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There is interest in using short-pulse x-rays that are small in source size, broad in energy

spectrum, and high in photon number to probe and visualize the evolution of hot, dense

material for both research and industrial applications. One method to produce such x-rays is to

collide an energetic electron beam with a high-Z material, which will then emit bremsstrahlung

radiation with many of the desired source characteristics. In this dissertation we study the

physical processes of generating energetic electrons from laser–plasma interactions in both

underdense and overdense plasmas.

These laser–plasma interactions are nonlinear and kinetic in nature. Therefore, the

particle-in-cell (PIC) algorithm is often the tool of choice for the simulations discussed within

this dissertation, with length and time scales on the order of a millimeter and picosecond,

respectively. Such simulations require the use of massively parallel computers. However, these

simulations often suffer from having a large concentration of particles processed by relatively
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few computing elements, leading to decreases in performance due to a computational load

imbalance. We present a dynamic load balancing technique for the PIC algorithm that

effectively balances computational load across distributed-memory processes, in addition

using a hybrid shared-memory scheme to increase scalability with shared-memory thread

number by an order of magnitude and boost overall performance by a factor of two. Another

useful PIC algorithm relevant to this work invokes a cylindrical geometry and azimuthal

mode decomposition to yield proper three-dimensional geometric effects at the computational

cost of a two-dimensional simulation. We also discuss improvements to this algorithm, where

modifications to the particle initialization and field solver at the cylindrical axis eliminate

spurious electromagnetic fields at the axis that have long been observed for this method.

The second part of this dissertation explores the mechanism of direct laser acceleration

(DLA) in laser-based plasma acceleration. This process occurs when the channel-guided laser

fields overlap electrons either in the plasma wave wake or within an ion channel, and the

frequency of the electron transverse motion matches the Doppler-shifted laser frequency. We

first utilize the cylindrical mode decomposition to more accurately account for the energy

gain from the DLA process compared to traditional methods, then show that laser wakefield

accelerators (LWFAs) in both the self-modulated (SM-LWFA) and bubble regimes exhibit

comparable contributions in energy from the wakefields and DLA process for the most

energetic electrons. A customized finite-difference Maxwell field solver is then presented

that corrects the dispersion relation of light in vacuum and removes a time-discretization

error in the Lorentz force compared to the standard PIC algorithm. This solver is especially

valuable when investigating DLA, and simulations using the customized solver demonstrate

better agreement with experiment and with numerically integrated equations of motion.

Single-particle motion is analyzed to study resonant motion in the DLA process, where

electrons are observed to gain significant energy from laser fields but do not readily transition

between different orders of resonance to gain further energy. We also simulate the motion of

an electron probe beam propagating across an LWFA perpendicular to the laser propagation
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direction, which is timed with the laser pulse and measured far from the plasma to image the

dynamics of the plasma wave wake. Although some qualitative agreement is observed between

simulation and experiment, further investigation is needed to discern wakefield properties

from the radiograph image alone.

In the last part of this dissertation, we present simulations of laser–solid interactions to

investigate the dynamics of energetic electron generation in the density upramp before an

overdense plasma. These electrons propagate through the target and are then collided with a

high-Z material to emit bremsstrahlung radiation. We first detail the requisite simulation

techniques to correctly model this process, namely the splitting of energetic macro-particles to

reduce enhanced wakefields, an extended particle absorber to prevent reflux at the boundary

and a large transverse domain size to resolve long-wavelength magnetic field modes in the low-

density plasma. A series of simulations are then carried out with varied laser amplitude and

duration at constant energy to determine the laser configuration that yields the largest dose

of few-MeV x-rays. We find that the high-amplitude laser pulses generate higher-temperature

electron spectra, which in turn produce more x-rays at the desired energy. In addition,

the shortest pulses generate many energetic electrons before the formation of self-generated

magnetic fields, resulting in more directional beams of electrons and x-rays.
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CHAPTER 1

Introduction

As laser intensities available in the laboratory continue to increase year after year [2, 3, 4],

so also does the study of materials at high energy density (HED), also referred to as high

energy density science (HEDS). In the field of plasma physics, this research ranges from

the study of relativistic shocks [5, 6, 7] to ultra-relativistic particle beams produced from

high-intensity lasers [8, 9]. However, extreme conditions and short lifetimes of these materials

make them very difficult to image and diagnose. For this purpose, it is desirable to perform

non-destructive material imaging through x-ray radiography. The x-ray sources for these

applications should ideally be short pulsed (fs–ns), have small source size (1–100s of µm),

exhibit a broad energy spectrum (50 keV to few MeV) and yield a large number of photons

(> 1010). These light sources can then be used to create “movies” of dense, rapidly moving

objects either for research purposes [10] or within industry [11, 12, 13].

One efficient method for generating such x-rays is to collide an energetic (1–100MeV)

electron beam with a high-Z material to produce bremsstrahlung radiation [10, 14]. However,

conventional electron sources are not readily available in many laboratories, and the temporal

and spatial resolutions of the produced electron bunches are not always well suited for HEDS

diagnostic purposes. Instead, various methods have been proposed to utilize the powerful

laser systems available at many facilities to produce the energetic electron beams that can

then emit the desired x-rays [15, 16]. A high-intensity laser incident on a solid target can

accelerate electrons in the density upramp region, which then emit bremsstrahlung x-rays

as they propagate either through the remainder of the solid target [10, 17] or through a
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high-Z material located behind the thin target [14, 18]. Energetic electrons created in an

underdense plasma from a laser wakefield accelerator (LWFA) [19, 20, 11] or self-modulated

laser wakefield accelerator (SM-LWFA) [21] can also be used for the x-ray emission. In

each of these cases, the high-intensity laser fields result in laser–plasma interactions that

are highly nonlinear, necessitating fully kinetic simulations to predict and understand the

inherent physical processes. The scope of this dissertation is to both explore and learn to

control the electron acceleration mechanisms present in relativistic laser–plasma interactions

via particle-in-cell simulation with the goal of producing x-ray sources relevant to HEDS

applications.

1.1 Methodology: particle-in-cell simulation

The particle-in-cell (PIC) algorithm [22, 23] aims to simulate the interaction of many charged

particles with their self-consistent electromagnetic fields. Groups of charged particles are

represented by macro-particles that have the same charge-to-mass ratio as their individual

counterparts, but are of finite size. (We note that it is possible for a macro-particle to represent

a single, but finite-size particle.) These macro-particles carry a charge and “continuous” (to

floating-point precision) positions and momenta. Electric and magnetic fields, along with the

current and charge are defined on a regular grid, with the various components in most cases

offset from one another in time and space according to what is now often referred to as the

Yee mesh [24].

A simulation is initialized with a distribution of particles (each with some initial charge,

position and momentum) and some set of electric and magnetic fields. The forces on individual

macro-particles are calculated from the discretized fields by interpolating some number of

nearby field quantities onto each particle. The manner in which this is done depends on the

order of the shape function, which is generally calculated with B-splines and can be of order

linear, quadratic, etc. Once these forces are determined, the continuous particle momenta
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Figure 1.1: Loop depicting a single time step in the particle-in-cell (PIC) algorithm.

are updated according to the Lorentz force equation, most often via the Boris push [25].

Particle positions are then updated assuming that particles drift in a straight line for a single

time step. Next, the particle shape functions1 are used to deposit current into nearby grid

quantities, after which the electric and magnetic fields are solved based on Faraday’s and

Ampere’s laws.2 The field solve is usually performed using a finite-difference scheme or in

Fourier space using fast Fourier transforms. This completes the PIC loop, depicted in Fig. 1.1,

which is executed many times over the course of a simulation.

There are many nuances to this algorithm, including methods for computing particle

momenta [32, 33, 34], solving for electromagnetic fields [35, 36, 37], handling field and particle

1The particle “shapes” used to deposit particle data to the grid (e.g., current and charge deposit) and
interpolate grid data (e.g., fields) to the particles can be the same or different. When they are the same, the
algorithm can be momentum conserving.

2If the electric and magnetic fields have the correct divergences at initialization, they will retain this
property throughout the entire simulation as long as the continuity equation is satisfied by the charge and
current. Some charge deposition schemes do not obey the continuity equation, and the electric field must in
turn be corrected by one of various schemes [26, 23, 27]. Osiris, however, deposits the current in a way that
satisfies the continuity equation, called a charge-conserving current deposit [28, 29, 30, 31], obviating the
need to solve Gauss’s law.
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boundary conditions [38, 23, 39], and parallelization schemes [40, 41, 42]. In this dissertation

we use the PIC code Osiris [28, 29], which has the ability to use high-order particle shapes

(up to quartic), many different implementations for updating particle momenta, many finite-

difference field solvers [36, 37], and also scales well to over one million cores [28, 43]. The

Osiris development community is very active, and many new features are added each year.

In addition, there is much activity aimed at improving the performance of the Osiris

software. Many pertinent physical problems simulated with PIC codes involve concentrated

bunches of particles, e.g., laser wakefield acceleration (discussed later in detail) or magnetic

reconnection with pair production [44]. Performance can suffer when relatively few comput-

ing resources on a parallel computer are responsible for processing a majority of particle

trajectories. Shared-memory parallelization has been utilized to balance computational load

across cores and decrease simulation runtime [43]. Other PIC models can also greatly increase

performance by making simplifying assumptions regarding problem constraints. For example,

running in a cylindrically symmetric configuration [30] or in a Lorentz-boosted frame [45, 46]

can yield similar results to standard methods at a great reduction in computational cost;

a combination of these two algorithms can in some cases achieve speedups on the order of

100,000 [47]. Some of these new features are pertinent to this research and will be described

in later chapters.

With today’s computing technology, the PIC algorithm is often the tool of choice for

simulating laser–plasma interactions for spatial scales on the order of millimeters and tens of

picoseconds in duration, and some simulations are even now performed to investigate multi-

speckled laser beams [48]. In particular, the physics problems discussed in this dissertation

are all amenable to PIC simulation. Herein we will discuss many improvements to the PIC

algorithm, as well as show results from many large-scale simulations.
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1.2 Electron acceleration driven by lasers in underdense plasmas

Electromagnetic radiation will only propagate through a plasma if it is oscillating at a

frequency greater than the electron plasma frequency, ωp =
√
nee2/ε0me, where ne, e and

me are the density, charge and rest mass of an electron, respectively, and ε0 is vacuum

permittivity. For a laser of frequency ω0, we define the critical density, nc, to be the electron

density where ωp = ω0, i.e., nc ≡ ω2
0ε0me/e

2. Below this density laser light will propagate

through the plasma (underdense), whereas it will not for larger densities (overdense). At

high laser intensities, electrons within the plasma oscillate at energies that can be highly

relativistic. In these cases, there are relativistic mass corrections for individual electrons and

fluid quantities. These corrections can reduce the plasma frequency, since it is proportional to

the proper density, ne/γ, where γ is the relativistic factor for an electron. It can be shown [49]

that γ scales roughly as
√

1 + 1
2
(eA0/mec)2, where A0 is the peak vector potential of a linearly

polarized laser. The normalized vector potential (used later) is defined as a0 ≡ eA0/mec,

which is also often called vosc/c. Thus, a more general expression for the critical density is

nc = γω2
0ε0me/e

2.

A laser pulse propagating through an underdense plasma can push electrons away from

the laser axis through the ponderomotive force, after which they are attracted back to the

axis by the focusing force from the exposed (and relatively stationary) ions. Depending

on the laser pulse amplitude and duration, the expelled electrons can come back to the

axis at nearly the same time, forming what is called a plasma wave wake. The extreme

concentration of this negative charge results in a large electric field, which can be supported

by the plasma [50, 51] and sustained over long distances in what is known as a laser wakefield

accelerator (LWFA) [52]. The accelerating fields sustainable in a plasma of density 1018 cm−3

are roughly 100GV/m, several orders of magnitude larger than the breakdown limit of

conventional accelerators [53, 54].

Many alternatives to traditional LWFA have been proposed for plasma-based accelerators,
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including the plasma beat wave accelerator (PBWA) [55, 56]—where two laser pulses are used

with frequencies whose difference matches the electron plasma frequency—the self-modulated

laser wakefield accelerator (SM-LWFA) [55, 57, 58, 59]—where a long-duration laser pulse

breaks into a train of short pulses on the order of the plasma wavelength—or the plasma

wakefield accelerator (PWFA) [60, 59, 61]—where an energetic particle driver is used to excite

the plasma wake. In addition, the physical response of the plasma differs greatly depending

on the normalized vector potential of a laser driver, a0 ≃ 8.6× 10−10
√

I0 [W/cm2]λ [µm]. For

a low-amplitude laser with a0 ≪ 1, the plasma wave behaves linearly and the response can be

mostly described analytically [62, 63]. However, with increased laser amplitude (a0 ≳ 1) the

problem becomes highly nonlinear [49] and becomes very difficult to analytically model in

three dimensions. (For this reason PIC simulations are especially valuable for investigating

the nonlinear optics of and plasma response to high-intensity lasers.) If the laser amplitude

is large enough, it can completely expel all electrons near the laser and form a large spherical

cavity [64, 65, 66]; this is commonly referred to as the blowout or bubble regime. An analytic

theory of the bubble radius and dephasing length has been developed for this regime [66, 67],

providing valuable guidance for constructing and simulating such an LWFA.

For some of the cases mentioned, a portion of the laser may overlap particles being

accelerated by the wakefields. This commonly occurs either for a short-pulse laser that

completely fills the first plasma bucket [65, 68, 69, 1] or for a long-pulse laser that overlaps

many bunches of electrons, as in SM-LWFA [70, 71, 72, 73, 74]. When such overlap is

present, there can be cooperative acceleration mechanisms between the wakefield and laser

field. Electrons near an exposed ion column experience a focusing force that causes them to

execute (relativistic) harmonic motion at the betatron frequency [75], ωβ = ωp/
√
2γ. The

transverse oscillation is accompanied by emission of betatron radiation [75, 76, 77], which is

emitted in the forward direction and accumulates from many electrons. If the Doppler-shifted

laser frequency seen by an electron matches the betatron frequency, a resonance can occur

where the electron gains energy from the transverse laser electric field that is rotated to

6



forward momentum via the v⃗ × B⃗ force. This process is known as direct laser acceleration

(DLA) [78, 70, 79, 1]. The energy gain from the DLA process can be similar in magnitude to

the energy gained from the accelerating wakefields, and distinguishing the relative contribution

from of the differing processes is an important research question both in experiment and

simulation [68, 80, 1, 74]. In addition, for a laser that is sufficiently long in duration, the

ions can also be pushed away from the laser axis, leaving the electrons to oscillate in and

gain energy from the laser fields that are guided in the plasma channel [81, 73].

Although experimental work has demonstrated the success of many of these plasma-based

acceleration approaches, much work remains to optimize and refine the quality of accelerated

electron beams [82, 9] to be used as x-ray light sources [83, 84, 85]. In particular, being able

to better understand and sustain betatron resonance could increase both overall electron

energy as well as the emitted betatron radiation. Simulations [85, 86, 87, 88] and some recent

experiments [89, 90] have shown that plasma-based acceleration can produce the required

beam brightness for building a compact free-electron x-ray laser [9]. However, plasma-

based accelerators can also provide compact sources of electrons to generate ultra-compact,

incoherent but directional x-ray sources [85, 91, 92].

1.3 Electron acceleration from laser–solid interactions

For a plasma with density larger than the critical density, the plasma behaves as a solid

to the laser, and light will be reflected at the critical-density interface (or absorbed into

the plasma) [93, 94]. One method for generating energetic electrons is to illuminate a solid

target with a high-intensity laser. For a pre-ionized target with a low-density plasma ramp

in front of the target, the incident and reflected light waves interacting with the pre-plasma

can stochastically accelerate electrons to very high energies and direct them forward into

the target. This process is complicated, as the surface deforms and various acceleration

mechanisms are active [95, 96, 97, 98]. The system dynamics also vary greatly based on
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the physical size of the target. For example, targets that are thin in the laser propagation

direction can generate strong electric fields due to exiting electrons at the rear of the target,

fields that are then responsible for accelerating heavy ions forward at high energies [99, 100].

In some applications, energetic electrons that propagate through the target can be collided

with a high-Z material to produce bremsstrahlung x-rays [10, 14]. Much work has been

devoted to increasing the conversion efficiency of this process, including the use of cone

targets [101, 102], introducing an angle of incidence [103, 94] and using multiple pulses slightly

delayed from one another [104].

The exact mechanisms for the stochastic electron acceleration in these experiments are

still not well understood [14, 105]. Perhaps a more open research question is how to correctly

predict the electron temperature produced from such a laser–solid interaction. Many theories

and parameter fits have been calculated for various experiments, but results appear to vary

greatly based on laser amplitude and duration, as well as the plasma configuration [105]. In

addition, simulation of these processes is difficult, and simplifying assumptions often have to

be made. However, care must be taken to not exclude crucial physics processes with such

assumptions; for example, one-dimensional simulations have been shown to completely miss

one acceleration process at a steep plasma interface [97]. There is clearly much research that

remains to be done in this area both to more reliably simulate the laser–solid interactions as

well as to better understand the physical processes involved in electron acceleration.

1.4 Dissertation outline

The dissertation is organized as follows. In Chapter 2 we present computational developments

in the PIC code Osiris. The first divides the simulation space into small regions (“tiles”) to

better balance computational load, and an order-of-magnitude improvement in scalability

with thread count is observed due to a new method of shared-memory parallelization. The

second set of developments improves the charge initialization and field solve near the axis of
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cylindrically symmetric Osiris simulations, and also gives an implementation of an open

boundary condition for electromagnetic fields at left and right boundaries of the cylindrical

geometry. Chapter 3 discusses betatron resonance and the impact of direct laser acceleration

in laser wakefield accelerators. A more accurate method of computing the energy gain from

direct laser acceleration is given, after which full-scale simulations show the interplay between

the accelerating wakefields and laser fields on high-energy electrons. A customized field

solver is also developed, then used to give better agreement with experiment for a laser

wakefield accelerator simulation. Electron radiography is then studied for use with a laser

wakefield accelerator. In Chapter 4 we present challenges that were overcome to properly

simulate large-scale laser–solid interactions, after which we present simulations with laser

amplitude and duration varied by more than three orders of magnitude. The electron and

x-ray spectra are extracted and analyzed, showing a clear trend in desired x-ray generation.

Finally, concluding remarks are made in Chapter 5, along with direction for future work.
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CHAPTER 2

Software and algorithm development for high-fidelity

particle-in-cell simulations

To model full-scale, long-time simulations relevant to this dissertation—such as direct laser

acceleration in self-modulated laser wakefield accelerators or hot-electron generation from

picosecond laser–plasma interactions in overdense plasmas—we require software modifica-

tions to the Osiris framework that will ensure accuracy and feasibility. Large groups of

macro-particles often bunch together in simulations of plasma-based acceleration, which

can significantly decrease performance due to an imbalance in computational load (i.e., few

computing elements processing a majority of particles). When simulating laser–plasma

interactions for picosecond lasers (∼ 1000 laser periods/wavelengths) propagating in under-

dense plasmas, the required domain size and number of particles can result in prohibitively

demanding simulations in three dimensions. The quasi-3D Osiris algorithm [30] can provide

results with the correct three-dimensional geometric effects at the cost of a two-dimensional

simulation, though care must be taken to ensure that noise or spurious field growth does not

occur near the cylindrical axis over time. In this chapter, we describe first a new approach to

dynamic load balancing that combines two different shared-memory parallelization models,

giving an order-of-magnitude increase in scalability with thread number compared to previous

implementations. We then present several modifications to the quasi-3D algorithm that

correct long-standing issues in the charge, current and fields near the cylindrical axis.
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2.1 Dynamic load balancing in Osiris via tiles

2.1.1 Introduction

The particle-in-cell (PIC) algorithm [22, 23] is widely used to study interesting problems

where discrete particles or agents interact through fields. The PIC algorithm has thus been

widely used in the kinetic modeling of plasmas, where the fields can either be electrostatic or

electromagnetic. However, the nature of tracking individual particles over long periods of

time makes the PIC algorithm computationally expensive, requiring the use of large-scale

high-performance computing (HPC) resources. With the advent of exascale computing, HPC

architectures are undergoing rapid change; since 2004, clock rates have stabilized and growth

on top-ranked systems has come almost entirely from increased parallelism (often within a

CPU). The PIC algorithm is sensitive to load imbalance on excessively parallel machines

because simulation particles move significant distances and may accumulate on a fraction of

the computing resources. As the scale of massively parallel computing architectures continues

to increase, the final push toward exascale and beyond will require significant adaptation of

software to take advantage of the increased parallelism available in the hardware.

Distributing computational load evenly across resources can be achieved through multiple

levels of parallelism. At the highest level one can parallelize across distributed-memory

processing elements (PEs). By this definition a processing element and a node are not the

same thing, as one can use various PEs within a single node. Parallelism on this level is often

implemented via the Message Passing Interface (MPI) standard, and for clarity, in this section

PE always refers to an MPI process. In addition, the increasing number of shared-memory

CPUs inside compute nodes, as well as the increasing number of cores inside today’s CPUs,

allows for parallelism within a processing element (e.g., via OpenMP or Pthreads). Finally,

the use of many-core accelerators from multiple vendors such as Graphical Processing Units

(GPUs) also allows for parallelism via CUDA, OpenACC, HIP, or SYCL/DPC++.

In this section we present developments to improve the parallel scalability of the particle-
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in-cell (PIC) code Osiris [28, 43, 29], which can be applied to any massively parallel

PIC code. On top of the parallel computing challenges presented by evolving hardware

architectures, parallelizing a PIC code while maintaining load balance is inherently challenging

on an algorithmic level. A PIC code contains two main data structures that comprise the

computational load in a simulation: particles that can occupy any position in the simulation

domain and field quantities that are discretized on a mesh grid. Parallelization is done by

distributing particles and grid points among PEs, with load balance being achieved when the

computational load, here defined as the calculation time, associated with these structures

is distributed uniformly. Osiris [28, 43, 29] and most cutting-edge PIC codes use a spatial

grid-based domain decomposition [40, 106, 107, 108], where each PE is responsible for a

subset of the global spatial grid as well as any particles located there. While this domain

decomposition algorithm is widely used, it suffers from the possibility that a large number

of particles may move into a single PE (as is often the case for simulations of plasma-based

acceleration, laser–solid interactions, or magnetic reconnection with pair production). Thus

maintaining acceptable load balance can be challenging, given that the computational load

will generally scale with the number of particles.

Various strategies have been implemented in an effort to dynamically load balance PIC

codes using grid-based decomposition. Perhaps the most straightforward load balancing

scheme is to enlarge distributed-memory spatial domains by using a large number of shared-

memory cores on each PE and distribute the computational load evenly across these cores.

This allows for localized load-imbalance situations, such as large density spikes, to be smoothed

out, generally leading to good improvements in performance and scalability [43]. This offers

limited relief, however, due to hardware limitations on the available number of cores. Another

solution based on a static equidistant domain decomposition is known as the taskfarm

alternative [109]. Here, each regular and equally sized distributed-memory sub-domain is

further subdivided uniformly into tasks, with particles sorted accordingly. To process particles,

each PE works serially through its own set of tasks before accessing, completing and returning
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the tasks of other PEs with higher load. If tasks are small enough, load is balanced since no

PE is ever idly waiting for remaining tasks to be completed. However, this approach can lead

to complicated and costly communication patterns, especially if only a few PEs have a very

large number of particles. A different approach is taken by Liewer and Decyk who pioneered

the idea of shifting PE boundaries in their 1988 algorithm GCPIC [110, 40]. Computational

load is projected onto one axis so that the problem of load balancing becomes one dimensional.

Partitions are found along this axis, and the resulting domains are partitioned in the second

and third dimensions in the same manner, resulting in rectangular (or cuboid, although we

will use rectangular to describe both two- and three-dimensional domain shapes) partitions.

In this approach, the corners of each rectangle may not aligned. Similar approaches based on

rectilinear partitioning have been utilized both with aligned [43, 111] and unaligned [112]

corners. Aligning corners simplifies communication patterns, but precludes obtaining a high

degree of load balance for some problems. Dynamic load balancing can also be achieved by

decomposing the simulation into many small units called tiles (or patches). Each PE handles

one or more of these units, with the algorithm dynamically assigning them between PEs to

maintain an even load [42, 106]. Similar strategies involving tiles have also been employed

for effective parallelization on GPU architectures [41].

In this section, we describe an extension of the previous dynamic load balancing algorithm

of Osiris [43]. In this new scheme the global simulation space is divided into many small,

self-contained “tiles,” which contain all particle and grid quantities for a particular region of

space [113]. The parallel domain decomposition is determined by assigning one or more tiles

to each PE such that computational load is balanced as much as possible; in addition, one or

more threads are assigned to each tile within a given PE based on computational load. Thus

the domain for each PE is constructed by using an irregular number of rectangular-shaped tiles

whose corners are aligned. The ability to assign multiple threads to each tile—following the

shared-memory parallelization algorithm already present in Osiris—allows us to significantly

improve performance for simulations with small regions of high particle density by enabling
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the parallel use of a multi-core PE on a single tile. This provides significant improvement

over previous purely tile-based dynamic load balancing implementations [42, 106] that allow

for only one thread per tile on CPUs. We find that this feature also allows for the use of

larger tiles—reducing the overhead of passing particles between tiles—while still maintaining

load balance. Our implementation also scales well with thread number (both when keeping

the number of PEs times thread number fixed and when keeping the number of PEs fixed)

and gives particularly large speedups for very imbalanced simulations, being well suited for

efficient use in today’s evolving HPC climate as available on-chip thread count continues to

climb.

This section is organized as follows: In Sec. 2.1.2, we discuss the implementation of the tile

structure into Osiris, including both distributed-memory and shared-memory parallelization

schemes. We discuss the overhead and performance of the tiling scheme in Sec. 2.1.3 by

analyzing simulations both with and without load imbalance, including a 3-D simulation

of particle-driven plasma wakefield acceleration (PWFA). Compared to previous Osiris

algorithms, our tile-based implementation of dynamic load balancing gives an order-of-

magnitude increase in scalability with thread number and more than a factor of 2 overall

speedup for two different physics simulations using 2048 cores. We expect even larger speedups

are possible when using a larger number of computing cores.

2.1.2 Methodology

In the last two decades, the continued growth of top-ranked HPC systems has come almost

entirely from increased parallelism, with present systems comprising up to ∼ 106 cores. At

the highest level of parallelism, these massive computer systems are viewed as a network

of distributed-memory PEs amongst which the simulation can be partitioned. (Note that

one can allocate multiple PEs within a single shared memory node; however, in this case

memory is treated as distributed from a computing perspective.) Given that these PEs do

not share memory, using a spatial domain decomposition requires that particle and field data
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be exchanged between neighboring PEs at each time step. Domains for each PE should be

structured such that the computation time on a given region is much larger than the time

spent communicating boundary information, i.e., maximizing the computational volume to

boundary surface area ratio to minimize parallelization overhead.

Previously, the domain decomposition in Osiris was structured such that each PE had

only one neighboring PE in each direction, i.e., the corners of rectangular domains always

matched up. The domain sizes could be statically assigned at the beginning of the simulation

or changed dynamically throughout to maintain load balance [43]. Aligning domain corners

simplified the communication pattern for the sharing of boundary information, but limited

the achievable load balance. In an effort to improve dynamic load balancing and to enhance

shared-memory parallelism in Osiris, we decompose the global simulation space into many

small, static, regularly spaced rectangular regions called “tiles” which have aligned corners,

following a strategy similar to Ref. [42, 106]. The domain decomposition is then determined

by assigning a collection of one or more tiles to each PE such that computational load is

balanced. These tiles can be exchanged dynamically between all PEs at chosen intervals

throughout the simulation to maintain load balance.

2.1.2.1 Distributed-memory parallelism

To determine the most balanced parallel partition, i.e., assignment of tiles to PEs, we must

first devise a way to quantify and organize the computational work required to process each

tile. To this end, we create a load array with the same dimensions as the simulation and

containing one entry per tile. Assuming that the computational load scales linearly with

both the number of particles and the number of grid points,1 we compute the array entry

for the ith tile, Li, as Li = Ni,part + CNi,cells as in Ref. [42], where Ni,part and Ni,cells are the

number of particles and cells in the ith tile, respectively, and the cell weight C represents the

1This is accurate for finite-difference-based field solvers. For other types of field solvers a different load
formula can be straightforwardly derived.
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computational load of a single cell compared to one particle. This depends on simulation

parameters such as interpolation level or field solver type, and is left for the user to define.

We found that for typical 2- and 3-D simulations C ≈ 0.5–2 is effective. The load array

can then be partitioned into NPE regions of contiguous tiles such that the total load in each

partition is as close as possible to the ideal average load,
∑

i Li/NPE, where NPE is the total

number of PEs. Partitioning a 1-D load array in this way is trivial since boundaries must be

determined only along one dimension. However, partitioning a 2- or 3-D load array is more

complex, and multiple solutions may be considered.

One of the approaches proposed by Saule et al. [112] (see Ref. [40] for an example of

a PIC code using this implementation) is to consider 2-D partitions where each PE is left

with a rectangular region of space, with each boundary connecting to one or more neighbors.

Partitions where each boundary connects to a single neighbor (matching corners)—referred

to as a rectilinear partition in [112]—was previously implemented in Osiris [43]. A more

complex scheme, referred to as P ×Q jagged in [112], allows for multiple neighbours along

boundaries in the x dimension, and only one neighbor in y. This allows for decomposing

the multi-dimensional load balance problem into separate uni-dimensional scenarios: we first

define P partitions along x so that the load is evenly divided among them; we then proceed

by dividing each of these P partitions into Q sub-partitions such that the computational

load for all Q sub-partitions in a P partition is equal. This process can be straightforwardly

extended to three dimensions. The P ×Q jagged partition is intuitive and has rather simple

boundaries between PEs, but for some computational load distributions it may not yield a

perfectly balanced configuration, given that the boundary positions are limited to grid cell

boundaries.

Another method to load balance in multiple dimensions is to place tiles sequentially along

a space-filling curve [42]. It is important to recall that that physical domain in this method is

broken up into tiles, where each tile is a rectangle with aligned corners. The challenge then is

to assign a group of tiles to each PE. After estimating the optimal load per PE, we start with
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the first PE and, following the curve over tiles, assign tiles to it until the load is close to the

optimal value. We then proceed to the next PE/tile until all tiles have been assigned. This

way the load imbalance can be adjusted on the granularity of a single tile. In reality, the load

imbalance is more complicated because of differences in communication costs. The advantage

of using a space-filling curve for ordering the tiles as opposed to, say, ordering tiles based on

their Cartesian grid coordinates (as is done for MPI rank ordering), is that we will end up

with simulation domains that are contiguous in space and have relatively simple boundaries

with a small number of neighbors [114]. We implement the space filling curve methods by

creating a 1-D load array, where tiles are ordered in the array using their position along the

space-filling curve, then dividing this array into NPE segments with roughly equal load. Tiles

falling on each segment will be assigned to the corresponding PE.

We implemented both the P ×Q jagged partition and the space-filling curve methods in

Osiris, with two choices for the space-filling curve. The first choice (Snake) simply passes

through each tile by snaking back and forth in simulation space. This curve has no restrictions

on domain size and yields the simplest boundaries, but does not maximize the ratio between

computational volume and boundary surface area. The second choice (Hilbert) traces through

the tiles using a Hilbert curve [115], which will maximize the ratio between computational

volume and boundary surface area. However, this requires that the tile number be a power of

2 in the smallest dimension (and integer multiples of that number in other dimensions) and

leads to more complex boundary shapes, potentially with more neighbors. Figure 2.1 shows

schematics of various 2-D domain decompositions using 4 PEs for a simulation featuring a

high-density diagonal stripe of particles (blue) surrounded by vacuum. We show a uniform

partition without using tiles, as well as partitions using the three load balancing schemes

implemented here, where the number of tiles is four times larger than the number of PEs.

Note that with uniform partitioning, two PEs contain very few particles. For the density

profile and tile size shown here, all three tile schemes achieve roughly the same degree of

load balance across PEs. However, for more complicated density profiles the P ×Q jagged
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Figure 2.1: Domain decomposition using 4 PEs for a high-density diagonal stripe of particles

(blue). We show a uniform partition without tiles, as well as partitions using the three

load balancing schemes implemented here. Gray lines indicate tile boundaries, black lines

indicate PE (i.e., MPI) boundaries, and red arrows trace out tile ordering along the space-

filling curve. Note that with uniform partitioning, two PEs contain very few particles. For

the density profile and tile size shown here, all three tiles schemes achieve roughly the same

degree of load balance.
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scheme will usually not load balance as well as the Snake/Hilbert schemes. To minimize

communication overhead, we group messages from multiple tiles with the same destination

PE into a single message, which greatly improves MPI performance.

To summarize, load balancing is performed by calculating the load array, determining the

load-balanced domain decomposition, and then distributing the tiles among PEs accordingly.

This can be done solely at the beginning of the simulation or dynamically throughout the

simulation at chosen intervals using current simulation information. The domain decomposi-

tion defines a mapping between tiles and PEs, which is used to determine which tiles are to

be sent and received, where tiles with the same destination PE are grouped into a single MPI

buffer to minimize the effect of latency. Note that each successive domain decomposition

is independent of the previous decomposition, i.e., a single PE may send all of its tiles to

various other PEs and receive entirely new ones.

2.1.2.2 Shared-memory parallelism

The parallelization and load balancing algorithm described in the previous section works

well for several problems, but does not guarantee ideal load balance for challenging scenarios

where a large number of particles accumulate in a small number of tiles. Consider such a

situation, where the load on a particular tile corresponds to α times the optimal load per

PE, where α > 1. In this case, the best the load balancing algorithm can do is to assign

that tile to a single PE. However, the load for that PE will be α times the optimal value,

and we will experience a slowdown by a factor of α. To address these situations and further

improve parallel performance, we exploit the possibility for shared-memory parallelism that

is available on most of today’s computer systems, where a single PE may have many cores

or threads that share memory with one another. While load balancing across distributed

memory must be done with the coarse resolution of one tile, load balancing within a single

PE with many threads can be done on a finer scale, for example, by dividing particles evenly

among shared-memory threads.
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For the case where multiple tiles are assigned to a single PE, there are two common

approaches for processing the tiles using shared-memory parallelism. If there are many more

tiles than available threads on the PE, load balance can be achieved by looping over tiles

using a dynamic scheduler (“first come, first served”), with one thread per tile. This has

been previously demonstrated by Ref. [106]. However, if one single tile contains a very large

number of particles, the associated thread will take much longer than the others and load

balance will fail.

Alternatively, tiles can be processed in serial with all threads working on a single tile

at any given time. This way a single thread is never stuck on a tile with many particles.

Dividing up particles in a single region of space amongst shared-memory resources is a strategy

commonly implemented in GPU codes [41, 116]. However, given that all threads are assigned

to the same region of space (tile), we must avoid memory collisions when doing the current

deposition. This can be achieved either by using atomic operations, or by creating a separate

electric current grid for each thread, then summing these arrays together after the current

deposition is complete. Both options have specific drawbacks that impede parallel scalability

for large numbers of threads, but the latter option generally gives better performance on

CPUs and is used in Osiris [43].

We take a novel approach and include both types of shared-memory parallelism in a single

framework. For a given PE with T threads and total load L, let Lj be the load found on its

jth tile. Each time step we calculate which tiles should be processed in parallel (one thread

per tile) and which tiles should be processed in serial (T threads per tile). A tile is deemed

“heavy” if its load is greater than the average load per thread, i.e., if Lj ≥ L/T , and “light”

otherwise. However, if a PE has fewer tiles than threads, all tiles are classified as “heavy” to

avoid idle threads. For routines like those in particle processing, light tiles are processed first

by assigning one thread per tile using a dynamic scheduler (we use OpenMP). Once all light

tiles are completed, each heavy tile is executed one at a time, with all threads processing

particles on that tile in parallel.
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A schematic of the heavy-light tile organization is shown in Fig. 2.2 for a PE with five light

tiles, two heavy tiles, and four threads. Using light tiles avoids data dependency issues when

there are many more tiles than threads. The inclusion of heavy tiles ensures that no threads

are idle in cases with (1) fewer tiles than threads on a PE or (2) disproportionately large

load on a single tile. This implementation is critical for simulations with very high particle

densities, such as plasma wakefield or shock simulations, where the distributed-memory load

balance may result in PEs having just one tile containing a majority of particles. Note that

tile G is queued for execution by the first available thread. If all light tiles have similar load,

this leftover tile could double the execution time of light tiles compared to having only four

light tiles. The number of light tiles could be adjusted to be divisible by the number of

threads, or light tiles could be sorted by decreasing load to mitigate this overhead. However,

we do not address this particular issue here since the impact is minimal.

