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Interaction between High-Speed Moving Vehicles and
Flexible Structures: An Analysis without Assumption

of Known Vehicle Nominal Motion
By
L. Vu-Quoct and M. Olssont

Abstract

Traditionally, in analyses of vehicle/structure interaction, especially when a vehicle
mass comes in direct contact with the structure, vehicle nominal motion is often
prescribed a-priori, and therefore unaffected by the structure flexibility. In this paper, a
methodology is proposed in which this restriction is removed, allowing the vehicle nomi-
nal motion to become unknown, and encompassing the traditional approach as a particu-
lar case. General nonlinear equations of motion of a building-block model, applicable to
both wheel-on-rail and magnetically levitated vehicles, are derived. These equations are
simplified to a set of mildly nonlinear equations upon introducing additional assumptions
— essentially on small structural deformation. Efficient and reliable predictor/corrector
algorithms are proposed to integrate the nonlinear, coupled, spatially-discrete equations
of motion. Several examples are given to illustrate the present formulation.
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Interaction between High-Speed Moving Vehicles and
Flexible Structures: An Analysis without Assumption
of Known Vehicle Nominal Motion

By
L. Vu-Quoc and M. Olsson

1. Introduction

In recent years considerable interest has been developed in implementing energy-
efficient, high-speed, low-noise systems of transportation for airport-city or inter-city
commuting — in particular magnetically levitated (Maglev) vehicle systems. A report on
the status of development of these systems can be found for example in Eastham &
Hayes [1987]. The speed of a Maglev vehicle can reach 400 to 500 km/h with a noise
level comparable to that of a wheel-on-rail vehicle at 200 km/h. In the future, the
efficiency of Maglev systems will increase manyfold as a result of advances in supercon-
ductor research. Currently, to ensure success of such systems, guideway structures must
be designed to be stiff so that deflections remain within narrow margins of tolerance.§
The cost of a stiff guideway system can easily exceed 70% of the total cost of a system
(Lawton [1985], Zicha [1986]). More flexible guideways — with fundamental frequency
typically between 1 Hz and 6 Hz — are less expensive, but present .complex
vehicle/structure interaction. Progress in suspension control technology will, however,
make possible the use of flexible guideways. The interaction between high-speed moving
vehicles and flexible supporting structures is the focus of the present work. Even though
the impetus behind this research is geared toward high-speed vehicles, the problem of
moving loads does find applications in various fields of engineering, from transportation,
naval architecture, to aeronautics and astronautics (see, e.g., Fryba [1972], Blejwas et al

[1979] and references therein).

§ Deflection must fall approximaiely within +0.006m for a span of L = 25m, i.e., the deflection is about
L /4000 (Emsland test track, Zicha [1986]).
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Extensive lists of references on the subject of moving loads over elastic structures
are contained in several review papers: Huang [1976], Kortlim & Wormley [1981], Ting et
al [1975-83], report of Subcommittee on Vibration Problems [1985), Korttim [1986]. The
monograph by Fryba [1972] is the classical source of information on this subject. For-
mulation of the vehicle/structure interaction for wheel-on-rail vehicles or for Maglev
vehicles with tight gap control leads to complex system of equations of motion. This
complexity stems mainly from the constraints between a moving mass and the flexible
guideway that must be maintained throughout the motion. Such problem does not arise
for vehicle models connected to the structure via suspension systems where there is no
constraint between a moving mass and the structure. Moreover, time derivatives of a
function dependent on current position of the vehicle contain convective terms which
become prominent at high speed regime. Analytical solution is possible only if the con-
vective terms are neglected (Stanisic [1985]). The importance of these convective terms
was amply demonstrated in Blejwas, Feng & Ayre [1979], where numerical results corro-
borated experimental findings. So far, research effort has been based on the assumption
that vehicle nominal motion is known a-priori (e.g., Ting, Genin & Ginsberg [1974],
Venancio-Filho [1978], Olsson [1985-86], Wallrapp [1986]). Since mathematical models in
thesg work require prescribed vehicle nominal motion and do not admit driving forces,
there is no possibility to study effects of structure flexibility on vehicle motion, or effects
of applied accelerating or braking forces on the vehicle/structure system. We have not
come across any reference where the assumption of known vehicle nominal motion is not
used. In addition, efficient numerical algorithms must be developed to deal with the

resulting complex system of equations of motion.

We propose herein a methodology to analyze the complete vehicle/structure
interaction, valid for high speed regime, and without resorting to the usual assumption
of known nominal motion. This general setting clearly includes the case where nominal

motion is prescribed a-priori. The scope of this paper is restricted, however, to the basic
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model of planar motion of a rigid wheel (rolling without slipping) or a Maglev magnet
unit with tight gap control moving over a flexible beam. Energy-dissipative mechanisms
such as structural damping, mechanical friction, or aerodynamic drag are not considered
here.t The present prototype model will serve as a basic building block for more complex
vehicle/structure models. We note that the wheel model finds also application in electro-
dynamic (repulsive) Maglev vehicles (see Kortim & Wormley [1981] for a Maglev vehicle
model with wheel sets), since these systems move on wheels up to a maximum lift-off
speed of about 80km /h (Alscher et al [1983]). Further, both high-speed Maglev vehicles
and wheel-on-rail vehicles may possibly run on the same bivalent guideway structure

(Raschbichler & Wackers [1987]).

First, nonlinear equations of motion of the basic model, valid for large deformation
of the beam, are derived for a class of general (nonmlinear) contact constraints via
Hamilton’s principle of stationary action. The ability to account for large structural dis-
placements is essential to analyze moving loads on very flexible structures, such as cable
suspension systems, and in a broad range of dynamic response. In the present work,
structural response in the small deformation range is, however, our main interest. With
assumptions of small deformation, the nonlinear equations of motion are reduced, in a
consistent manner, to a system of mildly nonlinear equations. This consistency is an
important feature that distinguishes the present approach from traditional pfactice of
complete linearization: Relevant nonlinear terms, essential for high speed regime, are

retained in the equation for vehicle motion.

