1-dependent mRNA
stabilization (RIDS) rather than RIDD, which may be a new mode by which IRE1’s RNase positively regulates mRNAs. The TRAF2 adaptor protein binds to IRE1
and the MAPKKK ASK1 to activate downstream molecules such as c-Jun N-terminal kinase (JNK), p38, and extracellular signaleregulated kinase (ERK).
However, it is unclear which phase of IRE1 activity can interact with TRAF2-ASK1. DR5, death receptor 5.

Hiramatsu et al
subsequently dissociates if ER stress persists (Figure 2).22,23

Interestingly, Xbp1 mRNA splicing only occurs during the
acute phase.23e25 During the chronic phase of ER stress,
IRE1’s RNase substrate specificity is altered to cleave pri-
marily ER-targeted mRNAs in a process termed regulated
IRE1-dependent mRNA decay (RIDD)26e28 (Figure 2).

In contrast to Xbp1 mRNA, RIDD targets are not ligated
after IRE1 cleavage, and most mRNA fragments cleaved
through RIDD are degraded. RIDD’s physiological signifi-
cance varies widely and can confer protective or proapoptotic
effects, depending on the cellular function of the mRNA being
targeted. RIDD-mediated cleavage of death receptor 5 (DR5)
mRNA enhances cell survival during ER stress by reducing
production of proapoptotic DR5 protein.29 RIDD-mediated
cleavage of cytochrome P450 enzyme mRNAs in liver con-
fers resistance to liver damage after acetaminophen overdose
by preventing P450-mediated generation of hepatotoxic by-
products.30 The mRNA fragments produced by RIDD cleav-
age can trigger inflammation by engaging with the cytosolic
RIG1 RNA virus innate immunity sensor.31 RIDD-mediated
loss of lipid metabolism mRNAs can alter plasma lipid
levels in mice.32 Ire1 mRNA itself is a RIDD substrate, and
RIDD may act as an autoregulatory brake on IRE1 signaling
by down-regulating Ire1 mRNA levels.33 miRNA precursors
have also been identified as RIDD substrates in vitro.34

Disruption of miRNA maturation by RIDD cleavage may
further affect multiple biological processes by modulating
miRNA-mRNA interactions throughout the cell.
1802
Recently, IRE1’s RNase was found to cleave the 30 un-
translated region of BiP mRNA in Schizosaccharomyces
pombe, but this truncation surprisingly stabilized, rather than
promoted, the decay of the remaining BiP mRNA, thereby
increasing BiP protein levels during ER stress.35 Regulated
IRE1-dependent mRNA stabilization, rather than RIDD, may
be a new mode by which IRE1’s RNase positively regulates
mRNAs (Figure 2). Recent biochemical studies have sug-
gested that IRE1 uses RIDD at intense ER stress levels,
whereas Xbp1 mRNA splicing is initiated at much lower
levels of ER stress25 (Figure 2). IRE1’s decision to trigger
RIDD, regulated IRE1-dependent mRNA stabilization, or
Xbp-1 mRNA splicing may be dependent on the intensity
of the stress and the ability of various cell types to respond to
that stress.
The IRE1 oligomeric clusters formed by ER stress also act