Alternatively, it is possible to use a task-based approach to thread over tiles. The algorithm

begins by creating one task per tile, for all tiles. Light tiles will then be processed without

further parallelism, while heavy tiles will be processed using multiple threads per tile, with

the number of threads being proportional to the number of particles in the tile. The number

of threads for each heavy tile can be calculated as Ti = ⌊T × (Ni/N )⌉ (round to nearest

integer), where T is the total number of available threads in the PE, N is the total number

of particles in the PE, and Ni is the number of particles in the tile. These tasks will be

scheduled dynamically, assigning, if possible, a higher priority to light tiles. This approach

should, in most scenarios, reduce the number of threads assigned to individual heavy tiles

and ensure better load distribution across cores inside a PE, and will be further explored in a

future publication.

2.1.2.3 Tile boundary management

When using a parallelization scheme based on spatial domain decomposition (such as the tiling

scheme described here), each tile is required to exchange information with the neighboring
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Figure 2.2: Work flow for shared-memory parallelization on a single MPI process with four

threads. Each MPI process handles its tiles differently depending on their computational

weight—a feature unique to our implementation. Using shared-memory threads (OpenMP

in our case), tiles with load less than the average load per thread on that MPI process

(light tiles) are processed in parallel with one thread per tile. The gray dashed thread in

tile G represents a light tile queued for execution by the first available thread. Lastly, tiles

with above-average load (heavy tiles) are processed in serial with all threads dividing work

on that tile evenly.
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tiles at each time step. This includes both grid information (edge values of fields and densities)

and particle information (particles moving to/coming from another tile). Since each tile is

self-contained, boundary information must be exchanged between all neighboring tiles—both

tiles found within a single PE and those located across a PE–PE boundary. Note that by

construction, tile corners are aligned. The exchange of boundary information introduces

overhead not only from the MPI communications, but also from reassigning particles to

different tiles within the same PE, with the latter overhead increasing as tile size decreases.

If not optimized, these overheads can outweigh the benefit of the load balance algorithm,

severely limiting its applicability.

In our implementation, boundary information between different PEs is packed into buffers

and shared via MPI; tile boundary information within a single PE is instead referenced

directly in shared memory. Whenever tiles are (re)assigned to PEs, each PE will gather

and store information regarding which of its tile boundaries are internal and which are

external. Each time step when boundary information is exchanged, boundaries are processed

sequentially over the number of dimensions to avoid corner (diagonal) communications. When

exchanging grid information, we loop over all tiles using parallel threads; local tile boundary

values are copied directly in shared memory (no buffer required), and boundary values to be

sent to other PEs are packed into one buffer per target PE and sent via MPI. We then loop

over all tiles with external boundaries (again using parallel threads) to copy in boundary

values from the received communication buffers. Particles moving between tiles are processed

in a similar manner. Each tile maintains buffers to store exiting particles; buffered particles

moving to a local tile are referenced and unpacked, while particles moving to a different PE

are packed and sent over MPI. Grouping MPI messages going from a local PE to the same

target PE greatly improves performance (as opposed to using one message per tile boundary,

for example) by reducing the number of messages and limiting the impact of communication

latency, since message sizes are larger.

Using the tiling scheme with either of the space-filling curves will lead to a small increase

23



in communication time when compared to a uniform partition. This is mainly due to an

increased number of neighboring PEs (the corners of each PE are no longer aligned) that

communicate smaller messages (i.e., communication is mostly latency-dominated). This

increase in communication time can be offset by obviating the particle sorting step required

in most PIC codes while still ensuring data locality and cache coherency (due to the small

size of a tile). Furthermore, the benefit of proper parallel load balance can greatly outweigh

any penalties incurred from communication overhead for otherwise unbalanced runs.

2.1.2.4 Best practices

In this section we briefly discuss parameters a user or developer should consider when working

with a tile-based PIC code. First, the choice of tile size has a significant impact on the

performance of the algorithm: smaller tile sizes improve data locality and load balance

at the expense of a higher overhead from tile boundary management, as the number of

particles (compared to the total particles in a tile) crossing boundaries will increase, as will

the number of boundaries between PEs. On the other hand, larger tile sizes reduce the

boundary management overhead but can interfere with data locality and hinder parallel load

balancing by limiting the available resolution of the parallel partition. The optimal tile size

will be problem-specific, as discussed in further detail in Sec. 2.1.3.1.

Second, the choice of how frequently to perform the dynamic load balance is problem-

specific, but in our experience it should be done rather frequently, e.g., once every 20 or

40 time steps. For all simulations in Sec. 2.1.3, the amount of total simulation time spent

performing the dynamic load balance was always below 4%, (usually between 1–2%). Good

load balance was maintained for a very rapidly evolving plasma with little overhead by

repartitioning every 20 time steps.

Finally, perhaps the biggest concern for developers and users of a tile-based PIC code

is memory management. Specifically, extra buffers need to be maintained to store particles

migrating between tiles and PEs. As mentioned briefly in Sec. 2.1.2.3, our Osiris implemen-
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tation maintains two types of buffers at the tile level and one extra type of particle buffer at

the PE level. Each tile must have (1) a buffer to hold all of its particles and (2) a buffer (or

multiple) to store the particles that have left its domain and need to be moved elsewhere. In

addition, each PE requires separate buffers to store particles to be communicated to various

neighbor PEs. The sizes of buffers used to store migrating particles must be chosen carefully

to maximize performance (e.g., limit reallocation and number of MPI messages) without

running out of memory. When buffers are grown to include additional particles, increasing

the buffer size by only a small amount may trigger memory reallocation every few time

steps during a large influx of particles. However, if buffers are grown by a large amount, a

small influx of particles across a large portion of the simulation space could consume a large

amount of memory. In our case, we give the user the ability to define the initial size of the

main particle buffers in each tile, along with the amount by which the buffer is grown when

necessary. These parameters are problem-specific, and may require some experimentation to

appropriately define. Internal memory management could also be used to write checkpoint

data when the allocated memory approaches the hardware limit.

2.1.3 Results

To evaluate the performance of our dynamic load balance algorithm using tiles we will

benchmark it against the baseline performance of Osiris using a static, regular spatial

domain decomposition (referred to as “no tiles” or “Osiris” in all figures). As mentioned

earlier, these results depend on the type of problem and level of imbalance, as well as user

choices such as tile size and dynamic load balance frequency. We will analyze simulations of

a uniform warm plasma, an ambipolar diffusion problem, and a plasma wakefield accelerator.

All simulations were performed on Haswell compute nodes of the Cori system at NERSC,

each with two sockets, and each socket containing a 2.3 GHz 16-core Haswell CPU (Intel

Xeon Processor E5-2698 v3) supporting 2 hyper-threads, leading to a total of 64 hardware

threads per node.
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2.1.3.1 Uniform warm plasma

A uniform warm plasma is a perfectly balanced problem that can be simulated using standard

static spatial domain decomposition techniques with excellent parallel efficiency, since the load

for every PE is uniform throughout the simulation. Simulating a warm plasma is thus ideal

for benchmarking the overhead of the tiling algorithm compared to the default parallelization

strategies—both pure MPI and MPI/OpenMP hybrid parallelization options are available in

Osiris (see Ref. [43] for details)—and optimizing tile size for best performance. The default

MPI/OpenMP hybrid parallelization scheme divides the simulation space evenly amongst

PEs, then processes particles within an entire PE domain in parallel amongst threads, with

each thread using a separate electric current grid that must be summed at each time step

(see Sec. 2.1.2.2). We simulate a uniform warm plasma in 2D and 3D using four compute

nodes, for a total of 128 cores (256 threads). The product of the number of MPI processes

(M) and the number of threads per process (N) is kept constant at M ×N = 256, for N = 2,

4, 8, 16 and 32. The 2-D runs use a 10242 cell grid with cell size (0.0174 c/ωp)
2 and a total of

∼ 150 million particles, and the 3-D runs use a 1283 cell grid with cell size (0.0211c/ωp)
3 and

a total of ∼ 134 million particles; both runs use a time step of 0.012ω−1
p . Particle velocities

were initialized from a thermal distribution with a proper thermal velocity of uth = 0.1 c. All

simulations were done using second-order (quadratic) interpolation for particles with periodic

boundary conditions in all directions, and were run for 1000 time steps. Tile size was 162 cells

in 2D and 83 cells in 3D. Figure 2.3 shows the performance of the code for the various cases.

The performance of the default hybrid parallelization in Osiris is shown to decrease

with increasing thread number (decreasing PE number). This is to be expected as the

shared-memory algorithm is required to do additional work (zeroing additional current arrays

and reducing the results from all threads) with increasing thread count. Since all tiled

simulations in this configuration have only “light” tiles (16 tiles for every thread), the new

tiling algorithm does not suffer from this limitation and shows good scalability all the way

up to 32 threads. The drop in performance is mostly due to the fact that not all routines
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Figure 2.3: Thermal plasma simulation performance in 2D and 3D for varying number of

threads, with (dashed line) and without (solid line) tiling algorithm. Tiles were 16 cells

square in 2D and 8 cells cube in 3D. Number of MPI processes times number of threads

per process was kept constant at 256. Performance is calculated as the number of particles

pushed (including field solve and other elements) per second, normalized to the fastest run.
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have been shared-memory parallelized, as they do not represent a significant overhead for

small thread counts.

The new algorithm is only outperformed by default Osiris for 3D geometry with small

(2,4) number of threads. This is related to the overhead of moving particles between domains;

default Osiris without tiles uses larger domains, so there will be fewer particles (compared

to the particles in the domain) crossing boundaries. However, for larger thread counts the

limitations of default Osiris outweigh this overhead, and the new algorithm performs much

better.

To determine the optimal tile size, we repeated the above simulations for varied tile

sizes and number of particles per cell. The latter parameter is important because it directly

impacts the computational load of each tile. The number of particles per cell were varied

between 1, 16, 64 and 144, and the tile sizes were varied by powers of 2, with values ranging

from 8–64 cells on each side. Smaller values are not possible using second-order (quadratic)

interpolation, as a minimum of 5 cells is required. Table 2.1 summarizes our results. We

found that the optimal tile side length varied between 16–64 cells in 2D and 8–16 cells in 3D.

These results are consistent with our expectations: when the amount of computation per tile

is larger (as is the case with higher numbers of particles per cell), the overhead of moving

particles between tiles has a smaller impact, and the benefits of smaller tiles in terms of data

locality lead to higher performance. For smaller numbers of particles per cell this is no longer

the case, and larger tiles perform better.

2.1.3.2 Ambipolar diffusion

Ambipolar diffusion is of particular importance to a large range of physics scenarios, such as

laser–solid interactions and inertial confinement fusion [117, 5, 118]. This is a particularly

difficult problem to simulate using spatial domain decomposition as the plasma, which is

initially confined to a small region of space, expands into vacuum (or near vacuum). We will

use this problem to test the effectiveness of our algorithm under extreme load imbalance.
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2D 3D

Particles per

cell

1 16 64+ 1 8+

Optimal tile

size

32–64 32 16 16 8

Table 2.1: Optimal tile sizes (cells on each side) in 2D and 3D for a thermal plasma with

varied particles per cell. Decreasing the tile size introduces more overhead but improves

cache locality, which is important for simulations with many particles per cell.

We perform a simulation of the expansion of an electron-ion plasma undergoing ambipolar

diffusion in 3D, using the various parallelization strategies discussed in Sec. 2.1.2. We start

with a constant-density sphere of electrons and ions, where the electrons have a temperature

of 130 keV, the ions are cold, the ion-to-electron mass ratio is 1836, and each species has 1000

particles per cell. The sphere of particles has radius 1.4 c/ωp and is stationed in the center

of a cubic periodic box of side length 16 c/ωp with 1603 cells. The electrons quickly diffuse

outward, but are soon slowed by the ambipolar space charge fields of the ions. The ions are

in turn pulled out and start to expand, which slows down the expansion of the electrons.

Afterwards the electrons will again start to diffuse, leading to an oscillatory expansion of

both species. We ran each simulation a total time of 300 ω−1
p with a time step of 0.0577 ω−1

p ,

and we used first-order (linear) interpolation for particles.

Figure 2.4 shows the combined electron-ion particle density for an analogous 2-D simulation

at times 0, 153, and 300 ω−1
p after the beginning of the expansion, where ωp is the electron

plasma frequency before expansion. The domains of the 16 PEs overlay the density; density

slices along any dimension in 3D show similar behavior, but the parallel domain decomposition

can be better visualized and understood in 2D. For the first half of the 3-D simulation, about

70% of the particles are contained within a sphere of radius 2.5 c/ωp, or just 1.6% of the

entire simulation volume. By the end of the simulation, 70% of the particles are contained
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Figure 2.4: The 16 PE subdivisions overlaying particle density of the ambipolar diffusion

problem in 2D at various times. Cell weight is 2.0 for this case.

within a sphere of radius 5 c/ωp (13% of the total volume). Since the particles largely reside

in the center of the simulation box, a traditional spatial domain decomposition with uniform

partition sizes will only allow good parallel load balance for up to 2 PEs per dimension (8 PEs

total), and will show severe imbalance if the number of PEs is increased to 4 or more in any

dimension. This simulation is also challenging for our tile-based approach: using a total of

4096 cube-shaped tiles with 10 cells to a side, 70% of the particles are contained within just

56 tiles for the first third of the simulation, steadily increasing to 432 tiles by the end of the

simulation.

We test the strong scaling parallel speedup of this simulation, keeping the problem size

constant and running on 128 to 2048 cores for various cases: the default hybrid MPI/OpenMP

algorithm without (“Osiris, no dlb”) and with (“Osiris dlb”) the previously implemented

dynamic load balance [43], light tiles only and heavy tiles only, each with dynamic load

balance using the Hilbert space-filling curve (“light tiles” and “heavy tiles”, respectively),

and a combination of light/heavy tiles with dynamic load balancing using all three schemes

(“Hilbert,” “Snake,” and “P ×Q jagged”). Recall that the previously implemented dynamic

load balance uses the rectilinear partition from [112], similar to P ×Q jagged but with only

one neighboring PE on each domain side. As mentioned in Sec. 2.1.2.2, the shared-memory

parallelization of light and heavy tiles is as follows: light tiles are assigned only one thread
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each, with tiles processed in parallel on a first-come-first-served basis; heavy tiles are processed

in serial, with all threads working on a single tile at once. The two cases without tiles use

the maximum number of threads per MPI process without hyperthreading (16), as this is

most favorable for the default hybrid algorithm. The cases with tiles use 2, 4, 8, 16, and 16

threads per MPI process for the five runs with increasing core counts, respectively. Dynamic

load balancing was performed at every 20 time steps and occupied just a few percent of the

total simulation time. The chosen cell weight parameter was C = 2. For the “Hilbert” run

using 2048 cores, dynamically load balancing every 10 and 40 time steps caused the total

run time to increase by 10% and 11%, respectively. Figure 2.5 shows the results in terms of

(a) overall simulation performance and (b) load per core, normalized to the fastest simulation

with 128 cores.

The default hybrid algorithm without dynamic load balancing is unable to scale due to

load imbalance issues. Figure 2.5 also shows that the scalability of the light tiles algorithm is

severely limited as a result of its inability to parallelize within each tile, and in fact the light

tiles algorithm is the slowest algorithm at all core counts. To explain the poor performance

when using only light tiles, consider the simulations with 1024 or 2048 total cores, where each

PE has 16 threads. During the first third of the simulation, the 56 computationally expensive

tiles could be spread across just 4 PEs (64 cores) since the algorithm groups together tiles

close in space and requires that each PE has at least as many tiles as threads. Each light tile

can only be processed by a single core, leading to significant performance degradation that

worsens with increasing core counts. Using only heavy tiles significantly boosts performance

since a PE may be assigned just a single tile, but note the drastic drop in performance for

the first run using 16 threads (1024 total cores). This overhead is a result of summing the

16 separate electric current grids for each tile, which is especially detrimental for PEs with

many tiles containing few particles.

The limitation in parallel scalability when using only light or only heavy tiles is overcome

by our new algorithm that uses a combination of light and heavy tiles. We implement an
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additional level of parallelization within each tile, which allows a PE to efficiently devote all of

its cores to process a single computationally expensive tile. As seen in Fig. 2.5, our algorithm

(a) maintains much better overall parallel scalability compared to any other method and

(b) achieves near ideal load balance for up 1024 cores. At all core counts, the combination of

heavy/light tiles always outperforms the use of light tiles only, being ∼ 2 times faster for

128 cores and ∼ 6 times faster for the largest core count. The average number of heavy tiles

over the course of the simulation steadily increases with thread count, ranging between 0.5%

and 8.2% of all tiles from 128 to 2048 cores, respectively. The small drop in (b) from ideal

scalability at 2048 cores has to do with the problem/tile size: at this core count we will have

on average only 2 tiles per PE, which does not allow for effective load balancing. Reducing

the tile size may improve performance for this case.

When comparing the various load-balancing schemes, using the Hilbert space-filling curve

was consistently the fastest, and with 2048 cores it was 1.2, 1.5, and 1.4 times faster than the

P ×Q jagged scheme, snake space-filling curve scheme, and previous dynamic load balance,

respectively. An overall speedup of a factor of 2.2 was gained compared to original Osiris

without dynamic load balance. Although the snake space-filling curve consistently gave

excellent load balance, extra overhead from MPI communications due to the shapes of PE

boundaries ultimately caused those runs to be slower than the other topologies. For these

problems there were only an average of ∼ 11, 000 particles per core for the case with 2048

cores, and many of the tiles have very few particles.

2.1.3.3 Plasma wakefield acceleration

Since its inception in the seminal paper by Tajima and Dawson [52], the field of plasma

wakefield acceleration has been an active area of intense research. Plasma based acceleration

(PBA) [119] is an accelerator scheme which uses an intense electron bunch—plasma wakefield

acceleration (PWFA) [60]—or a laser—laser wakefield acceleration (LWFA)—to accelerate

particles. As the beam propagates through the plasma, the electrons are pushed away from
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Figure 2.5: Strong scaling test of a 3-D ambipolar diffusion simulation. Performance in (a)

is calculated as the number of particles pushed (including field solve and other elements)

per second, and load in (b) is calculated as the maximum time any core spent in the

advance-deposit routine, both normalized to the fastest run with 128 total cores. The

“Osiris, no dlb” and “Osiris, dlb” runs are both done without tiles, one without load

balancing and one with the previously implemented dynamic load balance. The “light tiles”

and “heavy tiles” runs use the new dynamic load balance via the Hilbert space-filling curve;

a light-tile run processes one or more tiles per thread for all tiles, while a heavy-tile run

uses all available threads to process each tile sequentially. The “Hilbert,” “Snake,” and

“P ×Q jagged” runs use the new dynamic load balance along with a combination of light

and heavy tiles, where the names refer to the load-balancing scheme used. The two cases

without tiles are performed with 16 threads per MPI process, and tiled runs use an optimal

configuration for each run (2, 4, 8, 16, and 16 threads per MPI process for the five runs

with increasing core counts, respectively).
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the beam to leave an exposed ion column, resulting in a region of space supporting large

electric fields that travels at nearly the speed of light. Particles can be externally injected or

self-injected (trapped) from the background plasma through various mechanisms [67, 120, 121,

122, 123, 9], then accelerated to high energies. The excitation of the wake by the drive beam

is strongly nonlinear, as can be the evolution of the driver and the injected and accelerated

beams, making PIC simulations the tool of choice for modeling these scenarios.

Simulations of PWFA naturally contain regions of very high particle density—the injected

particle bunch and beam driver—that are dynamic in nature, surrounded by regions of

relatively low-density background plasma. These density distributions can result in severe

load imbalance, for which finding a single PE decomposition that balances load for the

entire simulation is nearly impossible. Effective dynamic load balancing of the simulation is

therefore crucial for efficient numerical modeling of PWFA, particularly when using large

core counts. We test the performance of our dynamic load balancing algorithm with a PWFA

scenario similar to that studied by Dalichaouch et al. [124]. The driving beam is initialized

with a radius of σr = 2.1 c/ωp and then evolves self-consistently, focusing down to a radius of

σr = 0.2 c/ωp in the moving simulation window. When initializing a beam, to provide good

statistics we use a fixed number of particles per cell and variable weights on the particles to

vary the density. The beam evolution leads to a large load imbalance due to the large number

of simulation particles concentrated in a small cell volume. Additionally, the accelerating

structure formed with particles from the background plasma will show a density spike at the

back of this structure that can be several orders of magnitude larger than the background

density, creating a second load imbalance region.

To illustrate the complexity of finding an optimal domain decomposition, we show in

Fig. 2.6 a snapshot from an analogous simulation using the “quasi-3D” version of Osiris that

uses a cylindrical geometry (two-dimensional r-z in space, azimuthal expansion in θ) [125, 30].

Load balance was performed using the Hilbert space-filling curve and a cell weight C = 1

for 2048 PEs; the simulation size was 2048 × 1536 cells, with 256 × 128 tiles each of size
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Figure 2.6: MPI subdivisions (black lines) overlaying electron density for a quasi-3D PWFA

simulation with 2048 MPI processes.
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8× 12 cells. The total simulation space was of size 16× 12 c/ωp, with 8 particles per cell for

each of the driver and background electron species, and we used second-order (quadratic)

interpolation for particles. This snapshot is about halfway through the simulation when the

particle driver has focused tightly near to the axis, and the figure shows an overlay of PE

boundaries with electron density. Note the large concentration of small domains near the

beam driver, bubble sheath and injected particles, and the large domains in the near-vacuum

region. Similar behavior occurs for 3D simulations, but the visualization of these structures

is cluttered and brings little insight.

We tested the efficiency of our algorithm on 3D simulations of this PWFA scenario by

performing a set of simulations with different parallelization options. All simulations were

performed on 64 compute nodes with the architecture described above (2048 cores total) and

varying numbers of MPI processes/threads, for the default hybrid parallelization without

load balance and for the dynamic light/heavy tiles parallelization. The simulation size was

512× 768× 768 cells, and the tile size was 16× 12× 12 cells for the tile-based simulations.

The total simulation space was of size 16 × 24 × 24 c/ωp, with 1 particle per cell for each

of the driver and background electron species and second-order interpolation for particles.

The simulation was run for a total of 12800 time steps to a time of 200 ω−1
p , with dynamic

load balancing performed at every 40 time steps. For load calculations we chose a cell weight

parameter of C = 0.5.

Figure 2.7 shows the evolution of the parallel particle load imbalance over the course of

a simulation using 2048 total cores with two MPI/OpenMP configurations (see Table 2.2

for more detail) as the ratio between the maximum computational load on a single PE and

the average computational load across all PEs. The load imbalance is shown for both the

static uniform partition (no tiles) and the dynamic partition (tiles). As shown in the plot,

the high-density regions near the propagation axis lead to a severe load imbalance about

halfway through the simulation. For 2048 processes each with 1 thread, the imbalance reaches

a peak (average) value of 37.1 (10.6) without dynamic load balancing. This result can be
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Figure 2.7: Particle load imbalance (maximum/average load) of a 3-D PWFA simulation

using 2048 total cores with and without dynamic load balancing using tiles for two different

MPI/OpenMP configurations. The dot-dashed line shows an ideal load imbalance of 1.0.
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improved through the use of the hybrid MPI/OpenMP algorithm [43] that smears out the

load imbalance by allowing for large domains to be assigned to each PE, leading to a peak

(average) imbalance value of 5.1 (3.5) at 128 processes each with 16 threads. It should,

however, be noted that this large number of threads leads to some performance degradation

due to overhead, as described in Secs. 2.1.2.2 and 2.1.3.1. To further reduce the parallel load

imbalance we must use the dynamic tile load balance. Using this algorithm we can lower

the peak (average) value of the imbalance down to 8.0 (1.7) with 2048 processes, as shown

in Fig. 2.7. Furthermore, using our heavy/light tile parallelization we can assign multiple

threads to the heavy tiles, achieving a peak (average) load imbalance of just 1.7 (1.3) with

128 processes. Note that for this run, nearly all tiles were processed as light except for an

average of 175 heavy tiles near the focus of the beam driver during the middle 10% of the

simulation time.

Finally, we compare the total simulation times for the different configurations of MPI

processes and OpenMP threads for the static uniform partition and the dynamic tiles partition.

Table 2.2 shows the results, with time values normalized to the fastest simulation (512 MPI

processes with 4 OpenMP threads and dynamic load balance). As shown in the table,

performance of the static partition (no tiles) can be improved by over a factor of 2 simply

by increasing the number of threads. However, the tile-based algorithm maintains good

performance for all thread counts and always outperforms the static partition, being 2.18

times faster between the fastest runs. Cumulative load balance is roughly the same for

tile-based runs with 4, 8, and 16 OpenMP threads, but the overhead discussed in Sec. 2.1.2.3

is slightly larger with 16 threads. The overhead associated with the dynamic load balance

effort, however, was found to be only ∼ 1% of the total simulation time in all cases. We also

see that the timings for the tile-based algorithm vary less than 10% with varying number of

threads, which is to be expected, as the computation should scale well with number of threads.

This small variation highlights the versatility of the algorithm in terms of efficiency on various

architectures supporting different numbers of threads. We note that for simulations with
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MPI processes OpenMP

threads

Time [a.u.] no tiles Time [a.u.] tiles

2048 1 4.63 1.19

1024 2 4.55 1.03

512 4 2.45 1.00

256 8 2.57 1.03

128 16 2.18 1.10

Table 2.2: Total simulation time with and without tiles (and dynamic load balancing) for

the 3-D PWFA simulation. The total number of cores was kept constant (2048), only

varying the number of OpenMP threads and MPI processes.

many more particles per cell, the speedup of the total simulation will more closely mirror the

improvement in particle load balance. A more systematic study will be undertaken in the

future.

2.1.4 Summary

Many of today’s frontier problems in plasma physics necessitate fully kinetic simulations,

which in many cases can only be achieved through particle-in-cell simulations (this is the

case for the physics problems addressed in this dissertation). Although the PIC algorithm

has been quite successful in addressing many kinetic plasma problems (and can be extended

straightforwardly with additional physics models), it is numerically expensive, often requiring

large-scale, massively-parallel computational resources. However, the traditional paralleliza-

tion of the PIC algorithm is susceptible to parallel load imbalance. In problems such as

plasma-based acceleration, laser–solid interactions, and magnetic reconnection with pair

production, simulation particles may accumulate in small regions of space, leading to an

uneven computational load. Dynamic load balancing across distributed-memory processing

elements (PEs) and the efficient use of shared-memory cores are therefore essential to perform

39



large-scale simulations of these physics problems.

In Sec. 2.1 we have presented a novel hybrid parallelization strategy for the PIC algorithm

that combines two different shared-memory parallelization algorithms, achieving excellent

performance even for simulations with extreme imbalance. Our algorithm uses small, regularly

spaced, self-contained regions of the simulation space that we refer to as tiles. These tiles

contain all particle and grid quantities for a particular region of space and are dynamically

traded between all PEs at chosen intervals to maintain computational load balance. Unique

to our tile-based implementation of dynamic load balancing is the ability to assign either one

or more than one thread to each tile depending on computational weight. This is especially

useful for simulations with localized high-density regions for which the load-balanced domain

decomposition may result in a PE having a single tile containing a majority of particles, or for

simulations where a given PE has fewer tiles than threads. Furthermore, the ability to assign

multiple threads to each tile allows us to use larger tiles, which can reduce the overhead of

the tiling algorithm while still maintaining good load balance and high performance.

Our algorithm was shown to perform well for balanced simulations: it was on par with

or faster than the traditional parallelization algorithm on the same hardware and scaled

better with increasing thread count, with an overhead of less than ∼5% for the highest thread

count. Our algorithm gave a speedup of more than a factor of 2 compared to simulations

without dynamic load balance of an expanding plasma undergoing ambipolar diffusion, a

critically difficult problem to parallelize with 70% of the particles contained within only

13% of the simulation volume. In particular, it was ∼ 6 times faster than running the

simulation using only 1 thread per tile and attained near-ideal load balance for 8 times

as many cores compared to running without tiles. We also analyzed the performance of

our algorithm on plasma accelerator simulations and verified a speedup of over a factor of

2 when compared to performance without dynamic load balance, with the dynamic load

balance itself only taking about 1% of the total simulation time. Even greater speedups are

expected for larger simulations, where shared-memory thread number is small compared to
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total computing resources. Our results also show that the performance of the algorithm does

not vary significantly with different combinations of PE and thread numbers.

This algorithm was tested on a CPU architecture using MPI/OpenMP for distributed/shared

memory parallelism, and can be straightforwardly extended to other architectures and pro-

gramming models, such as the MPI-3 Shared Memory model, Coarray Fortran, extension

to GPUs using, for example, CUDA, or extension to other architectures using Intel oneAPI.

We are currently investigating the best way to implement this load-balancing algorithm on

many-core accelerators, noting that similar algorithms have been shown to operate efficiently

on such architectures [126, 42]. The software may need to be carefully structured to ensure

that all threads are executing the same kernel while allowing for a combination of heavy/light

tiles. The algorithm can also be combined with vectorized versions of the PIC algorithm,

efficiently exploiting all parallelism levels available in present and near-future HPC systems

and opening new avenues for the numerical simulation of kinetic plasmas.

2.2 Increased fidelity for the quasi-3D algorithm

For many problems of interest in plasma-based acceleration and laser–plasma interactions of

short laser pulses, there is near-azimuthal symmetry. Pure r-z, two-dimensional algorithms

cannot model a linearly (or circularly) polarized laser; they can, however, model radially or

cylindrically polarized lasers. To circumvent this challenge, Lifschitz et al. [125] proposed an

algorithm that decomposed (expanded) all fields (electromagnetic fields and current densities)

into azimuthal harmonics. They noted that a linearly polarized laser with a symmetric

spot size contains only the first-order azimuthal harmonic. Therefore, by keeping only the

first azimuthal harmonic, laser–plasma interactions for lasers with symmetric spot sizes

can effectively be studied in two dimensions while retaining the correct three-dimensional

geometric effects. The particle locations in ϕ are updated such that the code is hybrid: it

uses a PIC description in r-z and a gridless description in ϕ. The expansion can be truncated
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at a small number of harmonics if near-azimuthal symmetry exists, thereby making the

computational cost similar to a two-dimensional code. This algorithm was implemented into

Osiris as described in Ref. [30], and the algorithm was coined as a quasi-3D description.

The Osiris implementation [30] differs from the original work of Lifschitz et al. [125] in two

respects. The first is that it described a charge-conserving current method that is compatible

with the quasi-3D description, and the second is that the field discretization was shifted

by a half-cell to align with cylindrical routines previously in place in Osiris. Furthermore,

as it was fully integrated into Osiris, it was able to take advantage of other optimization

and physics features. Other PIC codes, such as Smilei [106], that have implemented a

finite-difference version of the quasi-3D algorithm use the field discretization proposed by

Lifschitz. The discretization in Osiris appears to present some challenges, specifically that

there can be a spurious growth in the Er field right at the r = 0 axis. It is unclear whether

similar field growth is observed in the other discretization, or if this problem is unique to the

cell arrangement in Osiris. We note that a spectral-based quasi-3D algorithm was developed

by Lehe et al. [127]; however, such an algorithm does not scale as well on massively parallel

compute systems.

We have used quasi-3D simulations extensively for the work to be described in Chapter 3

for studying self-modulated laser wakefield acceleration (SM-LWFA) combined with directed

laser acceleration (DLA). To enable these simulations, we needed to address some subtle

numerical issues. In this section we describe this effort.

We first propose an improvement to the charge weighting of particles that originate

near the axis that eliminates an on-axis density spike and corresponding field/current error

observed (as far as we know) in most r-z based cylindrical particle-in-cell codes. We then

extend ideas included in the Smilei documentation to find an improved method for computing

the on-axis cylindrical field components for the first-order azimuthal harmonic; this change

is shown to eliminate the previously observed spurious field growth. Finally, we discuss an

improved implementation of absorbing boundary conditions in the quasi-3D geometry.
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2.2.1 On-axis charge modification for uniform radial charge and current profiles

In cylindrical particle-in-cell codes, weighting of charges near the axis requires special

treatment. If charges are loaded uniformly over the entire simulation domain, a spike in the

charge (and current) density will be present in the first few cells near the axis due to the

folding in of charge and current deposited in the negative r guard cells.2 Thus, we seek to

know if there is a proper initial charge normalization for particles near the axis such that

the initial charge density is uniform throughout the simulation and charge is conserved, i.e.,

Gauss’s law is maintained for the duration of the simulation. This work is extended from an

idea proposed by Dan F. Gordon in a private communication.

First, it is important that we understand the discretization of fields and particles in

Osiris for different geometries and interpolation levels. The particle position for each spatial

dimension in Osiris is referenced from the center of what we refer to as a particle cell. The

reference cell is stored as an integer (ix) that represents how many cells you are away from

the left/lower/bottom boundary, and the offset from the cell center is stored as a floating

point number (−0.5 ≤ x < 0.5). Storing the position as two separate numbers permits greater

accuracy of the particle position for cells whose corner are located at positions with large

values. In the current version of Osiris, the boundary of a particle cell is always fixed to the

location of a simulation boundary; this is true regardless of the interpolation order. This

simplifies and improves the efficiency of the communication pattern for particles.

The location of where field quantities in each direction are defined in relation to a reference

particle cell varies depending on the interpolation level. In addition, the number of guard

cells needed to push particles depends on the interpolation order. The width of a particle

2Interestingly, this is not an issue for particles initialized away from the axis that drift towards the
cylindrical axis. Though we do not yet understand the exact reason for this, it appears to be a product of
the charge-conserving current deposit scheme. In addition, a thermal plasma with immobile ions develops no
spurious radial electric field near the axis over time. However, when utilizing the charge initialization scheme
described in this section, a negative radial electric field (repulses electrons) proportional to r−1 develops for
a thermal plasma with immobile ions as electrons initialized near the axis eventually drift away (and are
replaced); this is an area for future work.
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is l + 1, where l is the particle order: one for linear particles, two for quadratic particles,

etc. Thus, odd (even) order particle shapes are an even (odd) number of cells wide in each

direction. A field cell within the Yee lattice in Osiris is defined with ρ (charge) located at

the lower/left/bottom corner, and Ex is displaced a half-cell forward in the x-direction (the

Ey and Ez fields are also displaced by a half-cell in the y and z directions, respectively, in two

and three dimensions). In Osiris the location of the field cells are aligned with the particle

cells for odd particle orders and shifted by a half-cell for odd particle orders. This adjustment

permits the use of similar code for field interpolation onto particles for any interpolation

order.

However, in cylindrical geometry, the algorithm for the Maxwell solver assumes that

the Er field component is always defined at the cylindrical axis, or equivalently that ρ of

the first cell be defined at r = −∆r/2. For this reason, the global simulation boundaries

(which align with particle reference cells) are shifted in the r-direction from specified values

to accommodate this. For example, for an input file requesting boundaries in r of [0, rmax],

the actual boundaries will be [−∆r/2, rmax −∆r/2] and [−∆r, rmax −∆r] for odd and even

interpolation levels, respectively. Note that this means that the actual simulation domain is

∆r/2 or ∆r smaller than rmax for odd and even interpolation orders, respectively.

Figure 2.8 shows the simulation discretization for two-dimensional runs in Cartesian and

cylindrical geometries for odd and even interpolation levels. In this example the simulation

domain extends from 0 to 2∆x (or the appropriate ∆y, ∆z or ∆r) with 2 cells in each

direction. Solid black lines represent cells to which the particles are indexed, with the center

of the cell—where dotted lines intersect—corresponding to an Osiris particle position of

x = (0.0, 0.0) and cell index ix = (1, 1). Therefore, the single black dot in Fig. 2.8 for each

scheme represents a hypothetical particle located in particle cell ix = (1, 1) and with offset

from center x = (0.25, 0.25). The green lines indicate the most lower-left field cell, for which

red field quantities are also shown.