Galerkin method, in particular with finite-element basis functions, is employed to
spatially discretize the equations for structural motion.f The result is a set of
differential/algebraic equations (DAE’s) in time. In addition to the convective terms, as

given in Venancio-Filho [1978] and Olsson [1985] for a particular case of a point mass,

+ See Cherchas [1979] for an example of modelling aerodynamic drag on high-speed vehicles.
1 Green’s function method as used by Ting, Genin & Ginsberg [1974] is not easily generalized to complex struc-
tures and boundary conditions.
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the semi-discrete equations for structural motion contain terms of geometric nature.
Integration algorithms for DAE have been proposed by several authors. However,
Fihrer [1986] noted that when dealing with vehicle system dynamics (and without
interaction with flexible structure), where equations of motion are DAE’s, existing algo-
rithms for DAE’s (e.g., Petzold [1982]) may encounter serious problems. Consequently,
transformation of DAE’s of vehicle motion into the first order form of ordinary

differential equations (ODE’s) is the most reliable solution procedure.

In this work, we propose predictor/corrector methods for solving the system of
DAE’s derived from our formulation. These methods are also applicable to the general
situation involving with complex vehicle models. In this general situation, the equations
for vehicle motion are reliably solved using linear multi-step methods with variable step
size and order. These are also very effective methods for solving stiff ODE’s (see Gupta,
Sacks-Davis & Tischer [1983]), often encountered in vehicle models, The equations for
structural motion are solved by efficient step-by-step implicit algorithms for second order
ODE’s arised in structural dynamics. Note that the stiffness of these ODE’s increases as
one refines the spatial discretization of the partial differential equations (PDE’s) for
structural motion.t The implicit character of theses algorithms makes them effective
tools for stiff systems in structural dynamics. Accuracy in structural motion are retained
by not truncating these equations into a reduced-order model (projection onto an eigen-
subspace). Further, these second order ODE’s are not transformed into first order form
as often done in vehicle dynamics program (see discussion in Kortiim [1986], Wallrapp
{1986]). We thus maintain good accuracy in both vehicle motion and structural motion.
In addition, our algorithms yield results that satisfy the essential balance of system
energy. The present approach to vehicle/structure interaction, applicable to complex
vehicle models, can be easily incorporated in existing vehicle dynamics programs, as well

as In structural dynamics programs.

1 We refer to Dekker & Verwer [1984] for discussions on stiffness of ODE's,
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It should be noted that the study of dynamic motion of the complete system,
driven by external forces, as done here is the only way to explain the Timoshenko para-
dox: Consider an example of a constant vertical force traversing, with some prescribed
motion, a simply supported beam. Since the net work done by the force is zero, where
does the energy which leaves the beam in a vibratory state after the traversing come
from? The same question can be asked for a moving mass with prescribed motion.
That is, it is not possible to check balance of energy in these models. In fact, the
"excess” of energy comes precisely from the work done by external forces applied on the

vehicle (cf. Maunder {1960)).

Several numerical examples are presented to show that effects of complete
vehicle/structure interaction can possibly be evaluated with the present methodology.
Soundness of the proposed algorithms is demonstrated in part by monitoring the offset
of discrete energy balance of the system, introduced by error in the numerical results.
We study the loss in velocity of a vehicle after traversing one or several spans of a con-
tinuous beam, as a result of energy transfer from the vehicle to the beam. Fihally, we
consider the braking of a vehicle, and its effects on the vehicle motion and the structural

response.

2. Description of basic problem

In this section, we describe the kinematic assumptions employed in the basic prob-
lem of planar motion of a high-speed moving load — a single rigid wheel or a suspended
magnet with tight gap control — over a flexible beam. Attention will be focused, how-
ever, to the dynamics of the more complex case of a rolling wheel. Several possible
models of a Maglev magnet ("magnetic wheel") can be obtained from this basic model.
Expressions of the kinetic energy and potential energy, which will be used later to derive
the general nonlinear equations of motion, are also given. It should be kept in mind that

this basic model serves as a building block for more complex vehicle/structure models.



L. Vu-Quoc and M. Olsson 7

2.1. Basic assumptions. Let {E,;, E,} be orthonormal basis vectors, and (X!, X?)
the coordinates along these axes. These define the coordinate system of the material
(undeformed) configuration. The line of centroids of the beam, of length L and initially
straight, is assumed to lie along the axis E;; the coordinate of a material point on the
line of centroids is denoted by S$=X'€ [0, L]. Let {e;, e;} be the set of orthonormal
vectors spanning the spatial (deformed) configuration, and conveniently chosen such that
E;=e;, for ¢= 1,2. The displacement of a material point S§ is denoted by
u(S,t) = u¥5,t)eq,T where ¢ € [0, + o) is the time parameter. Thus, «! is the axial dis-

placement, and «? the transverse displacement of the beam centroidal line.

A rigid circular wheel — with (axi-symmetrically distributed) mass M, radius R,
and rotatory inertia about center of mass J, — is assumed to be in permanent contact
with, and rolling without slipping on, the beam.} Let Y(¢) = Y¥t)E, be the position of
the wheel center of mass in the undeformed configuration; its position in the spatial
configuration is denoted by y(t) = y*(¢)e.. We consider the following general form of
(holonomic) contact constraints relating the position of the wheel (Y and y) to the struc-

tural displacement (u):
y'(¢) = Y(e) + g (u(Y(t),t), w,s(YN¢),6) ), (2.1a)
y*(t) = Y¥(t) + g%u(Y(e),0), u,s(YY(1),1)) - (2.1b)

where ¢*(,'), @ = 1,2, are given functions of the structural displacement u and its spatial

4
rate of change u,g E"Z‘%= %eﬂ, such that ¢%(0, 0)=0. We call Y(¢), the motion of

the wheel in the undeformed configuration of the beam, the nominal motion of the
wheel. Given the functions y'(¢), u(S,t), and ¢*(u, u,g), relation (2.1a) could be taken as

a definition of the (unknown) nominal motion Y?(t), i.e., Y!(¢) is defined to be a solution

t When the summation sign Z is omitted, summation convention is implied on the repeated indices, which
take values in {1,2}.