as molecular scaffolds to recruit other proteins and nucleate
the formation of stress signal transduction sites at the ER lipid
bilayer22,23 (Figure 2). For example, TRAF2 adaptor protein
binds to IRE1 as well as the ASK1 MAPKKK to activate
cytosolic signaling kinases, such as C-Jun N-terminal kinase,
p38, and extracellular signaleregulated kinase during ER
stress36,37 (Figure 2). IRE1 also interacts with the RACK1
adaptor protein to recruit phosphatases to the ER membrane
during ER stress.38 IRE1 forms protein-protein interactions
with BCL2 family proteins, such as BAX and BAK, and
the BI-1 BCL2 regulatory protein.39,40 IRE1 also binds
cytoskeletal nonmuscle myosin II during ER stress.41
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Consequences of acute and chronic PKR-like endoplasmic reticulum (ER) kinase (PERK) activation. PERK has a kinase domain (K), and phos-
phorylates eukaryotic translation initiation factor 2 subunit alpha (eIF2a). In the acute phase, PERK-eIF2aP attenuates overloading the proteins into ER. On
chronic activation of PERK signaling, expression of activating transcription factor-4 (ATF4) is transnationally up-regulated, which regulates cell fate. GADD34
dephosphorylates eIF2aP to eIF2a, and protein translation is reinitiated. Expression of ATF4 causes oxidative stress. Proapoptotic transcription factor CHOP is
transcriptionally induced by ATF4, and its translation is also enhanced by ATF4. Death receptor 5 (DR5; official name TNFRSF10B) is a CHOP target gene, and
abundant DR5 protein forms oligomer at the Golgi apparatus, which activates caspase (Casp)8 without requirement of any ligand. Inhibitors of apoptosis
proteins (IAPs) are key cell death regulators in metazoans, through their suppression of caspases. Recent studies link PERK-eIF2aP-ATF4 signaling to IAP
regulation during ER stress. In response to chronic ER stress, IAP levels decrease specifically through the actions of PERK, but not IRE1 or ATF6 branches of the
unfolded protein response. The eIF2aP attenuates de novo IAP synthesis, particularly X-linked IAP, and ATF4’s transcriptional activity destabilizes extant XIAP
protein.

UPR in Disease Pathogenesis
These IRE1-centered protein-protein interactions can in-
fluence the sensitivity of IRE1 activation in response
to ER stress. IRE1-centered protein-protein interactions
could also act conversely to influence cellular signaling
processes and structures in other cellular compartments
during ER stress.
Proapoptotic Consequences of PERK Signaling

PERK signaling down-regulates translation from most
mRNAs, thereby restricting de novo peptide loading onto the
ER (Figure 1). This cytoprotective event by PERK to eIF2aP
occurs rapidly (Figure 3). Rare mRNAs bearing 50 upstream
open reading frames, including the mRNAs encoding the
ATF4, ATF5, and CHOP transcriptional activators, are para-
doxically translated more efficiently during the phosphorylated
state of eIF2a (Figure 3).42e44 ATF4’s transcriptional targets
include genes involved in amino acid metabolism, oxidore-
ductases required for disulfide bond formation in the ER,
several ubiquitin ligases, GADD34 phosphatase, and CHOP
transcription factor.45e47 ATF4-null mouse embryonic fibro-
blasts are sensitive to oxidative stress and require supplemental
reducing compounds for survival and growth in cell culture.46

Interestingly, ATF4 overexpression in mouse embryonic
The American Journal of Pathology - ajp.amjpathol.org
fibroblasts and neurons also evokes oxidative stress and in-
creases cell death.45,47 These findings point to ATF4 as an
important determinant in regulating cell fate during ER stress,
with too little and too much ATF4 both producing deleterious
effects.

One mechanism by which ATF4 can promote cell death
is via transcriptional up-regulation of the GADD34 phos-
phatase (Figure 3). GADD34 dephosphorylates eIF2aP to
eIF2a.48 Dephosphorylation of eIF2aP removes the trans-
lational brake initially generated by PERK activation and
leads to more protein synthesis and thereby protein folding
demands on the ER. Indeed, Han et al45 found that ATF4
overexpression increased protein synthesis concomitant to
increasing cell death. Furthermore, chemical inhibition of
GADD34’s dephosphorylation of eIF2aP by the salubrinal
and guanabenz compounds protects cells from ER
stresseinduced cell death.49e51

A second mechanism by which ATF4 promotes cell death
is via transcription of the proapoptotic Chop gene (official
name DDIT3), whose translation is also enhanced by eIF2aP
(Figure 3).16,43,44,52,53 By dual transcriptional and trans-
lational up-regulation, CHOP is highly enriched when PERK
is strongly activated. CHOP’s role as a proapoptotic tran-
scription factor has been clearly shown in vitrowhere CHOP-
null cells are resistant to cell death induced by the chemical
1803
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ER toxins, tunicamycin, and thapsigargin.53 Several of
CHOP’s transcriptional targets are implicated in apoptosis,
including the apoptotic Bim (official name BCL2L11)
and Puma (official name BBC3) Bcl-2 family genes,54,55