In Cartesian coordinates, we see that the particle cell boundaries in Fig. 2.8(a) and (b)
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0 ∆x 2∆x

0

∆y

2∆y

Ex

Ey

Ez, ρ

(a) Cartesian, odd

0 ∆x 2∆x

0

∆y

2∆y

Ex

Ey

Ez, ρ

(b) Cartesian, even

0 ∆z 2∆z

−∆r/2

∆r/2

3∆r/2

Ez

Er

Eϕ, ρ

(c) Cylindrical, odd

0 ∆z 2∆z

−∆r

0

∆r

Ez

Er

Eϕ, ρ

(d) Cylindrical, even

Figure 2.8: Field and particle discretization in Osiris for different geometries and particle

interpolation levels. Black lines are cells about the center of which particles are indexed,

with intersecting dotted lines indicating the center of those cells. Red field quantities are

shown that correspond to the first field cell, which is outlined in green. A single black dot

represents a hypothetical particle indexed as ix = (1, 1) and x = (0.25, 0.25).
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are aligned with the requested simulation space boundaries, but that the physical position of

the fields are shifted by a half-cell from particle cells for even interpolation order. However, in

cylindrical coordinates the global simulation boundaries in the r-direction are shifted either

by −∆r/2 or −∆r from the requested domain of 0 ≤ r ≤ 2∆r. This is done because the

Osiris implementation always aligns particle cell boundaries with simulation boundaries,

but the quasi-3D algorithm requires that Er in the lower-most field cell be spatially defined

at r = 0. With this adjustment, we can see that Er is indeed located at r = 0 for both

interpolation levels in Fig. 2.8(c) and (d).

Next, we examine how to correctly initialize the charge weighting for particles near the

axis. Regardless of geometry or interpolation order, particles within a given cell are initially

distributed about (and referenced from) the cell center (i.e., where dotted lines cross). In

this way, particles are never initialized on particle cell boundaries; this choice is mostly for

pure convention, but also avoids any ambiguity for particles initialized on a global simulation

boundary. For even interpolation order in the cylindrical geometry with N particles per

cell in r, the first particle nearest the axis will be loaded at a distance of ∆r/2N from the

axis. However, for odd interpolation order, where the particle cell is shifted by half a cell,

the particle nearest the axis will either be at a distance of ∆r/N or ∆r/2N from the axis

for an odd or even value for the number of particles per cell, N . This means that for odd

interpolation order we have different locations of the particles for even/odd N . However,

from here on we will work as if the first particle was located at ∆r/2N .

Assume that particles are distributed at positions ri = (i−1/2)∆r/N , where i ∈ 1, 2, 3, . . .

is the particle index. Let the nth charge site, ρn, located above positive r be defined at

position Rn = (n − 1/2)∆r, where n ∈ 1, 2, 3, . . .. [In Fig. 2.8(c) and (d), the lower-most

charge value (field cell index 1) is located at negative r, so the n used here actually differs by

one from the Osiris cell index.] We then seek a function Q(ri) such that the total charge

density in any cell is ρ for a uniform initialization of particles, keeping in mind that any charge

deposited into a guard cell with n ≤ 0 is added (“folded”) back into the main simulation
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space. The standard charge given to particles in Osiris, assuming one particle per cell in z

and ϕ, is

Qstd(ri) =
ρ

N
ri. (2.1)

The need for the dependence on ri for constant density is clear for cells outside the first few

cells as the size of particles scales with 2πri∆r.

However, for the first cell this dependence needs to be altered as charge is folded back. We

instead assume the charge for particles contained in just the first ℓ half-cells, for interpolation

order ℓ, has an r-dependence whose order matches the interpolation level:

Q(ri) =


ρ

N

ℓ∑
j=1

αj (ri)
j ri <

ℓ∆r

2

ρ

N
ri ri ≥

ℓ∆r

2

. (2.2)

The coefficients αj can be solved for by equating the charge density of ℓ+1 cells, e.g., ρ1 = ρ2

and ρ2 = ρ3 for quadratic interpolation. Symbolic math software is especially helpful in

solving for these coefficients. For the discretization used in Osiris, solving these equations

yields

α1 =


2

3
− 2

3N2
even N

2

3
odd N

(2.3)

for linear interpolation with N ≥ 2. For quadratic interpolation with N ≥ 2 we have

α1 =
7− 22N2

24N2(N2 − 1)
,

α2 =
5(4N2 − 1)

4(4N4 − 5N2 + 1)
.

(2.4)

The expressions for cubic interpolation once again depend on the parity of the number of
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particles per cell and are given as

α1 =



[
8680− 294460N2−
6N4(450036N8 − 895320N6 + 367533N4 + 134135N2 − 107514)

]
/[

27N2(3N − 2)(3N + 2) ·
(9558N8 − 26199N6 + 15225N4 − 2236N2 + 3232)

] even N

−300024N8 + 263520N6 + 138738N4 − 46310N2 + 2996

27(9558N8 − 38043N6 + 34601N4 − 6457N2 + 341)
odd N

,

α2 =


2

3

547074N10 − 1151361N8 + 605937N6 − 25518N4 + 22114N2 − 3496

86022N10 − 274023N8 + 241821N6 − 81024N4 + 38032N2 − 12928
even N

2

9

182358N8 − 346023N6 + 169111N4 − 11847N2 − 339

(9N4 − 10N2 + 1)(1062N4 − 3047N2 + 341)
odd N

,

α3 =


−56

27

80676N10 − 137376N8 + 47673N6 + 5997N4 + 2926N2 − 196

86022N10 − 274023N8 + 241821N6 − 81024N4 + 38032N2 − 12928
even N

− 56N2(8964N6 − 13536N4 + 4601N2 + 301)

27(9N4 − 10N1 + 1)(1062N4 − 3047N2 + 341)
odd N

.

(2.5)

Quartic interpolation is not yet implemented for quasi-3D Osiris.

The above method, however, is not valid for N = 1. In this case, all charges out to the

radial boundary must actually be modified (rather than just those in the first ℓ half-cells),

such that

Q(ri) = ρβiri (2.6)

for all values of i. However, when solving for the appropriate βi coefficients, they converge to

unity very quickly with increasing i. For linear interpolation with N = 1, there is actually no

density spike on axis and all cells have equal charge ρ. For quadratic interpolation with N = 1

we let the first four coefficients vary from unity (i.e., βi = 1 for i ≥ 5) and solve those four

coefficients by ensuring equal charge in the first five cells.3 We then obtain the coefficients

β =

{
985

1393
,
607

597
,
6953

6965
,
9753

9751
, 1, 1, . . .

}
(2.7)

3Another way to generate these first four coefficients would be to let βi vary for all values of i in the
simulation (i.e., out to rmax), solve for all the βi coefficients by ensuring equal charge in all cells, then set
βi = 1 for i ≥ 5. Solving for the coefficients in this way, we observed slight charge error in two cells, whereas
the method described in the body text exhibited error mainly in one cell.
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Figure 2.9: Deviations from uniform density without charge modification near the axis in

cylindrical geometry for various interpolation orders and particles per cell. The first two

lines show the only cases not entirely corrected with the new scheme.

for quadratic interpolation. Doing the same for cubic interpolation but with six variable

coefficients and ensuring equal charge in seven cells, we find that

β =

{
10121

11087
,
11592

11087
,
32249

33261
,
11340

11087
,
10885

11087
,
11248

11087
, 1, 1, . . .

}
. (2.8)

Although the coefficients were derived under an assumption of uniform density, the idea

can be applied for a non-uniform density. However, since a properly resolved density profile

should not vary much in density from one cell to another we assume that within the first

cell the density is constant. We thus perform these same calculations for any initialization,

regardless of the density profile.

Once again, the charge correction needs to only be applied when initializing particles near

the axis, i.e., at time step zero or at the front of a moving window. The improvement in the

on-axis charge density is shown in Fig. 2.9 for various interpolation orders and particles per

cell. Note that only for linear interpolation with one particle per cell was the density originally

correct. The first two lines show quadratic and cubic interpolation, respectively, in the new

scheme with one particle per cell. Only for these two cases is the density not completely
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uniform, due to the truncation of the coefficients. For quadratic (cubic) interpolation there is

a 0.002% (0.6%) increase in the charge density in the fifth (seventh) cell, one cell after the

coefficients are truncated. The error is only visible for the cubic case, where we use no more

than six cells due to rapidly diminishing returns in the sequence convergence (and to avoid

using more coefficients than the minimum size of the simulation space). As such, it is advised

to use more than one particle per cell in r when running with cubic interpolation.

In addition to the charge spike observed at the axis without the proper initialization, we

also expect the on-axis fields and currents to exhibit errors. In Fig. 2.10 we show simulation

quantities for an electron beam with a flat-top density profile free streaming forward at

relativistic speed. We expect the radial electric field to be equal to ρr/2 for a beam with

charge density ρ, and in (a) we show the error in the observed electric field with and without

the correction. Without the correction, we observe field artifacts corresponding to extra

negative charge being located at the axis [see uncorrected charge density in Fig. 2.9]. We see

a similar spike in the on-axis forward current in (c) without the correction. The (b) radial

electric field and (d) charge density are also shown over the entire simulation domain for the

corrected case, which are as to be expected.

2.2.2 Satisfying Gauss’s law at the axis

Charge is conserved implicitly in Osiris; we do not explicitly solve Gauss’s law, but it is

implied due to the charge-conserving current deposit. The location of the fields, charge

density, and current density on the grid are defined so that Gauss’s law and the continuity

equation are second-order accurate with cell size. In this configuration, Gauss’s law is centered

on points where the charge ρ is defined. In Cartesian coordinates, if ∇ ·E − ρ = 0 is satisfied

at discrete points across the entire simulation (i.e., where ρ is defined), then it is also satisfied

at any point (i.e., in-between where ρ is defined) as long as quantities are assumed to vary

linearly between grid points. This is because the divergence operator is linear in Cartesian

coordinates, and we can take any linear combination of Gauss’s law to be true. The same is
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Figure 2.10: Simulation quantities for an electron beam free streaming relativistically in

the positive x1-direction. Lineouts along the beam center of (a) the error in Er,m=0 and

(c) observed Jz,m=0 with and without the charge correction. View of entire simulation

domain for the corrected case showing (b) Er,m=0 and (d) charge density.
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true of the continuity equation.

However, this is not the case for cylindrical coordinates due to the nonlinearity of the

divergence operator. Thus, the Osiris algorithm only ensures that Gauss’s law and the

continuity equation are satisfied at the grid points where ρ is defined. For this discussion

we will refer to scalar (ρ), Cartesian (Ez, Bz) and cylindrical (Er, Eϕ, Br, Bϕ) fields. First

we require a relation describing the field quantities for various modes right at the axis. As

mentioned in Ref. [125], any scalar or Cartesian field quantity is single-valued at the axis,

resulting in the necessary condition

∂S

∂ϕ

∣∣∣∣
r=0

= 0, ∀ϕ (2.9)

for any given field quantity S. Since quantities are expanded for mode m as ℜ
{
Sm(r, z)e−imϕ

}
,

this means that the only nonzero mode at the axis for scalar and Cartesian quantities is

mode 0. However, it turns out that mode 1 is the only nonzero component at the axis for

cylindrical fields.

While rest of our derivations here apply to E, B and J , we will work mainly with the

electric field. The analysis below benefited greatly from the documentation for the Smilei

particle-in-cell code [106]. We can express the transverse electric field as

E⊥ = Exex + Eyey = (Er cosϕ− Eϕ sinϕ)ex + (Er sinϕ+ Eϕ cosϕ)ey. (2.10)

Then evaluating Eq. (2.9) for Ex, we obtain

cosϕ

(
∂Er

∂ϕ
− Eϕ

)
− sinϕ

(
∂Eϕ

∂ϕ
+ Er

)
= 0, ∀ϕ, (2.11)

or equivalently,

∂Er

∂ϕ
− Eϕ = 0,

∂Eϕ

∂ϕ
+ Er = 0.

(2.12)
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We see that for mode 0, Eq. (2.12) yields E0
r = E0

ϕ = 0. However, evaluating for a given mode

m ≥ 1 gives

Em
r =

iEm
ϕ

m
,

Em
r = imEm

ϕ .

(2.13)

The above equations can only be simultaneously satisfied for m = 1, meaning that while

Em
r = Em

ϕ = 0 for m ≥ 2, we must have

E1
r = iE1

ϕ (2.14)

at the axis, which implies

E1
r,Re = −E1

ϕ,Im,

E1
r,Im = E1

ϕ,Re.
(2.15)

Recall, the above Eq. (2.14) must also be true for the current J and magnetic field B.

We also require that Gauss’s Law holds (along with the continuity equation and divergence

of B). We will show that the Er term at r = 0 is excluded by the divergence operator

centered at r = dr
2
. The divergence of a purely radial field is

∇ · Erer =
1

r

∂

∂r
(rEr) =

Er

r
+

∂Er

∂r
. (2.16)

Since the charge in our scheme is centered at radial positions r = dr
2
, 3dr

2
, . . ., let us consider

Eq. (2.16) at r = dr
2
. We evaluate both versions of the derivative and show they are equivalent:

∇ · Erer =
2

dr

(
dr · Er(r = dr)− 0 · Er(r = 0)

dr

)
=

2Er(r = dr)

dr
, (2.17)

or

∇ · Erer =
Er(r = dr) + Er(r = 0)

2
· 2

dr
+

Er(r = dr)− Er(r = 0)

dr
=

2Er(r = dr)

dr
. (2.18)

In either case, the Er(r = 0) field does not contribute to Gauss’s law centered at r = dr
2
.
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We have verified that the quasi-3D Osiris code is in fact charge conserving at each of the

simulation points where ρ is defined. However, we now see that Er(r = 0) could take on any

value and this would still be true. In particular, although a formula is derived for calculating

E1
r (r = 0) in Ref. [30] (remember, Em

r (r = 0) = 0 for m ̸= 1), growth (sometimes large) of

the E1
r (r = 0) field is observed in nearly every quasi-3D simulation. In some simulations,

after many time steps the on-axis field is an order of magnitude larger than the field one cell

away. This results in erratic particle motion. It is largely in an effort to mitigate this growth

that we pursue an alternate calculation of the on-axis fields.

Although Gauss’s law is only strictly satisfied at grid points where ρ is defined, i.e., at

the position r = dr
2

for our discretization, we now endeavor to ensure that it is also satisfied

at r = 0 (along with the continuity equation and divergence-free B). For the m = 1 mode,

we know that ρ1(r = 0) = 0, so we require ∇ ·E1 = 0. The z-component is also zero at the

axis, so we are left with

∇ ·E1 =
1

r

∂

∂r
(rE1

r )−
iE1

ϕ

r
=

E1
r − iE1

ϕ

r
+

∂E1
r

∂r
= 0. (2.19)

Assuming that Eq. (2.14) is true, the divergence operator at the axis then reduces to

∇ ·E1 =
∂E1

r

∂r

∣∣∣∣
r=0

= 0. (2.20)

Although E and J are defined at different coordinates than is B, Eq. (2.20) can be used to

find either the r- or ϕ-component of a cylindrical field directly at the axis through Eq. (2.14).

Next, we state how Eq. (2.20) is enforced in the code for the two different field discretiza-

tions. First, we work with the electric field, where Er is located on the axis. We can build a

second-order Taylor expansion for the known field quantities at r = dr and 2dr using the

unknown field quantity and derivatives at the axis. If we define u(r) = E1
r (r), then we can

write

u(dr) ≈ u(0) + dr u′(0) +
dr2

2
u′′(0),

u(2dr) ≈ u(0) + 2dr u′(0) + 2dr2 u′′(0).

(2.21)
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Since we want to enforce u′(0) = 0, we can eliminate u′′(0) from the above equations and

solve for u′(0) as

u′(0) =
−3u(0) + 4u(dr)− u(2dr)

2dr
= 0. (2.22)

Solving for the quantity at the axis yields

u(0) =
4

3
u(dr)− 1

3
u(2dr). (2.23)

The same approach can be taken using the points r = dr
2

and 3dr
2

to obtain

u(0) =
9

8
u

(
dr

2

)
− 1

8
u

(
3dr

2

)
. (2.24)

We use Eq. (2.23) to give E1
r (r = 0). Then once B1

r (r = 0) is determined via Eq. (2.24), we

can use Eq. (2.14) to calculate B1
ϕ(r = 0) = −iB1

r (r = 0).

Now that the quantities E1
r and B1

ϕ are known at the axis, we want to ensure that when

electric fields are interpolated onto particles in the pusher, the relation in Eq. (2.14) will hold.

We have E1
r (r = 0) specified by Eq. (2.23), and E1

ϕ

(
r = dr

2

)
is dictated by the normal field

solver (modifying it will void charge conservation). However, we can modify E1
ϕ in the guard

cells at negative r values to satisfy the relation. We simply want the average of the two E1
ϕ

values to be proportional to E1
r , or

E1
ϕ

(
−dr

2

)
+ E1

ϕ

(
dr
2

)
2

= −iE1
r (0), (2.25)

or

E1
ϕ

(
−dr

2

)
= −2iE1

r (0)− E1
ϕ

(
dr

2

)
. (2.26)

This is also done for the guard cell at r = −3dr
2

.

After implementing these changes into Osiris, we saw dramatic improvement in the

on-axis E1
r field. Primarily, an artifact that was present in many simulations was that plasma

would be expelled from the axis near the very leading edge of the laser fields. This behavior,

seen in Fig. 2.11(a), is absent when using the on-axis field correction described above, as
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Figure 2.11: Laser wakefield simulation (a) without and (b) with the on-axis field corrections

described in Sec. 2.2.2. The erroneous expulsion of plasma from the axis before the laser

pulse is removed with the fix.

seen in Fig. 2.11(b). (Note that this on-axis behavior is absent for both cases if no laser is

present.)

In addition, the single particle motion in a laser improved with this correction. In the

current state of the code, when test charges propagate inside a laser, they appear to move

as expected near the axis. However, when their charge is non-negligible, we observe a slight

attraction toward the axis over many laser cycles. We thought of somehow modifying the J1
ϕ

current in the guard cells at negative r (previous to folding the current back into the main

simulation space) akin to that done for the electric field in Eq. (2.26), but any modification to

the J1
ϕ values makes the simulation not charge conserving. Future work involves determining

the cause of the slight on-axis attraction for particles moving in a laser field. It is unclear

whether the issues of on-axis field growth and particle attraction are a result of the particular

field discretization used in Osiris, and one option would be to test the discretization used

in Lifschitz [125] by shifting the field quantities a half-cell in r. Another possible cause is

that since Gauss’s law is only satisfied where ρ is defined (and now at r = 0), this attraction

is due to small divergence errors between those points, errors that are only noticeable in

sensitive systems over long duration. The currents and fields acting on particles are computed

using some interpolation scheme, which assumes that these quantities vary accordingly in
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the space between the grid points. Thus, errors in Gauss’s law are likely present throughout

the simulation space away from where ρ is defined, but it is possible that this error is only

significant close to the axis.

2.2.3 Absorbing boundary conditions in quasi-3D

Various absorbing boundary conditions (ABCs) have been devised to behave as “open”

boundaries, where outgoing radiation exists as if the simulated region was a vacuum with

infinite extent beyond the boundary. The simplest versions of these impose a condition on the

first cell outside of the simulation domain to absorb outgoing waves. One of the most notable

and straightforward of these ABCs was proposed by Mur [128], where he factored the wave

equation into two operators corresponding to waves traveling in opposite directions. Taylor

expanding about normal incidence and setting the appropriate operator to zero at the correct

boundary will absorb waves exiting that region, with diminishing returns for increased angle

of incidence. The Lindman ABC [38] uses a more sophisticated expansion in comparison to

Mur and in turn attains greater absorption, especially for evanescent waves [129]. Here we

outline the Mur ABC implementation in cylindrical coordinates under the modal expansion

in ϕ.

First, we have that the wave equation in cylindrical coordinates for quantity f is

1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂ϕ2
+

∂2z

∂z2
− 1

c2
∂2f

∂t2
= 0, (2.27)

where we have that ∂2f
∂ϕ2 = −m2f for a given mode m. To formulate the Mur boundary

condition in the z-direction, we factor Eq. (2.27) into the two operators

G− = Dz −
Dt

c

√
1− s2,

G+ = Dz +
Dt

c

√
1− s2,

(2.28)

with

s =

√
1
r
Dr (rDr)− m2

r2

Dt/c
, (2.29)
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where we have used the notation Dq ≡ ∂
∂q

. Factored in this way, Eq. (2.27) can be rewritten

as G+G−f = 0.

We can eliminate outgoing waves at the simulation boundaries by applying G− and G+

at the left and right boundaries, respectively; i.e., we require that

G−f
∣∣
z=0

, G+f
∣∣
z=h

(2.30)

for a simulation with z ∈ [0, h]. In order to implement this condition, we must Taylor expand

the square roots in Eq. (2.28) assuming small s (expanding about normal incidence). Keeping

terms of first order in s and taking another derivative in time yields the operators

DtG
±
1 = Dzt ±

1

c
D2

t ∓
c

2

[
1

r
Dr (rDr)−

m2

r2

]
. (2.31)

The ABC is implemented by modifying the first cell outside the main simulation space to

impose the condition

DtG
±
1 f = 0. (2.32)

However, as in Mur’s original formulation, we only need to solve Eq. (2.32) for electric field

quantities tangential to the boundary, i.e., Er and Eϕ. Consider a simulation extending from

0 to h with N cells in the z-direction, with the lower-left corner of cell (i, j) = (1, 1) located

at z = 0 and r = −∆r/2 for radial step size ∆r. The Osiris field solver computes B over

the cell range i ∈ [0, N +1] and computes E over the cell range i ∈ [1, N +1]. The field solve

in the radial direction is standard except for the cell with j = 1, where special axial boundary

conditions must be imposed. We then impose Eq. (2.32) at i = 0 and i = N + 2. Since this

involves second derivatives in t and r and first derivatives in z, we solve for fn+1
0,j and fn+1

N+2,j

using derivatives centered about fn
1/2,j and fn

N+3/2,j, respectively, where fn
i,j is the quantity

f located in cell (i, j) and at the nth time step. Taking finite-difference representations of

the derivatives in Eq. (2.31) and solving for the appropriate quantity in Eq. (2.32) yields the
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left-boundary value as

fn+1
0,j =

1

2∆r2rj(∆z +∆t)

{
∆z∆t2

[
rj−1/2

(
fn
0,j−1 + fn

1,j−1

)
+ rj+1/2

(
fn
0,j+1 + fn

1,j+1

)]
+

[
2∆z rj

(
2∆r2 −∆t2

)
− ∆r2∆t2∆z

rj
m2

] (
fn
0,j + fn

1,j

)
− 2∆r2∆z rj

(
fn−1
0,j + fn−1

1,j + fn+1
1,j

)
+ 2∆r2∆t rj

(
fn−1
0,j − fn−1

1,j + fn+1
1,j

)}
,

(2.33)

and the right-boundary value is given by

fn+1
N+2,j =

1

2∆r2rj(∆z +∆t)

{
∆z∆t2

[
rj−1/2

(
fn
N+1,j−1 + fn

N+2,j−1

)
+ rj+1/2

(
fn
N+1,j+1 + fn

N+2,j+1

) ]
+

[
2∆z rj

(
2∆r2 −∆t2

)
− ∆r2∆t2∆z

rj
m2

] (
fn
N+1,j + fn

N+2,j

)
− 2∆r2∆z rj

(
fn−1
N+1,j + fn+1

N+1,j + fn−1
N+2,j

)
+ 2∆r2∆t rj

(
−fn−1

N+1,j + fn+1
N+1,j + fn−1

N+2,j

)}
,

(2.34)

where m is the cylindrical mode number and rj is the radial distance of quantity f∗,j (will

differ between Er and Eϕ).

The process of enforcing the Mur boundary condition is as follows for the left boundary,

beginning first with the B field solve:

1. Set all B-field components to the left of (inclusive) i = −1 to zero

2. Solve for Ez at i = 0 in the standard fashion

3. Solve for Er and Eϕ at i = 0 using Eq. (2.33)

4. Impose the axial boundary condition for E at cell (i, j) = (0, 1)

5. Copy requisite Er and Eϕ field data into buffers
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6. Set all E-field components to the left of (inclusive) i = −1 to zero

Similarly, we give the process at the right boundary:

1. Solve for Bz at i = N + 2 in the standard fashion, also imposing the axial boundary

condition for this component for cell j = 1

2. Set to zero Br and Bϕ at i = N+2 and all B-field components to the right of (inclusive)

i = N + 3

3. Solve for Er and Eϕ at i = N + 2 using Eq. (2.34), also imposing the axial boundary

condition for these components for cell j = 1

4. Copy requisite Er and Eϕ field data into buffers

5. Set to zero Ez at i = N + 2 and all E-field components to the right of (inclusive)

i = N + 3

When implemented as described above, normally incident outgoing waves are absorbed

well by the boundary everywhere except for near the axis. In one test, a reflected wave was

generated on the order of ≈ 10% of the original amplitude that propagated back into the

simulation in both the z and r directions for a laser with mode m = 1. This reflected wave

disappeared when we set m = 0 in Eqs. (2.33) and (2.34) for all modes. This is because our

Taylor expansion of Eq. (2.28) assumes small s. However, near the origin the m2

r2
term in

Eq. (2.29) is very large. Thus the current implementation of the Mur boundary condition in

Osiris follows Eqs. (2.33) and (2.34) but without the term multiplied by m.

Note that the Mur boundary condition as described here is only valid at boundaries in z.

Other boundary conditions have been formulated for use at the outer radial boundary [130,

131], but these are not discussed in this dissertation.
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2.2.4 Summary

The quasi-3D algorithm [30, 125] is a powerful tool that enables simulations with three-

dimensional geometric effects at the computational cost of a two-dimensional simulation. The

separation of modes also allows for some unique analysis techniques that are otherwise difficult

in 3D Cartesian (see Sec. 3.1). However, the nonlinearity of spatial derivative operators

and the handling of the central axis present several nuanced challenges. In this section we

presented a charge initialization scheme that correctly yields the desired density at the axis,

a modification to the field solver that eliminates spurious on-axis field growth by satisfying

Gauss’s law at the axis, and an implementation of the Mur boundary condition at the left and

right simulation edges in z to absorb outgoing electromagnetic waves. These fixes are crucial

developments to ensure stable, fully self-consistent simulations of laser–plasma interactions

and are utilized in much of the work presented in the following chapter.
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CHAPTER 3

Role of direct laser acceleration in underdense

laser–plasma interactions

Traditional short-pulse laser wakefield acceleration (LWFA) has been shown to be effective

in generating energetic beams of electrons [82, 9]. In LWFA, the radiation pressure of a

short-pulse laser creates a plasma wave wake as it propagates over large distances through

a tenuous plasma. The LWFA regime of interest is the nonlinear self-guided regime [67].

The wake is created by expelling essentially all of the plasma electrons, which then form

a narrow sheath that surrounds what is referred to as an ion column. If the laser pulse is

sufficiently short that it fully resides in the front half of the first wavelength (bucket) of the

wakefield, a trailing beam of electrons placed at the rear of the first bucket will experience

the accelerating and focusing phase of the wake (and no laser fields). However, if the laser

duration is long enough such that the laser fields overlap the rear of the first bucket (or a

later bucket), then the laser fields can affect the acceleration process.

If the laser fields fill just the first plasma bucket, many features of the short-pulse LWFA

are preserved (e.g., wake excitation, self or external guiding and pump depletion), while the

acceleration of the electrons at the back of the bucket is modified by the presence of the laser.

The acceleration of electrons in the combined wakefields and laser fields can be complicated.

For example, there is the possibility of betatron resonances. Inside the focusing fields of the

ion column in a nonlinear wakefield, electrons execute periodic transverse motion at what

is called the betatron frequency (ωp/
√
2γ). When the transverse oscillation (“bounce” or

betatron) frequency of the electrons in the channel, ωβ, matches the Doppler-shifted laser
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frequency, the electrons are accelerated by a process originally called direct laser acceleration

(DLA) [78, 70, 79, 80, 1]. The resonance condition for DLA is thus Nωβ = ω0 − k0vz, where

ω0 and k0 are the frequency and wavenumber of the laser, respectively, vz is particle velocity

in the laser propagation direction, and N is the harmonic number. This term has been

expanded to also include the simultaneous acceleration in the total fields (longitudinal and

transverse) inside the wake and any overlapping laser fields.

For a laser with a duration that overlaps many plasma buckets, the laser can self-modulate,

i.e., split up into multiple beamlets one plasma period long. This leads to a plasma wave

that can grow over multiple periods. While the concept of a wake relates to fields behind the

driver, in what follows we also refer to the accelerating fields inside the laser as wakefields.

This regime of laser-driven acceleration is called self-modulated laser wakefield acceleration

(SM-LWFA) [55, 57, 132, 58, 59]. This process not only results in more trapped charge due

to the increased number of plasma bubbles, but also results in enhanced betatron radiation

from electrons experiencing DLA [133]. If the laser is sufficiently long and intense, an ion

channel can form where the electrons are unable to return to the axis due to the sustained

ponderomotive force of the laser [70, 134, 135]. The ions may also eventually begin to move,

forming a near-hollow cylindrical channel at the back of the laser. As mentioned above,

electrons moving in an ion channel (even partially evacuated) can gain significant energy

from DLA alone in the absence of a longitudinal wakefield [133, 135].

DLA has been shown in many cases to be an important factor in high-energy electron

generation in LWFA and SM-LWFA schemes [70, 68, 136, 1, 74, 135]. Many efforts have been

made to more fully understand and enhance this process [137, 138, 139]. This chapter deals

with more accurately quantifying and simulating the betatron resonance and DLA processes.
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3.1 Accurate accounting of energy gain from direct laser acceleration

There is interest in understanding in detail the contribution from direct laser acceleration

(DLA) to the energy gain of accelerated electrons in a laser wakefield accelerator (LWFA).

Experimental signatures such as high-energy forking in electron spectra [140, 135, 74] are

indicative of DLA, but we desire to quantitatively determine its impact via particle-in-cell

simulation. The DLA process occurs when the transverse betatron oscillations of electrons in

an ion channel are in resonance with the Doppler-shifted laser frequency. In the presence of a

longitudinal wakefield, electrons are accelerated both in the forward direction by the wake

and in the transverse direction by the laser field. The transverse energy gain from the laser

field is converted into forward momentum by the v ×B force of the laser.

In previous work [68, 1, 134, 135], the work done by the DLA (LWFA) process is assumed

to be completely due to the transverse (longitudinal) electric field with respect to the

propagation direction. For this discussion, the terms transverse and longitudinal do not

mean where the divergence or curl vanishes. This assumption, although fairly accurate, does

not take into account the fact that a finite-size laser pulse has a field component in the

longitudinal direction and that the wakefield has components in the transverse direction.

A Gaussian laser beam polarized in the x-direction and propagating in the z-direction has

transverse and longitudinal field amplitudes of [68]

Ex = E0e
−(r/σ)2 sin(kz − ωt)

Ez ≈ − 2x

kσ2
E0 cos(kz − ωt),

(3.1)

where r =
√

x2 + y2, k and ω are the laser wavenumber and frequency, respectively, E0 is

the laser amplitude and σ is the beam waist. Note that the longitudinal laser field has a π/2

phase difference from the transverse component.

To determine the impact of this longitudinal field on the DLA of electrons, the ratio f of

the average energy gained during a single betatron oscillation from the parallel (
〈
W∥

〉
) and
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transverse (⟨W⊥⟩) fields of a Gaussian laser is given as [68]

f ≡
〈
W∥

〉
⟨W⊥⟩

= −2c2
√
2γ

ωωpσ2
, (3.2)

where ωp is the plasma frequency. We observe that the negative sign in Eq. (3.2) indicates

that electrons in betatron resonance with a Gaussian laser pulse will always lose energy due

to the longitudinal field component. This energy loss is neglected when calculating the DLA

energy as only the work done by the perpendicular fields, which overestimates the DLA

contribution in such simulations.

To more accurately compute the total energy gain (including longitudinal losses) from the

DLA mechanism, we leverage the quasi-3D geometry of Osiris. In this geometry, cylindrical

coordinates r, z and ϕ are used, with all field and current quantities split into modes based on

their ϕ-dependence. When assuming a cylindrically symmetric laser spot size, all fields (both

transverse and longitudinal) due to the wake are cylindrically symmetric and thus pertain

to the m = 0 azimuthal mode. All fields (both transverse and longitudinal) for a linearly

polarized laser with a symmetric spot pertain to the m = 1 azimuthal mode. Because of this

distinction, the longitudinal fields corresponding to the wake and laser are separate quantities.

Thus, instead of the traditional calculation of work done on an electron by DLA and LWFA,

WLWFA = W∥ = −e

∫
Ez · vz dt = −e

∑
m

∫
Em

z · vz dt

WDLA = W⊥ = −e

∫
E⊥ · v⊥ dt = −e

∑
m

∫
Em

⊥ · v⊥ dt,

(3.3)

we can more accurately calculate the total work as

WLWFA = −e

∫
E0 · v dt

WDLA = −e

∫
E1 · v dt,

(3.4)

where a superscript on the electric field denotes the azimuthal mode.1

1Note that when we refer to the LWFA (or SM-LWFA) mechanism, we refer not only to the plasma
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The work calculation as described by Eq. (3.4) was carried out in a similar manner using

a quasi-static PIC code, QS-DLA, in Ref. [134], where it was found that the longitudinal

laser field did indeed do negative work on electrons in betatron resonance for the parameters

studied. The effect of a laser in a quasi-static approximation (QSA) code is implemented

through the use of the ponderomotive guiding center (PGC) approximation [141]. In the

PGC, high-frequency laser motion is averaged out, resulting in a ponderomotive force term

that depends on gradients of the laser envelope. The laser is evolved through an envelope

equation for the vector potential, where the index of refraction comes from the dynamics of

plasma particles. To include DLA into a PGC-type framework, the envelope is multiplied by

the high-frequency parts to get the vector potential, which is used to get the electric and

magnetic fields. However, the QS-DLA code cannot capture self-injection of electrons (both

in LWFA and SM-LWFA regimes), model pump depletion distances, or include non-PGC

physics of interest. The simulations in Ref. [134] were performed only with an externally

injected electron bunch.

The calculation in Eq. (3.4) can be performed using the fully self-consistent, relativistic

PIC code Osiris for many additional cases of interest. In particular, the relative roles of

LWFA and DLA were explored for an SM-LWFA in the absence of a trailing ion channel in

Ref. [74], as is hereafter described.

wave wake left behind by the laser, but also to any plasma wave response located within the laser pulse.
By the LWFA mechanism, we mean the energy gained due to fields from the plasma wave wake; these
energy-contributing fields are predominantly longitudinal and azimuthally symmetric. The DLA mechanism
refers to energy gained due to laser fields; such fields involve transverse and longitudinal fields oscillating at
the laser frequency. For a short-pulse laser pulse that fills less than one bucket of the plasma wave wake, the
DLA mechanism will be active only near the front of the first bucket, with the LWFA mechanism active in
the plasma wave found behind the laser. However, for a longer pulse duration that exists over many plasma
periods, both DLA and LWFA mechanisms may be present within the laser pulse.
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3.1.1 Direct laser acceleration in a low-density self-modulated laser wakefield

accelerator

Many high energy density science (HEDS) facilities such as the National Ignition Facility

at the Lawrence Livermore National Laboratory, the OMEGA Laser at the University of

Rochester, the Z-Machine at Sandia National Laboratories, and the Laser Mégajoule at the

Commissariat à l’Energie Atomique are all coupled to picosecond-duration, kilojoule-class

laser systems. Understanding the relationships between temperature, pressure, and density

in the extreme environments created at these large facilities is crucial and has implications

in planetary science [142], inertial confinement fusion [5], and laboratory astrophysics [143].