f The velocity of the contact point on the wheel is only about (minus) one thousandth of the velocity of the
wheel center of mass (rigid slip); see Kalker {1679).
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of (2.12). In this formulation, we consider only the case where Y2 — R, for some constant
R. A defining property of the nominal motion should be noted: The nominal motion is
identical to the spatial motion y when structural deformation is zero; that is, for
u($,t) =0, we have y!(t) = Y'(¢), and y%(t) = Y¥t), since ¢%0,0) = 0. Let ¢ denote the
angle of revolution of the wheel, which is considered to be a function of the nominal
position Y' and the structural deformation (u, u,s). Clearly, with u(5,t) = 0 and for rol-
ling motion without slipping, we have 6§ = Y'/R. We will often employ the shorthand
notation g% (Y1) = g%(u(Y,t), u,5( Y1), and similarly with

o(Y't) =0(Y, u(Y,¢), u,s(Y't)). Thus,

dg®  dg* auf g% %P o6 af}+ 80 auﬂ+ 00 9%F
as s ' 9uP 4S8 duf s 052

auf 85 dufg 05% ° @

2.2. Kinetic energy and potential energy. The expression of the kinetic energy

K of the basic system (wheel and flexible beam) is given by

K= M {{ Y4 g YL P+ [ (Yhe))? }+ é-[w{b(Y‘,t)]z
(2.3)
+ 3/ Ap{[u‘n(s,t)]% [0, (5,)] }ds,
(0, L]
"w®n . . : . o, d o Ju®
where the superposed denotes the total time derivative, i.e., (*) = —(—i?(-); u = —

denotes the partial derivative in time, and A, the mass per unit length of the beam.}
Consider a function f:[0, L]X [0, 0)—IR, smooth enough in both arguments. The first

and second total time derivatives of f(S$,t), evaluated at S = Y(¢), are obtained as fol-

lows
s L af(Y't) =1 Af(YLD)
1 1 — ) 1 ) )
F(YLYhe) —5 Y+ 5 (2.4a)
os R af(Yhte) o (Y1) o1y Bf(Yht) o 2f(Yhe)
1yl yt = (Y L S —t A 2 (2.4
(LY ¥ 55 ¥4 o )2 + YT + oY (2.4b)

1 It should be noted that in (2.3) we do not consider the rotatory inertia of the beam cross-section; however, an
analysis including this term could be carried out following the same methodology presented in this paper.
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We will often omit to specify ()7’1,3;1) in the argument list of quantities such as f and 7
and write for instance f(Yl,t) Ef(Yl,).’l,t) and }’.(Yl,t) E}’(Yl,}}l,i;l,t).§ Thus, employ-
ing (2.2) and (2.4) to evaluate g*(Y%,¢) (and later "% Y',t)), one could obtain an expanded
form of the total kinetic energy (2.3). The convective terms in (2.4) — i.e., the first term
in (2.4a), and the first three terms in (2.4b) — play an important role in the interaction
between high-speed moving vehicles and the supporting flexible structures, as shown in
Blejwas, Feng & Ayre [1979]. These authors attributed to Ting, Genin & Ginsberg
[1974] for recognizing this important effect. Further by the assumed smoothness of the

function f in (2.4a-b), total time derivative and spatial derivative are interchangeable,

& ooy ] e e

at' | 8s7 as’ | at’

, (2.4¢)

and thus notation such as f,g(Y’,t) can be used without confusion.

The wheel is subjected to an applied force F = F%,, and a torque T about its
center of mass. Without loss of generality, the applied forces and torque can be con-
sidered, at the moment, as constant in time for the purpose of deriving the equations of

motion. The work done by the external forces is then given by
W= Fey 4+ T90. (2.5)

Let ¥(u) denote the elastic strain energy stored in the beam. The formulation-is so far
valid for large deformation in the beam, and we have not yet introduced assumptions of
small deformation at this stage. Explicit expression of VY(u) for finite deformation of a

beam in plane motion can be found in Simo & Vu-Quoc [1986].

§ This shorthand notation has been used in (2.3).
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3. Derivation of equations of motion

In this section, we derive the equations of motion for the basic system, valid for
large structural deformation, by employing Hamilton’s principle of stationary action.
Additional assumptions of small deformation in the structure are subsequently intro-
duced to furthef simplify the equations of motion. This simplification process is care-
fully carried out in a manner that is consistent with the assumptions. It should be indi-
cated, however, that even though particularized to small structural deformation the
resulting equations of motion do retain some crucial nonlinear terms, for an adequate

description of the dynamics at high speed regime.

3.1. The general nonlinear equations of motion. The Lagrangian of the sys-

tem can be written as
L(Y'u) = K(Y'u) —¥(u) + W(Y'u) .1 (3.1)

Consider the time interval [t;,t5]. Let (v(¢),7'(S,t),n%(S,t)) be the admissible variations
corresponding to the functions (¥Y!,u%,u%), and vanishing at time ¢ = ¢, and ¢ = t,. The
equations of motion are obtained from the stationary condition of the action integral,

i.e., the Euler-Lagrange equations corresponding to (3.1):

< [ L(Y'+ ey, ut en)dt
de
[ty td]

=0, (3.2)

c=0

for all admissible variations (¢,7), where n = ﬂﬁeﬂ. It follows that the equations for nom-

inal motion ¥' and for structural displacement u are given by

- die [ LYY, ut en)de

=0 [ty tg]

L[ L(Y'tep, )it

de (¢4 to]

=0, (3.3)

respectively, for all admissible variations (1,7).

1 We omit the time derivatives of (¥Y',u) in the argument list of L and K to alleviate the notation.
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Nominal motion Y'. We first note that from (2.4a) one has

o (YLYLe)  af(YLe)

; = (3
oYt = 48 (3.42)
Then, it follows from (3.4a) and (2.4c) that
dlofn | for(vio | af(xie
dt [ oYl | dt| as T a5 - (8.4b)
Further, the variation of f with respect to Y! is given by
A zion _ af(rie) as(¥ht)
—F(V+ev, 0) B (3.5)

where we have made use of (2.4a). Another way to obtain (3.5) is by interchanging Ed_
€

and —g—t—, and then using (2.4c). Next, computing the directional derivative in (3.3)

together with integration by parts with respect to time, applying the boundary condition
¥(t1) = ¥(t2) =0, and then using (3.4) and (3.5) with f — g% to allow cancellation of cer-

tain terms, we obtain

171 .o .
deltf KTt ey, - It tQ]{M1+ Qg_g_);_,fl SERAED)
e=0
2 l 9
+ MB,(] g);,t) gg(Yl’t)+ ["’“_(B%'L) g( )}¢ dt , (3.6&)
I(YI, )

f W(Y‘+ e, u)dt 85 55

de[t

(3.6b)

The stationary condition (3.3); and relations (3.6) yield the equation for the nominal

motion Y
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o (rt) | 3, o dg%(Y1,t) PH(Y 1) o
Ml ) 1 1 ’ 2 1 ’ 1 —
=g |+ YL+ M=t (Y + 55— (YLt
FI 1+ 691(Y1’t) + F2692(Y17t) + Ta@(Yl’t) (3 7)
05 a5 as ’ '