Trb3 (official name TAS2R13), and Dr5 (official name
TNFRSF10B).29,56,57 DR5 can signal cell death by activating
caspase-8.29,57 During ER stresseinduced cell death, DR5
protein accumulates in Golgi apparatus, where it oligomerizes,
leading to activation of cytosolic caspase 8. Interestingly, DR5
mRNA is also down-regulated by IRE1-mediated RIDD, and
the balance between the opposing effects of IRE1 and PERK on
DR5 levels may tip whether UPR selects cell survival or cell
death during ER stress.29

Some types of ER stresseinduced damage and cell
death are unlikely to be mediated via CHOP induction.
Comprehensive RNA-sequencing and microarray studies
saw minimal transcriptional induction of previously
identified apoptotic genes after forced Chop expres-
sion.45 Furthermore, forced CHOP expression itself does
not trigger cell death in vitro,45,58 indicating that other
proapoptotic hits are necessary for ER stresseinduced
cell death.

Inhibitors of apoptosis proteins (IAPs) are key cell death
regulators in metazoan organisms through their suppression
of caspases.59 Recent studies link PERK-eIF2aP-ATF4
signaling to IAP regulation during ER stress. In response to
chronic ER stress, IAP levels decrease significantly in many
mammalian cell types, specifically through the actions of the
PERK, but not IRE1 or ATF6, branches of the UPR.60e63

PERK signaling attenuates de novo X-linked IAP (XIAP)
protein synthesis via eIF2aP and also promotes extant XIAP
protein degradation by ATF4 transcriptional activity
(Figure 3). In contrast, CHOP had no effect on XIAP levels.
Loss of XIAP enhances sensitivity to ER stresseinduced
cell death, and overexpression of XIAP protects cells from
ER stress, and interestingly, synergizes with the absence of
CHOP to induce even greater resistance to ER stresse
induced cell death than Chop�/� alone.58 These findings
show that PERK-eIF2aP-ATF4 signaling promotes multiple
proapoptotic hits within the cell, including the induction of
CHOP and suppression of IAPs (Figure 3). These effects of
chronic PERK signaling, therefore, generate a cellular
milieu conducive for efficient caspase activation by removal
of caspase inhibitors.

The ability of IRE1 and PERK signaling to activate
multiple distinct proapoptotic circuits provides attractive
mechanisms to link ER stress to disease pathogenesis and
progression. Physiological ER stresses vary tremendously
with respect to their intensity and their cause (eg, hypoxia
versus genetic mutation). Important questions for defining
the role of UPR as disease mechanism include the
following: Which UPR signaling events are activated by a
physiological ER stress? What is the consequence of UPR
activation in the cellular and tissue context of a specific
disease? In the subsequent sections, we examine how UPR
activation and function contribute to the pathogenesis of two
1804
diseases associated with ER stress, retinitis pigmentosa and
prion infection.

Divergent Mechanisms of ER StresseInduced
Neurodegeneration

ER-Associated Degradation in Retinitis Pigmentosa

Retinitis pigmentosa is a human blinding disease arising
from photoreceptor cell death in the eye. Photoreceptors are
specialized sensory neurons that detect light and activate
retinal circuitry to transmit visual information to the brain.
Photoreceptors accomplish this feat using the visual
pigment, rhodopsin, a G-proteinecoupled transmembrane
receptor protein covalently linked to 11-cis-retinal.64