A limiting factor has been the quality of x-ray sources available to diagnose experiments.

LWFA-driven sources have the potential to enable ultrafast resolution of dynamic experiments

and provide measurements with unparalleled spatial resolution [133, 144, 145]. While the

promise of such x-ray sources is evident, optimization of LWFA-driven x-rays with the

picosecond-duration lasers co-located at HEDS facilities necessitates a detailed understanding

of the underlying physics of electron beam generation mechanisms—not in the LWFA regime,

but in the self-modulated LWFA (SM-LWFA) regime [58], which is as yet incomplete.

Prior work on SM-LWFA has attributed the copious charge of high-energy electrons

observed in experiments to self-trapping and breaking of the longitudinal plasma wave [71,

132]. Electrons with energies larger than the dephasing-limited energy gain were also

observed [146, 147], but were initially attributed to acceleration by the plasma wave. The

role of DLA in LWFA was first suggested by Pukhov [78] and has been experimentally

investigated only recently. In a quasi-blowout regime, the laser pulse was lengthened to

overlap with a full plasma period, and electrons in the high-energy tail of the accelerated

electron spectrum showed a fork-like splitting when dispersed perpendicular to the laser

polarization direction [136, 1]. This fork-like structure was attributed to DLA based on

PIC simulations, but the analysis did not include the contribution of the longitudinal field

from the focused laser in the DLA process. In a high-density (∼ 1020 cm−3), short-pulse
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(50 fs) SM-LWFA regime, the high-energy electron beam tail was experimentally attributed

to DLA [148], but without any clear experimental signature. In a long-pulse (650 fs), high-

intensity (I = 3× 1020 W/cm2) regime, DLA was inferred from PIC simulations to be the

main acceleration mechanism in an ion channel [72]. The role of DLA in an SM-LWFA was

anticipated in a recent experiment on developing a betatron-radiation-based x-ray source,

but no direct experimental evidence for DLA was presented in that work [133, 73].

Here we discuss how the improvements described in Chapter 2 and later in this chapter

to the quasi-3D algorithm of the particle-in-cell (PIC) code Osiris [28, 30] permit modeling

of experiments performed at Lawrence Livermore National Laboratory. The experimental

evidence together with the simulations indicate that DLA is the dominant contributor to the

highest-energy electrons in the low-density (ωp ≪ ω0) regime of SM-LWFA. In this regime,

simulations show that the laser power—although it is slightly greater than that needed for

relativistic self-focusing—is insufficient to produce a totally evacuated ion channel inside

the laser pulse. The experimental work shows that, for a low plasma density (ω0/ωp = 57)

and a 1-µm, nominally 1-ps laser with moderate amplitude a0 = 8.5× 10−8λI1/2 ≈ 2.2, the

accelerated electrons exhibit a two-temperature distribution. Here a0 is the normalized vector

potential and λ [nm] is the laser wavelength. The full-scale quasi-3D Osiris simulations

confirm that the longitudinal field of the plasma wave excited by the SM-LWFA process

mainly contributes to the low-temperature portion of the spectrum, whereas DLA is the

dominant acceleration mechanism for the high-energy (temperature) electrons. When the

electrons are experimentally dispersed orthogonal to the laser polarization direction, a fork-like

structure [1] characteristic of DLA is observed for electrons with energies above 60 MeV. This

is the first direct experimental characterization, confirmed by quasi-3D PIC simulations, of

DLA in an SM-LWFA in the picosecond, high-energy regime relevant to HEDS experiments.

The experiment was conducted on the Titan laser system at Lawrence Livermore National

Laboratory (Fig. 3.1). Titan, a 0.7+0.3
−0.1 ps, 120 J, Nd:Glass laser, was focused with an

f/10 off-axis parabolic mirror into a 10-mm, supersonic He gas jet with electron density

68



50 100 150 200
Energy [MeV]

105

1010

El
ec

tro
ns

/M
eV

Experiment  Dispersion
Experiment || Dispersion
Simulation
Fit

Image Plate 1

Probe Beam

Main
 Lase

r Gas Jet

He

MagnetE
lec

tro
nsW

ire
 F

id
uc

ia
ls

(A)

FWHM

-50 0 50
 (mrad)

-50

0

50

 (m
ra

d)

0

50

100

nC
/s

r

Fi
du

ci
al

 
Sh

ad
ow Image Plate 2

10
0 

M
eV

Interferometer

(C)
-50 0 50

-50

-0

50 0

50

100

𝜃||[mrad]

𝜃 "
[m

ra
d]

nC
/s

r

(B)

zx

y
Laser Polarization

T1

T2

50 100 150 200
Energy [MeV]

106

108

1010

El
ec

tro
ns

/M
eV

Experiment  Dispersion
Experiment || Dispersion
Simulation
Fit

Figure 3.1: (a) Experimental setup. The electron beam is dispersed by a 0.6 T magnet onto

two BAS-MS image plates after passing through three wire fiducials. A frequency-doubled

probe beam is co-timed with the main pulse and provides on-shot interferometry of the

plasma channel with a magnification of 3. (b) The electron energy spectrum for two

different shots using identical laser and plasma parameters dispersed perpendicular and

parallel to the laser polarization in blue and red, respectively, along with the simulated

electron spectrum in green. All three spectra are fit to single-temperature distributions

below (T1) and above (T2) 100 MeV; the two regions are separated by a dashed black line.

The experimental spectra exhibit shot-to-shot variations of the single-shot laser system.

(c) An undispersed electron beam profile.
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ne = 3× 1017 cm−3 (measured using interferometry). This configuration created peak laser

intensities reaching I = 6.4× 1018 W/cm2, in a spot with 50% of the total energy contained

in a 30-µm radius. The ratio Ppeak/Pcrit ≈ 1.6, where Ppeak is the peak laser power and

Pcrit = 17 × 109
(

ω
ωp

)2

= 56 TW is the critical power for relativistic self-focusing in the

plasma [82, 67].

The electron beam is dispersed by a 0.6 T magnet with a large opening aperture (5 cm)

perpendicular to the linear laser polarization. A smaller magnet (2.56 cm aperture) with

a 1 T field is used to disperse the electrons parallel to the linear laser polarization. The

dispersed electron signal passes through three wire fiducials—used to reduce error in the

energy calculation [149]—and is captured on two BAS-MS image plates separated by 30 cm.

The difference in the electron energy spectra in Fig. 3.1(b) is caused by shot-to-shot variation

in the laser energy, pulse width, and quality of the high-power spot size. In an ideal case,

these two spectra would be identical.

The non dispersed electron beam data from the experiments is shown in Fig. 3.2(a) which

shows an elongation of the electron beam along the laser polarization axis. This trend is

evident when comparing all shots using both the 4 and 10 mm gas jet diameter nozzles and

ranging in plasma density from 3.5 × 1017 to 6.5 × 1018 cm−3. The elongation along the

linear laser polarization is evidence of the impact of DLA during the acceleration process as

electrons which oscillate along the laser polarization will bunch up at the extremes of the

oscillation [1].

Additionally, the electron energy spectra for several nozzle types and plasma densities

is fit to a two-temperature spectrum similar to the one shown in Fig. 3.1. The results

are presented in Fig. 3.2(b), where the measured hot and cold temperatures—T1 and T2,

respectively—follow the similar trend of two distinct distributions seen above and below 100

MeV. The two-temperature distribution is hypothesized to be due to SM-LWFA acceleration

mechanisms dominating the energy gain at lower final energies, whereas DLA begins to

dominate the energy gain at around 60 MeV.
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Figure 3.2: (a) The ratio of the measured electron beam divergence parallel (θ∥) and

perpendicular (θ⊥) to the linear laser polarization. Ratios greater than 1 indicate an

elongation along the laser polarization. (b) All the measured hot (cold), T1 (T2) temperatures

for the 4 (10) mm gas jet nozzles used in the experiment following the same analysis described

in the main text body.
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The electron spectra shown in Fig. 3.3 dispersed (a) perpendicular and (b) parallel to the

laser polarization were each fit using a single-temperature function (Ae−
E
T , with amplitude A

and effective temperature T in MeV) below and above 100MeV [Fig. 3.1(b)], yielding low

and high temperatures of T1 = 19 ± 0.65MeV and T2 = 46 ± 2.45MeV, respectively. The

perpendicularly dispersed electron signal in (a) (after it is converted to give a linear energy

dispersion) shows a clear fork-like structure that begins at electron energies of ∼60 MeV. At

75 MeV, the FWHM of the divergence angle of this fork is 43 mrad [white curve in Fig. 3.3(a)].

The mean total charge contained in this portion of the spectrum (> 60MeV) is 1.14±0.69 nC.

When the electrons are dispersed in the same plane as the laser electric field [Fig. 3.3(b)],

no forking structure is seen, and the FWHM beam divergence is instead 21 mrad [red curve

in Fig. 3.3(b)] at the same energy. The elliptical beam profile of the electrons shown in

Fig. 3.1(c) gives the overall full-angle divergence at half-maximum charge of the electron

beam in the two planes as 47 and 27 mrad in the x and y directions, respectively, consistent

with the dispersed spectra.

It has been argued that the forking structure gives clear evidence that electrons above

60MeV are gaining some or most of their energy by the DLA process [136, 1]. Electrons

accelerated mainly through DLA generally exhibit higher energy and greater divergence along

the laser polarization direction compared to electrons accelerated predominantly through

plasma wave acceleration in SM-LWFA. This larger divergence is evident in the forking

structure seen only for high-energy electrons dispersed perpendicular to the laser polarization,

as in Fig. 3.3(a).

To discern the relative contribution of the various mechanisms to the final energy of the

electrons, we simulated the full acceleration process with particle tracking using the quasi-3D

algorithm of the Osiris PIC simulation framework [28, 30] for laser and plasma parameters

similar to those used in the experiment. (Full 3D simulations were prohibitively large for this

problem.) As discussed above, this algorithm allows us to unambiguously determine the work

done by the longitudinal field of the plasma wave (Ez,m=0), as well as the transverse (Ex,m=1)
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Figure 3.3: Measured electron energy spectra for a plasma with electron density ne =

3× 1017 cm−3 dispersed (a) perpendicular and (b) parallel to the linear laser polarization

direction. The contrast is adjusted and a line-out along the dashed line is plotted (solid

line) to emphasize the forking feature in the dispersed electron profile. The dashed black

line indicates the acceptance aperture of the magnet. Note that (a) and (b) were taken on

two different shots with similar laser energies.
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and longitudinal (Ez,m=1) fields of the laser. This permits a more correct determination

of the overall DLA contribution. Here m = 0 and m = 1 refer to the cylindrical modes

corresponding predominantly to the wake and the laser, respectively.

The quasi-3D algorithm uses fields and currents defined on an r-z grid and expanded in

azimuthal modes; to simulate LWFA we used modes 0 and 1, where mode 0 (1) mainly captures

the wake (laser) fields. In addition, as described later in this chapter, we use a customized

field solver that corrects both for dispersion errors of light in vacuum and the time-staggering

error of the magnetic field in the Lorentz force [37]. The simulations are carried out in the

speed-of-light frame (moving window) with a box of size 95× 23.6 c/ωp = 854× 212µm (the

second dimension corresponding only to a half-slice, r starting at 0), where c/ωp = 8.991µm

for a density of 3.5× 1017 cm−3. The number of grid points used was 48000× 256 = 1.2× 107,

with a time step of ∆t = 5× 10−4ω−1
p = 30 fs. The laser pulse has an amplitude of a0 = 2.7,

intensity FWHM of 1 ps, spot size of w0 = 25.5µm and Rayleigh length of zR = 1.94 mm.

We use a preformed plasma with a density upramp of 500µm followed by a constant-density

region, with the laser focused halfway through the upramp. Mobile ions are included along

with electrons, with each species having 4 particles per r-z cell and 8 particles in the θ

direction, making for a total of 7.9× 108 particles.

Although the experimental gas jet was 10 mm in length, we find electron energies

comparable to those from the experiment after a propagation distance of only 4.68 mm in

the simulation. This discrepancy is likely caused by the non-ideal laser spot used in the

experiment, while the simulation uses an ideal diffraction-limited Gaussian spatial profile at

the laser focus. The non-ideal laser spot could necessitate additional propagation distance

for self-modulation and particle trapping to occur in the experiment.

Figure 3.4 shows the envelope of the transverse laser field Ex,m=1 (green), the plasma

density (blue) and the on-axis longitudinal electric field of the plasma wave Ez,m=0 (red)

4.64 mm into the plasma. Clear modulation of both the laser envelope and plasma waves

is evident. However, a hydrodynamic channel (ion motion) is not fully formed (not shown)

74



Figure 3.4: Snapshot of the electron density profile after 4.64 mm of propagation (left

to right) through the plasma; z and x are the longitudinal and transverse directions,

respectively. Also shown are the m = 0 longitudinal electric field (SM-LWFA) overlaid in

red and the m = 1 transverse electric field envelope (DLA) in green. The dashed green

line shows the vacuum laser field envelope at the focus. The tracked electrons, with x

positions given by their radial distance (only half-space is shown), indicate where in space

each acceleration mechanism is dominant. The charge density has been integrated in θ.
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within the laser pulse; the ion density remains above 0.9n0 across the first bucket (potential

well) and above 0.7n0 where the laser field is of significant amplitude, where n0 is the initial

plasma density. The wavelength of the plasma wave is increased for the first three buckets by

strong beam loading, but for subsequent buckets it is close to 2πc/ωp. The plasma electrons

trapped by the plasma wave are color-coded to indicate which acceleration mechanism is

at work (see subsequent paragraphs). The accelerated electrons group together in the later

plasma buckets, where they gain energy predominantly by interacting with the longitudinal

field of the wave associated with SM-LWFA. However, the electrons trapped in the front three

buckets of the wake gain net energy predominantly through the DLA process as they interact

with the peak-intensity portion of the laser pulse (although the SM-LWFA mechanism is also

active for some electrons in this region as well). Relativistic self-focusing helps to maintain

the peak intensity of the laser pulse (see dashed green line).

To quantify the contribution of each acceleration mechanism (i.e., SM-LWFA and DLA),

we use electron tracking in Osiris to calculate the work done on each electron by the different

spatial components of mode 0 (wake) and mode 1 (laser). Separating the fields by mode

clearly shows which longitudinal field component is from the plasma wave (Ez,m=0) and which

is predominantly from the evolving laser field (Ez,m=1). Without separating the fields by

mode, effects from the longitudinal laser electric field can be misattributed to wakefield energy

gain or loss—for instance, the total work done on some electrons by the Ez,m=1 field was

−100 MeV. This energy loss occurs because the longitudinal component of the laser electric

field is roughly π/2 out of phase with the transverse laser electric field, Ex,m=1. In fact, as

discussed previously, the ratio f of average energy gained during betatron oscillation from

the parallel (
〈
W∥

〉
) and perpendicular (⟨W⊥⟩) fields of a Gaussian laser is given [68] as

f ≡
〈
W∥

〉
⟨W⊥⟩

= −2c2
√
2γ

ωωpw2
0

, (3.5)

where w0 is the beam waist and γ is the gamma factor of a particle. The ratio is negative,

indicating that an electron in phase with the transverse laser electric field (Ex,m=1) loses energy

due to the longitudinal laser electric field (Ez,m=1). Prior to this work, the LWFA and DLA
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processes were differentiated by longitudinal and transverse field components, respectively,

rather than separated by mode. Consequently the energy loss from the longitudinal laser

electric field was often attributed to SM-LWFA electric fields. Experiments and 2D PIC

simulations have shown some contribution of the longitudinal laser field to the acceleration

of electrons, but for a near-critical-density plasma using foam targets [150], and similar

simulation work has shown evidence of energy loss due to the longitudinal laser fields [134].

The work done on each electron is then calculated as follows: WLWFA =
∫
E⃗m=0 · v⃗ dt and

WDLA =
∫
E⃗m=1 · v⃗ dt. We subtract the work done by each mechanism to obtain a relative

energy contribution for each electron (see color of tracked electrons in Fig. 3.4), where a

positive (negative) value indicates that the net final energy of the electron is mainly coming

from DLA (LWFA). DLA is the dominant energy transfer mechanism for electrons trapped

in the front two buckets (Fig. 3.4), whereas SM-LWFA dominates in the later buckets of the

plasma wave. As mentioned earlier, due to the low-density plasma (relatively low P/Pc, where

Pc is the critical power for relativistic self-focusing [151]), a substantial ion channel—where

prior results show DLA dominating the acceleration scheme [72]—does not form within the

laser fields.

Figure 3.5 clearly shows that DLA dominates the energy gain for higher-energy electrons

where the forking is observed; nearly all of the electrons that make up the forked structure

are from the first plasma bucket. The accelerated electrons from OSIRIS are dispersed

(a) perpendicular and (b) parallel to the linear laser polarization using a geometry identical

to that shown for the experimental results in Fig. 3.3. In this direct comparison to the

experimental data, a forking structure is evident only when the electrons are dispersed

perpendicular to the laser polarization. Figure 3.5(c) shows that the longitudinal field,

Ez,m=0, of the self-modulated wake (purple dots and curve) dominates energy gain for

electrons with energies up to about 40MeV, at which point the net DLA contribution

(red dots and curve) becomes comparable. At around 60MeV, the dominant acceleration

mechanism in the simulation shifts to DLA, with the fork becoming visible at about the
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(A) (B)

(C)

Figure 3.5: Simulated electron spectra dispersed (a) perpendicular and (b) parallel to the

linear laser polarization direction. A line-out along the dashed line is plotted (solid line) to

emphasize the “horns” of the dispersed beam. (c) The final energy gain due to different field

components and mechanisms is shown for numerous tracked electrons (solid lines showing

the mean within 20-MeV windows). All data is shown after 4.68 mm of propagation.

78



same energy for the perpendicularly dispersed electrons both in the experiment [Fig. 3.3(a)]

and simulation [Fig. 3.5(a)]. The energy loss from the longitudinal laser field [orange dots

and curve in Fig. 3.5(c)] is reasonably approximated for many electrons by the calculation

f ·Ex,m=1 shown in green (assumed focused spot size of w0 = 19µm), which could be used to

estimate the energy loss from the longitudinal laser field in simulations where it is difficult to

differentiate between longitudinal wake and laser fields (e.g., in 3D or quasi-3D with many

azimuthal modes). Regardless, this energy loss is significant and should not be ignored when

considering the energy contribution due to DLA.

The simulated electron spectrum is shown alongside the experimental spectra in Fig. 3.1(b),

with T1 and T2 fits of 14.2 and 45.5MeV, respectively. Both the number of electrons and

the fitted temperatures are similar to the experimental values. The temperature transition,

however, occurs near 100 MeV and not 60 MeV (where the DLA mechanism becomes dominant)

since the population of electrons accelerated by the DLA mechanism is much smaller than

that accelerated by the LWFA mechanism.

3.1.2 Direct laser acceleration for a short-pulse laser in the bubble regime

In the previous section, the combined acceleration from a laser (DLA) and wakefield in a

“long” pulse SM-LWFA was examined. In this section, we consider DLA inside the first

bucket (bubble) of the short-pulse LWFA regime. This is an example of a regime that cannot

be examined using the QSA combined with the PGC as self-trapping, a large amount of

photon deceleration, and the breakdown of the PGC occurs. We performed a quasi-3D Osiris

simulation of the first simulation described in Table 1 of Ref. [152]. The laser has amplitude

a0 = 53, spot size 10µm, and duration 33 fs and propagates through a 2.5-mm plasma with

density 1.5× 1019 cm−3. We use 5408× 568 cells in z and r and 4 particles in each r-z cell,

with 8 particles distributed in ϕ for both electrons and ions. The time step is 0.0075ω−1
p . This

is similar to the simulation in the original bubble regime paper [65]. For these parameters,

the pulse length roughly matches half of a plasma period; electrons are continuously injected
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and a quasi-monoenergetic beam is formed as the beam dephases in the wake and rotates

in phase space [65]. The maximum electron energy reported in Ref. [152] is 3.4 GeV using

full-3D PIC simulations.

In order to accurately model phase space rotation, it is important that the the phase

velocity of the wake and laser, along with the group velocity of the laser, be modeled accurately.

The normal second-order-accurate finite-difference solvers can have significant numerical

dispersion errors. Recently we have developed a customized dispersion-free finite-difference

solver [37] that corrects for errors in the phase velocity of light propagating through a plasma

(affecting both the phase and group velocity through the dispersion relation). The details of

this solver are described in Sec. 3.2. With this correction, the group velocity of the laser is

closer to the speed of light, and the accelerating length is longer. As a result, we observe

a larger maximum energy of 4.7 GeV in a quasi-3D simulation, compared to 4.4 GeV when

using the Yee solver with quasi-3D.

In Fig. 3.6 we present plots from various diagnostics for this simulation when the laser has

reached 0.07 mm before the 0.1-mm density downramp. We see in (a) the electron density as

a function of space (integrated in the azimuthal direction), where we observe total blowout

in much of the bubble. A large number of electrons are self-injected near the central axis. In

(b) we show the longitudinal m = 0 electric field corresponding to the wakefield in blue and

green. Layered on top of this field is the m = 1 transverse field corresponding to the laser.

We see the main laser field is located at the front of the bubble, but that fields of significant

amplitude are also present at the back of the bubble. These fields drift backward from the

main pulse due to photon deceleration, then are kept at the back of the bubble (and move

forward) due to photon acceleration [49], where they can accelerate electrons through the

DLA mechanism.

We observe in Fig. 3.6(c) the main body of accelerated particles between 1780 and

1820 c/ωp, which are rotating in phasespace due to their progression through the wake. This

occurs when particles at the front of the beam enter the decelerating phase of the wake.
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Figure 3.6: Osiris simulation data from run with a0 = 53 as described in the body text,

just before the density downramp. (a) Electron density. (b) Laser and wake fields in the

bubble. (c) Energy–space phasespace showing the rotation of particles. Total work done

by LWFA and DLA processes (d) as a function of space and (e) as a function of energy.

(f) Instantaneous work done over two time steps as a function of space.
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However, we also note a group of particles at the front between 1820 and 1840 c/ωp, located

near the peak of the laser pulse. In (d) we observe the cumulative work done by the LWFA

and DLA processes on tracked particles as a function of space. The particles at the front of

the bubble receive all their energy from DLA. We also observe that particles between 1780

and 1810 c/ωp exhibit positive DLA, with this contribution diminishing towards the front of

the bubble. This is because the on-going process of photon deceleration gradually increases

the laser energy located at the back of the bubble. Thus the electrons that were injected

first (now located near the front-middle portion of the bubble) experienced only wakefield

acceleration, and electrons injected later in time (located at smaller values of z) experience

increasing contributions from DLA.

In Fig. 3.6(e) we observe the cumulative work done by the LWFA and DLA processes as a

function of particle energy. We see that particles of many different energies receive significant

energy from DLA, and that rarely is the energy contribution negative. Finally, in (f) we see

the instantaneous work (over two time steps) done on electrons as a function of space. We

can see that only at the back of the bubble (1780–1790 c/ωp) is the DLA mechanism active,

corresponding to the same region where we see laser fields in (b). In addition, the strength of

the wakefield drops off linearly moving towards the front of the bubble.

These results show that energetic electrons can receive a significant contribution of their

energy from DLA, even for an LWFA operating in what is referred to as the bubble regime.

When comparing the DLA energy calculations using the m = 0 and m = 1 modes as in

Eq. (3.4) to those using only the longitudinal and transverse components as in Eq. (3.3), it

is clear that the traditional component method overestimates the DLA energy contribution

by an average of 50% for particles with energies over 2GeV. This error occurs because of

neglecting the energy loss from the longitudinal component of the laser, which is properly

taken into account when grouping modes.

To verify that the quasi-3D simulation is accurately capturing the physics, we also perform

a full three-dimensional simulation with 3775× 278 cells (note that the transverse simulation
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Figure 3.7: Three-dimensional Osiris simulation data from run with a0 = 53 as described

in the body text, just before the density downramp. (a) Electron density. (b) Laser and

wake fields in the bubble. (c) Energy–space phasespace showing the rotation of particles.

Total work done by LWFA and DLA processes (d) as a function of space and (e) as a

function of energy. (f) Instantaneous work done over two time steps as a function of space.
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size is twice as big in 3D) and time step 0.012516ω−1
p , but otherwise identical numerical and

physical parameters. The results are shown in Fig. 3.7, in the same manner as for Fig. 3.6.

Most trends are identical to the quasi-3D simulation, but we observe a smaller DLA energy

gain for high-energy electrons in three dimensions (note that in Cartesian geometry we cannot

compute the DLA contribution as accurately with mode separation).

3.2 Customized field solver for more accurate simulation of direct

laser acceleration

PIC simulations have long been used to study DLA of electrons in underdense plasmas [70,

78, 136, 153, 134, 74]. Most PIC codes use the Boris push [25] and Yee finite-difference field

solver [24], which both have very advantageous properties, have been well analyzed, and

can provide high-performance software. For example, the Boris algorithm conserves energy

exactly for particle motion in a magnetic field and also conserves phase space volume [23].

The Yee mesh staggers electric and magnetic fields in time, yielding increased accuracy for a

given time step. However, here we wish to discuss two errors from the Yee field solver that

negatively impact PIC simulations, particularly those of DLA. Many of the arguments and

results presented in this section are described in Ref. [37].

3.2.1 Errors in numerical dispersion

The Yee mesh discretizes space and time, yielding essentially a unique medium through which

light waves propagate. Here we examine the dispersion relation of light in this medium to

determine the properties of its propagation. First we give the discrete forms of Faraday’s and

Ampere’s laws as

dtB = −dE ×E,

dtE = dB ×B − J ,
(3.6)
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where dt and dE,B are generalized finite-difference operators. In this section we use normalized

units in which time and length are normalized to reciprocals of arbitrary frequency ωn and

wavenumber kn = ωn/c, charge to e, mass to me, density to nn = ω2
nε0me/e

2, and current

density to ennc. The electric and magnetic fields are then normalized to mecωn/e. Note that

the spatial finite-difference operators acting on E and B can be different, but that dB should

be assumed in the continuity equation for a charge-conserving scheme where Gauss’s law is

maintained (or used to directly solve Gauss’s law). This means that for Gauss’s law we have

dB ·E = ρ.

Performing a Fourier transform in time and space of Eq. (3.6) yields

[ω]tB̃ = [k]E × Ẽ,

[ω]tẼ = −[k]B × B̃ − iJ̃ ,
(3.7)

where an overtilde represents a Fourier transform, and [ω]t and [k]E,B are the counterparts of

the discrete finite-difference operators in Fourier space. The bracket [ω] and [k] operators are

functions of ω and k as well as the time step and cell size. They approach the continuous

limit as the time step and cell size approach zero. Here the electric and magnetic fields are

assumed to have the behavior ei(ωt−k·r), where ω and k are the frequency and wavenumber

of an electromagnetic wave. We now choose to view the light wave to be propagating in

vacuum, meaning that we can neglect the source terms J and ρ; this gives Gauss’s law as

i[k]B · Ẽ = 0. The numerical dispersion relation can then be obtained in vacuum as

[ω]2t − [k]B · [k]E = 0. (3.8)

Further assuming the light wave to be propagating only in the 1̂-direction yields a simplified

numerical dispersion relation,

[ω]2t − [k]B1[k]E1 = 0. (3.9)

For the standard Yee mesh where the electric field is defined a half time step removed

from the magnetic field, the operator [ω]t has the form [ω]t = sin
(
ω∆t
2

)
/∆t

2
, where ∆t is the
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Figure 3.8: Phase velocity of light waves with three different wavenumbers as a function of

simulation time step for the standard second-order Yee solver. Note that all waves travel

slower than the speed of light for any time step less than the one-dimension CFL limit,

∆t ≤ ∆x1.

time step chosen for a particular simulation. Plugging this into Eq. (3.9) yields the phase

velocity as

vp =
ω

k1
=

2

k1∆t
arcsin

(
∆t

2

√
[k]B1[k]E1

)
. (3.10)

The electric and magnetic fields are also staggered in space on the standard Yee mesh, and

the finite-difference operators of arbitrary order, p, acting on E and B have the form

[k]B1,E1 =

p/2∑
j=1

CB,E
j

sin
[
(2j − 1)k1∆x1

2

]
∆x1/2

, (3.11)

where CB,E
j is the stencil coefficient and ∆x1 is the chosen simulation resolution size in the

1̂-direction. The standard second-order Yee solver uses the same solver stencil for both

Faraday’s and Ampere’s equations and has [k]B1 = [k]E1 = sin
(
k1∆x1

2

)
/∆x1

2
. We can thus

rewrite the dispersion relation for the standard second-order Yee solver as

vp,Yee =
2

k1∆t
arcsin

[
∆t

∆x1

sin

(
k1∆x1

2

)]
. (3.12)

The mixing of ∆t and ∆x1 in Eq. (3.12) is an important feature of the Yee solver. For

example, when doing a convergence test, we often wish to decrease the time step to ensure
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(a) (b)

Figure 3.9: (a) Frequency and (b) phase velocity for various values of simulation time step as

a function of wavenumber using the standard second-order Yee solver. Here kg1 = 2π/∆x1.

accuracy of the simulation. The particle push is always more accurate when the time step is

decreased. However, in Fig. 3.8 we show the phase velocity for the standard Yee solver as

given by Eq. (3.12) for light waves with various wavenumbers as a function of the time step.

A wave with k1 = 0.2/∆x1 has 2π/0.2 ≈ 31 points per wavelength, which is reasonable for

many applications. We see from the figure that the phase velocity of the light wave deviates

from c for any time step below the Courant–Friedrichs–Lewy (CFL) stability condition for

a one-dimensional simulation, ∆t ≤ ∆x1. Thus in order to maintain proper (or the same)

dispersion during a convergence test, both the spatial and temporal discretization steps

must be decreased in the process, resulting in very computationally expensive runs in higher

dimensions.

Additionally, in Fig. 3.9 we show the (a) frequency and (b) phase velocity for various values

of simulation time step as a function of wavenumber, where kg1 = 2π/∆x1. We note that in

comparison of Fig. 3.8, one light wave of interest has k1 = 0.2/∆x1 = 0.2kg1/2π ≈ 0.03kg1.

We see that most high-kmodes travel at significantly less than the speed of light regardless of

time step, which is one reason that current filters are widely used in electromagnetic PIC
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codes. For any PIC simulation, spatial and temporal discretization steps must be chosen

such that the physics of interest is not only well-resolved, but exhibits proper dispersion. To

see dispersion properties of Yee-type field solvers of higher orders, see Fig. 1 of Ref. [37].

3.2.2 Inaccurate calculation of the Lorentz force

We mentioned previously that the Boris algorithm conserves energy for a particle moving in

the presence of a magnetic field (electric field absent). However, the staggering of E and B

in time on the Yee mesh itself introduces a spurious force exerted on particles moving in a

laser field when using the standard Yee field solver. In this section, we assume the laser to be

polarized in the 2̂-direction (still traveling in the 1̂-direction). A particle with charge q is

pushed according to

γn+1/2β
n+1/2
2 − γn−1/2β

n−1/2
2

∆t
= q

(
En

2 − β̄n
1 × B̄n

3

)
, (3.13)

where the laser fields E2 and B3 are interpolated from the spatial grid points, and βi refers to

the velocity of the particle in the î-direction. The superscript xn represents the quantities at

t = n∆t, and the overbar x̄ represents interpolation in time. In the standard PIC algorithm,

the time interpolation is usually fulfilled by a simple average, i.e., x̄n =
(
xn−1/2 + xn+1/2

)
/2.

Since the magnetic field components are defined on the half time step, whereas the Lorentz

force is evaluated at the integer time step, B3 needs to be interpolated in time.

Consider a single particle to be moving at very near the speed of light in the 1̂-direction

within these laser fields. Ideally—with perfect dispersion and without the need to perform

time-averaging of the magnetic field—we would have according to Faraday’s law that Bn
3 = En

2 .

The total force on the particle would then be qEn
2

(
1− β̄n

1

)
≈ 0. However, because of the

time-averaging that is necessary in Eq. (3.13), B̄n
3 does not equal En

2 with sufficient precision

for such particles moving near the speed of light in the 1̂-direction. We seek to quantify

and eliminate this error by our choice of field solver. It should be noted that although the

field components are also spatially staggered on the Yee mesh, our derivation shows that the
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spatial staggering has no contribution to the spurious Lorentz force.

From the discretized Maxwell equations in Eq. (3.7), we have that

B̃3 =
[k]E1

[ω]t
Ẽ2, (3.14)

from which it can be shown [37] that in two dimensions the transverse Lorentz force exerted

on the particle is

F̃2(ω, k1, k2)

q
=

[
Ẽ2(ω, k1, k2)− β̄1B̃3(ω, k1, k2) cos

ω∆t

2

]
× S̃(−k1,−k2), (3.15)

where S̃ is the Fourier transform of the interpolation function. The factor of cos ω∆t
2

is due

to the time staggering and corresponding average required in Eq. (3.13), but we can see that

the spatial staggering has no impact. Using Eqs. (3.9) and (3.14)in Eq. (3.15) yields

F̃2

q
= Ẽ2

[
1− β̄1

√
[k]E1/[k]B1 cos

ω∆t

2

]
S̃. (3.16)

For the standard PIC algorithm with [k]E1 = [k]B1, the factor cos ω∆t
2

cannot be eliminated

from Eq. (3.16), resulting in an incorrect force on a particle moving within laser fields in

vacuum.

3.2.3 Improved Maxwell solver with dual k-space operators

The combination of the errors of numerical dispersion and a spurious Lorentz force described

in Secs. 3.2.1 and 3.2.2, respectively, are especially detrimental to simulations of DLA. In

such DLA cases, electrons have long-time interactions with the laser fields in very low-density

regions. Errors in the phase velocity of the laser or the force it imparts on the particles can

result in large differences in final energy. We seek to find a finite-difference solver that both

improves the numerical dispersion relation and compensates for the spurious force induced

by the time stagger of the E and B fields. We accomplish this by determining [k]E1 and

[k]B1 operators (in Fourier space) that minimize or eliminate both of these errors, and then

to develop finite-difference operators (in real space) that provide those desired [k]E1 and
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[k]B1 operators. If one is using an FFT-based algorithm, the desired operators can be used

in Fourier space directly. This is commonly done for pseudo-spectral analytic time-domain

solvers, as described for some in Ref. [154].

To minimize the dispersion errors, the [k]E1 and [k]B1 operators should be properly selected

so that the numerical version of the ratio k2
1/ω

2 approximates the real physics as much as

possible:
[k]E1[k]B1

[ω]2t
→ k2

1

ω2
. (3.17)

Furthermore, to minimize spurious terms in the Lorentz force, we would like to simultaneously

find [k]E1 and [k]B1 to satisfy

1− β̄1

√
[k]E1/[k]B1 cos

ω∆t

2
→ 1− β̄1. (3.18)

The first condition, Eq. (3.17), is satisfied by setting [k]E1[k]B1 = [k]21,t, where

[k]1,t ≡ sin

(
k1∆t

2

)
/
∆t

2
. (3.19)

(Here we remember that [ω]t = sin
(
ω∆t
2

)
/∆t

2
for the standard PIC algorithm.) Substituting

this relationship for the [k] terms into the second condition, Eq. (3.18), then gives

[k]E1 =
[k]1,t

cos
(
ω∆t
2

) ,
[k]B1 = [k]1,t cos

(
ω∆t

2

)
.

(3.20)

It is difficult to ensure that these equations are simultaneously satisfied in general due to

the ω-dependence inside the cosine terms. However, we are interested in ensuring that this

relationship is satisfied for light waves propagating in tenuous plasmas where ω ≈ k1; therefore

we replace ω = k1 in Eq. (3.20) to obtain

[k]E1 =
[k]1,t

cos
(
k1∆t
2

) =
2

∆t
tan

(
k1∆t

2

)
,

[k]B1 = [k]1,t cos

(
k1∆t

2

)
=

1

∆t
sin (k1∆t) .