Structural motion (u',u?). Similar to relations (3.4), one can prove that the fol-

lowing identities hold

ag.a(u) qu) . 890(11; u;S) _(_1_ [ag'a(ur ll,g) o 650(11: u:S) (3 8&)
du T aw® At ouf I '
ag'a(u’ u?S) o aga(u’ 1-‘75) _il’_— “(8:5'&("3; urS) - ag.a(uv u»S’) (3 8b)
au.ﬁﬁ - 8uﬂ:S ’ dt l au.ﬂrS - Buﬁrs ‘

Now, computation of the directional derivative in (3.3),, and integration by parts with

respect to time yield the following results

. <, 1 [o7 1
_4 f K(Y, ut en)dt = f {]\/[ya %ﬁ(ylyt)wﬁ_:.tl + nﬂ,S(Yl,t)ag (/}; )
de [tl’ ‘2] €= 0 [tl’ t2] du Ou 28
o 8o(Y",¢) (Y, t)
LO(YLe)y WA Y )=l 4 pf (v S8 ) AnPul,, ds ldt 3.9
(Yht) [’7( ) 3af T 1 s(Yht) EFC + [0.’&] P U ,  (3.92)

o 1 o 1
di f W(Y?, u+ en)dt = f {Fa[ﬂﬂ(yl’t)ég_(.};’_t)_;_ ’I]ﬂ,g(Yl,t)ag (zf;t)

“ eyt =0 [ty tol du duf,g

A0( Y ¢ o0(Y ¢t
+ T”ﬂ(Yl:t)_—(a_u_lé—l'*' ﬁﬁ:s(Ylyt)Ja"[;‘—)

u,s

}dt , (3.9b)

where we have made use of the (homogeneous) boundary conditions of (p',7%) at ¢ = ¢,

and ¢ = t,, relation (2.4a), and the identities (3.8). Note that we could also obtain these
results by making use of the interchangeability of 7}16— and dit Next, let the weak form

of the stiffness operator be denoted by G(:,-), and

Gu,n) = %\I/(u + €n) , ( (3.10a)

e=0

where we recall that W(u) designates the strain energy of the beam. Expression of the
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weak form G(u,n) in the case of finite deformation of a beam in plane motion is given in
Simo & Vu-Quoc [1986]. Therefore using (3.3),, (3.9) and (3.10a), the weak form of the

structural equations of motion is then given by

o0 P 1 1 1 1
Froe agd s ey )| wir 028000 4 g (310 200700
ouf auﬂs

27 v1 2 1
+ [—F2+ MgQ(Yl,t)J[ﬂﬂ(Yl,t)—--—ag;);’t) + nﬂ,s(Yl,t)*-——“——aga(?’t)]
u

u,s
L) d 1 1
+ [—T+ Iwg(Yl,t)) 7]/3(}/'17t)_8_g_(__)/ﬂ’—t)+ nﬂ,S(Yl,t)ag();:t)
’ Jdu Ou ) S
+ [ Ap(S,t) vPu(S5,0)dS + Glum)= 0, Y admissible n ¢ (3.10b)

o, L]

where 8= 1 corresponds to the equation of motion for axial displacement «!, and simi-
larly g = 2 for transverse displacement «% The corresponding partial differential equa-
tions of motion can be easily obtained from (3.10) by integration by parts in S, and by
invoking the fundamental theorem of calculus of variations.f We prefer, however, to
retain the structural equations of motion in its weak form for subsequent numerical

work.

3.2. Contact constraints and contact forces. Let R (= Y?) denote the dis-
tance from the beam centroidal line to the center of mass of the wheel. When R = R,
the wheel is moving with its circumference tangent to the beam centroidal line. Explicit
form of the function ¢*in the general constraint equations (2.1) for wheel/beam contact',
or magnet/beam with constant gap (also referred to here as "contact" constraint), can

be written exactly as follows

gl(u, u,g) = u! —-ﬁsinx(u,s) , 93w, u5) = w?-R][1 —cosx(u,s)], (3.11a)
2
where  x(u,5) ;= tan™! _ L5 (3.11b)
M 1 + 'ul,s )

+ Summation convention is implied on the repeated index g € {1,2}.
1 The containing space of the variations (771,712) should be suitably chosen and should include the boundary
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represents the slope angle of the deformed beam (cf. Figure 3.1). It should be noted that
the expressions in (3.11) are written for beam theory without shear deformation, and are

valid for a finitely deformed beam.

Remark 3.1. "Magnetic wheel." The above formulation encompasses several
possible models for a Maglev vehicle using electromagnetic suspension (attractive system)
with tight gap control (see the review paper by Kortiim & Wormley [1981]).f By letting
I, =0 (or § =0) in the kinetic energy (2.3), we have a model (A) of a moving magnet,
where R represents the distance from the beam centroidal line to the magnet center of
mass. Next, by letting I, = R =0, in which case the constraints (2.1) becomes
y'(t) = Yt} + «'(Y',t) and y*(t) = u*(Y',t), we obtain yet another model (B) of a mov-
ing magnet. In practice, often even simpler constraints are chosen so that (model C)
y'(t) = Y'(¢) and y*(¢) = w*(Y't) (cf.,, e.g., Wallrapp [1986]). Thus, there is no coupling
between vehicle nominal motion and structural axial deformation. In this case, the

equations of motion (3.7) and (3.10) (in weak form) simplify to

M[i;l-l— 3&2(Yl,t) &'Q(Yl,t)] = Fl + F28u2(ert)

b
55 T (3.12a)

n(YL[-F+ Ma (Y] + [ Anf(S,t) ufu(5,)dS + Glum) = 0,¢ (3.12b)
[0, L]

which are also valid for a finitely deformed beam. In (3.12), the equation for axial dis-
placement and the equation for transverse displacement are coupled through the non-
linear nature of G(u,n) in the finite deformation case. Discussion on the diﬁ"erencé
between these models is postponed until we had introduced the small deformation

assumptions and the simplified equations of motion in the coming sub-sections. O

conditions at § = 0 and § = L (see, e.g., Rektorys [1980}).

t The gap between a magnet and the guideway is in the range of 10-15 mm, independently of vehicle speed
(Eastham & Hayes [1987]).