Rhodopsin is essential for photoreceptor function and sur-
vival, and rhodopsin knockout mice (Rho�/�) develop early
retinal degeneration.65,66 More than 100 rhodopsin muta-
tions have been identified in families with heritable types of
retinitis pigmentosa.67 Many of these mutations generate
misfolded rhodopsin proteins that are aggregation prone and
retained in the ER.24,68e71 Recent studies in mouse models
of retinitis pigmentosa have shed light into how the UPR in
photoreceptors copes with mutant rhodopsins and influences
the disease process.
The P23H rhodopsin mutation is the most common cause of

heritable retinitis pigmentosa in North America, and photore-
ceptors carrying the mutation generate misfolded rhodopsin
proteins that do not traffic normally to the rod photoreceptor
outer segment. A P23H rhodopsin knock-in mouse closely
mirrors the spatial distribution and temporal progression of
photoreceptor cell death and vision loss found in patients with
this mutation.72 Analysis of these mice indicates that these
photoreceptors use an unusual, customized UPR tailored to
cope with P23H rhodopsin.73 IRE1’s induction of XBP1s, and
the transcriptional up-regulation of ERAD by XBP1s, was
seen in photoreceptors expressing P23H rhodopsin.73

Concomitant with ERAD up-regulation, P23H rhodopsin
protein is found to be robustly ubiquitinated and almost
entirely degraded in these photoreceptors73 (Figure 4A). In
contrast, other IRE1-mediated signaling events, including
c-Jun N-terminal kinase activation or RIDD, are not observed
in these photoreceptors.73 Furthermore, minimal activation of
the PERK signaling pathway is seen, with no changes in
ATF4, CHOP, or IAP levels in P23H rhodopsin-expressing
photoreceptors.73 These findings reveal that the dominant ef-
fect of UPR in photoreceptors of P23H rhodopsin knock-in
mice is the induction of ERAD to degrade and clear mutant
rhodopsin, which is accomplished through a preferential use of
the parts of the UPR regulating ERAD, such as IRE1’s in-
duction of XBP1. PERK’s proapoptotic functions through
modulation of ATF4, CHOP, and IAPs are not used in these
photoreceptors. Consistently, Chop�/� fails to delay retinal
degeneration in P23H rhodopsin knock-in photoreceptors, and
in other genetically modified mouse lines expressing other
rhodopsin mutations seen in retinitis pigmentosa.73e75
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 A: Rhodopsin (Rho) is robustly degraded during retinal degeneration. Light micrographs of wild-type and P23H knock-in mouse retinas at
postnatal (P) day 15. At P15, both rod outer segments (OSs) and rod inner segments (ISs) are shorter in RhoP23H/þ mice compared with those of the Rhoþ/þ

mice, and significantly shortened in RhoP23H/P23H mice. The outer nuclear layer (ONL) is also significantly thinner in RhoP23H/P23H mice. Rhodopsin protein levels
are significantly diminished in RhoP23H/P23H mice. Retinal protein lysates were collected from Rhoþ/þ, RhoP23H/þ, and RhoP23H/P23H mice at P15. Rhodopsin is
detected by immunoblotting. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as a loading control. B: High prion protein (PrP) levels are
maintained during prion infection. Hematoxylin and eosinestained hippocampal sections from mock- or prion-inoculated transgenic mice expressing human
PrP reveal neuronal necrosis (arrowhead) and spongiform degeneration only in prion-infected mice. Total PrP levels (PrPC þ PrPSc) in brain are similar in mock-
and prion-infected mice by immunoblotting (20 mg protein per well). Samples treated with 100 mg/mL proteinase K (PK) reveal PK-resistant PrPSc only in prion-
infected brain (100 mg protein per well). Actin served as a loading control (the actin bands are above the PrP in the undigested lanes). This blot was developed
using monoclonal antibodies 3F4 against PrP (Millipore, Billerica, MA) and GT5412 against actin (Genetex, Irvine, CA). PrP contains two potential n-glycosylation
sites and, thus, migrates as three bands corresponding to diglycosylated, monoglycosylated, or unglycosylated PrP. Scale bars: 10 mm (A); 50 mm (B).