(3.21)
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Figure 3.10: (a) Calculated [k]E1 and [k]B1 operators fitted by the coefficient customization

method (using a 16-coefficient stencil). The yellow line represents the numerical dispersion

relation, [ω]t =
√
[k]E1[k]B1. (b) Error in phase velocity for solver stencils with varying

number of coefficients. (c) Comparison of the cancellation factor F ≡
√
[k]E1/[k]B1 cos

ω∆t
2

(ideally F = 1) between the proposed solvers with different stencils, the standard Yee

solver and the Xu solver. The numerical parameters are ∆x1 = 0.2k−1
0 , ∆t = 0.4∆x1 and

kg1 ≡ 2π/∆x1.

The operators in Eq. (3.21) are approximated for a finite-difference method in broad regions

of k1-space via the methodology in Ref. [155], where the solver stencil is extended and

customized coefficients are used. In comparison to the phase velocity for the Yee solver in

Eq. (3.12) that mixes ∆t and ∆x1, we observe only the dependence on ∆t in Eq. (3.21).

Since the dispersion relation ω = k1 is satisfied for any value of time step, one can decrease

the time step to well below the CFL limit (which makes the pusher more accurate) and not

suffer the dispersion errors pictured in Fig. 3.8.

We note that choosing a solver with [k]E1 = [k]B1 = [k]1,t is exactly the solver proposed in

Ref. [36] to reduce field errors surrounding relativistic particles, which we refer to herein as
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the “Xu” solver. The scheme proposed here, which we refer to herein as the “Fei” solver, can

be viewed as a time-stagger-correction version of the Xu solver. We show in Fig. 3.10(a) the

calculated [k]E1 and [k]B1 operators using a 16-coefficient stencil, along with the resulting

numerical dispersion relation given by [ω]t =
√
[k]E1[k]B1. The errors in phase velocity, |vp−1|

(shown as |βϕ − 1| in the figure) are shown in (b) for various numbers of coefficients. Using

16 coefficients, the phase velocity errors are below 10−7 for a broad range of wavenumbers. A

low-pass filter can be used to remove the high-k modes. Finally, in (c) we show the factor

multiplying the particle velocity in the Lorentz force equation, F ≡
√

[k]E1/[k]B1 cos
ω∆t
2

,

for a variety of solvers and number of coefficients. This factor should be equal to unity in

the ideal case, and we see it deviates significantly for all solvers except for the Fei solver.

In particular, the error is significant even for well-resolved modes (k1 ≈ 0.03kg1) using the

standard Yee solver. For more details on the properties, implementation and performance of

the proposed Fei solver, see Ref. [37].

3.2.4 Comparison of field solvers for full-scale, self-consistent particle-in-cell

simulations of direct laser acceleration

Using the field solver proposed in Sec. 3.2.3, we now wish to characterize its impact on a

full-scale, three-dimensional PIC simulation of an LWFA with DLA. The scenario we will be

simulating was originally reported in Ref. [1], which compares experiment and simulation

for a laser in the quasi-blowout regime where the laser driver overlaps the trapped electrons

in the first bucket. In that work, the experimental electron spectra dispersed in energy

perpendicular to the laser polarization showed forking at high energies, a clear sign of the

presence of DLA. The experimental data from that work is reproduced here for comparison

in Fig. 3.11.

The three-dimensional Osiris simulation performed in Ref. [1] had a0 = 2.03, λ = 815 nm,

a laser spot size of w0 = 6.7µm, plasma density ne = 1.43× 1019 cm−3 from a 99.9% He and

0.1% N2 neutral mix, and FWHM of laser intensity of τ = 45 fs. The grid was 1814×320×320
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Figure 3.11: Experimental electron spectra from Ref. [1] dispersed perpendicular to the

laser polarization direction (reproduced here). The parameters for this show are gas cell

length of 900µm, ne = 1.4× 1019 cm−3, a0 = 1.9 and ωpτ

2π
√
a0

= 1.1.

cells with 2× 2× 2 particles per cell, and k0∆z = 0.209 and kp∆x,∆y = 0.120. The laser

was linearly polarized in the x-direction (propagating in the z-direction) and was focused

halfway up a 100-µm density upramp, then propagated through a 430-µm constant-density

region before exiting through a 150-µm density downramp. The simulations showed that

the electron spectra exhibited a forking structure along the direction parallel to the laser

polarization, and the tracking of individual electrons revealed that those accelerated to the

highest of energies received the majority of their energy from DLA.

After receiving from the author of Ref. [1] the original input file to the Osiris simulation

described above, we have redone that simulation using the Yee, Xu and Fei field solvers in

three dimensions. We have also performed the simulation in the quasi-3D geometry with the

Fei field solver, which completes in roughly an order or magnitude less wall clock time with

four times fewer processors compared to full 3D for this particular simulation. In Fig. 3.12 we

show the electron spectra on an angle versus energy plot, where θx is defined with respect to

the laser propagation direction in the plane containing the direction of the laser polarization.

This simulation in (a) uses identical field solvers and particle pushers as was used in the

simulations of Ref. [1]. Comparing (a) with Fig. 4(a) of Ref. [1], one can see there are slight

differences between the results. This is because of various changes and improvements to the

algorithms in the base Osiris software over a number of years. However, the majority of the
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Figure 3.12: Electron spectra from four simulations shown as angle (parallel to laser

polarization) as a function of energy, with the data from the quasi-3D simulation multiplied

by 0.5 for visibility.

trends remain the same.

The angular spread in Fig. 3.12 is widest for the Yee solver, is narrower for the Xu solver,

and is narrowest for the Fei solver. In addition, the Yee solver shows no on-axis group of

particles at the highest energies, with almost all energetic electrons exhibiting some finite

angle. Comparing the simulation data against the experimental data in Fig. 3.11 reveals that

using the Fei solver provides the most accurate representation for the particle energy, narrow

divergence of the energy distribution, and a forking at high energy. Note that any particles

below 40 MeV were not captured by the experimental spectrometer. We also point out the

similarity between the full-3D and quasi-3D simulations when using the Fei solver.

Next, we examine the behavior of the accelerated bunch in real space, shown in Fig. 3.13

for the various solvers. We see large differences between each field solver, with perhaps the

most significant difference being the transverse displacement of the beam. For the Yee solver

in (a), particles actually drift into the bubble sheath; we also see that the distribution of the

beam in the z coordinate is approximately sinusoidal, with particle bunches clustered at the

extremes in x. This distribution agrees with the large angular spread seen in Fig. 3.12(a).
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Figure 3.13: Position of accelerated electron beam for four simulations, with the data from

the quasi-3D simulation multiplied by 3 for visibility.
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For the Xu solver in Fig. 3.13(b), the particles extend right up to the sheath but have not

penetrated through it by this time. We see that the transverse motion is less than in (a), that

some particles are clustered near the axis, and that the distribution in z is less sinusoidal.

Finally, in (c) we see that the particles reside farther from the sheath and have a different

overall shape. Although not obvious from the PIC simulation, we show in Sec. 3.3.2—by

integrating the equations of motion for electrons executing betatron motion with similar laser

and plasma parameters—that the beam shape in (c) is most correct among the three field

solvers [see Fig. 3.16(c)]. Finally, we observe that the beam shape in (d) is very similar to

the full-3D simulation in (c), but the particle statistics are not as good.

We reran each simulation while tracking 1,500 individual electrons. With the tracking

data, we can evaluate the fields acting on each particle at a given time step to determine

the work done on the particle. In three dimensions, the standard option for doing this is

to use the longitudinal (E1 or Ez) and transverse (E2 or Ex) fields for the LWFA and DLA

processes, respectively, as in Eq. (3.3). However, we can also attempt to include a correction

for the energy loss from the longitudinal component of the laser by adding the quantity f ∗E1

to WDLA and subtracting it from WLWFA, where f is defined for a Gaussian laser in Eq. (3.2).

In Fig. 3.14(a)–(c) we show the calculated work from LWFA and DLA on tracked electrons

as a function of energy for the three different solvers in three dimensions. In (d) we apply

the longitudinal laser field correction to the three-dimensional simulation using the Fei solver,

which greatly lowers the energy gain from DLA for high-energy electrons. Note that the

calculation of f assumes a Gaussian laser in free space and requires estimating the spot size

of the laser, which does not completely describe the laser fields at the back of the bubble.

In Fig. 3.14(e) and (f) we show the calculated work using the transverse [Eq. (3.3)]

and modal [Eq. (3.4)] methods in quasi-3D, respectively, where (f) is the most accurate

computation. We see that in comparison to (f), (d) with the applied correction is much more

accurate than (c), which overestimates the DLA energy contribution. We also note that the

DLA energy gain is lower overall when using the Yee solver due to the improper dispersion
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Figure 3.14: Work done by the LWFA and DLA mechanisms as a function of total electron

energy for the three-dimensional and quasi-3D simulations using the various solvers. (d) The

quantity f ∗ E1 is added to WDLA and subtracted from WLWFA to approximately take into

account the energy loss of electrons from the longitudinal component of the laser. The work

in (e) and (f) is computed using Eqs. (3.3) and (3.4), respectively, where (f) is the most

accurate computation.
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relation. The Xu solver exhibits the correct phase velocity for light in vacuum (but retains

the spurious Lorentz force), and it provides a DLA energy gain that is greater than for the

Yee solver. From (f) we see that for these simulation parameters, the most energetic electrons

actually gain approximately equal energy from the LWFA and DLA processes. However, the

LWFA energy gain appears to plateau as the dephasing limit is reached, whereas the DLA

energy gain is expected to increase continuously (to a point) with propagation distance.

Finally, we wish to examine the dependence on the energy gain with respect to the

electron’s location in phasespace and real space. To do this, we show in Fig. 3.15 tracked

electrons colored by their energy gain in the (a) angle-energy space and (b) real space. Data

points for the tracked particles are overlayed on the phasespace density (grayscale) for all

electrons; the tracked particles are the red and blue dots. In each pane, the middle group of

tracked electrons is colored as WDLA −WLWFA, the bottom overlay shows −WLWFA and the

top overlay shows WDLA. Thus the middle group shows the relative strength of the LWFA

and DLA processes and the bottom (top) group shows the LWFA (DLA) process alone. From

the top group in (a) we see that DLA gives more energy to electrons with a larger resulting

angle away from the center, especially at very high energies. In contrast, the bottom group

in (a) shows only increasing LWFA contribution with energy.

Perhaps the most distinct trend is visible in the top selection of electrons in (b); we

observe one group close to the central axis that gains little energy from DLA, then another

group somewhat sinusoidally distributed about the axis that gains significant energy from

DLA. Note the width of this distribution in z, highlighting that electrons of various phases

with the laser field can achieve betatron resonance (defined as Nωβ = ω0 − k0vz for some

integer N). Finally, those electrons injected first (larger z values) have had more time to

interact with the laser and have gained more energy. We note that the overall shape of the

accelerated electron bunch in the grayscale does not appear to be shaped sinusoidally in

space like the electron bunch from the Yee solver shown in Fig. 3.13(a). This sinusoidal

shape has been a common feature identified in numerous simulation papers as evidence for
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(a) (b)

Figure 3.15: Snapshot of Osiris simulation data for the three-dimensional case using the

Fei field solver before exiting the plasma. In both plots we show data for all electrons

on a grayscale, with an overlay of individual tracked electrons in red/blue for (a) angle

as a function of energy and (b) beam position. In each pane the middle overlay shows

WDLA −WLWFA, the bottom overlay shows −WLWFA and the top overlay shows WDLA.
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DLA [156, 1], but perhaps in many cases this shape is a result of errors in the phase velocity

of the light wave. We explore this more fully in Sec. 3.3.2.

In conclusion, in this section we showed that using a finite-difference field solver that

provides proper numerical dispersion and Lorentz force on particles in a laser gives substantially

different results for an accelerated electron bunch experiencing DLA when compared to using

the standard Yee solver. The transverse motion of the bunch no longer extends outside of

the bubble radius, the transverse angle of the electron bunch is smaller and aligns more

closely with experiment, and particles are observed to gain more energy from DLA due to the

corrected phase velocity of the light. The characteristic sinusoidal distribution in space of

an electron bunch experiencing DLA may not be accurate due to field solver errors, and the

traditional longitudinal–transverse accounting for LWFA–DLA energy gain used in most PIC

codes overestimates the DLA energy gain. Comparison of quasi-3D and full-3D simulations

of an LWFA show that the quasi-3D algorithm can not only give consistent simulation results

at a fraction of the computational cost, but also provide a more accurate calculation of DLA

energy gain of electrons.

3.3 Examining betatron motion via numerical integration of the

equations of motion

3.3.1 Equations of motion

Much work has been devoted to calculating the dynamics of electrons executing betatron

motion within a laser field [68, 134], both in an ion channel [138] and in a wakefield [156].

Electrons undergoing betatron motion in a plasma wave wakefield can experience acceleration

both from the longitudinal wakefield as well as from direct laser acceleration when the laser

fields overlap the wakefield [134]. In Ref. [156], the equation of motion for such electrons

is solved numerically and compared to results from a PIC simulation. However, the phase
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velocity of light used in Ref. [156] is less than the speed of light due to dispersion errors in the

PIC results. We therefore wish to numerically solve this equation of motion with the proper

phase velocity, examining cases of DLA in both a wakefield and an ion channel. Laser fields

can either be assumed to be those of a plane wave or those inside a cylindrical waveguide,

where a longitudinal field associated with the laser is present in the latter case.

We first write out the equations of motion for an electron in a wakefield and plane-wave

laser field. In this section only, we change our coordinate axes (switch x and z) from that

used in the rest of this chapter. The laser propagates in the x-direction with wavenumber

kx and frequency ωL, where the phase velocity of the laser is given as vp = ωL/kx. We

introduce the coordinates ξ ≡ x − vpt and ζ ≡ x − vgt, where vg is the group velocity of

the laser. For the cases we are working with, we have that vg < c < vp, with the value

of each taken from Osiris simulations. We assume the bubble to be spherical in shape

with radius R(x) (assuming ∂R
∂x

≪ 1), and we take the origin to be at the front of the

bubble (back of the bubble initially located at x = −2R). For a plane-wave laser, we write

the vector potential as A(x, t) = AL cos(kxξ)ẑ, resulting in fields well approximated by

EL = −∂A
∂t

= −ALωL sin(kxξ)ẑ and BL = −∂Az

∂x
ŷ = ALkx sin(kxξ)ŷ. Here we have assumed

that ∂AL

∂t
≪ ALωL and that AL does not vary with ζ (as is assumed in Ref. [156]). The

focusing and accelerating fields of the wake are of equal magnitude. We write the static

longitudinal field, ES as ES,x =
Γñ(x)ω2

pme

2e
(x+R(x)− vgt), where me and e are the mass and

charge of an electron, respectively (e taken to be positive), ωp is the plasma frequency for a

plasma of density n0 assuming complete blowout, ñ(x) ≡ n(x)/n0, and Γ is a flag that is set

to either zero or one. We make use of the ñ(x) function to allow for a slow density ramp or

modulation in the x-direction, and by setting Γ to zero the same equations can be used to

model motion in an ion channel. The static transverse focusing field is ES,z =
ñ(x)ω2

pme

2e
z for

all z (to stop any electrons from escaping transversely).

To account for errors in the standard field solver on the Yee mesh used in most PIC codes,

we recall that there is an error in the Lorentz force term for a particle moving in a laser
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field in vacuum using standard PIC algorithms due to the electric and magnetic field being

staggered in time from one another. Specifically, the force on a particle in the plane wave

fields described above becomes

F = q(EL + v ×BL cos
ωL∆t

2
), (3.22)

where ∆t is the time step used in the PIC simulation. Thus we introduce the factor τstag, which

we multiply to all force terms containing BL terms. When ignoring the time-stagger errors,

we have τstag = 1; to include these errors, we set τstag = cos ωL∆t
2

for some pre-determined

value of ∆t.

Using the fields and factors described above, we write the equations of motion for an

electron as
d

dt
(γmeẋ) = −e(ES,x − τstagżBL,y) = −

Γñ(x)ω2
pme

2
(x+R− vgt) + eALkxτstagż sin(kxξ),

d

dt
(γmeż) = −e(ES,z + EL,z + τstagẋBL,y) = −

ñ(x)ω2
pme

2
z + eALkx(vp − τstagẋ) sin(kxξ),

(3.23)

where a dot represents a time derivative. By differentiating the left-hand side of Eq. (3.23)

and dividing by me and γ, we can write these equations as

ẍ+
γ̇

γ
ẋ+ Γñω2

βx = Γñω2
β(vgt−R) +

a0ckxτstag
γ

ż sin(kxξ),

z̈ +
γ̇

γ
ż + ñω2

βz =
a0ckx
γ

(vp − τstagẋ) sin(kxξ),

(3.24)

where ωβ = ωp/
√
2γ is the bounce frequency at which electrons naturally oscillate in the

transverse direction, and a0 =
eAL

mec
is the normalized vector potential.

We can more accurately describe the laser field by considering it to evolve inside of a

cylindrical waveguide. Although this is inaccurate in the first bucket due to the rapidly

changing bubble radius, it nonetheless gives a reasonable estimate of the longitudinal laser

field. To do this we use the fields given in Ref. [134], namely,

EL = ALωL
k⊥
kx

J1(k⊥z) cos(kxξ)x̂− ALωLJ0(k⊥z) sin(kxξ)ẑ,

BL =
ALωL

vp

{
J0(k⊥z) +

k2
⊥

2k2
x

[J0(k⊥z)− J2(k⊥z)]

}
sin(kxξ)ŷ,

(3.25)
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where Jn(x) are Bessel functions of the first kind and order n, and k⊥ = 2.4
R+1 c/ωp

. Solving

then for the electron equations of motion yields

ẍ+
γ̇

γ
ẋ+ Γñω2

βx =Γñω2
β(vgt−R)

− a0ckx
γ

{
vp
k⊥
kx

J1(k⊥z) cos(kxξ)

− τstagż

[
J0(k⊥z)

(
1 +

k2
⊥

2k2
x

)
− k2

⊥
2k2

x

J2(k⊥z)

]
sin(kxξ)

}
,

z̈ +
γ̇

γ
ż + ñω2

βz =
a0ckx
γ

{
J0(k⊥z)

[
vp − τstagẋ

(
1 +

k2
⊥

2k2
x

)]

+ τstagẋ
k2
⊥

2k2
x

J2(k⊥z)

}
sin(kxξ).

(3.26)

3.3.2 Collective electron behavior

We now seek to numerically integrate the partial differential equations in Eqs. (3.24) and

(3.26) to determine the “correct” beam shape and angle of propagation, given the differing

results from the PIC simulations. We perform this integration using a numerical solver for

systems of ordinary differential equations2 and follow a similar strategy to that described in

Ref. [156]. Using the observed injection time from the PIC simulation as a guide, we inject

particles into the bubble over a time of 200ω−1
p . These particles are injected on-axis, with ζ

chosen randomly from the interval ζ ∈ [−2R + 0.286 c/ωp,−2R + 0.836 c/ωp] and z from the

interval z ∈ [−rb(ζ), rb(ζ)], where rb(ζ) is the bubble radius as a function of ζ. The initial

particle energy is randomly selected from γ ∈ [γg, 2γg], where γg = (1 − (vg/c)
2)−1/2. The

angle of initial velocity to the x-axis is randomly chosen with the constraint that vx ≥ vg.

We show characteristics of the beam in Figs. 3.16–3.18 after a propagation time of 255ω−1
p

2We use the scipy.integrate.solve_ivp solver in Python with an explicit Runge-Kutta method of order
5(4). The error is controlled assuming accuracy of the fourth-order method, but steps are taken using the
fifth-order accurate formula (local extrapolation is done). A quartic interpolation polynomial is used for the
dense output. A variable time step is used internally within the solver.
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from when the first electron was injected. This is done for four different cases: in (a) and (b)

we solve Eq. (3.24) for a plane-wave laser, and in (c) and (d) we solve Eq. (3.26) for a laser

in a waveguide. For (a) and (c) we set τstag = 1, but for (b) and (c) we set τstag = cos ωL∆t
2

,

where ∆t = 0.01875ω−1
p . In all cases we use vp = 1.002565 c, vg = 0.993583 c, kx = 12.14ωp/c

and R = 3 c/ωp. For the plane-wave and waveguide cases, we have that ωL = ckx and

ωL = c
√

k2
x + k2

⊥, respectively. For both cases we use a0 = 34ωp/ωL, giving 2.80066 and

2.79724 for the plane-wave and waveguide cases, respectively. These parameters are modeled

to coincide with the three-dimensional Osiris simulations presented in Sec. 3.2.4.

The accelerated electron bunch is shown in real space at a time of 255ω−1
p in Fig. 3.16.

We observe little difference between the plane-wave and waveguide laser models, but the

time-stagger error shown in (b) and (d) increases the amplitude of transverse oscillations

of the electrons. Some electrons even oscillate past the bubble radius, similar to the PIC

simulations using the Yee solver pictured in Fig. 3.13(a). We also note the presence of a

central, on-axis group of electrons in Fig. 3.16(c) that do not oscillate much with the laser

fields. In (d), where the spurious Lorentz force is present, this central group of electrons

exhibits large transverse displacements and is distributed sinusoidally in ζ, once again similar

to the behavior observed using the Yee solver in Fig. 3.13(a). From these results we conclude

that using a field solver that eliminates the spurious Lorentz force discussed in Sec. 3.2.2 is

crucial in determining the spatial distribution of an electron bunch with overlapping laser

fields. In addition, any errors in the electron motion will also affect the calculation of any

betatron radiation produced by these oscillating electrons.

Next we examine the angle versus energy phasespace and real space distributions of

accelerated electrons for the same four cases. For all panes in Figs. 3.17 and 3.18, the

resulting distribution of electrons after a time of 255ω−1
p is shown in the middle of the pane.

This middle group is colored as WDLA −WLWFA, or the work done by the DLA process minus

the work done by the wakefield. Blue electrons thus indicate more energy received from the

wake than from DLA, and vice-versa for red electrons. The top and bottom electron groups
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(a) Plane wave (b) Plane wave, time-stagger error

(c) Waveguide (d) Waveguide, time-stagger error

Figure 3.16: Resulting electron beam density for 30,000 test electrons injected and accel-

erated for a time of 255ω−1
p . Using a waveguide laser model instead of a plane wave has

little effect on the beam shape, while the time-stagger error enhances transverse oscillations

(electrons even extend past the bubble radius).
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(a) Plane wave (b) Plane wave, time-stagger error

(c) Waveguide (d) Waveguide, time-stagger error

Figure 3.17: Transverse angle of propagation as a function of energy for 30,000 test electrons

after a time of 255ω−1
p . In all panes, the middle group is colored according to WDLA−WLWFA,

or the work done by the DLA process minus the work done by the wakefield. The top and

bottom groups of electrons are offset for visualization and colored as WDLA and −WLWFA,

respectively. Once again, the time-stagger error increases transverse momentum. Here we

also see that the plane wave laser contributes increased DLA energy due to the larger field

strength near the bubble radius.
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shown in each pane are vertically offset for visualization purposes; they are colored as WDLA

and −WLWFA, respectively.

Figure 3.17 shows the transverse angle of propagation as a function of electron energy.

The forking at high energies is characteristic of the DLA process, and the range of θz is

larger when the time-stagger error is present, similar to the Osiris simulation results shown

in Figs. 3.12 and 3.15. We also note the presence of two distinct electron groups for each

case shown in Fig. 3.17: one group gains little energy from DLA and is located close to the

central axis, and the other group gains significant energy from DLA and clusters at larger

values of θz. This is because electrons originating at large initial values of x execute betatron

oscillations with a larger average transverse momentum. In (a) the first group has an energy

of approximately 25–150 MeV and the second group has energy up to 280 MeV. The results

shown here highlight that a spurious Lorentz force on resonant electrons erroneously increases

the amplitude of their transverse oscillations.

We also observe two distinct electron groups in Fig. 3.18: the wakefield-accelerated

electrons (blue) are only slightly modulated away from the axis, while the DLA-accelerated

electrons (light red) are much farther displaced. In Fig. 3.18(b) and (d), the wakefield-

accelerated electrons are displaced in near-sinusoidal pattern away from the axis as a result

of the time-stagger error. Many important beam quantities are inaccurate when a solver

is used that exhibits a time-stagger error, as is the case for most PIC codes. The spatial

distribution of electrons executing betatron motion in (c) closely resembles the shape of the

electron bunch from the Osiris simulation shown in Figs. 3.13(c) and 3.15(b), where the Fei

solver is used. From this comparison, we conclude that the use of the Fei solver [37], which

corrects the numerical dispersion relation and removes a spurious Lorentz force on particles,

indeed generates improved results that more accurately resemble the desired physics.

Finally, in Fig. 3.19 we plot the spatial distribution of the test electrons again late in time,

but here colored according to their initial values of (a) x and (b) vx. We see that electrons

are more likely to be located in the DLA group (executing large transverse oscillations) given
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(a) Plane wave (b) Plane wave, time-stagger error

(c) Waveguide (d) Waveguide, time-stagger error

Figure 3.18: Spatial snapshot of 30,000 test electrons after a time of 255ω−1
p , where the

groups in each pane are colored the same as in Fig. 3.17. For all cases, we observe a central

line of electrons nearly unaffected by DLA; however, this bunch is displaced from the axis

when the time-stagger error is present. In all cases, DLA most strongly accelerates the

electrons with large transverse displacement.
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(a) Plane wave (b) Plane wave, time-stagger error

Figure 3.19: Spatial snapshot of 30,000 test electrons after a time of 255ω−1
p for the

waveguide case with no time-stagger error. The groups in each pane are colored to show

the initial values of (a) x and (b) vx for each particle.

an initially large transverse position, but this large transverse position does not guarantee a

particle to be located in the DLA group. In addition, no significant trend is observed with

the initial transverse velocity. (The initial phase relative to the laser was also plotted, which

likewise showed no significant trend.) Thus, injection schemes where electrons are injected

some distance away from the laser axis can result in a greater population of electrons in

betatron resonance.

3.3.3 Single-particle betatron motion

To further understand the acceleration process of electrons from Sec. 3.3.2, we integrate the

equations of motion in Eq. (3.26) without the time-stagger error for 1,000 electrons. We

also integrate out to longer times to more fully explore the dynamics. In Fig. 3.20, we show

two representative particles, (a) one dominated by the wakefield and (b) another receiving

comparable energy from both the LWFA and DLA mechanisms for the plane-wave case. In

the top pane we see the transverse velocity, vz, along with (minus) the laser electric field

experienced by each particle. These quantities are observed to be in phase while the electron
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in (b) gains energy from DLA. Note that in vacuum, where transverse canonical momentum

would be conserved, they would be π/2 out of phase. In an ion channel or wakefield, there

is an additional electric (and magnetic) field that breaks translational invariance in the

transverse direction. In the second pane, we plot the betatron frequency, ωβ = ωp/
√
2γ, and

the Doppler-shifted laser frequency, ωD = (1− vx/vp)ωL, for each particle. At the betatron

resonance we have Nωβ ≈ ωD; the quantities ωβ and ωD roughly overlap during positive DLA

energy gain in (b) at the first harmonic (N = 1). Finally, in the bottom pane we observe

the total energy of the particle, along with the cumulative contributions from the LWFA

and DLA mechanisms. In (a) the electron never establishes prolonged resonance during

the majority of its time in the bubble, and the γ curve closely follows the LWFA energy

gain, peaking at 130 MeV. However, in (b) the energy gains from LWFA and DLA are of

similar magnitude, resulting in a maximum total energy of 290 MeV. For these parameters,

the DLA mechanism is able to produce electrons with double the total energy compared to

the wakefield mechanism alone.

Next, we investigate the maximum energy gain accessible to an electron in betatron

resonance from DLA. There are many interesting research directions to pursue. For example,

for an electron in an ion channel (where it won’t dephase and slow down from the wake), what

is the maximum energy an electron can gain from the betatron resonance? Can a density

gradient or counter-propagating laser be introduced to maintain the betatron resonance to

attain higher energy? Can smooth transitions between successive harmonics occur over the

energy gain, or can a stochastic process accomplish the transition?

As an electron is accelerated by the laser fields while in resonance (Nωβ ≈ ωD), the γ

factor for the particle increases, causing ωβ to decrease. However, the forward velocity vx

of the particle remains largely unchanged (aside from the oscillation due to the particle

moving transversely across the channel width). Thus if ωβ decreases too much, the particle

will fall out of resonance and begin to lose energy. This is observed in the top and bottom

panes of Fig. 3.20(b); we see that the electron transitions into anti-resonance at a time of

110



(a) Wake-dominated particle (b) Wake- and DLA-dominated particle

Figure 3.20: Trajectories for two electrons, (a) one dominated by the wakefield and

(b) another receiving roughly equal energy from the LWFA and DLA mechanisms. Both

particles eventually dephase and lose energy from the wakefield, but we see signatures of

betatron resonance for the particle in (b).
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(a) γi = γg = 8.84 (b) γi = 200 (c) γi = 500

Figure 3.21: Electron trajectories within an ion channel (no longitudinal wakefield) for

three different initial energies. In each case, the electron cyclically gains and loses energy

to the laser fields as it moves in and out of resonance. The gray dashed line in the bottom

pane of (b) and (c) indicates the N = 1 betatron resonance condition for a particle with no

transverse velocity, illustrating that for this case the overall energy gain does not extend

across multiple orders of resonance.

around 700ω−1
p , characterized by the vz and −Ez curves being opposite and the DLA energy

decreasing. In fact, Ref. [138] shows that the trajectories of resonant particles either oscillate

or rotate in the θ-px phasespace, where θ is the phase difference between the laser electric

field and the transverse velocity. Thus in the presence of only a laser electric field inside an

ion channel, there will always be a maximum energy gain for electrons executing betatron

motion.

To further investigate this process, we again integrate the equations of motion in Eq. (3.26)

without the time-stagger error for 1,000 electrons, but this time we remove the longitudinal
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(a) γi = 600 (b) γi = 700 (c) γi = 1100

Figure 3.22: Electron trajectories within an ion channel (no longitudinal wakefield) for

three different initial energies in-between the first- and second-order resonances. In each

case, the electron cyclically gains and loses energy to the laser fields as it moves in and out

of resonance. It appears that the electron is unlikely to spontaneously jump from the first-

to the second-order resonance.

wakefield force (set Γ = 0). We initialize particles with energy in the range γ ∈ [γi, γi + γg],

where γi is set to some value for each integration and γg = 8.84 for the group velocity given

above. To interpret the appropriate value for γi, we first find the values of γ that correspond to

various resonance orders. For a particle with zero transverse velocity, our resonance condition

Nωβ = ωD becomes Nωp/
√
2γ = (1−

√
1− γ−2/vp)ωL. Solving this equation numerically

yields γN = 516.154, 2067.45 and 4652.11 for N = 1, 2 and 3, respectively. In Fig. 3.21, we

plot single-particle trajectories for three different initial energies, γi = (8.84, 200, 500), all

smaller than γ1. The resonance condition of ωβ = ωD is observed to be loosely satisfied in

each case.
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Figure 3.23: Electron kinetic energies as a function of time with a counter-propagating

laser of amplitude a1. The electron trajectories are no longer strictly periodic, but there is

little increase in maximum energy.

We also show in Fig. 3.22 the trajectories of electrons with starting energies between the

first- and second-order resonances, γi = (600, 700, 1100). We see that the first electron in

(a) remains at the first-order resonance during its entire propagation, but that its energy

does slightly increase. However, although the electron in (b) begins with nearly the same

energy as the maximum attained by the electron in (a), it exhibits a second-order resonance.

The oscillatory behavior of the energy is at a lower frequency—and lower still in (c)—and

the energy gain is larger. From these results it is unclear if particles are able to naturally

transition to higher-order resonances on their own. This is an area for future research.

3.3.4 Impact of a counter-propagating laser

To introduce some possible stochasticity into the electron motion, we now include a counter-

propagating laser of smaller amplitude into the equations of motion [157, 158, 159]. For the

finite-size laser, the fields are the same as in Eq. (3.25), except ξ is replaced with ξ∗ = x+ vpt

and the magnetic field is negated (the phase is shifted by π). We then leave the amplitude
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of the main laser pulse at a0 = 2.79724 and vary the magnitude of the counter-propagating

laser pulse, a1, between 10% and 100% of the value of a0. The kinetic energy of the most

energetic electrons for each test case are plotted together as a function of time in Fig. 3.23.

We see that the electron trajectories are no longer strictly periodic as before, but that the

energies still oscillate with significant variation. For the cases with a1 ≤ a0/2, we see that the

electrons remain at energies larger than ∼ 100MeV. The use of such a counter-propagating

laser could be advantageous for maintaining high electron energies over large distances in an

ion channel. This is also an area for future work. However, it is possible that noise inherent

in an experiment is enough to inherently disrupt the periodicity of the electron motion.

3.4 Simulating an electron probe beam diagnostic

In order to experimentally study in detail the dynamics of particles in combined wakefields

and laser fields, it is important that novel diagnostics be developed. There is thus interest

in using an energetic (tens of MeV) proton or electron bunch perpendicularly incident on

an LWFA- or SM-LWFA-generated wakefield to image the real-time, in situ fields inside a

plasma. The particle bunch needs to be of short duration so that the displacement due to the

wake and laser fields is coherent. In a recent experiment performed at the Accelerator Test

Facility (ATF) at Brookhaven National Laboratory, an energetic electron beam illuminated

an SM-LWFA-generated wakefield to probe the instantaneous characteristics of the wakefield.

A 2-J and 2-ps CO2 laser was used as the driver; this longer wavelength laser produces a

longer wavelength wake, which is in turn easier to probe. The laser propagated through

hydrogen gas, and an electron beam probe with an energy of 55 MeV was incident normal to

the propagation of the wakefield and parallel to the laser polarization direction. In this setup

we consider the laser to be polarized in the y-direction and to propagate in the z-direction.

The electron beam incident on the plasma had a duration of 150 fs, a charge of 25 pC, and

propagated in the y-direction with finite transverse sizes of σx and σz. A schematic of the
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Figure 3.24: Schematic showing the hydrogen gas, CO2 laser and electron probe beam

used in the experiment performed at the ATF. The probe beam was delayed in time over

various shots to construct multiple images of the laser propagating through the plasma.

The distance from the plasma to the screen was 50 cm.

experiment is shown in Fig. 3.24, where the electron beam can be seen to form an image at a

screen 50 cm away from the plasma. Radiographs from the electron beam were obtained over

many snapshots by temporally delaying the beam with respect to the laser, showing the laser

propagating through the plasma and evidence of the plasma evolution behind the laser. The

snapshots at different delays then provide a “movie” of the wakefield evolution, provided that

the SM-LWFA processes are consistent between shots.

The electron beam was passed through several focusing optics to create the desired

spot size and divergence in the horizontal (z) and vertical (x) directions, with the beam
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parameters being substantially different in the two directions. The beam dynamics in the

ATF beamline 1 were simulated using elegant [160], and the horizontal and vertical beam

envelopes throughout the beamline are shown in Fig. 3.25. The initial beam distribution was

generated at the exit of the ATF RF linac with a normalized emittance of ϵn = [2.62, 2.89]µm,

where we express quantities here as [∗x, ∗z], i.e., separately for the x- and z-directions. Blue

and red dots are the RMS beam sizes measured at two beam profile monitors located in the

experimental chamber at the locations of the plasma (first set) and image screen (second set).

The beam is much wider in the z-direction so as to overlap many plasma periods. The beam

focus in each direction is seen to be located before the plasma, nearly the same distance

away as the screen is from the plasma. The measured beam sizes give a beam magnification

of Mexp = [2.0, 2.7] from the plasma to the screen in the vertical and horizontal directions,

respectively. The simulated beam had a spot size at the screen of σ(yscr) = [0.738, 3.582]mm

and a magnification of Msim = [1.65, 1.58] between plasma and screen. The magnification

was also measured using a third method: by delaying the probe in relation to the laser, a

series of radiographs was generated showing the laser moving through the plasma. Knowing

the synchronization delay and measuring the motion of certain features in the radiograph

(e.g., the front of the first bucket) over time, this motion was compared to the speed of light

to determine that the images had a magnification factor of 3–4 in the horizontal direction.

Thus, there remains some uncertainty regarding the exact magnification of the beam between

these three methods.

In this section, we seek to simulate the electron probe beam displacement from the plasma

wakefield associated with parameters for the experiment to better interpret the radiographs.