} Summation convention is implied on the repeated index 8 € {1,2}.
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In the design of flexible structures under moving vehicles, it is important to quan-
tify the (dynamic) contact forces transferred from a vehicle to the supporting structure.
Further, the evaluation of these contact forces is crucial in the study of structure
response under acceleration or braking action of a moving vehicle. Note that the
governing longitudinal force for the design of guideways corresponds to that produced in
an emergency braking. For the basic problem considered herein, let F, = FZ, be the

contact force acting on the beam. Then equilibrium of forces acting on the wheel yields
F,=F -My . (3.13)

Thus, once the motion y of the wheel have been solved for, (3.13) can be used to com-
pute the contact force. In the case of a moving magnet, the contact force F, is the
required active control force that should be exerted on the magnet to maintain a con-

stant gap.

3.3. Small deformation assumptions. Equations (3.7) and (3.10) form the com-
plete set of coupled, fully-nonlinear equations describing the motion of a rigid wheel
moving over a flexible beam. In the present work, we limit our discussions to the case of
structural equations which are linear in the displacement u® For this, the following

assumptions are considered:

(A1) The structure deforms with small strains, and such that the spatial deriva-

tive of structural displacements is small: |u®g| << 1.

(A2) The Euler-Bernoulli hypothesis is assumed, with strain energy

Y(u) = % [ EALY )P + EI[’UQ;SS]Q}JS , (3.14)
[o. ]

where EA is the axial stiffness and EI the bending stiffness.}

i The frequencies in free vibration of a simply supported Euler-Bernoulli beam are accurate, compared with
those of a Timoshenko beam, up to at least the 5th mode for a span/depth ratio greater than 20 (cf. Magrab
[1979)).
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(A3) In the inertia operator of the structural equations, only terms linear in the
structural displacement «® are retained; all nonlinear terms in u® are

neglected.

(A4) The wheel rolls without slipping and creeping. Structural deformation has

negligible effects on its rotatory motion:

y! a6 Ylt) 1 . }.1 e Pt
1 ~ ) ~ 1 ~ 1 ~
v~ o, ——(———65 ~ e )R, B s Y

B

o9 and a9

du” duP g

in the strue-

In addition, we neglect the terms with factors

tural equations of motion.

3.4. The mildly nonlinear equations of motion. Considering the structural
equations of motion (3.10b), assumption (A3) implies that we neglect nonlinear terms in
u! and »? in the fully-expanded expressions of g! and of g2 obtained from using (2.2),
and (2.4b) in (3.11). Thus, together with assumption (A1), we arrive at the approxima-

tions

eoy —O 8, o) *y

gl W' —Ruts, g~ u?. (3.15)
Note that approximations (3.15) together with relations (2.4) when applied to ¢! and g2

imply

ai+jgl - a:’-{-jul ~___as’+j+1,u2 aH-jg? N 6:'+ju2
astat’ T astot asitlgl 7 95tar T asiat?

, (3.16)

for (7,5) = (1,0), (2,0), (1,1), (0,2). Further, assumptions (Al), (A3) and relation (2.2), lead

to the following approximations

dgt = Bgl = dg! =
Bals ~ Ru%g , Pl ~ -R, 1+ Y 1 —Ru? g, ‘ (3.17a)
‘992 392 5,2 5’92 2
~ 0, — x~ —Ru“s, = ug. 3.17b
dulys 9u’s S0 s s (3.17b)

As a' result of (2.4b), (3.15), (3.17), together with assumption (A4), the equation for the
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nominal motion (3.7) can be approximated by
oo YLOT 4+ e VLT 4+ ey(YLE)T 4 eo(Yhe) = 0, (3.18a)
where

eo(Yh8) & = FUL = Rul ss(Y4,0)] —F2u% g(Y1,1) -%

+ ML =Bt ss(Y' )] [0t (VL) = Rulou (Y1) + wBs(Yht)u%a(¥0)],  (3.18b)
cl(Ylyt) ~ 2M[[1 _EuQ)SS(YI)t)Hulrst(Ylvt) —ﬁuz)SSt(Yl)t)] + u27$(yl)t)u2’5t(yl)t):l; (3180)

oY) % ML = RuRss(Y, )] [0 55(Y' 1) — 55 (¥1,0)] + ws(YLe)utss(Yh0) ], (3.180)

1y

es(Yht) = M1 —Ru?g(Y 8] + =T (3.18e)

Remark 3.2. The nonlinear term in ¢% in the equation for the nominal motion

(3.7) is, according to (3.15) and (3.17), approximated by

8g%(Y',t)

55 gAY & W s(YL)a (Y t) (3.19a)

which is also nonlinear in «® Using (2.4b) in (3.19a), we obtain the term (3.19a) in
expanded form as given in (3.18). This term plays an important role in representing the
influence of transverse structural displacement on vehicle nominal motion at high speed.
To see this, we rewrite the equation for nominal motion (3.12a) of Maglev model C, for

F' = 0, as follows
MYt = 25(Ye) [ F2 =M (Y'0) ] = o, 5(Y' 1) FX(t) . (3.19b)

At high speed, the vertical contact force F2 may have a magnitude several times that of
the vertical force F2  We will present below examples where one has
| FAt) | > 1.5 | F?|, for some time ¢, and for high-speed vehicle motion. In other
words, the inertia force Ma'? can be of the same order of magnitude as that of F?, and

should be retained in equation (3.18). Hence, it is shown that the formulation would not
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be appropriate for high speed regime, had we systematically removed all nonlinear terms
in «® from the equations of motion. This is at variance with the usual practice of com-
plete linearization (see discussion in Kortlim [1986]), which is therefore inconsistent in

the present situation. O
Next, using assumptions (A1-A4), the weak form of the equations for structural
motion, linear in the displacement 4, is given by

P L+ MIP 4 S B (V0] | - B =Tt (Y )2 5(Y0)

-+ f An'(S,)ut,,(S,1)dS + f EAn' s(S,t)ul,s(S,t)dS = 0, (3.20a)
[0, L] lo, L}

and
—Ru?s(Yht) [-Fl + MY 4+ 47X _E&'2,5(Y1,t)]]
+ nQ(Yl,t)[—-F2+ M&'Q(Yl,t)]+ RF%? 5(Y\,t)u?5( Y1)