UPR in Disease Pathogenesis
What drives photoreceptor cell death if PERK’s pro-
apoptotic signals are not activated? Rhodopsin is essential
for photoreceptor function, structure, development, and
survival, and Rho�/� mice develop early retinal degen-
eration.65,66 In P23H rhodopsin knock-in animals,
rhodopsin protein degradation occurs as soon as photo-
receptors are born, and loss of rhodopsin precedes any
photoreceptor cell death (Figure 4A).73 Disruption of
rhodopsin protein homeostasis by ERAD is likely to be a
key trigger for photoreceptor cell death.

PERK Signaling in Prion Diseases

Prion diseases are fatal neurodegenerative disorders arising
from conversion of the normal cellular prion protein, PrPC,
into a misfolded and self-templating conformer, PrPSc. PrPC

is highly conserved among mammals and ubiquitously
expressed, yet the functions attributed to PrPC are diverse and
include maintenance of myelin, nomal synaptic function, and
neuroprotection.76e79 PrPC is a glycosylphosphatidylinositol-
anchored glycoprotein that undergoes folding and post-
translational modifications within the ER and secretory
pathway. In cell culture, PrPSc replication triggers ER stress,
resulting in the aberrant accumulation of PrP in the cytosol
and further enhancing the formation of PrPSc.80e82 ER stress
The American Journal of Pathology - ajp.amjpathol.org
and UPR activation have also been observed in prion infec-
tion in vivo83e85 as well as transgenic mice expressing mutant
PrPC.86

Genetic and chemical modulation of different UPR
pathways in prion-infected models has revealed intriguing
and surprising differences from mutant rhodopsin models in
the role of UPR signaling pathways in cellular degeneration.
PrPC-to-PrPSc conversion and neurodegeneration are un-
changed in mice deficient in neuronal Xbp1�/� compared
with controls.85 In contrast, genetic or chemical inhibition of
PERK pathway signaling using GADD34 overexpression or
the PERK inhibitor glycogen synthetase kinase 2606414
ameliorates neurodegeneration in prion-infected mice, whereas
activating the PERK pathway using salubrinal worsens prion-
associated neurotoxicity.83,84 These studies reveal a direct role
for the PERK pathway in prion disease pathogenesis, and
suggest that IRE1 signaling, at least through XBP1s genera-
tion, is dispensable in this process.

How is the PERK signaling critical in the pathogenesis of
prion disease, yet unnecessary for mutant rhodopsin-
induced cell death? One fundamental difference between
these diseases is that prion conversion likely occurs on the
cell membrane or in an endolysosomal compartment; thus,
PrPSc escapes the misfolded protein clearance and degra-
dation mechanisms triggered during UPR activation86
1805
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(Figure 4B). Indeed, levels of the PrPSc isoform increase
substantially by the terminal stage of disease (Figure 4B).
The accumulation of PrP in the brain likely causes chronic
ER stress, leading to strong PERK signaling and its subse-
quent proapoptotic signaling cascade (Figure 2). In contrast,
misfolded rhodopsin is degraded so quickly and efficiently
(Figure 4A) that the strength and duration of ER stress do
not increase to a threshold necessary for strong PERK
activation. Thus, prion infection may represent a class of ER
stresseassociated diseases in which PERK’s proapoptotic
signaling output prevails when UPR protein quality control
mechanisms fail to remove the misfolded proteins. Mis-
folded rhodopsins may represent another class of ER
stresseassociated diseases in which UPR protein quality
control mechanisms remove the misfolded proteins but, in
doing so, disrupt vital cellular structures or processes
required for cell viability.

Tailoring the UPR to Fit a Specific Disease

The UPR signaling pathways are found in all cell types and
activate broad transcriptional, translational, and post-
translational programs to help cells cope with ER stress.
The PERK and IRE1 UPR pathways can promote cell death
through multiple downstream effectors. Comparison of two
ER stresseassociated diseases (retinitis pigmentosa and
prion disease) reveals that different UPR signaling events
are activated during pathogenesis of these diseases. Cus-
tomization and tailoring of the UPR to fit a physiological ER
stress and specific cell types are likely to occur in other ER
stresseassociated disease processes.
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