Since an accurate simulation of this problem relies on a three-dimensional geometry, we use

the quasi-3D geometry of Osiris to simulate the original SM-LWFA problem. We then use

the fields obtained from the simulation to propagate many test particles transversely across

the simulation box. This propagation is done in post-processing due to the complicated

nature of such a beam in the quasi-3D geometry. After “pushing” the particles across the
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Figure 3.25: Simulated probe beam width in the horizontal and vertical directions as a

function of propagation distance. Dots correspond to the experimental beam sizes taken in

the absence of the plasma or screen (the first and second sets of dots correspond to the

location of the plasma and screen, respectively). From the experimental (simulation) values,

magnification is about 2.7 (1.6) in the horizontal direction.
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simulation box, their straight-line trajectories are calculated to form an image at a screen

some distance from the plasma. These images are then compared to the experimental results.

Although the physics involved in this endeavor are not directly related to DLA, we include

the results in this chapter due to this technique’s potential to provide direct signatures for the

wakefields. However, as we show, interpreting the images is complicated. The premise of the

technique is that the probe electrons receive an impulse from the transient-time wakefields

they encounter. They then free stream (self-fields are negligible since they are relativistic

and the beam is not tightly focused) to the screen. If the screen is set before a focus for the

perturbed beam, then the image can be more easily interpreted. However, more care must be

undertaken when interpreting images from a screen placed beyond the beam focus.

Several nuances are involved when correctly modeling the electron probe beam. First, if

electrons are initialized on a regular grid, this regular spacing can lead to aliasing of the field

structures on the radiograph. We found that results were much better when the beam was

initialized randomly. Second, when propagating the probe electrons across the simulation

grid, we usually only had the field data at a single time step. Getting the data for all of the

time steps during which the electrons cross the grid is too expensive (and unnecessary for

temporally short probe beams). In most cases, we therefore assume the field structures to be

drifting forward at some group velocity near the speed of light without any change to the

envelope. This quasi-static approximation includes some error for a 150-fs electron beam, but

we keep with this assumption as we develop a path towards modeling the process. Finally,

we treat the fields to be zero outside of some radial simulation distance to ignore edge fields

at the plasma–vacuum boundary as well as some large, spurious simulation boundary fields.

We want to initialize the electron beam at the focus, since only at that location are

both position and momentum random and independent of one another, i.e., the distribution

function is separable at the focus. Once again, we consider the laser to be polarized in the

y-direction and to be propagating in the z-direction. We then let the electron beam propagate

(free stream) in the y-direction with finite transverse sizes of σx and σz towards the plasma
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edge. Without loss of generality, after deriving the necessary equations we can easily switch

x and y for the probe beam so that the electrons propagate perpendicular to the polarization

direction of the laser. We define y = 0 to be the focal point of the beam, with the plasma

interaction plane (center of the wake) to be located at yIP and the screen to be located at

yscr = yIP + Lscr, where Lscr is the distance between the plasma and the screen; we assume

that Lscr is always known.

We have that the normalized emittance of the beam in a particular direction is ϵn =√
⟨x2⟩ ⟨p2x⟩ − ⟨xpx⟩2, where px = γx′ = γ dx

dy
. Note that prime indicates derivative with respect

to the propagation direction, y = ct. The normalized emittance is not conserved when a beam

with energy spread propagates in vacuum. However, the geometrical emittance, ϵ = ϵn/γ, is

always conserved in vacuum, and it defines the diffraction of a beam. Henceforth, we will

work with the geometrical emittance, where β = σ2
x

ϵ
. The equation of motion for a beam

evolving in free space is [161]

σ′′
x =

ϵ2

σ3
x

, (3.27)

which has the solution

σx(y) =

√
ϵ2y2

σ∗
x
2
+ σ∗

x
2 = σ∗

x

√
1 +

y2

β∗2
, (3.28)

where a superscript ∗ indicates quantities defined at the focus. Note the analog between ϵ

and β∗ with λ and Rayleigh length, respectively, when comparing particle beam and laser

propagation.

If we know the parameters yIP, σ∗
x and β∗, i.e., we know the location of the focus and all

of the beam parameters, then we have that the magnification of the beam from the plasma

interaction plane to the screen is

M =
σx(yscr)

σx(yIP)
=

β∗2 + (yIP + Lscr)
2

β∗2 + y2IP
. (3.29)

If we instead know the beam emittance, spot size at the screen and magnification, we need

to determine σ∗
x and yIP to properly initialize the beam. This means we need to solve the
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system of equations

σx(yscr)
2 =

ϵ2(yIP + Lscr)
2

σ∗
x
2

+ σ∗
x
2,

M2 =
σ∗
x
4 + ϵ2(yIP + Lscr)

2

σ∗
x
4 + ϵ2y2IP

(3.30)

for σ∗
x and yIP, yielding

σ∗
x =

ϵLscrM√
(1 +M2)σx(yscr)2 − 2M

√
σx(yscr)4 − ϵ2L2

scrM
2

,

yIP =
Lscr(M

2 − 1)σx(yscr)
2
[
σx(yscr)

2 +M
√
σx(yscr)4 − ϵ2L2

scrM
2
]
− 2ϵ2L3

scrM
4

4ϵ2L2
scrM

4 + (M2 − 1)2σx(yscr)4
.

(3.31)

Using Eq. (3.31) we can properly initialize the particle beam. Because the beam is moving in

the y-direction at near the speed of light, we can have separate locations of focus, spot sizes

and emittances in the x and z directions.

Although the beam has a finite duration in time, we wish to push all particles through

the plasma and laser fields at once, i.e., create one PIC loop that processes all the particles

in the beam together. We accomplish this by initializing the particle beam with distributions

in x, z and time, we then propagate all particles through vacuum to the edge of the plasma

in y using straight-line trajectories.

We next assume that the wakefields are quasi-static; this includes all components of both

the electric and magnetic fields, along with modes zero and one in the quasi-3D geometry.

Given a field component from the simulation, W (x, y, z; t0), for a particular time t0 from the

Osiris simulation, we can assume that at a later time t = t0 +∆t, the field is described as

W (x, y, z; t) = W (x, y, z − vg∆t; t0). Therefore, for beam particles that trail the head of the

beam by a time ttrail, they are simply started at the same t0 but shifted in z by an amount

−vgttrail. In this way, all beam particles can be assumed to start at the same time and be

pushed through the fields together via the Boris push. For any time step when a particle

resides outside of the specified field domain, a straight-line trajectory is used. Finally, once all

particles have passed through the domain, we use straight-line trajectories again to produce

the image at the screen.
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We simulated the ATF experiment using quasi-3D Osiris for a hydrogen plasma of density

n0 = 1017 cm−3 and a laser with wavelength 10.6µm, peak amplitude a0 = 1.9, beam waist

30µm, and FWHM of intensity 2 ps polarized in the y-direction. We used mobile hydrogen

ions with a Lorentzian for the longitudinal plasma profile of the form

n(z) = n0

(
−0.00132155 +

1

1 + 20 |1.5− z[mm]|8.95735

)
, (3.32)

which approximated the experimentally measured density profile. The density was set to

zero to the left and right of z = 0 and 3µm, respectively, and the density profile has a

nearly flat distribution over the middle 1µm. In the transverse direction, the plasma tapered

linearly from full density to zero from 300 to 400µm, and the simulation boundary was

placed in the transverse direction at 620µm. The simulation was run for 43 ps to capture

the evolution of the plasma after the laser passed through (no moving window), and had

c/ωp = 16.82µm, ∆x1 = 0.0105 c/ωp and ∆x2 = 0.0315 c/ωp, with 35,453 and 1,175 cells in

x1 and x2, respectively.

The electron probe beam was simulated to pass through the fields at each data dump

in post-processing. Fields were assumed to be constant in time and drifting at the group

velocity vg = 0.9958959 c obtained from the Osiris simulation data (little difference is

observed if a group velocity of c is used). The electron probe beam was sent through traveling

in the y-direction, parallel to the laser polarization. We show in Figs. 3.26–3.30 (a) the

simulated electron radiograph at a screen 50 cm away from the plasma interaction plane,

(b) the electron density [and (d) ion density] of the Osiris simulation, (c) a shot from the

experimental radiograph roughly corresponding to the same time and features from the

simulated radiograph, and (e) the laser electric field from the Osiris simulation. For better

comparison between the plots, all axes are displayed in units of what is measured at the

screen (except for the laser field); this means that the electron and ion densities are magnified

by factors of 1.65 and 1.58 in the vertical and horizontal directions, respectively.

In Fig. 3.26, we can just barely see the displacement of plasma electrons on the color

scale in (b). These plasma electrons are completely displaced due to the ponderomotive force
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(a) (b)

(c) (d)

(e)

Figure 3.26: (a) Simulated electron radiograph produced on a screen. (b) Electron density

just as the laser field enters the density upramp. (c) Experimental radiograph that resembles

this time in the simulation. (d) Ion density, which has not yet been displaced. (e) Laser

field of the quasi-3D Osiris simulation shown focusing to the axis.
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of the laser, but the ions in (d) have not yet begun to move. Since the density is rapidly

changing in the upramp, the electrons in the probe beam will experience a focusing force that

varies in z due to the stationary ions. In (a), the radiograph shows that the electrons between

about -0.5 and 0.5mm have passed through their focus, while the electrons near -0.9mm

are focused at the screen. The varying space charge of the ions acts as a variable-strength

focusing lens on the probe electrons. This facet of the radiography process highlights the

difficulty of extracting plasma features from a single radiograph located a set distance from

the plasma: any of the electrons at the screen may be imaged before, at, or after the focus of

their trajectories. In future experiments, the distance of the image screen from the plasma

will be varied to better interpret the data. However, we do observe a small group of electrons

at around -6mm in the experimental image in (c) that are displaced from the main probe

beam, similar to the simulated probe.

Figure 3.27 shows a snapshot of when the laser has just approached the middle of the

plasma. The laser is near its focus, and the electrons are mostly blown out over the length

of the laser. In addition, the ions in (d) are also beginning to drift away from the axis at

the back of the laser. At around 1.5 mm in the electron radiograph in (a), a portion of the

electron beam is seen to be deflected at a large angle away from the central axis. The same

feature is also visible between -1 and 1mm in (c). At this location in the simulation, the

plasma electron density in (b) is rapidly decreasing (onset of blowout), so there is a rapid

change in the focusing force on the probe. The focusing force increases with decreasing z near

the front of the laser, resulting in probe electrons with larger displacements in x. We clearly

see in both (a) and (c) a region at the central axis where all probe electrons are evacuated,

this likely corresponding to where electrons are blown out. Interestingly, some electrons have

collapsed back to the axis at around 1.2 mm in (b), but this appears to have little effect on

the probe beam. The structures in the probe beam image become more complicated towards

the back of the laser pulse, where ions begin to move and electrons in the low-density region

are oscillating about the axis [see -1 to 0.5 mm in (b)]. The plasma dynamics in this region
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(a) (b)

(c) (d)

(e)

Figure 3.27: (a) Simulated electron radiograph produced at a screen. (b) Electron density

exhibiting blowout. (c) Experimental radiograph resembling the simulation results, showing

a large “sail” of electrons near the front of the laser followed by oscillations. (d) Ion density,

where ions are just beginning to be displaced. (e) Laser field near its focus.
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are sensitive to the initial density profile, which may vary from the experiment.

In Fig. 3.28, the laser is past its focus and electrons are no longer completely blown out

inside the laser pulse. We see that the structure near the front of the laser pulse is more

complicated in both the simulated probe and experiment, although in each we observe a

group of electrons whose transverse displacement increases with decreasing z. However, the

probe beam features differ significantly between simulation and experiment in the trailing

plasma. Note that though there is a clearly defined wake and sideband structure visible in

the plasma density between 1–2 mm in (b), this structure is not obvious from the radiograph

in (a). This comparison underscores that an electron radiograph does not simply provide

a picture of the wake structure, but that more analysis and simulations are necessary to

understand their correlation. One issue with comparing the simulated and experimental

data is that small changes in the density profile can produce large changes in the radiograph.

Although the general shape of the gas density is known from the experiment, this varies from

shot to shot.

Figure 3.29 is taken 5 ps after Fig. 3.28, and the laser has almost completely exited the

plasma. The (b) electron and (d) ion densities are very similar over the majority of the

simulation domain, which means that any focusing force felt by the probe electrons will be

much less than before. This is evident by the simulated probe electrons being very close to

the axis in the radiograph of (a) between 1 and 2.5 mm (the image plane is likely located

near their focus). The experimental radiograph shows similar behavior between -2 and 2 mm.

We see at both the right and left edges of (c) some sort of periodic displacement in the probe

beam. Similar displacements are seen at each end of (a), but they are much less regular.

Once again, the features in the density upramp and downramp are sensitive to the initial

density profile.

Finally, Fig. 3.30 is taken 18 ps after Fig. 3.30, and the plasma has drifted away from the

axis significantly. Although not directly visible in the plasma density images in (b) and (d),

the simulated radiograph in (a) shows two “bubbles” between 2 and 3 mm that appear similar
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(a) (b)

(c) (d)

(e)

Figure 3.28: (a) Simulated electron radiograph at a screen. (b) Electron density, with

several bubbles forming near the front of the laser pulse. (c) Experimental radiograph

resembling the simulation results. (d) Ion density, where the electron and ion densities

roughly match in the first region of the plasma. (e) Laser fields beginning to defocus.
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(a) (b)

(c) (d)

(e)

Figure 3.29: (a) Simulated electron radiograph produced at a screen. (b) Electron density

with many small perturbations still evolving in the right half of the plasma. (c) Experimental

radiograph after the laser has passed through the plasma. (d) Ion density, which matches

the electron density over much of the plasma length. (e) Laser fields are exiting the plasma.
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(a) (b)

(c) (d)

(e)

Figure 3.30: (a) Simulated electron radiograph at a screen, with circular features shown at

either end of the plasma. (b) Electron density, where the high-density features are observed

to be drifting away from the central axis. (c) Experimental radiograph exhibiting circular

features at one end and thin features near the axis in the center. (d) Ion density, which

almost completely matches the electron density. (e) Laser fields have exited the window.
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to those seen in the experiment. In addition, between 0 and 2mm in (c), we observe two

orange lines above and below the axis where electrons are focused. This is also observed in (a),

but the data is less accurate because of the finite size of the probe beam and field interaction

region (see the outline of background electrons faintly beginning past about 0.8 mm in x).

Some similarities are observed between the simulated probe beam and the experimental

radiograph, but we are far from discerning the plasma density from the radiograph. It is

likely that in future experiments, the diagnostic screen will have to be moved with respect to

the plasma from shot to shot to capture the probe electron motion under variable focusing

fields. In addition, a detailed and reliable understanding of the background gas density is

crucial to compare against simulation. Another alternative would be to image the wake of a

short-pulse laser, where the plasma dynamics are much less complicated. From a simulation

perspective, the probe beam could be injected and simulated directly in Osiris using the

full set of time-dependent fields. Especially late in time, the assumption that all fields drift

forward at near the speed of light is problematic and likely results in an incorrectly deformed

probe beam. However, overall, electron radiography promises to be an important tool in

underdense laser–plasma interactions.

3.5 Summary

Many laser-driven accelerator schemes have been developed that generate energetic beams

of electrons. The interplay of direct laser acceleration (DLA) and acceleration from plasma

wakefields is an important physical process that is still not yet fully understood. This chapter

is devoted to correctly identifying, quantifying and sustaining betatron resonance of energetic

electrons in LWFA and SM-LWFA schemes.

We have demonstrated that a picosecond-laser pulse undergoes SM-LWFA in a low-density

plasma and that DLA dominates the energy gain of the highest-energy electrons in the

absence of a trailing ion channel. This contribution is shown experimentally—and reproduced
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with PIC simulations—by the forking structure evident in the dispersed electron beam at

high electron energies, as well as through the transition between two temperatures in the

measured electron spectra at around 100 MeV. This work provides the first direct experimental

characterization, confirmed through quasi-3D PIC simulations with mode separation of fields,

of DLA from the SM-LWFA of a picosecond laser. It also provides quantitative comparison

between DLA and wakefield acceleration, which gives a better physical understanding for the

development of x-ray sources for HEDS experiments.

From the quasi-3D simulation of self-injection in a nonlinear wake excited by a large-

amplitude laser, we also demonstrate that energetic electrons can receive a significant

contribution of their energy from DLA, even for an LWFA operating in what is referred to

as the bubble regime. Accurate calculation of this energy is necessary to understand its

importance and to possibly increase its effect. We have shown that neglecting the longitudinal

component of the laser field (Ez,m=1) in the DLA process can overestimate the DLA energy

contribution by as much as 50%. This understanding can inform the design of future laser-

driven accelerators, where the longitudinal component of the laser might be constructed to

be in phase with the electrons and to contribute to energy gain.

A customized finite-difference field solver was designed to combat the errors in the

dispersion of light and in the Lorentz force of particles interacting with a laser in vacuum.

The real space and phasespace dynamics of accelerated electron beams in an LWFA were

shown to vary greatly based on the chosen Maxwell field solver. The traditional Yee solver

can incorrectly amplify the transverse betatron oscillations of resonant electrons, yielding

incorrect electron energy and angular divergence when compared to experiment. Integration

of the equations of motion for representative electrons also gave results consistent with the

improved solver. When analyzing single-particle motion exhibiting betatron resonance, we

observed that electrons do not readily transition between betatron harmonics, even in the

presence of a counter-propagating laser. However, this process remains to be explored in

greater detail in future work.
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We also investigated the deformation of an electron probe beam propagating across the

fields of an SM-LWFA. An experiment was conducted that produced electron radiographs

taken over many shots, successively delayed with respect to the laser driver to create snapshots

in time as the laser propagated through the plasma. This process was simulated using the

PIC method, with plasma and laser fields obtained from fully self-consistent quasi-3D Osiris

simulations. The probe beam was shown to deform and exhibit many of the general features

observed in the experiment, although the varied strength of the focusing forces on the electrons

throughout the plasma made direct correlations between the radiograph and plasma density

difficult. However, the technique shows promise as a way of measuring and imaging the in

situ fields inside the plasma of an wakefield accelerator.
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CHAPTER 4

Hot electron and x-ray generation in laser–solid

interactions

Particle-in-cell (PIC) simulations have long been used to study the kinetic effects of laser–

plasma interactions with overdense plasmas, with applications including the study of novel

x-ray light sources [162, 163, 164, 165, 166], generation of mono-energetic ion beams [167],

experiments of collisionless shocks [168, 169, 170], transport experiments through warm-dense

matter [97] and the fast ignition concept for inertial confinement fusion [93, 171]. The

laser–plasma interactions are often simulated for times on the order of picoseconds (1000s of

laser periods) and for distances on the order of hundreds of microns (100s of laser wavelengths

and 1000s of collisionless skin depths).

The interaction of a high-intensity laser pulse with a solid target often produces a high

forward flux of multi-MeV electrons through a variety of physical mechanisms [95, 172, 173,

174, 175, 97]. The “hot” electrons can produce bremsstrahlung x-rays [10, 14], radiation that

has been considered for a wide variety of applications [176, 17, 12]. Work has been devoted

to optimizing the bremsstrahlung production and controlling its directionality, including

the use of preformed plasmas [175, 14, 177], advanced nanowires [178, 179] and cone-shaped

targets [180, 181]. In addition, laser absorption has been shown to rise with increased laser

intensity and oblique incidence [103, 94], and particle energies greater than predicted by

traditional scaling laws have been observed for long-pulse lasers [182].

In this chapter, we describe Osiris simulations carried out to effectively determine how to

best maximize the dose of 1–5 MeV bremsstrahlung x-rays produced from energetic electrons
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generated by high-intensity laser–solid interactions with a given laser energy. We vary the

laser pulse amplitude and duration while holding the energy constant, examining trends in

electron temperature and x-ray yield. First we discuss the many techniques necessary to

accurately simulate such a problem, then show the progression of simulation behavior as

the laser is modeled first as a plane wave and then as a finite-width laser in two dimensions.

The use of plane waves in two dimensions is referred to as a quasi-1D geometry. We then

present data from a large number of large-scale (hundreds of µm), long-time (tens of ps),

fully two-dimensional PIC simulations used in conjunction with Monte Carlo simulations to

explore the optimal laser intensity for maximizing the 1–5 MeV x-ray dose.

To make such long-time simulations of relativistic laser–solid interactions possible, we

employ several novel PIC techniques, some of which are unique to Osiris. Electrons (ions)

are simulated with 64 (16) particles per cell, but to avoid numerical stopping of energetic

particles from the enhanced wakes from macroparticles [183] (see also Sec. 4.1.1), fast electrons

are split into two separate particles at certain energy thresholds; we do this at γ values of

1.4, 1.5, 1.6, 1.7, 1.8 and 1.9, such that one electron accelerated to γ ≥ 1.9 is split into 64

smaller particles. To prevent hot-electron refluxing from simulation boundaries, extended

particle absorbers [184] (see also Appendix A.3) are employed over the regions |y| ≥ 110µm

and x ≥ 130µm to gradually stop energetic particles without large electric field growth.

Low-energy particles with small charge in the absorbing regions are combined with other

particles in the same octant of momentum space to reduce computational load. The left

vacuum boundary in the x-direction is placed far from the vacuum-plasma interface so as to

be causally separated (varied based on simulation time), and dynamic load balancing [43]

is performed every 50 time steps. Last, to avoid numerical grid heating and to reduce the

enhanced wakes, we use cubic particle shapes.

In this chapter we first provide details on some of the unique algorithmic features in

Osiris that enable efficient simulations of laser–solid interactions. This is followed by physics

results on optimizing the generation of 1–5 MeV x-rays for a laser with fixed energy.
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4.1 Techniques for accurate simulation of long-time laser–solid in-

teractions

4.1.1 Macro-particle splitting to reduce enhanced wakefields

In most situations, a particle simulated in a PIC code represents a group of many charged

particles with the appropriate charge-to-mass ratio. Each particle has a finite size (on

the order of the grid), minimizing two-body particle interactions and thereby reducing

collisional effects—even for small numbers of particles per Debye cube (or square). Generally,

a simulation exhibits less noise and increased accuracy when more particles per cell are used.

Convergence tests can be helpful in determining the appropriate number of particles to use in

a given simulation, as long as processes are not growing from thermal noise (in that case the

thermal noise also decreases, and the instabilities will take longer to manifest themselves).

Due to the large plasma frequency (compared to the laser frequency) when working with an

overdense plasma, the smallest spatio-temporal scales are the plasma skin depth and inverse

plasma frequency (and not the laser wavelength and inverse laser frequency). Furthermore,

as noted above the number of particles per cell must be large to reduce two-body interactions

(collisions) so they do not dominate over collisionless absorption processes. This also reduces

the related noise levels. Thus the simulation of laser–solid interactions can be computationally

challenging. Furthermore, as hot electrons are generated at the vacuum interface and then

propagate through the cool background plasma, these macro-particles can exhibit enhanced

wakes due to their large charge—compared to individual electrons executing similar motion.

The stopping power scales as q2/m and not as q/m. The macro-particles lose energy to the

creation of these enhanced wakefields and slow down as they propagate through the plasma,

quantitatively detailed in Ref. [183].

To avoid the enhanced wakes, one could increase the number of particles per cell for

the simulation such that the charge of a given macroparticle is sufficiently small. However,

this is very computationally expensive. As proposed in Ref. [183], we instead elect to split
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macro-particles based on their energy such that their wakes are sufficiently small, but the

total number of particles remains relatively low (as determined by the scope of the problem).

This is done by creating an additional particle with the same position and momentum as

the original, but with half the charge. The charge of the original particle is halved, and

then each particle is imparted a small (∼ 1% of the original momentum) impulse to separate

their trajectories. We do this at various energy thresholds, for example, at γ values of 1.4,

1.5, 1.6, 1.7, 1.8 and 1.9. In this way, one electron accelerated to γ ≥ 1.9 is split into 64

smaller particles and will experience an energy loss of |∆γ| < 0.25 from traversing through

the entire plasma. We employ this technique for all simulations shown in this chapter to

avoid significant energy loss for energetic electrons due to enhanced macroparticle wakes.

4.1.2 Extended particle absorber to reduce hot-electron reflux

When the laser–plasma interaction at the front of a solid target leads to large quantities of

forward-going energetic electrons, a large flux of particles will in turn be found leaving the

rear simulation boundary. Independent of the particle boundary condition, the exiting stream

of energetic particles can be problematic: either sharply removing the current (absorbing

boundary condition) or the replacing of particles from a thermal bath (thermal boundary

condition) leads to an accumulation of charge, and then to an electric field buildup at the

boundary. This strong electric field will generate a return current that is carried by a hot,

rarefied electron population (nearly symmetric to the incident electrons) instead of the

proper cold, dense population [185]. The hot return current can both modify streaming

instabilities that arise in the bulk plasma and modify the laser–plasma interactions at the

front surface. To avoid this electron reflux, the plasma may be elongated such that the

rear of the plasma is causally separated from the laser–plasma interaction region for some

desired duration[186, 187]. In this case a small vacuum region is often placed to the right of

the plasma to simplify the particle boundary conditions. However, elongating the plasma

introduces extra overhead from simulating (often very particle-dense) excess material.
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In an effort to preserve simulation integrity while shortening the simulated plasma region,

we use an extended particle boundary condition that sporadically stops particles of certain

energies over a defined distance. The first attempt at such a boundary condition was carried

out by Tonge et al. [171], where an absorbing region was used in the center of a circular

target to model laser–plasma interactions of relevance to fast ignition. In these simulations, a

phenomenological energy-dependent damping term was used in the particle pusher. Related

approaches were used by May, et al. [97, 188]. In this dissertation, we use a new approach

to enable stopping of electrons over an extended spatial region [184]. In the presence of a

low-density, hot particle beam or tail moving forward into the plasma, this extended stopping

avoids localized charge buildup or current deficiency that occurs when using an absorbing or

thermal boundary condition, thus allowing a suitably cool return current to develop in the

background plasma over an extended period of time and space. Details on the implementation

and characterization of this absorbing boundary condition can be found in Ref. [184] and

in Appendix A, and we utilize one or more such absorbers in all simulations shown in this

chapter.

4.1.3 Magnetic field growth in quasi-1D simulations

We reiterate that the goal of the laser–solid simulations in this chapter is to determine the

electron and x-ray production from the interaction of a finite-size laser with an overdense

plasma with a preformed density ramp. Care must be taken when reducing this complicated

interaction to a one-dimensional or quasi-1D (2D plane-wave) simulation geometry. For

example, some acceleration mechanisms at a vacuum–plasma interface are completely absent

in pure one dimension, where the conservation of transverse canonical momentum holds [97].

If the laser in a two-dimensional simulation is polarized in the simulation plane, then the

transverse canonical momentum is no longer conserved when the surface ripples or magnetic

filaments inside the plasma are formed. Here we examine the generation of long-wavelength

transverse magnetic fields that develop and reflect outward-moving electrons in quasi-1D
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simulations, necessitating two-dimensional simulations that are large enough to resolve

long-wavelength transverse magnetic field modes.

To examine the rippling of the surface and the variability in magnetic field growth in a quasi-

1D geometry, we simulate a 1-µm plane-wave laser incident from left to right on an overdense

plasma of density 10nc (where nc is the critical density) with an exponential ramp of scale

length 3µm. The axial (x1-direction) simulation domain is x1 ∈ [−2977.6 c/ω0, 942.4 c/ω0].

The 10nc plasma starts at x1 = 0 c/ω0 and remains constant until the right edge of the

box. There is an exponential density ramp of scale length 18.85 c/ω0 (3µm) that starts at

−173.6 c/ω0 in x1, giving a vacuum region of 2804 c/ω0 in front of the plasma before the

plasma expands. The temporal laser profile is a plateau of duration 2.9 ps with smooth

transitions to zero of FWHM 0.05 ps on either side, and the normalized laser vector potential

is a0 = 3.0. The laser is polarized in the simulation plane and is normally incident on the

surface. Simulation cells are 0.2 c/ω0 square, where ω0 is the laser frequency (c/ω0 = 159.2 nm

for a 1µ m laser), and the time step is 0.141ω−1
0 . The simulation is periodic in the transverse

direction, and in Fig. 4.1 we show simulation data where the transverse width is varied from

(a) 4µm, to (b) 10µm and then to (c) 40µm. The plots show a zoomed in region in x1

near the critical density (between −200 and 200 c/ω0. In each part the top pane shows the

transverse electron current (in the x2-direction), the middle pane shows the out-of-the-plane

magnetic field strength, and the bottom pane shows the spatial Fourier transform of the

out-of-the-plane magnetic field. All snapshots are taken 0.2 ps after the laser was extinguished.

We observe in Fig. 4.1 that as the transverse size of the simulation is increased, the

magnetic field in the low-density plasma region (x1 < 0) acquires a different topology. In

particular, in (a) and (b) we observe magnetic field (and current) structures between −200

and −50 c/ω0 in x1 that extend transversely across the entire simulation domain (k2 = 0).

These correspond to electron current sheets that perpetually circulate due to the periodic

boundary conditions. From the spatial Fourier transform results, we see that the low-k

transverse modes are only properly resolved in (c), where the transverse size is sufficiently
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Figure 4.1: Current, magnetic field and spatial Fourier transform of the magnetic field for

simulations of transverse width (a) 4µm, (b) 10µm and (c) 40µm (zoomed in for x1).
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large to include at least one wavelength of the largest magnetic field structure. The large

periodic currents and magnetic fields seen in these simulations are generated after just 3 ps.

Since we desire to simulate a 30-ps laser, it is important to use a simulation box wide enough

in the transverse direction to avoid any periodic current sheets that could grow over time.

In Fig. 4.2, we also show the magnetic field and electron phasespace near the end of the

simulation (2 ps after the laser was extinguished); these three cases are the same as those

shown in Fig. 4.1, but here the entire x1 domain is shown (full transverse domain shown in

both figures). Here the top pane shows the out-of-the-plane magnetic field (the laser field

is seen leaving the box to the left), the middle pane shows the p2-x1 phasespace and the

bottom pane shows the p1-x1 phasespace. After the laser is extinguished, the current and field

structures convect to the left with the expanding plasma, and they can be seen to completely

convect away from the constant-density plasma region. In the middle panes of Fig. 4.2(a)

and (b), we can clearly see the alternating transverse current sheets that form the periodic

magnetic fields. However, note that these current sheets also correspond to perturbations

in the p1-x1 phasespace in the bottom panes of (a) and (b), where particles are rotated by

the out-of-the-plane magnetic fields. These magnetic fields can act to reflect hot electrons

drifting toward the vacuum region from inside the plasma. We also see some acceleration of

forward-going electrons in the region x1 ∈ [−1000,−700] c/ω0 in the bottom pane of (a).

Perhaps the most important feature of Fig. 4.2 is the amplitude of the p2 quantities in

the expanding plasma ramp for the three simulations. The amplitude of the momentum

in each current sheet is larger in (a) than in (b), and in (c) we see that the transverse

electron momentum is smoothly spread out over x1. This is to be expected, since at least

one transverse wavelength of the electron current is contained within the box for the larger

simulation in (c). If a periodic current/magnetic field structure is left to grow over the

entirety of a simulation, the resulting electron momentum can become unphysically large

and affect the hot-electron generation over time. The electron temperature between the

three simulations shown in Fig. 4.2 are consistent, but the dose of 1–5MeV forward-going

140



Figure 4.2: View of entire simulation domain showing magnetic field and electron phasespaces

for simulations of transverse width (a) 4µm, (b) 10µm and (c) 40µm.
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electrons is 6% lower for (c) compared to (a) and (b). Once again, we expect this effect to be

further amplified for laser pulses that are longer in duration. It is therefore important to use

a simulation box sufficiently wide in the transverse direction to resolve the long-wavelength

magnetic field structures generated in the low-density plasma region.

The need for a large transverse simulation size cannot be avoided simply by using a laser

polarized out of the simulation plane. In Fig. 4.3, we show in (a), (c) and (e) data from

the same simulation pictured in Figs. 4.1(a) and 4.2(a), alongside an identical simulation

but with the laser polarized out of the plane, shown in Fig. 4.3(b), (d) and (f). We see in

(a) and (b) that fewer energetic electrons are generated for out-of-the-plane polarization;

the total number of > 1MeV electrons with out-of-the-plane polarization is only 60% of

that with in-the-plane polarization. In addition, the time integrated electron spectra have

temperatures of 2.8 and 1.7 MeV for in-the-plane and out-of-the-plane polarization directions,

respectively. The surface deformation is also different between the two cases [see (e) and

(f)], with the out-of-the-plane case retaining a much flatter surface. There is no real-world

analog for the case with a laser polarized out of the plane in a two-dimensional simulation, for

canonical momentum is strictly conserved out of the plane. A steep critical surface in such a

configuration will not deform or ripple over several picoseconds [188], and many acceleration

mechanisms are absent since no heating is possible out of the plane [97]. For this reason we

polarize the laser in the plane of the simulation and must retain a sufficiently large transverse

simulation size.

4.1.4 Proper transverse boundary conditions for two-dimensional simulations

As described in Sec. 4.1.3, the most accurate simulations of long-time laser–solid interactions

require a transverse box size sufficiently large to resolve low-k magnetic field structures that

are generated in the low-density plasma. However, for the example explored in Sec. 4.1.3,

the largest box size was 40µm in width, which is on the order of a reasonable laser spot size

for such experiments. Therefore, it is feasible to consider simulating the entire interaction
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Figure 4.3: Electron phasespace and density plots for the cases with the laser polarized (a),

(c), (e) in and (b), (d), (f) out of the simulation plane. When the laser is polarized out of

the plane, fewer energetic electrons are generated [compare (a) and (b)], and the surface

deformation is very different [compare (e) and (f)].
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using a finite-size laser and avoid periodic transverse boundaries. The feasibility of these

simulations relies on the assumption that the transverse box size does not have to be large

enough to causally separate the boundary from the laser–plasma interaction physics. The

challenge is thus to determine boundary conditions in the transverse direction that most

effectively reproduce the physics in the interaction region when compared to a causally

separated boundary. The boundary condition should limit transverse recycling of electrons

when copious amounts of electrons and ions stream away from the center of the laser due to its

ponderomotive force. Simply truncating the boundaries can produce the same effects in the

transverse direction as described for the longitudinal direction in Sec. 4.1.2 and Appendix A,

where a large potential quickly forms at the boundary from the exiting electron currents and

produces an unphysically hot return current.

One method for handling the transverse boundary is to put a vacuum gap (after a small

density downramp) between the plasma and simulation wall at the top and bottom of the

box. This isolated target setup is reasonable if the dimensions of the simulation box are

comparable to the target width itself. With this gap, we desire that energetic particles

streaming mostly transversely away from the center will drift into the vacuum and either be

slowed by the electrostatic Debye sheath formed near the surface [189] or be absorbed at the

distant simulation wall. However, the Debye sheath also acts to recirculate electrons back

into the interaction region and accelerate ions outward [189, 190]. These processes may or

may not be accurate for the desired model setup; if the simulated target is too small, then

the use of isolated targets can lead to a large amount of the plasma entering the vacuum

region and issues related to refluxing.

Another process associated with isolated targets and finite-width lasers is that there

are gradients in density and temperature near the laser spot. This leads to −∇ne × ∇Te

magnetic field generation [191, 192], where ne and Te are the electron density and temperature,

respectively. In addition, electrons expand from the front of the target, creating an electric

field normal to the surface. This electric field and the previously described magnetic field
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causes electrons to E⃗ × B⃗ drift parallel to the surface [192]. These electrons continue to

hug the surface as they reach the top and bottom edges of the bulk density, where they

wrap around and begin to propagate in the x1-direction. As these electrons strike the right

simulation boundary, a large potential can develop that accelerates an unphysically hot return

current backward in x1 along the edge of the plasma. This current also wraps around the

corner of the plasma density to eventually reach the front of the target, where these electrons

can be further accelerated forward into the bulk plasma (producing an artificially energetic

spectrum). In this sense, a simulation with transverse vacuum gaps that is truncated in x1

can behave similarly to a simulation where the plasma extends transversely all the way to the

boundary. With transverse vacuum gaps, the energetic transverse currents wrap around the

corner of the plasma density and eventually strike (and are reflected from) the x1 boundary.