[ A8, 0)u2,(S,t)dS + [ EInPgs(S,t)u?ss(S,t)dS = 0, (3.20Db)
[0, L] (o, L]

for all admissible variations (7',7?). It can be observed that the second term in (3.20a)
and the third term in (3.20b) correspond to the geometric stiffness induced by the type
of constraint considered in (3.11), and vanish for R = 0. Next using (2.4), we could

recast equations (3.20) in the following form

M?]l(Yl,t)['ul,tt(Yl,t) —Eug,gn(yl,t)]—{- [f]Apnl(S,t)Ul,“(S,t)dS}
0, L

+ 2A4}'/1771(Y1;t) l:ulyst(Yl»t) —R—uzxsst(ylrt)] + [Mﬁl(yl»t) [i;l[uI:S(Yl7t) —§U2,55(Y1,t)]
-+ (};l)g[uI)SS(Ylft) —Eu(l)SSS(Yl)t)]] _-E[Fl "Mi}l]ﬂlys(Y17t)“2:S(Y1,t)

+ f EAnlyS(S7t)ul)S(S’t)dS
[0, L]

= (Y, )[F! ..Mi;l] , (3.21a)

and
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—ﬁMnZ’S(Ylyt) [ulytt(Ylyt) _Eug’stt(ylft)] + MnQ(ert)uzytt(Ylyt) + f Apng(s:t)uz)it(syt)d‘s
o, L]

+ oM L Ras(7) (1 (V1,0) =Tt s (1) |+ 021,000,010

+ [Ali;l{"ﬁng)S(ert) (UI)S(ert) “§u2:SS(Y1)t)] + nz(Ylyt)UQ;S(YI;t)}
+ M(y‘rl)g{_ﬁnQ;S(Ylyt) (ul;SS(Y17t) —§U2,555(Y1,t)] + nQ(Ylat)UQ)SS(YIIt)}

+ ﬁF2772;S(Y1:t)u2;S(Y1)t) + f EIUQ;SS(S,t)u27SS(S:t)dS]
[0, L] i

= —Rns(YLO)[F' =MV + (¥, ¢)F?, (3.21b)

where terms are grouped in square brackets according to their nature (mass, velocity-
convective, stiffness, and applied forces). Even though equations (3.18) and (3.21) are
the simplified equations of motion of the system according to assumptions (A1) to (Ad4),
they remain nonlinear and coupled. The above system of ODE/PDE’s is driven by ini-
tial conditions {Y?(0), Y'(0), u($,0), u,(5,0)} and the forces {F!, F2, T} applied on the
wheel. The algorithms discussed in the next section will allow one to integrate the com-
plete system of equations of motion (3.18) and (3.21), without a-priori assumption of

known nominal motion.

Remark 3.3. In relation to Remark 3.2, we note that the linearized structural
equations of motion (3.20b) contains the (low order) effect of the contact force
F?= F? —Mu? Recall that, as pointed out in (3.19b), the contact force F2 also appears

in the equation for nominal motion (3.18). O

Remark 3.4. With assumptions (A1-A2) equation (3.12b) is decoupled into an
equation of motion for axial vibration and an equation of motion for the transverse
vibration. But then this means that the Maglev model C, unlike models A and B (see
Remark 3.1), could not be used to study effects of vehicle accelerating or braking on the

axial structural response. O



Interaction of High-Speed Vehicles on Flexible Structures 20

4. Numerical integration of equations of motion

in this section we describe numerical algorithms to solve the system of nonlinear,
coupled equations of motion (3.18) and (3.21). Spatial discretization of these equations is
discussed first. Then, two predictor/corrector algorithms, with a distinguished feature
pertaining to our formulation, are proposed to solve in time the resulting semi-discrete
equations of motion, which has the form of a system of DAE’s. Finally, we introduce an
expression for the discrete energy balance to later monitor the performance of the pro-

posed algorithms.

4.1. Galerkin spatial discretization. For each a € {1,2}, let {PZ(S); 1= 1,...,N;
i = 1,..,N°}, be a set of independent functions in S and satisfying the boundary condi-

tions for . We consider the following discretization

N N® N N©

1S, = 3 3 PESInE(e), w(S,t) = 33 PR(S)dit) . (4.1)

Ie= 1= 1 [=11=1

The functions P{(S) may be eigenfunctions in the case of a simple structure and boun-
dary conditions, or finite element interpolatory functions in the case of more complex
structures. Introducing the discretization (4.1) into (3.18) and (3.21) we obtain a
spatially-discrete system of equations of motion. Let n := N'+ N% then the total
number of structural degrees of freedom (dof’s) of the discrete system is v:= Nn.t
Denoting Z := {Y!, Y7, the equation for vehicle motion (3.18) could be recast into the

first order form

Yl

Z. = (I)(Z’ d, t) = ) (42)

-1

m[co(l’l,t) + e(YLOY + e YLE)(YYY

where the coefficients ¢;(Y?,¢) are computed according to (3.18) and using the approxima-

tion (4.1). We retain the second order form of the structural equations of motion,

t For a finite element discretization, n may be thought of as the number of dof’s per node, and NV the number
of nodal point.
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M(Z)d + V(Z)d + 8(Z)d = R(Z,1), (4.3)

where M(Z) € R™” is the mass matrix, V(Z) € R™” the velocity-convective matrix,
S(Z) € R*™" the stiffness matrix, R(Z,t) € R*¥! the applied force matrix, and d the
column-matrix with components dg(t). Note that to evaluate & = {®!, *}T in (4.2), we
need to know all values of (d, 4, a'). However, to alleviate the notation, only d appears
in the argument list of ®. Similarly, we do need ¥! in the evaluation of the stiffness S

and the force R in (4.3), but only Z = {¥?, ¥1}T would figure in their argument list.