If the plasma instead extends to the transverse wall, the energetic transverse currents simply

strike and reflect off of the x2 boundary. In both cases, the transverse currents reflux back

into the interaction region and generate artificially energetic spectra.

Last, the laser–plasma interactions lead to energetic electrons that stream forward (in x1)

and at an outward angle in the transverse direction. These electrons can exit the plasma into

the vacuum regions at the top and bottom of the target. The aforementioned Debye sheath

can then reflect them back into the target, while also accelerating ions into the vacuum in the

form of target normal sheath acceleration (TNSA) [99, 100]. The presence of the reflected

electrons modifies both the spectrum and divergence of energetic particles that propagate

through the plasma.

To illustrate some of these effects, we show in Fig. 4.4 the out-of-the-plane magnetic field

for a simulation using vacuum gaps between the bulk plasma and walls at the top and bottom

of the box (see caption for box dimensions). The plot corresponds to a time after the laser has

been extinguished such that no laser field is present. At this time the strong forward flux of

electrons is small. To better understand the particle motion and currents that give rise to this

magnetic field, we show in Figs. 4.5 and 4.6 the longitudinal and transverse energy flux and
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Figure 4.4: The out-of-the-plane magnetic field from the two-dimensional simulation of

a finite-size Gaussian laser incident on a solid with vacuum gaps at the top and bottom.

The entire transverse box is shown, but the simulation has x1 ∈ [−4329.0, 1342.4] c/ω0

longitudinally.
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current for electrons and ions, respectively, for a simulation similar to that pictured in Fig. 4.4,

but earlier in time (laser is still active) and with larger transverse dimensions (see captions).

The energy flux is defined in the ith direction as Qi =
∫
vi(γ − 1)msc

2Fs(x⃗, p⃗) dp⃗, where ms

and Fs are the mass and plasma distribution function for a given species, s. The electrons

are seen to carry the bulk of the cool return current right at the edge of the plasma—the

density decreases from its peak value to zero over the range 124–132 c/ω0 in the transverse

direction. The forward-going electrons [see Fig. 4.5(a) and (c)] are more spread out in x2

than the returning electrons, resulting in the local magnetic field that quickly decays far

from the vacuum–plasma interface (see Fig. 4.4). Note that if these forward-going electrons

are not properly slowed before the boundary, a large reflecting potential will develop at the

x1 boundary near the plasma edge and create an unphysically hot return current. The ions

carry little surface current, but are seen to mainly move under the influence of the localized

laser fields near x2 = 0 [see Fig. 4.6(d)]. We do, however, see a large outgoing energy flux

from ions moving into the vacuum region in Fig. 4.6(b) as they are pulled out by the exiting

electrons [see Fig. 4.5(a) and (b)].

An alternative to using a vacuum gap in the x2-direction is to use the extended particle

absorbing boundary condition [184] not just at the right boundary in x1,1 but also at the

top and bottom of the simulation box in x2. Details are given in Appendix A. In this

way, the energetic particles streaming transversely will be slowed while allowing a proper

return current to develop. Perhaps the main challenge of this boundary condition is how the

absorber behaves in the near-vacuum region in front of the target. The absorber relies on the

statistical behavior of many background particles to determine a temperature, but this data

is unavailable along much of the x2 boundary. To overcome this issue, we specify an x1 value

to the left of which a default temperature is supplied in advance; to the right of this value,

1If the simulated plasma is also isolated in the x1 direction (e.g., additional vacuum boundary at the right
edge), these surface currents and associated magnetic fields can eventually wrap around the right edge of the
target and modify how return current flows backward through the target; this may or may not be accurate
for the desired model.
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Figure 4.5: Electron energy flux in the (a) longitudinal and (b) transverse directions, as well

as the electron current in the (c) longitudinal and (d) transverse directions for a simulation

similar to that pictured in Fig. 4.4, but when the laser is still active. The box size is also

different, with x1 ∈ [−900, 600] c/ω0 and x2 ∈ [−2890.4, 2890.4] c/ω0.
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Figure 4.6: Ion energy flux in the (a) longitudinal and (b) transverse directions, as well as

the ion current in the (c) longitudinal and (d) transverse directions for a simulation similar

to that pictured in Fig. 4.4, but when the laser is still active. The box size is also different,

with x1 ∈ [−900, 600] c/ω0 and x2 ∈ [−2890.4, 2890.4] c/ω0.
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Figure 4.7: Electron density and forward electron energy flux from simulations (a)–(b) con-

taining a vacuum gap in x2 (transverse box width extends farther than pictured so as to be

causally separated) and (c)–(d) using an extended particle absorbing boundary.

the absorber will calculate a temperature from the background plasma. This way particles

streaming toward the x2 boundary in near-vacuum will still be slowed without developing a

potential at the boundary cell.

We compare the use of a transverse vacuum boundary (top rows) with the extended

absorbing boundary (bottom rows) in Figs. 4.7 and 4.8. All snapshots were taken about

0.7 ps after the laser was incident on the plasma. The entire box size is shown for both

simulations except for the transverse width of the vacuum-boundary simulation on the top
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row, which extends to ±2890.4 c/ω0 so as to be causally separated. In Fig. 4.7 we see the

electron density in (a) and (c), where transversely going electrons have propagated around

the vacuum boundary in (a). We observe the stopping of particles along the x2 boundary in

the near-vacuum region of (c), where electrons begin to collect along the wall. Since particle

velocities are slowed in those regions by the absorber, these electrons do not re-enter the bulk

plasma. In parts (b) and (d) we see the forward electron energy flux for the two cases. The

behavior near the laser–plasma interaction region for (b) and (d) is similar, but in (b) we see

that some filaments of energetic electrons are reflected by the vacuum gap in the bottom half

of the box near x1 = 250 c/ω0 (as well as at other locations). With the use of the absorber,

all hot electrons are slowed within about 50 c/ω0 of the x2 boundary, and we only see straight,

unbroken filaments of energetic electrons propagating through the bulk plasma.

In Fig. 4.8 we examine the transverse electron and ion energy fluxes for both the vacuum

boundary and absorbing boundary cases. We clearly see the reflection of energetic electrons

by the vacuum region in (a) from the positive and negative transverse energy flux throughout

much of the bulk plasma region. However, in (c) the energy flux is clearly divided along the

transverse axis (x2 = 0 line), where the energy flow of electrons is only drifting away from

the axis. Finally, we observe from the transverse ion energy flux the presence of TNSA in the

transverse plasma–vacuum boundary in (b). Because energetic electrons are exiting into the

vacuum, the ions are pulled out and propagate into the near-vacuum region. The current and

energy flux in the vacuum regions above and below the bulk plasma thus become important,

as they can modify the return flow of energetic particles to the laser–plasma interaction

region.

However, from Fig. 4.9 we observe that the transverse return current and dynamics are

largely consistent between the cases with and without the vacuum gap. Returning electrons

in (a) and (c) are observed to carry the bulk of the return current, whereas the ions in (b)

and (d) only exhibit a large current near the laser pulse. Once again, if the extended particle

absorber were not implemented at the right simulation boundary in x1, an unphysically hot
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Figure 4.8: Transverse electron and ion energy flux from simulations (a)–(b) containing a

vacuum gap in x2 (transverse box width extends farther than pictured so as to be causally

separated) and (c)–(d) using an extended particle absorbing boundary.
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Figure 4.9: Transverse (a),(c) electron and (b),(d) ion current for the simulations (a)–

(b) containing a vacuum gap in x2 and (c)–(d) using an extended particle absorbing

boundary. Little difference is observed between the two cases.
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return current would flow along the plasma edge and eventually re-enter the laser–plasma

interaction region. However, the x1 boundary in the vacuum gap does not have a bulk plasma

to generate a cool return current (even with the absorber), meaning that reflecting potentials

can develop and reflect particles backwards in those regions. The electron phasespaces for

the two cases are shown in Fig. 4.10, where the hot return current in (a) is located in the

vacuum gap (has little effect on the bulk plasma dynamics). The larger values of p1 for the

electrons in the bulk plasma in (a), however, are due to the extra heating that results from

energetic electrons being reflected at the vacuum–plasma interface, as seen in Fig. 4.7(b).

From these comparisons, we conclude that the use of an extended particle absorbing

boundary in x2 (as well as at the right boundary in x1) provides results much more consistent

with the behavior of a large plasma that causally separates the transverse boundaries from

the laser–plasma interaction region. The transport of hot electrons wrapping around the

plasma corner, the reflection of diagonally moving energetic electrons back into the bulk

plasma, and the expulsion of ions through TNSA are all problems with using a vacuum gap

in x2 that are avoided by the absorber (the worst of these being the reflection of diagonally

moving electrons). The use of the particle absorber makes possible the simulation of fully

two-dimensional, long-time laser–solid interactions, which are presented next.

4.2 Parameter scan of laser amplitude and duration

In this section we present particle-in-cell (PIC) simulation results on relativistic laser–solid

interactions where the laser pulse amplitude and duration are varied while holding energy

constant. As discussed above, several recent computational techniques [183, 184, 43] are

employed that allow for large-scale (hundreds of µm), long-time (tens of ps) simulations of

such interactions. Electron spectra and beam profiles determined from PIC simulations are

used as input for Monte Carlo simulations to calculate x-ray spectra, and a clear maximum

in 1–5 MeV x-ray dose is found as a function of laser intensity.
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Figure 4.10: Electron phasespace plots for the cases (a)–(b) with and (c)–(d) without a

vacuum gap. The hot return current in the bulk plasma in (a) is from electrons in the

vacuum gap.
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All PIC simulations are performed with Osiris [28]. The density rises from near zero

to 10nc from −27.6 to 0µm in an exponential profile of the form 10nce
−x/L0 , where the

scale length, L0, is 3µm and nc is the critical density; the density remains 10nc for positive

x. We use two-dimensional simulations where the plasma is 240µm wide in y and extends

to 150µm in x at the right edge. Open and thermal boundary conditions (BCs) are used

for fields and particles, respectively, except for an absorbing particle BC at the left wall

(and extended particle absorbers near the right, top and bottom boundaries as mentioned

above). A diffraction-limited Gaussian laser with spot size, w0, 30µm is launched from left

to right with a focus at the critical surface, where the Rayleigh length is πw2
0/λ and λ is

the laser wavelength. Although each PIC simulation corresponds to a family of cases with

identical normalized parameters, we give physical units corresponding to λ = 1µm. We

vary the amplitude and duration of the laser, keeping the product a20τ constant at 10 ps,

where a0 ≃ 8.6 × 10−10
√

I0 [W/cm2]λ [µm] is the normalized vector potential for vacuum

intensity I0 and τ is the full width at half maximum (FWHM) of intensity. The lowest-

and highest-intensity cases have (a0, τ) = (0.58, 30 ps) and (31.6, 0.01 ps), respectively, with

energy 200 J for all cases—an energy achievable by many picosecond-class laser systems. The

laser profile is Gaussian in the transverse direction and is a polynomial fit to a Gaussian

temporally [193]. Cell sizes are 0.4 c/ω0 in each direction, where ω0 is the laser frequency.

The time step is 0.282ω−1
0 , and simulations end 2 ps after the laser is extinguished. A limited

set of simulations are also performed with double the spatial resolution and with a peak

density of 30nc to ensure that results are consistent for smaller cell sizes and not subject to

relativistic transparency. Figure 4.11 shows the electron density, laser envelope and forward

electron energy flux (defined as Qx =
∫
vx(γ − 1)mec

2F (x⃗, p⃗) dp⃗ for the plasma distribution

function F ) for a simulation with (a0, τ) = (1.83, 3 ps). The plasma density sharply increases

near the laser axis, and the laser is observed to penetrate slightly into the overdense region

where the electron energy flux is greatest.

Assuming high-energy electrons deep inside the plasma will continue through the target,
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Figure 4.11: Electron density, transverse laser field envelope and forward electron energy

flux for a laser with (a0, τ) = (1.83, 3 ps) and w0 of 30µm near when the peak of the laser

pulse reaches the critical surface. Quantities are spatially averaged for visualization.

the Monte Carlo simulation package Geant4 [194] is used to compute the energy and

number of bremsstrahlung x-rays generated by these electrons. The Geant4 code is capable

of simulating the bremsstrahlung radiation from individual particles, although it neglects

self-consistent electromagnetic fields and other collective effects. The forward-going electron

spectra are first extracted from Osiris every 200 time steps over the region 50–57.5µm in

x. Next, mono-energetic electrons between the energies of 0.2–100MeV are injected into

500µm of tungsten, and the emitted x-ray spectra are gathered as a function of emitted

angle. Time-integrated, forward-going PIC electron spectra are then interpolated onto the

mono-energetic electron data and weighted to find the corresponding x-ray spectra.

Figure 4.12 shows the cumulative forward-going Osiris electron spectra for two simulations.

The inset shows the stopping power of tungsten as a function of mono-energetic electron

energy. Dash-dotted lines show the resulting x-ray spectra computed from Geant4 and

collected over all angles. Although the low-intensity (blue) simulation in Fig. 4.12 gives
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Figure 4.12: Time-integrated electron and resulting photon spectra for two simulations at

identical laser pulse energy (laser intensity, FWHM and electron temperature labeled in

units of 1018 W/cm2, ps and MeV, respectively). Inset shows the stopping power (collisional,

radiative and total) of tungsten as a function of electron energy.
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nearly twice the number of 1–5 MeV electrons as the high-intensity (orange) simulation, the

large stopping power of many-MeV electrons results in more x-rays of all energies for the

high-intensity simulation with a higher electron temperature.

Aggregate data from our sequence of PIC simulations is shown in Fig. 4.13. In (a) we

show the amplitude, A, and electron temperature, TE, of exponential fits done over 3–30 MeV.

The generation of energetic electrons is a complicated process that has been described by

many differing scaling laws and analyses [105]. Rather than compare to this body of work, as

a reference point we also show the ponderomotive temperature scaling [195, 172], which goes

as TPond = mec
2(
√

1 + a20/2− 1) for a linearly polarized laser. The ponderomotive scaling

indicates that TE scales with the laser field for a0 ≫ 1; this corresponds to the work done

on an electron after it moves a single laser wavelength, which is more characteristic of the

high-intensity laser pulses. However, at low intensity (long duration) the plasma expands, and

electrons in the low-density region can repeatedly interact with the laser over a large distance,

generating electrons with temperatures and energies much larger than the ponderomotive

potential [157, 196, 197, 198, 98].

Insight into how electron spectra are generated and how they scale with intensity can

be found by looking at the tracks of individual electrons. The inset to Fig. 4.13(a) shows

the distribution of the maximum distance 1500 tracked electrons travel into the low-density

region as a function of final energy for the simulation with (a0, τ) = (5.77, 300 fs). On this

scale the initial density ramp begins at 27.6λ and becomes constant at 0λ, although the

constant-density shelf is pushed to −8λ near the laser axis late in the simulation. For a given

energy, there is a distribution of distances that electrons have penetrated into the low-density

region, leading to an electron temperature, TE. However, to obtain an energy of NTPond, an

electron must interact with the laser for at least a distance of Nλ, as seen by the dashed line

with a slope of unity. Electrons are colored by the angle of their trajectory with respect to

the x-axis. Although no trend in angular distribution is observed with distance traveled into

the pre-plasma, we see that more energetic electrons have on average a lower divergence. We
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discuss this shortly.

To better predict electron temperature based on the laser and plasma conditions, we

look for a temperature model that depends on both the laser duration, τ , and initial scale

length of the pre-plasma, L0. As laser durations and plasma scale lengths decrease to zero,

the model should approach the ponderomotive temperature, as observed in a variety of

work [95, 199, 171]. We propose a scale temperature

TScale ∝
[√

1 + (τ/τ̄)2
]p

, (4.1)

where the overbar indicates some reference duration and p is an exponent. In this form,

the expression equals unity and has zero derivative at τ = 0; we likewise propose the same

proportionality to the scale length.

The proposed temperature scaling is thus

TScale = TPond

[
1 + (τ/τ̄)2

]p/2 [
1 +

(
L0/L̄0

)2]q/2

. (4.2)

Performing a fit of the simulation data to this model yields (τ̄ , p, L̄0, q) = (250 fs, 0.72, 0.73µm, 0.23).

The fit is plotted as TScale in Fig. 4.13(a) and is shown to accurately represent the data for

all but the highest intensities. The three simulations with highest intensity have lasers with

τ ≤ 25 fs, and many hot electrons are generated when the laser is far from peak intensity.

Additional simulations are performed with varied laser energy, EL, and initial density scale

length, L0, as pictured by the hollow symbols in Fig. 4.13(a). Although TScale predicts the

observed electron temperatures with reasonable accuracy for a wide range of cases, the

discrepancy illustrates that the (τ̄ , p, L̄0, q) coefficients may vary for drastically differing

plasma density and laser spot size, wavelength and energy.

In Fig. 4.13(b) we report the time-integrated, forward-going electron dose for three energy

ranges (normalized to the largest value shown), along with the fraction of the laser energy

absorbed by forward-going electrons. The dose of 1–5 MeV electrons is largest for the low-

intensity laser pulses, while the number of > 5MeV electrons steadily increases with intensity.
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Figure 4.13: (a) Scaling of hot electron temperature with laser intensity at constant energy.

The A and TE values result from an exponential fit Ae−E/TE to the simulated cumulative

forward electron spectra, where E is energy. Inset shows the maximum distance tracked

particles extend away from the constant-density region as a function of final energy for a

single simulation, colored by absolute angle from the x-axis. (b) Electron dose (normalized

to largest value) and fraction of the laser energy absorbed (Eabsorb).
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However, we observe that the total energy absorbed into hot electrons from the laser remains

close to 60% for all but the lowest-intensity cases. The near-constant absorption poses the

question of how to best maximize x-ray production given the observed electron doses.

To accurately determine the x-ray production using such a large variety of pulse amplitudes,

we must first characterize any differences in the angular spread of the electron beam. To

accomplish this we track a 10-µm slice of electrons generated from the peak of each laser pulse

as it travels through and spreads into the target from 0 to 130µm. Fitting the forward energy

flux near the vacuum interface to a Gaussian profile in the transverse direction (e−y2/2σ2
0), we

compute the initial beam width, σ0. Assuming a beam evolution of σ(x) = σ0

√
1 + (x/β∗)2,

we then make a fit for β∗ using the energy flux as a function of x. Although such a fit is

most useful when the incoming energy is carried by a well-defined beam with low energy

spread and high energy, it still provides a useful characterization for the beam. We show the

parameter fits in Fig. 4.14(a), along with the spot size evaluated at 500µm. The electron

beam becomes significantly less divergent for the high-intensity, short-duration laser pulses,

which is favorable for forward x-ray emission.

From the simulated electron spectra and beam profiles, we then compute the observed

x-ray spectra using Geant4 as described previously. In Fig. 4.14(b), we plot the x-ray dose

collected both inside a forward cone of 20° aperture as well as over all angles. The energy range

of 1–5MeV is shown alongside all energies, with the latter scaled by 1/3 for visibility. For

context, computing the x-ray spectra using only the amplitude and temperature fits shown in

Fig. 4.13(a) reproduces the 1–5 MeV x-ray dose to 1% accuracy (5% accuracy for the highest-

and lowest-intensity cases). The forward-going x-ray dose very closely follows the > 5MeV

electron dose shown in Fig. 4.13(b), peaking somewhere between 1020–1021 W/cm2. The

1–5 MeV x-ray dose peaks near 5× 1020 W/cm2, demonstrating that high-energy (> 5MeV)

and low-divergence electrons are desirable for producing few-MeV x-rays.

To investigate the decreasing electron divergence at high intensity, in Fig. 4.15(a) and (b)

we show electron density, time-averaged magnetic field, electric field envelope and forward
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Figure 4.14: (a) Beam parameters and spot size at 500µm for the hot electrons with

respect to laser intensity, where σ(x) = σ0

√
1 + (x/β∗)2. Inset shows example fitted beam

parameters. (b) X-ray dose as a function of intensity with the same normalization as in

Fig. 4.13(b), collected within a forward cone of 20° aperture (blue/orange) and at all angles

(green/red). X-ray counts for all energies are scaled by 1/3 for visibility.
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Figure 4.15: (a) Electron density and time-averaged magnetic field (inset for the indicated

region) for two simulations, along with the tracks of several electrons. (b) Transverse

electric field envelope and forward electron energy flux for the same simulations, with the

top pane scaled by four for visualization. In each split-pane figure, the top and bottom

halves show the (a0, τ) = (5.77, 300 fs) and (25, 16 fs) cases, respectively.
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electron energy flux for long- (top) and short- (bottom) duration lasers at different times.

The far-field electron spot size for the long-duration laser is nearly double that of the short-

duration laser. Both panels in (a) show large self-generated surface magnetic fields from

a Weibel-like instability [170, 200, 201]. However, in the bottom pane of (b), the first two

bunches of electrons (spaced approximately two laser wavelengths apart) are observed to

propagate through the plasma with minimal divergence. The maximum cold-fluid-limit

growth rate of the Weibel-like instability dominated by oblique modes [202] is given as

Γ =
√
3/24/3 (nb/γbnp)

1/3 ωp, where nb and γb are the density and relativistic factors of the beam,

and np and ωp correspond to the bulk plasma. The simulation for the bottom panels of

Fig. 4.15 has (nb/np, γb) = (6 × 10−4, 12), yielding a growth rate of Γ−1 ≈ 7 fs, or about

two laser periods. Tracks of individual particles are shown in (a), where we observe that

electrons in the top pane are deflected by surface magnetic fields before free streaming

through the remainder of the plasma. Overall, the shortest laser pulses create decreased

electron divergence since many energetic electrons are generated prior to the formation of

self-generated magnetic fields.

4.3 Summary

In this chapter, we have studied the generation of MeV x-rays from intense laser–solid

interactions using a combination of large-scale, two-dimensional Osiris (PIC) and Geant4

(Monte Carlo) simulations. Keeping the laser pulse energy constant at 200 J for a 30-µm spot

size, we find that the optimal forward dose of 1–5 MeV x-rays results from a laser intensity

near 5× 1020 W/cm2 and duration 25 fs. A new scaling of the energetic electron temperature

given in Eq. (4.2) includes a dependence on laser duration and initial density scale length.

The formation of Weibel-like magnetic fields near the critical-density surface over only a

few laser periods increases the electron beam divergence, leading to decreased forward-going

x-ray emission. Simulation results for a wide range of laser pulse parameters show that, for
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fixed laser energy, high-intensity (and short-duration) laser pulses generally produce more

few-MeV x-rays than do low-intensity pulses due to the formation of electron beams with

high temperature and low divergence.
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CHAPTER 5

Conclusions

In this dissertation, we investigate the electron spectra when sub-ps, 1-µm laser pulses

interact with underdense and overdense plasmas. These electrons can be used to produce

x-ray pulses with useful characteristics for probing high energy density plasmas. The research

also involved developing improvements to the particle-in-cell (PIC) algorithm that were

necessary to accurately study the nonlinear dynamics of electron acceleration via laser–

plasma interactions in underdense and overdense plasmas. The results explored and presented

here have lead to several publications [113, 74, 37, 203, 184]. In this section we summarize

key results and discuss ideas for future work.

Chapter 2 begins with a tile-based dynamic load balancing scheme for PIC codes, along

with results from the implementation of this algorithm in Osiris. Although tile-based

load balancing has been previously implemented in other PIC frameworks [42, 106], we

utilize a unique hybrid scheme that gives increased performance and scalability through

shared-memory parallelization [113]. Previous implementations of Osiris utilize shared-

memory parallelization within distributed-memory domains [43], and tile-based schemes use

shared-memory cores to process tiles in parallel. We combine these capabilities, allowing

for either parallel tile execution with single cores or serial tile execution using all cores at

once. This algorithm enables us to use nearly an order of magnitude more shared-memory

threads while maintaining good performance [113]. The tile-based structure naturally extends

to GPU architectures, and a GPU port of Osiris is currently under development based

on this structure. In Sec. 2.2, we then discuss three modifications to the Osiris quasi-
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3D algorithm [30] that yield increased accuracy and stability. We first modify the charge

weighting of particles within a few cells of the cylindrical axis; this method correctly initializes

a uniform plasma and also eliminates both an on-axis density/current spike and electric field

error within an electron beam. We then present a modification of the Maxwell field solver

for on-axis quantities to ensure that Gauss’s law is satisfied at the cylindrical axis, which is

observed to eliminate spurious radial electric field growth for the first-order cylindrical mode

in laser wakefield acceleration (LWFA) simulations. Finally, we give an implementation of the

Mur absorbing boundary condition [128] in cylindrical coordinates that efficiently absorbs

outgoing electromagnetic waves at longitudinal boundaries in quasi-3D. For future work,

these improvements could be tested for a broader selection of simulations, e.g., for overdense

plasmas. In addition, the on-axis charge weighting scheme introduces a small radial electric

field for a thermal plasma with stationary ions, and this should be studied further.

The results given in Chapter 3 pertain to the dynamics of electron acceleration in

underdense plasmas. Utilizing the separation of modes in quasi-3D, Sec. 3.1 explores the

interplay of direct laser acceleration (DLA) and acceleration from wakefields for the cases of a

self-modulated laser wakefield accelerator (SM-LWFA) [74] and an LWFA. Being able to take

into account all components of the laser field (i.e., transverse and longitudinal with respect

to the propagation direction), we show that the longitudinal component of the laser reduces

the total energy gain of electrons in betatron resonance. We also show that electrons gain

significant energy from DLA both in an SM-LWFA without the presence of an ion channel,

and for a short-pulse LWFA scheme where the laser undergoes photon deceleration [49],

causing laser energy to fall back in the first bubble and resonantly accelerate electrons at the

bubble rear. This algorithm could be applied to many other regimes of LWFA to study the

impact of DLA on electron energy. A customized finite-difference field solver is then given

in Sec. 3.2, which provides accurate dispersion for laser light propagating in vacuum and

eliminates an error in the Lorentz force on particles from a laser due to the time-staggering of

electric and magnetic fields [37]. Full-scale PIC simulations of an LWFA using this improved
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solver show that electrons overlapping with the laser in the first bucket have trajectories and

energy gains that agree better with experimental data. Further investigation of this motion is

performed in Sec. 3.3, where the differential equation of motion for representative electrons is

integrated and shown to agree with the PIC results using the customized solver. Higher-order

betatron resonances are explored using the same differential equation, where it is observed

that for the parameters relevant to the simulation of interest [1], electrons do not readily

transition between different orders of resonance under the influence of the laser fields alone.

In addition, a counter-propagating laser is shown to eliminate the periodicity of electron

trajectories, but otherwise does not provide any significant increase in maximum electron

energy. Future work could involve investigating additional mechanisms to transition energetic

electrons between different orders of resonance, which could further sustain DLA and give

higher electron energies. Then in Sec. 3.4 we compare experiment and simulation for an

electron probe beam traveling through an SM-LWFA perpendicular to the laser propagation

direction. We see general agreement between the observed features of the probe beam at

the screen, although it remains for future work to reverse-engineer the wake structure from

the probe-beam images. Another direction for future work is to simulate the probe beam

particles directly in the Osiris simulation (as test charges), which would eliminate the need

to make any assumptions about the motion of the field structures and should greatly improve

accuracy.

Finally, in Chapter 4 we aim to determine via PIC simulations the optimal laser configu-

ration (i.e., pulse amplitude and duration for a given energy) to generate the largest dose

of few-MeV x-rays from a laser–solid interaction. We begin in Sec. 4.1 by detailing the PIC

algorithm advances and necessary simulation parameters to begin to simulate such a dynamic

system. High-energy electrons must be split into smaller particles to reduce macro-particle

wakefield generation [183], forward-going electrons in the overdense plasma must be slowed

near the boundary to avoid unphysical electric field growth [184] (also see Appendix A.3), and

plane-wave simulations must be on the order of a finite-width laser spot size in the transverse
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direction to properly resolve magnetic field structures. With these considerations in place,

in Sec. 4.2 we perform two-dimensional PIC simulations with laser parameters varied over

three orders of magnitude of a finite-width Gaussian laser interacting with a solid target.

Electron spectra and energies are computed, and a new scaling law is determined to predict

the electron temperature as a function of plasma density scale length and laser amplitude

and duration. Bremsstrahlung x-ray emission is calculated using a Monte Carlo simulation

package and exhibits a maximum dose in the 1–5 MeV range at high laser intensities. These

findings can inform the operation, design and construction of current and future laser systems

for the production of few-MeV x-rays to be used in high energy density science applications.

We find that in order for an electron to gain an energy, E, in excess of the ponderomotive

temperature, TPond, it must make an excursion larger than a laser wavelength, λ, from the

critical-density surface. There is a linear relationship between E/TPond and the excursion

distance, L. For a given E/TPond, there is a distribution of excursion distances, with the

minimum value being L ∼ λE/TPond. Directions for future work are to perform similar

analyses for different values of laser energy, to carry out full three-dimensional and quasi-3D

simulations, as well as to more closely examine the mechanisms of electron acceleration near

the critical-density interface.
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APPENDIX A

Extended particle absorber for efficient modeling of

intense laser-solid interactions

The simulations described in Chapter 4 rely on a particle stopping (absorbing) algorithm

to maintain integrity. This algorithm was first conceived of and implemented by Joshua

May and Frederico Fiuza, but was then formalized, fully described and implemented into

the current version of Osiris by the author. A paper detailing this process was recently

published [184] and is included here for reference.

A.1 Introduction

Particle-in-cell (PIC) simulations have long been used to study the kinetic effects of laser–

plasma interactions with overdense plasmas, with applications including the study of novel

x-ray light sources [162, 163, 164, 165, 166], generation of mono-energetic ion beams [167],

experiments of collisionless shocks [168, 169, 170], transport experiments through warm-dense

matter [97] and the fast ignition concept for inertial confinement fusion [93, 171]. The laser–

plasma interactions are often simulated for times on the order of picoseconds (1000s of laser

periods) and for distances on the order of hundreds of microns (100s of laser wavelengths and

1000s of collisionless skin depths). The thickness of the simulated overdense plasma region

varies depending on the physical setup as well as the acceleration mechanism being explored.

For targets thin enough that the entire target can be simulated, vacuum regions are often

used on either side of the target, consistent with the experimental setup [204, 205, 206, 199].
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For thicker targets that cannot be simulated in their entirety, the plasma may be extended to

the simulation boundary [207, 208, 96, 195], where an absorbing or thermal particle boundary

condition is used.

When the laser–plasma interaction at the front of the target leads to large quantities of

energetic electrons, a large flux of particles will in turn be found leaving the rear simulation

boundary. Independent of the particle boundary condition, the exiting stream of energetic

particles can be problematic: either sharply removing the current (absorbing boundary

condition) or the sudden stopping and accumulation of charge (thermal boundary condition)

leads to an electric field buildup at the boundary. This strong electric field will generate a

return current that is carried by a hot, rarefied electron population (nearly symmetric to

the incident electrons) instead of the proper cold, dense population [185]. The hot return

current can both modify streaming instabilities that arise in the bulk plasma and modify

the laser–plasma interactions at the front surface. To avoid the electron refluxing, the

plasma may be elongated such that the rear of the plasma is causally separated from the

laser–plasma interaction region for some desired duration [186, 187]. In this case a small

vacuum region is often placed to the right of the plasma to simplify the particle boundary

conditions. However, elongating the plasma introduces extra overhead from simulating the

(often very particle-dense) excess material.

In an effort to preserve simulation integrity while shortening the simulated plasma region,

we propose an extended particle boundary condition that sporadically stops particles of

certain energies over a defined distance. In the presence of a low-density, hot particle beam

or tail shooting into the plasma, this extended stopping avoids localized charge buildup or

current deficiency that occurs when using an absorbing or thermal boundary condition, thus

allowing a suitably cool return current to develop in the background plasma over an extended

period of time and space. Similar ideas to this extended absorbing boundary condition

were implemented in previous versions of Osiris as briefly described in Refs. [171, 209],

where a drag force was used to gradually slow particles. However, these works did not detail
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their approach nor show how performance depended on the drag model. For computational

efficiency we instead stop select particles instantaneously over some distance, providing here

details for implementation, improvements, potential issues and best practices of such an

absorber.

The outline of this appendix is as follows. We first discuss in Sec. A.2 the possible issues

with truncating a semi-infinite plasma with standard reflecting, absorbing, or thermal bath

particle boundary conditions. In Section A.3 we present the concept and design of the

absorber, along with the parameters that can be specified. Finally, in Sec. A.4 we present

simulation results from the PIC code Osiris, where we test the implementation of the

absorber boundary condition on a finite target against a semi-infinite (causally separated)

plasma.

A.2 Boundary issues in overdense plasma simulations

The motivation for this work is to efficiently model the interaction of a high-intensity laser

with the surface of an overdense plasma. This interaction generates copious amounts of

relativistic electrons that propagate forward deep into the target. The forward-going electrons

lead to a return current of electrons that then interacts with the laser. When investigating

how a laser is absorbed into relativistic electrons, ideally only the region of interest need be

simulated; such a region might be an underdense or vacuum region in front of the target or a

location some distance into the target itself. However, this presumes that the spectrum of

electrons—including its currents and heat flux—are the same as if the entire plasma region

was simulated. This may not be the case if the boundary conditions at the edge of the

simulation do not properly represent the actual conditions.

The preference of only modeling a small region of a larger plasma is more important

for higher target densities, which require smaller time steps and cell sizes (compared to the

laser period and wavelength) due to increased plasma frequency and decreased scales of
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physical interest. Even in simulations that include a larger transport region for the electrons,

it may still not be feasible to simulate the entirety of a physical target—for instance, a

millimeter-scale solid-density target. For such simulations to be reliable, it is of course

necessary that they not be affected by the choice of the simulation boundary location and

the associated boundary conditions. Therefore, it is critical to find a boundary condition that

mimics the effects of a quiescent plasma of unbounded depth in the direction opposite from

laser incidence. Such a boundary condition is useful even for targets not fully described by

an infinite thickness, in that the physics may be understood at least to some approximation

as a superposition of unbounded and finite-thickness effects.

Depending on the laser pulse length and/or the target size, it is sometimes possible to

simulate an infinitely deep quiescent plasma by expanding the simulated plasma to distances

causally separated from the interaction—or perhaps half that far, so signals (moving near the

speed of light) cannot reach the boundary and return. Such simulations allow us to determine

the “correct” physics, against which we will compare our results. However, in practice these

simulations are usually impractical. The required plasma thickness also scales with pulse

length, so simulation computer time scales quadratically with the pulse length for one- and

two-dimensional periodic cases. For finite-width cases, the transverse size may also need to

be extended depending on the pulse length. Therefore, a compact target that reproduces the

behavior of a larger or infinite target is desirable.

To make clear the need for an appropriate boundary condition, we mention two spurious

effects that can occur in simulations of a truncated target. First, we observe that the laser-

matter interaction continuously deposits energy into the plasma. Although the details may

be complex, we can assume that the energy will somehow diffuse or dissipate deep into the

target; if this is not possible (e.g., inhibited by a boundary), the target will heat artificially.

As the absorption of the laser has been postulated to be highly dependent on the target

temperature in some scenarios [97], this heating can feed back into the absorption itself and

greatly affect the overall simulation.

174



The second effect of an improper boundary is the modification of the plasma distribution

function long before any heating of the bulk electrons through an effect known as electron

refluxing [210, 211]. Electrons accelerated by a laser generally make up a super-thermal

tail in the distribution function, extending to energies far greater than the background

thermal energy [95]. These high-energy electrons have low collisionality (even in solid-density

targets [212]) and may thus travel nearly ballistically through the material in the absence of

strong fields. At a given transverse plane in the plasma, the bulk plasma exhibits a small

backward drift to provide a return current. However, at the plasma boundary the return

current formation can be more complicated. For finite-thickness targets with a vacuum

region on the far side (both in the lab and in simulations), the first electrons to reach the

back of the material exit into a vacuum and continue along a ballistic path. However, an

electrostatic field can quickly build at the target rear surface; no such field grows inside the

target due to the high conductivity of the background plasma. This decelerating field grows

in time, eventually causing energetic electrons to be reflected back into the target. We refer

to the re-injection of electrons from this electrostatic field as electron refluxing. After this

reflection, the electrons again travel ballistically though the target, where they can reach

another vacuum boundary region (sides) and go through another reflection; alternatively

they can re-enter the laser–plasma interaction region, in which case their large kinetic energy

modifies how they interact with the laser, perhaps significantly.