Remark 4.1. In the case where finite element discretization is chosen, care should
be taken in choosing interpolatory polynomials of sufficiently high order to ensure that
spatial derivatives of «® in (3.18) and (3.21) exist and are all represented. They should
also be continuous across element boundaries — except when dictated by actual boun-
dary conditions (see Examples 5.3 and 5.4). Recall that for relation (2.4b) to make sense,
we need existence of spatial derivatives up to second order. Moreover, in the equations
of motion, spatial derivatives are required up to second order for u'! and third order for
«%. Enforced continuity of these higher derivatives makes the semi-discrete system (4.2)
and (4.3) well-posed, and contributes to the good behavior in numerical results. Follow-
ing traditional use in analysis of (Euler-Bernoulli) beam structures, several authors (e.g.,
Venancio-Filho [1978], Wallrapp [1986]) employ cubic Hermitian polynomials to interpo-
late the transverse displacement «? which have continuity only up to first order spatial
derivative (i.e., u%g). Moreover, if linear interpolatory function is used to approximate
the axial displacement u!, then terms in u! ¢ are artificially eliminated from the system.
We note here that these discontinuities will not disappear by having more elements in
the mesh, but appear on the other hand at a higher cadence. When passing over a
discontinuity, often an algorithm with low order accuracy 1s used, unless the time step
falls exactly on the discontinuity. An example of dropping in order of accuracy in the

computed results due to discontinuity can be found in Deuflhard [1985]. O
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The structure of the above matrices could easily be written in explicit form upon

introducing the following definitions
1(S t) N ul(S,t)
S 1) ZPI (S)ni(t) , (S t) ZPI (4.4&)

Qi(s) 0N

where PP(S) = 0N Q(s) € R¥", (4.4b)
Q(S) = {PF(S), ... , Pla(S)} € RV, (4.4¢)
ﬂl(t) = {7}111) L ’?7111\/1’ 7“217 e 7773\]2}’1‘ E RnXI 3 (44(1)
dyt) == {dfy, ..., d}n, df, ..., d2e}T € R™XY, (4.4e)

with O™ being the zero matrix in R/, The displacement dof’s of the beam can be
ordered in d as follows

d(t) = {du(¢)T] - - - [dn(t)}T € R, (4.5)
Further, we define the following matrices,

Qi(S) —RQZs(S)

R2>® | 4.6
leN‘ QIQ(S) € ( a’)

ALY = [PHYY P} s(Y) € R™" , AJ(YY) = [PHYYTP}ss(YY) € R* " ,(4.6b)

ONXN (MY — FY[QLs(YY)]TQEs(T?)
E ]Rnx n

ONQXNI FQ[QIQ)S(Yl)}TQJQ)S(Yl) ’ (4SC)

ARYY) = R

where the subscript ",$" (",55") designates differentiation with respect to S once (twice).

The mass matrix M(Z) can be decomposed as the sum of a constant part denoted
by M° and a time-varying part denoted by M'(Z). Let My(Z) € R***, for 1,J € {1,..., N},
be the submatrix of M that couples the dof’s in d; to those in dj; similarly for M and

M}(Z). Then,

Mu(Z) = Mf + MA(Z) € R*>" . (4.72)



L. Vu-Quoc and M. Olsson 23
We obtain from (3.21), (4.4), and (4.6a),

Mi = [ APHS)TPH(S)dS € R™* , M}(Z):= M[PHY)TPHY!) € R™*" (4.7h)
o, L]

It should be noted here that the mass matrix is symmetric, i.e., My = Mj. However,
such is not the case for the velocity-convective matrix V and the stiffness matrix S as
will be seen shortly. From (3.21) and using the definitions in (4.6), an expression for

V(Z) can be readily obtained as
Vi(Z) = 2MY'AL(YY) € R™<" (4.8)

Analogous to the mass matrix M(Z), the stiffness matrix S(Z) is split up into a constant

part S° and a time-varying part S!(Z) whose expressions are given by

Su(Z) = S+ Si(Z) € R**", (4.9a)

| EA[QL,5(5)]"Q1,s(S) ONX N
Sf = s € R™<" 4.9b
! [0 L] ON™N! EIQf,ss(S)TQF,s5(S) (4:95)
SH(Z) == MY'ANY') + M(TVARZ(YY) + AJ(Y!) € R™>" . (4.9¢)

The first two terms in (4.9¢) are convective terms, whereas the last term, A{(YY),
expresses the geometric effect induced by the constraints (3.11). Finally, the applied

force corresponding to the degrees of freedom in dy is

P —MY

R(Z,t) = [Pf(Yl)]T{ 2 }e R™X1 (4.10)

Remark 4.2. The above matrices acquire a particular structure when Galerkin
finite-element discretization is used: The time-varying matrices M'(Z), V(Z), and SY(Z)
contain zero coefficients except in a small submatrix located on their diagonal; for a
discretization of the type (4.4), this submatrix is of dimension 2nx 2n if each finite ele-
ment has 2 nodal points. As the wheel moves (say, in the direction of increasing node
numbers), the time-varying submatrices charge down along the diagonal of the global

matrices.§ The reason for this particular structure of the convective matrices is the local

§ In a particular case of the present formulation, where only a point mass is considered (I, = 0 and

Af(Z) = 0) to be in contact with the structure, and where nominal motion is prescribed, the element matrices
corresponding to the loaded element are referred to as "structure/vehicle element” in Olsson [1985-86).
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character of finite element basis functions (functions with compact support). Similar
observation could be made regarding the applied force R(Z,t). However, if the functions
P{(S), are eigenfunctions of a vibrating beam, then all of the above matrices are full —

but possibly of smaller order. O

4.2. Predictor/corrector temporal discretization. We are now ready to
introduce discretization in time to solve the system of differential/algebraic equations of
motion (4.2) and (4.3). In the general setting where a complex vehicle model (multibody
system) is involved, equations of motion for the vehicle can be transformed into first
order ODE’s as in (4.2) (Flhrer [1986]). The dimension of the state space of a complex
vehicle model could be of the same order as the number of structural dof’s. It is noted
that our numerical treatment in this section, even though applied here to the basic

model, extends to this general setting.

In many simulation programs for vehicle dynamics, a reduced-order model for the
structure is obtained by projecting (4.3) onto a subspace of eigenvectors (see, e.g.,
Wallrapp [1986] in relation to the program MEDYNA.),t and implies a frequency cut-off
in the structural response. This reduced-order model is then transformed into the form
of first order ODE’s;{ the cost of transforming the large system (4.3) into first order form
being prohibitively expensive. Choice of the subspace of eigenvectors must be made
carefuliy to represent all relevant effects in the motion, which are often difficult to guess
in advance. The reason of this caution rests on the fact that the choice of an eigen-
subspace that contains the maximum information on the motion depends intimately on
the applied forces, i.e., a systematic selection of low frequency modes may lead to a
misrepresentation of the motion. Further, recall that the projected matrices lose their

bandedness, and are fully populated. In this paper, we propose methods of integrating

(4.2) and (4.3) which retain the efficiency of structural dynamics algorithms for solving

1 These eigenvectors correspond to the eigenvalue problem S°x = AM°x.
t Vehicle nominal motion is prescribed a-priori here.
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the unreduced system (4.3).