The reflecting electrostatic field responsible for electron refluxing in finite-thickness

targets arises due to the adjacent vacuum region, where escaping electrons leave behind a

net charge that resides on the surface. We have found that standard PIC particle boundary

conditions responding to high-energy particle beams actually exhibit reflectivity similar to a

vacuum boundary. In particular, so-called “reflecting,” “absorbing,” and “thermal re-emitting”

boundaries all lead to refluxing particles early in the beam interaction; in each case a strong

electric field builds up at the boundary. A specular reflecting boundary condition—where

the sign of the momentum perpendicular to the boundary wall is reversed—clearly leads to
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refluxing; however, no electrostatic field is developed at the boundary since the boundary

itself reflects the particles.

An absorbing particle boundary, in somewhat simplified terms, simply removes exiting par-

ticles (and their corresponding current) from the simulation space. However, electromagnetic

PIC codes like Osiris advance the fields forward in time via Faraday’s and Ampere’s laws

while depositing current such that the continuity equation is rigorously satisfied. Therefore,

when a particle’s current disappears, its charge is in fact frozen at its last location. In the case

of an absorbing boundary, an exiting electron beam will cause a static charge buildup. The

bulk of the plasma near the boundary attempts to shield out the boundary field within a few

Debye lengths. However, the field continues to build as more current crosses the boundary

and can eventually become large enough to accelerate background electrons backward at

relativistic energies, leading to a hot tail of refluxing electrons. Vacuum boundaries behave

similarly, where ions are slowly driven off the target via what is known as target normal

sheath acceleration [99, 100] (TNSA); again, electrons reach the rear edge in greater numbers

than the ions which are able to escape.

A thermal bath particle boundary—where particles are re-emitted into the simulation

space with momentum sampled from a specified thermal distribution—may at the outset

seem to remedy the issues caused by reflecting and absorbing boundary conditions. We find,

however, that a thermal boundary fails to reduce the artificial refluxing. First of all, the

correct bath temperature is somewhat ambiguous, and we observe that an incorrect choice

leads to clearly incorrect behavior. A bath that is too hot will artificially heat the background

electrons in the target; one that is too cold re-emits the particles with too little thermal

velocity to diffuse back into the box, manifesting errors similar to those of an absorbing

boundary. A drifting Maxwellian moving back into the box (attempting to maintain current

neutrality) could be used in place of the stationary Maxwellian generated by the thermal

bath. However, determining the proper drift and thermal velocity of this modified Maxwellian

is difficult. Furthermore, if a “correct” bath temperature and drift velocity were known from
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a causally separated simulation, it would be a function of time. Although there are ways to

measure effective temperatures (as discussed in Section A.6), the distribution function is not

necessarily well-described by single temperatures; thus it is unclear what one should measure

or how to specify the bath temperature.

The extended boundary condition we describe in this appendix is designed with the goal

of self-consistently generating a neutralizing, drifting background distribution that imitates

an infinite plasma as closely as possible.

A.3 Absorbing boundary region

We desire to model a semi-infinite target with a finite simulation. We must therefore find a way

to remove the energetic beam electrons from the simulation while providing a self-consistent

return current. One way to do this is to stop the relativistic electrons not at a single point

(as in the absorbing boundary condition), but over an extended region. The electrostatic

field is then dispersed over a sufficient “volume” such that the electric field driving the reflux

is spread out and reduced in amplitude. Thus, a larger “volume” of bulk plasma is driven

backwards without reflecting the high-energy electrons. In essence, we create an extended

boundary condition for the particles. The plasma can then shield out the field more rapidly

such that the potential does not build up over time.

To create this extended boundary condition, we denote some region near the back of the

simulation box to be the absorbing region.1 Within this volume, high-energy particles are

selected at random and instantaneously thermalized to a given temperature in a single time

step. We do this rather than slowing down the particles gradually—arguably more physically

correct—because it allows us to stop the particles throughout the absorber volume without any

knowledge of the global beam characteristics; it also obviates the need to track particles across

1The absorbing region can also be a finite region in the middle of the plasma. This was done in Ref. [171]
for integrated fast ignition simulations. In this case the electrons were slowed gradually by a drag force.
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multiple distributed-memory processes as they decelerate (more algorithmically complex).

The disadvantage of stopping the particles instantaneously is the emission of Bremsstrahlung

radiation [213]. However, this radiation is in most cases both poorly resolved on the simulation

grid and can effectively be eliminated by higher-order particle shapes and smoothing.

We define a stopping loop as the process of iterating over all particles in the defined

absorbing region, calculating the probability that each particle will be stopped, then stopping

a particle (i.e., directly changing its momentum) if a randomly generated number is less than

that probability. Stopping loops are performed at a defined time interval, ta (can be one

or multiple simulation time steps). At a given position, the probability of particle stopping

and corresponding re-emission are controlled by three parameters: an energy threshold, a

mean free path, λ, and a re-emission temperature. The energy threshold provides a way to

distinguish between background particles (energy is below the threshold, nothing happens)

and hot electrons (energy is above the threshold, stopping may occur). The mean free path,

particle velocity and time between stopping loops, ta, are used to calculate the probability

of stopping. This should be done such that the mean distance traveled by an ensemble of

particles before stopping is given by the mean free path, but that no energetic particles

reach the particle boundary. The re-emission temperature is used to define the Maxwellian

distribution from which the particle will be re-emitted in each of the three dimensions. For

both the energy threshold and the re-emission temperature, we allow the user to specify

either absolute numbers or to calculate the parameters as multiples of the local plasma

temperature near a given particle. If required, the local plasma temperature is calculated by

integrating the absolute value of the proper velocity in each dimension over all particles in a

given cell. See Section A.6 for further details on how this is done. A typical value for the

energy threshold is six times the local thermal velocity in any direction, and the re-emission

temperature is usually just set to be equal to the local thermal velocity in every direction.

Below we discuss two possible methods to accomplish the desired stopping.
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A.3.1 Hazard function stopping

Let us assume that all the particles we wish to stop are streaming near the speed of light,

c, in the positive x-direction. Rather than stopping these particles at a single boundary

that is one cell thick (like a traditional thermal boundary condition), we aim to stop these

particles one at a time over the length of an absorbing region many cells thick. Thus particles

are stopped over time and space. To facilitate this, we can define a desired normalized

distribution that specifies the density of particles in space once they are all stopped. This is

in fact a probability density function, call it f(s). For example, we could use the function

f(s) = 2 sin2(πs), (A.1)

where s ≡ x/La for a particle that has traveled distance x into the absorbing region of

length La. Defined in this way, all particles will have stopped after a distance of La. We can

also consider a parameterization in time as s ≡ t/Ta for a particle that takes a time Ta to

traverse the absorbing region (i.e., Ta = La/vx for a particle velocity vx in the direction of

the absorbing region). The associated cumulative distribution function is then

F (s) =

∫ s

0

f(s′) ds′ = s− sin(2πs)

2π
, (A.2)

and the (continuous) probability that a particle will stop in this interval is given by the

hazard function h(s), defined as [214]

h(s) ≡ f(s)

1− F (s)
=

4π sin2(πs)

2π(1− s) + sin(2πs)
. (A.3)

Since we stop particles instantaneously at discrete intervals rather than gradually slowing

them over some distance, we assume that a given particle will have been selected to be

stopped after at most Na = La/tavx = Ta/ta stopping loops (within each stopping loop only

a small number of selected particles are stopped). Thus the probability of stopping for each

hot particle located at position s for the hazard function absorber is

Phaz(s) =

h(s)/Na = h(s)ta/Ta s < 1

1 s ≥ 1
. (A.4)

179



Figure A.1: Normalized probability density function (blue) for desired particle distribution,

along with the probability of stopping (orange, dashed) for Na = 100 stopping loops over

the absorbing region. Here the mean free path is λ = 0.5La.

The probability density function given in Eq. (A.1) is shown along with the probability of

stopping for Na = 100 in Fig. A.1. Note that the mean free path for this case is λ = La/2,

and thus the scheme can also be parameterized by s = x/2λ.

Stopping via a hazard function works well when the hot particles are all streaming in the

same direction and have large velocity components mainly in one direction (i.e., |v| ≈ vx).

However, many simulations employing the absorber may exhibit forward-going particle

beams with non-negligible transverse momentum. Since the hazard function absorber stops

particles based only on their longitudinal momentum, the background plasma can become

disproportionately and unstably hot in the transverse direction. If transversely hot particles

have very low longitudinal momentum or are located near the front of the absorbing region,

they will have a very low probability of stopping and can continue to drift unchecked for

long periods of time (especially dangerous for transversely periodic simulations). In our test

simulations the growing transverse currents could eventually form a large reflecting magnetic

field near the beginning of the absorbing region, resulting in a reflux of the hot particle beam.

To prevent any unstable transverse momentum growth, we propose the following alternative

algorithm that stops hot particles without assuming a specific velocity distribution (e.g., all
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moving forward near the speed of light).

A.3.2 Linearly varying absorber

A much simpler approach is to stop particles based on their energy alone, independent of

their direction of motion or position in the absorbing region. Let us assume that most of the

energetic particles we wish to stop are traveling mainly in the forward x-direction at speed c

(though some may be travelling backward or have large transverse velocities). Suppose that,

similar to Sec. A.3.1, our absorbing region begins a distance La from the right simulation

edge and that we wish to have a mean free path of λ < La/2 (now in any direction) for the

particles, such that they are all stopped before the simulation boundary. An intuitive way

to accomplish this is to perform a large number of stopping loops, Na ≈ 100, in the time

it takes an energetic particle to travel a distance of xf through the absorbing region; we

can naively set the stopping probability to P = 1/Na for each particle in each loop. We

thus require the minimum time between stopping loops to be ta = xf/Nac. Such a scheme

actually corresponds to a hazard function of h(x) = 1/xf and a probability density function

of f(x) = 1
xf

exp
(
− x

xf

)
. However, after Na stopping loops (i.e., after particles propagate a

maximum distance of Nacta = xf ), integrating
∫ xf

0
f(x) dx shows that on average only 63%

of particles will have been stopped using the P = 1/Na probability. We would then need to

use the rest of the absorbing region to stop the remaining hot particles. We can extend this

idea to construct a more effective absorber that meets our needs.

Based on the above argument, the stopping probability for a particle with velocity

magnitude v = |v| would be P (v) = vta/xf . Note that the velocity used is independent

of direction, providing equal stopping for particles traveling rapidly forward, backward, or

transversely to the absorbing region. However, to facilitate the stopping of particles past a

distance of xf , we parameterize the absorbing region by two longitudinal positions: (1) a

location specifying the start of the absorbing region (defined as x = 0 here) and (2) a location

specifying where the absorber is at its full strength, defined as xf . Variables such as the
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mean free path, energy threshold and re-emission temperature are defined at positions (1)

and (2); we will refer to these two kinds of parameters as variables of type “start” and type

“full” (xf refers to the full position). In front of the start position, the absorber is turned off.

In-between the start and full positions, the stopping parameters (e.g., energy threshold and

mean free path) are changed linearly from their start values to their full values. From the

full position to the back of the box, the stopping parameters remain at their full values. The

absorber is designed to start with modest stopping parameters and increase to more stringent

stopping in order to avoid any sharp transitions in the simulation physics that may result in

wave reflections or other spurious effects. Employing a linear ramp comes with the added

benefit that we can use a similar set of input parameters for wide range of simulations with

varying beam characteristics.

To be specific, we define a scale length, L(x), that varies linearly between the start and

full scale lengths, Ls and Lf , respectively, over the distance xf :

L(x) =

Ls + 2(Lf − Ls)x x < xf

Lf x ≥ xf

. (A.5)

The probability of stopping for this linearly varying absorber is then

Plin(x, v) = vta/L(x). (A.6)

We then let Ls = xf and define Lf such that particles are rapidly stopped, e.g., Lf =

(La − xf )/20.

Using this method, instead of initially specifying the probability density function f(s)

and then finding the hazard function h(s), we are specifying h(s) first. One can solve for

f(s) using Eq. (A.3) and its derivative in s, assuming a piecewise form for h(s). First we

write down the hazard function in normalized coordinates as

h(s) =


1

λs + 2(λf − λs)s
s < sf

1

λf

s ≥ sf

, (A.7)
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Figure A.2: Normalized probability density function (blue) and probability of stopping

(orange, dashed) from Eqs. (A.7) and (A.8) with λs = 0.5, λf = 0.025 and sf = 0.5. Here

we have 200 stopping loops over the entire interval, and the mean free path is λ = 0.257La.

where similarly to Sec. A.3.1 we have s ≡ x/La, λi = Li/La and sf = xf/La. To solve for

the probability density function, we require f(s) to be a continuous piecewise function and

to integrate to 1, yielding the result

f(s) =



sf · (λssf )
sf

λf−λs ·

([λf − λs] s+ λssf )
sf

λs−λf
−1

s < sf

1
λf

· exp sf−s

λf
·
(

λf

λs

) sf
λs−λf s ≥ sf

. (A.8)

The probability density function and hazard function for this linearly varying absorber

are plotted in Fig. A.2 for λs = 0.5, λf = 0.025 and sf = 0.5. In contrast to the previous

scheme, many particles are stopped right at the beginning of the absorbing region (small,

non-zero probability of stopping but large number of particles), and the mean free path of the

electrons is λ = 0.257La instead of 0.5La for this case. The overall length of the absorbing

region and individual parameters can be adjusted to give the desired profile, but care should

be taken so that very few electrons ever reach the right boundary. This linearly varying

scheme is much more flexible and reliable than the previous scheme. By stopping based on

absolute velocity magnitude, particles are stopped whether traveling forward, backward or
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transversely to the absorbing region. Specific results will be shown and discussed in Sec. A.4.

A.3.3 Appropriate mean-free-path length

We wish to estimate an appropriate mean free path to use with the absorbing boundary

before running the simulation. To do so we will first make an argument based solely on

relevant simulation parameters, then make a second based on the strength of the stopping

electric field.

First, typical two-dimensional simulations of this type have square cell sizes of length

0.2 c/ω0, where ω0 is the laser frequency, with an accompanying time step of ∆t ≲ 0.141ω−1
0 .

For simulations such as ours the overdense plasma density is n = 10nc, where nc is the critical

density. If a minimum of 50 stopping loops is desired over a mean free path (100 loops over

the absorber length), this sets a minimum value of λ ≈ 22 c/ωp. However, performing the

stopping routine at every time step can be computationally expensive; thus stopping every m

time steps would increase the minimum mean free path to λ ≈ 22mc/ωp.

The physics arguments that set the scale of λ can be understood as follows. Collisionless

plasmas attempt to remain current neutral. If a net current exists at some instant in time

and space, then electric fields are induced on the electron-frequency time scale to neutralize

the current. However, this process is more complicated at a boundary. Consider an absorbing

boundary; as electrons leave, a net charge builds up, generating a repelling electric field.

There is no background charge outside the boundary that can move in to cancel this field. As

a result the electric field accelerates background electrons just inside the boundary, growing

until it can accelerate electrons backward at near the speed of light. A thermal bath boundary

condition results in a very similar situation. Once an electron leaves, another is remitted

from a specified distribution function. The probability is chosen based on balancing the flux

of a thermal plasma. Therefore, if the electrons leaving come from a hot tail, the remitted

electrons cannot properly cancel this current. A large electric field and potential build up,

generating a reflux of electrons with relativistic energies. However, if we instead stop the
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electrons over a distance along which the plasma can naturally generate a return current,

then the physics will most closely resemble reality. The thickness must then be several skin

depths wide, i.e., λ ≳ O(10 c/ωp), as a skin depth sets the scale over which the current from

relativistic electrons is neutralized. This is on the same order of magnitude as what was

estimated above for numerical reasons.

Both the numerical and physical arguments predict a mean free path of about the same

order, and in Sec. A.4 we explore the performance of absorbers of various size.

A.3.4 Particle splitting and recombination

The absorber is required when simulating overdense laser–plasma interactions because there

is a large flux of relativistic electrons moving into the plasma. For such situations there is

another issue that must be addressed simultaneously. Due to the relatively large charge (they

represent many real electrons) of macroparticles in PIC simulations, these hot particles can

generate artificially large wakes, causing them to slow down as they propagate through the

plasma [171, 183]. These wakes can also lead to larger levels of turbulence. To avoid the

macroparticle-stopping issue, we also run with the particle splitting algorithm discussed in

Ref. [183]. This involves defining an energy threshold above which energetic electrons will be

split into smaller particles to avoid significant energy loss. Split particles are given a small

boost in momentum space (typically 1%) so that they don’t travel along identical trajectories.

However, we anticipate that these numerous small particles will eventually be stopped

somewhere in the absorbing region. This can lead to a load imbalance in which a dispro-

portionately large number of particles is distributed over a small number of processors,

greatly slowing down the simulation as a whole. Since energy conservation is already slightly

violated by the stopping of fast particles, this recombination is done simply by averaging

the momentum of two particles at a time that lie in the same octant of momentum space.

We only look to recombine such particles in the region where particle stopping occurs, and

only particles with a charge less than the charge of an unsplit particle are considered for

185



recombination. Simulations with and without particle recombination give very similar results,

but those with recombination run much more quickly (increasing returns for longer-duration

simulations).

A.4 Osiris simulation results

To demonstrate the effectiveness of the absorber region, we present results from a variety of

2-dimensional simulations of a laser incident on an overdense plasma. Simulations were done

using Osiris [28], where an absorbing region has been implemented.

A.4.1 Simulation setup

In the simulations, an intense 1-µm plane-wave laser with normalized amplitude a0 = 3 and

3 ps in duration (2.9-ps flat envelope with 0.13-ps rise and fall ramps) is incident on uniform

plasma with density n = 10nc (where nc is the critical density). The exponential ramp has

a scale length of 3 µm and begins at x = −27.6 µm. The critical density is then located

at xc = −6.9 µm, and we define time t = 0 to be when the leading edge of the laser pulse

would arrive at xc if traveling at speed c. The laser is focused to the critical surface and is

launched from the left wall. The plasma skin depth is c/ωp = 50.3 nm and c/ω0 = 159.2 nm.

See Fig. A.3(a) for a schematic.

The simulations used periodic boundary conditions in the second dimension (y), and the

laser was polarized with its electric field in the simulation plane (p-polarized). The simulation

dimensions were kept constant in the y-direction, 3.2 µm, and in the x-direction were either

923.9 or 1597.8 µm for truncated and causally separated runs, respectively. Square cells of

size 0.2 c/ω0 were used, resulting in a simulation domain of 50197×100 cells for the simulation

with the largest length in x (29025×100 cells otherwise). The time step was 0.141 ω−1
0 . The

electron (ion) species had 64 (16) particles per cell, and each species used cubic interpolation

with an initial temperature of 0.1 keV. We employed a static load balancing routine [43] at
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initialization to distribute processing elements in an optimal configuration, and the particle

push time was delayed until the laser neared the plasma.

In Fig. A.3(b) we show the temporal laser profile, as well as the reflected Poynting flux

and transmitted particle energy flux. The reflected Poynting flux is calculated by measuring

the total Poynting flux 380 µm before the critical-density interface, then subtracting the

known incident laser flux. Both the Poynting and energy fluxes plotted in Fig. A.3(b) are

translated in time to line up with the incident laser light. To diagnose the forward momentum

and energy flux deep in the plasma, we choose a diagnostic region 48–64 µm into the uniform

plasma over which we average the particle data in space. The energy flux is defined as∫
(γ − 1)mec

2p/γ dp for electron mass me. In order to avoid particle refluxing from either

boundary in the x-direction, a 746-µm vacuum region (computationally inexpensive because of

the static load balancing) is placed to the left of the plasma upramp, and the uniform-density

plasma is extended to the right a distance of 824 µm (computationally expensive). This

ensures that any particles reflected from the right boundary region will be causally separated

from the diagnostic region for the duration of the simulation (for a time 2× 760µm/c ≈ 5 ps).

The px-x phasespace is shown in Fig. A.4 at 3.7 ps after the laser was incident on the critical

interface, with the diagnostic region marked by dashed lines. Note the large size of the plasma

required compared to the diagnostic region location, along with the very hot return current

reflecting off the right simulation boundary—even though a thermal particle boundary is

being used.

We ran the simulations until 2 ps after the laser had finished hitting the plasma. In all

cases, hot particles were split into two after reaching a γ of 1.4, 1.5, 1.6, 1.7, and 1.8 (i.e.,

very energetic particles were eventually split into 32 smaller particles); the splitting routine

was executed every 10 time steps.

The particle acceleration mechanisms in these types of simulations are stochastic; therefore,

we expect and indeed do observe large differences in particle statistics due to slightly different

simulation configurations. For example, we performed the causally separated simulation three
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Figure A.3: (a) Simulation schematic, showing the full box size. The box is truncated

at 150 µm when the absorber is in use. (b) Laser Poynting flux incident at the plasma

critical interface, reflected Poynting flux measured 387 µm to the left of the critical interface

and forward electron energy flux measured over the diagnostic region. All quantities are

synced up in time for better visualization. Percentages represent integrated energy flux as

a fraction of the total incident energy.
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Figure A.4: The px-x phasespace for the causally separated simulation (single run, not

averaged). The dashed lines indicate the diagnostic region, but the plasma has to be much

larger in length to be causally separated from the hot return current reflecting off the right

boundary.

different times with varied random number seeds and observed a factor of 2–4 variation in

particle number in the tail of the momentum distribution over the diagnostic region. For this

reason we performed the simulations presented in this appendix three times with different

random number seeds. Unless otherwise noted, visualizations presented here are of data

averaged over three different runs; this averaging gives increased confidence that any observed

deviations from the causally separated run are due to the particle boundary conditions.

A.4.2 Effect of the absorber boundary condition

To greatly reduce computation time and resources, we desire to shrink the simulation region

shown in Fig. A.4, but preserve the behavior from the causally separated run. We truncate

the plasma at a distance of 150 µm (29025 cells in x) and vary the length of the absorber,

where each absorber is designed to stop all hot particles 5 µm short of the right boundary.

For all results shown here we use the linearly varying absorber from Sec. A.3.2 and calculate

the local temperature via Eq. (A.11). We quote the mean free path for each absorber, which

as shown in Fig. A.2 is 26% of the entire absorber length. We used an energy threshold of 6

times the local thermal velocity and re-emitted stopped particles at the local temperature.
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Stopping was performed every time step for both electrons and ions to give a large number

of stopping loops for a fast particle traversing the absorbing region. Particles are typically

stopped every ∼ 3 time steps, but we perform a stopping loop every time step to more

accurately assess the different methods. Though it is much more important to use an absorber

for electrons than for ions, we observed a sufficient number of hot ions reaching the thermal

boundary to warrant stopping ions as well. Stopping loops were delayed until hot particles

approached the absorber region. Particle recombination (for electrons) was executed every 5

time steps over the absorbing region; this dramatically reduces the simulation runtime as

hot particles that have been split into 32 smaller particles are all stopped over a very short

distance.

The px-x phasespaces for the causally separated (λ = ∞, where we are zooming in

on a particular region), absorber (with λ = 100 c/ωp) and no-absorber/truncated (λ = 0)

simulations are shown in Figs. A.5 and A.6 at two different times. After just 1.1 ps, a hot

reflux of electrons is visible in the truncated run [see Fig. A.5(c)] that has already entered the

diagnostic region. These refluxing electrons are seen to completely overwhelm the simulation

late in time [see Fig. A.6(c)], while the simulation with the absorber [see Fig. A.6(b)] is able to

maintain an appropriate return current. These plots are not averaged over three simulations,

so sizeable variations within the pre-plasma are expected for the causally separated run due to

differences in random number initialization with a different box size [note that the phasespace

in the density upramp and surrounding region are identical in Figs. A.5(b) and (c)].

To better visualize temporal behavior, we plot the electron energy flux in the x direction as

a function of time and space for the causally separated, absorber, and no-absorber simulations

in Fig. A.7. For the causally separated simulation, a steady stream of energy flux is observed

to the right of the critical-density interface, which is slowly pushed forward in time. Energetic

electrons are also seen to escape to the left as the plasma expands. This expansion is enhanced

after the laser turns off. When using the absorber with λ = 100 c/ωp, the energy flux looks

qualitatively very similar to the causally separated run, except that the energy flux quickly
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Figure A.5: The px-x phasespace (single runs, not averaged) for the (a) causally separated

(λ = ∞), (b) absorber, and (c) no-absorber (λ = 0) simulations 1.1 ps after the incident

laser. A hot reflux of electrons is already shown to be entering the dashed diagnostic region

in (c) for the truncated run with no absorber.
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Figure A.6: The px-x phasespace (single runs, not averaged) for the (a) causally separated,

(b) absorber, and (c) no-absorber simulations 3.7 ps after the incident laser. The refluxing

electrons in (c) for the truncated run have completely altered the particle phasespace; the

returning hot electrons cyclically interact with the laser and re-enter the plasma, artificially

heating the bulk plasma to a much higher temperature than in the (a) casually separated

or (b) absorbing runs.

192



decreases to zero in the absorber region. In contrast, the truncated simulation (λ = 0) shows

that a large fraction of the forward energy flux is reflected from the right boundary (especially

visible at 0.8 ps), so much so that it dramatically reduces the overall energy flux as it travels

backward. Once the first reflux arrives back to the laser–plasma interface at around 1.5 ps,

the forward energy flux is then permanently altered. This change in physics, as the hot return

current interacts with and is accelerated by the laser, is the primary issue that the absorber

is able to eliminate. Finally, this hot reflux of electrons is also visible in the blue negative

energy flux after the laser turns off in the truncated run.

We also examine energy conservation (fields plus particles) across the simulation region

when the absorber boundary condition is in use. To do this we compute the integral of

energy density over a specific domain (V ) and add the energy flux through the left and right

boundaries of that domain (∂V ): ∫
V

U dV +

∮
∂V

S · dA, (A.9)

where U is the energy density [E2/8π + B2/8π +
∑

(γ − 1)mec
2] and S is the energy flux

[E×B/4π+
∑

(γ− 1)mec
2p/γ]. We compute a running sum of this value over the simulation

time (which should remain at zero) and then divide by the maximum energy present in the

simulation box at any given time. This gives a good measure of the energy conservation of the

code, although it is not perfect since we only use data reported every 401 time steps (0.3 ps).

In Fig. A.8 we plot Eq. (A.9) as a function of time, where the right-hand side of volume V

(i.e., the location of ∂V on the right) is given by the x coordinate displayed for an absorber

with mean free path λ = 100 c/ωp. We can see that to the left of the absorber (dashed line),

the deviation in the coarsely computed energy conservation is less than 1.4%. However, by

including the absorber region we see that a large fraction of the energy is steadily removed as

energetic particles are stopped. Once again, it is this extended slowing of the particle beam

that allows for an appropriate return current to develop, causing plasma to return back into

the main simulation region.
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Figure A.7: Forward particle energy flux as a function of position and time for the

(a) causally separated, (b) absorber, and (c) no-absorber simulations. For the truncated

simulation in (c), the forward energy flux can be seen to be neutralized by a refluxing

current emitted from the boundary. The absorber in (b) effectively reduces the particle

energy flux before the simulation boundary without a reflux current.
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Figure A.8: The scaled deviation in energy conservation [see Eq. (A.9)] as a function of

time, including all points to the left of a given x value (single run, not averaged). To the

left of the absorbing region, energy is well conserved (<1.4% error), but in the absorbing

region energy is steadily removed as particles are stopped.

A.4.3 Variation of absorber parameters

As mentioned in Sec. A.3 and Section A.6, there are a variety of options for implementing the

absorber region. When determining the energy threshold and re-emission temperature of the

stopped particles, we can calculate the background temperature dynamically by weighting

the distribution function with the proper velocity to some power, or we can simply specify a

constant value to use. Using a lower power (such as the fourth root) for the proper velocity

will emphasize the bulk over a hot tail; more details are given in Section A.6. However, using

the fourth-root temperature never improved the absorber performance for the simulations

shown here, so we calculate the temperature in each cell as given by Eq. (A.11).

We can also use the hazard function probability defined in Sec. A.3.1 or the linearly varying

probability defined in Sec. A.3.2 to stop the particles. In our tests these two choices produce

similar results, but overall the linearly varying absorber maintained the proper response

for a longer time. The main reason for this is that due to the periodicity in y, simulations
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using the hazard-function absorber exhibited a large and increasing transverse temperature

in the absorbing region; the hazard-function absorber preferentially stops particles with

large forward momentum, allowing energetic particles to stream transversely and for some

accelerating/reflecting fields to develop (see last paragraph of Sec. A.3.1). For this reason we

use the linearly varying absorber in this appendix, which stops particles as a function of the

magnitude of the velocity and not just the longitudinal component.

We compare a combination of absorbers in Fig. A.9, where we show the px momentum

phasespace for all electrons in the diagnostic region at two different times. Although all

absorber schemes appear to perform equally well early in time, the return current is clearly

hotter when constant values of the energy threshold and re-emission temperature are given.

For the static temperature simulation, we set the absorber to stop particles with energy

greater than 0.6 keV and to re-emit particles at 0.1 keV (the original plasma temperature);

in contrast the dynamic absorber stops particles moving at more than 6 times the locally

computed thermal velocity. Using a static temperature performs poorly because, as seen even

in the absorbing region of Fig. A.6(b), the plasma heats up significantly in response to the

energetic electron beam. Particles stopped and re-emitted at the original temperature are

not moving fast enough to provide the necessary return current, and a nonphysical potential

develops that accelerates electrons backward with too much energy. Calculating the local

temperature instead allows the absorber to accurately compensate for this dynamic behavior.

Although not shown here, we performed a series of simulations varying the mean free

path of the absorber by factors of two between λ = 0.1 c/ωp and λ = 200 c/ωp. We observed

that if the absorber had a mean free path λ ≳ 6 c/ωp, it was able to closely match the

causally separated momentum distribution when averaged over three separate runs. However,

individual simulations with λ ≲ 20 c/ωp exhibited slightly greater variability in comparison

to the causally separated data. In our simulations, an absorber with a mean free path of

6 c/ωp performed only ∼ 30 stopping events before nearly all particles were stopped, which

was sufficient for a laser 3 ps in duration with a0 = 3. However, care must be taken for lasers
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of longer duration or higher intensity; Fig. A.9 shows that some absorbers can perform well

(a) initially, but (b) eventually fail due to the large amount of energetic particles striking

the absorber. Thus λ ≳ O(10 c/ωp) gives a reasonable estimate of the appropriate mean free

path, but the absorber length should be verified for each individual simulation.

A.4.4 Best practices

Here we make a few notes on best practices for performing simulations with the extended

absorbing boundary condition. We found it important to also causally separate the vacuum

boundary (where the laser is injected) from the laser–plasma interface. Even with absorbing

particle boundary conditions at this vacuum boundary, most energetic particles that reached

the vacuum boundary were immediately reflected back into the simulation space. This is a

combined effect of the laser potential at the wall and the electric field buildup from exiting

particles (a nonnegligible number of particles are accelerated toward the laser from the

pre-plasma region). Refluxing from the vacuum boundary leads to a modified distribution

at the laser–plasma interaction region, which then artificially inflates the forward electron

energy flux in the target.

For simulations with a finite-width laser, absorber regions can also be placed at the

transverse simulation edges to correctly handle the large flux of relativistic electrons expelled

transversely from the laser spot. However, the effectiveness of the absorber relies on having

a large number of particles in each cell (for calculating the temperature). If absorbers are

placed at the transverse simulation boundaries, they may overlap with near-vacuum regions

in and before the pre-plasma. Thus for finite-size-target simulations with multiple absorbers,

we found it is useful to transition the absorbers positioned along the transverse boundaries to

stop and re-emit particles based on a static (rather than dynamically calculated) temperature

in those near-vacuum regions.

Finally, the start of the absorber region should be located a reasonable distance away

from where accurate plasma measurements are expected. For example, when comparing
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Figure A.9: The px phasespace for all electrons in the region 48–64 µm into the constant-

density plasma for various schemes (a) 1.5 ps and (b) 3.7 ps after the laser was incident

on the plasma. Though the performance of all shown absorbers is nearly identical early

in time, either using a static temperature threshold and re-emission or using a very short

absorber gives improper results later in time.
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Figs. A.6(a) and A.6(b), the phasespace immediately in front of the absorbing region in (b)

does not exactly mimic the causally separated phasespace in (a). Examining the particle

phasespace for irregularities near the absorber region can help determine the appropriate

distance at which to measure plasma quantities.

A.4.5 Future work

The implementation described here, though effective, is by no means a comprehensive

treatment or unique solution to the reflux problem. Here we list some ideas that could be

used to iterate on our proposed solution. Particles could be re-emitted from a distribution

that is hotter in the return direction than in the forward direction, assisting in establishing the

appropriate return current. Particles could be stopped preferentially based on their direction

of motion. We employed absorbers for both ions and electrons in these simulations, but

the ion response and stopping could be explored in greater detail for long-time simulations.

Alternatives that are more computationally expensive could include applying a drag force

to energetic particles over the length of the entire absorber [171, 209] (requires flagging

individual particles) or calculating the re-emission temperature from a position located before

the absorber region (requires global information). Last, it may be possible to develop a

thermal bath boundary where particles are re-emitted from a non-Maxwellian distribution

determined from a region somewhere near the boundary of the plasma.

A.5 Conclusion

Particle-in-cell simulations are useful for investigating intense laser–plasma interactions in

overdense plasmas, but a truncated plasma boundary can produce an unphysically hot

return current. This return current is present with absorbing, reflecting and thermal particle

boundary conditions alike, and it can drastically alter simulation results. We have devised an

absorbing particle boundary condition that stops energetic particles over a defined region of
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the simulation space. Stopping these particles over a sufficiently large distance allows the

background plasma to generate a suitably cool return current that mimics the results of a

semi-infinite, causally separated simulation.

Various different schemes were proposed for statistically selecting, stopping and re-emitting

hot particles, with the best results given by the linearly varying absorber described in Sec. A.3.2

that calculates the local temperature via Eq. (A.11). The appropriate mean free path of the

absorber was explored, showing that an absorber with a mean free path of λ ≳ O(10 c/ωp)

gives proper results for our tests. As simulation behavior can vary greatly depending on the

application, care must be taken to ensure that the absorber parameters used for a particular

case appropriately mimic the behavior of a semi-infinite boundary.

A.6 Supplemental—Computing local temperature

In this supplemental section we describe how we calculate the local proper thermal velocity

for use with the damping parameters. First, we assume a Maxwellian distribution of the form

f0(u) =
n0√
2πū2

0

exp

(
u2

2ū2
0

)
(A.10)

for density n0, proper velocity u ≡ γv and thermal velocity ū0. We can approximate the

average thermal velocity by summing |u| over all particles in a cell. For a Maxwellian of the

same form as in Eq. (A.10), we have that∫ ∞

−∞
|u|f0(u) du =

√
2

π
n0ū0, (A.11)

which can be inverted to find ū0.

If instead the plasma is considered to be two distinct species with different thermal

velocities and densities [e.g., including a beam with density n1, thermal velocity ū1 and

corresponding distribution f1(u)], the above integral in Eq. (A.11) could yield a distorted

thermal velocity. Another option is to perform the integral using the fourth-root of the
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thermal velocity, which gives∫ ∞

−∞
|u|1/4 [f0(u) + f1(u)] du =

21/8Γ
(
5
8

)
√
π

(
n0ū

1/4
0 + n1ū

1/4
1

)
,

(A.12)

where Γ is the standard gamma function. Since the densities add linearly but the thermal

velocities add as the fourth-root, a high-energy beam should distort the sum less than in

Eq. (A.11). Note that Eq. (A.12) should be calculated for a single distribution and inverted

to solve for ū0. In practice, we found that the fourth-root calculation differed only slightly

from the simple average of the thermal velocity due to the extremely low density of the beam.

However, the fourth-root calculation may be important for some parameter regimes.
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