In what follows, the subscript k+ ¢; will be used to designate the discrete approxi-
mate of a quantity at time b+, = t+ ¢;h, where ¢; € [0, 1], and & denotes the current
time step size. Thus, for a function f(t), we write Thag, & f(tk_,.g‘). The approximate to
the structural displacement defined in (4.5) is written as diyg, = d(tiy). Similarly,

structural velocity and acceleration at time ty+¢ are denoted by Virg, = d(tyg) and

Bpyg N c.:l'(tkﬂt), respectively. Further, all dof’s corresponding to u® are gathered in

d%:={df, .. A ] |, L 48T e RINOXL (4.11a)
and thus
VErg & Atey) s afye & d(tiy.) . (4.11b)

In addition, we introduce the following expressions for later use

¢7h*
'71-"72— S(Zk..,_g‘) (S RY<Y s (412&)

K(Zis) = [M(Zisg) + sh(3 =)V (Zis,) +

f(Zk+g,:tk+g,) = R(Zk+s,>tk+g,) "V(Zkﬂ-s"v)[vk + sih(27 _'%)ak]

272
i 1
—S(ZH;,) dp + Gihove + 2 1 “W‘Jak] € R¥™! (4-12b)
Vers, = Vit sh{7 =D + (2 —ars, | e R, (4.132)
g"QhQ 1 1 vx1
dk_,_{', = dk + S‘,-hvk + > 1 - 072 ap + ?;;2— aH(', cR . (413b)

The following algorithm is a single-step predictor/corrector that combines explicit
methods of the Runge-Kutta family with an efficient algorithm in structural dynamics
for solving (4.2) and (4.3). |

Algorithm 1: (single-step predictor/corrector)

Data: e Algo. const.: v, p, {g;; i=1,...,p},
{aij; r= 2,-~,P, .7‘= 1:'":({_1)}7 {bs'; V= 1;---;1’}1
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e Current time step size &,
e Solution at time &: Z;, di, vy, a;.

Predictor:
1) Dl = hq)(Zk, dk: tk)'
For each (i € {2,...,p}), do {

~ t—1
2) Zk+§‘ = Zp + ZG;J'D]'.

j=1
3) Solve for asy such that K(Ziyy) apes = f(Zsrg, thag) s

where K and f are computed as in (4.12).
4) Displacement: Compute ‘ik+c| using :;H(‘ as in (4.13b).
5) Aaial velocity: Set \;,§+g| =v}
Transverse velocity: Compute \A',?,,_g; using ;1,?4,;‘ as in (4.13a).
6) Aaial acceleration: Set al, ¢ =0.
7) D; = hq)(élwg‘» &k+g‘: tk+g‘)-
}

Corrector:

8) Ziv1= Zp + i:bei .

=1
9) Solve for a;,; such that K(Zi41) arey = £ Zes 1, tig1) »
where K and f are computed as in (4.12).
10) Compute vy, and dy4; using a4, as in (4.13).
a

Remark 4.3. Assuming that the structural displacement d(t) is known exactly for
all ¢ € [0,4+ co) then with dy =d(#), V ¥, Steps 1,2,7 and 8 in Algorithm 1 constitute the
explicit p-stage Runge-Kutta method, with coefficients ¢;, ¢;; and b, and solving for

Z(t). Recall that for the 4-stage classical Runge-Kutta method (4th-order accurate), we

1
have {5} = {0, 5 3,1}, @; =0 except {az, as, a} = {3, 5 1}, and {b} = (L,

,-é—} (see, e.g., Butcher [1987]).t Instead of the first order form (4.2) it would be

W)=

1
3’
advantageous, in the present basic problem, to consider directly the second order form of
the equation for nominal motion, i.e., ¥t = D Yl,}.’l,d,t), and employ instead the

Runge-Kutta-Nystrom algorithm (Bettis [1973], Dormand & Prince [1978]). However,

t A convention often valid for almost all Runge-Kutta schemes is: ¢; = f] a;; (Dekker & Verwer [1984]).
. =1
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Fihrer [1986] points out that for a general vehicle model the first order ODE form of the
vehicle equations of motion is still de rigueur (see Fithrer & Wallrapp [1984] and
Nikravesh [1984] for methods of transforming DAE’s of vehicle systems into ODE’s by

elimination of algebraic constraints). O

Remark 4.4. If the nominal motion Y'(¢) (or Z(t)) is known a-priori, then with
Zk+1=2(t41), V k, Steps 9 and 10 in Algorithm 1 express balance of momentum at
time ., and correspond to the implicit "6,-method" proposed by Hoff [1986]. We note

that to derive (4.12a-b) from the balance of momentum (4.3) at time te+¢, the following

relations are used

Vit = Vi + c;h[(% —-—‘;)ak + (% __,,)am‘] € R, (4.14a)
J/ S"?hg 1 1 vx 1 b
dk+§,’ B dk ot Sy (300 4% -+ ) 1 — 272 A -+ 072 ak_Hi [ R . (414 )

These relations are slightly different than (4.13a-b), and effectively introduce numerical
dissipation in the high frequencies (for v s 1). This algorithm is unconditionally stable
for y€[05, 1], and is (locally) second order accurate. However, in order to have no
overshooting, small algorithmic damping, and small relative period error, it is recom-
mended to use v € [0.95, 1] (Hoff & Pahl [1987]). For v = 1, the method reduces to the
trapezoidal rule with well understood properties (see, e.g., Hughes [1983]). We note that
displacement or velocity, instead of acceleration as presented in Steps 3 and 9, could be
equivalently chosen as primary unknown. The "f,-method" is close to the trapezoidal
rule in the low frequency range, and offers numerical dissipation in the high frequency
range — this type of method could be employed if such "low-pass filtering" effect is
desired. Recall on the other hand that the trapezoidal rule is free of numerical dissipa-
tion in the whole frequency range, and is thus able to reflect with fidelity properties of

the spatial discretization. O
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The "6;-method" (implicit, unconditionally stable) is employed to predict structural
response for the intermediate steps of the Runge-Kutta scheme (explicit, conditionally
stable) with a special treatment for axial motion: In the computation of D;, for i=2,...p

y

the axial velocity \;,lﬂ' is reset to its value at time ¢, (see Step 5), while the axial
acceleration z;;}+§’ is reset to zero (see Step 6). In fact, instead of Steps 5 and 6, we could

have retained the axial acceleration as computed in Step 3, and evaluate the axial velo-
city according to (4.13a). However, this treatment is found to effectively maintain stabil-
ity of the numerical algorithm by preventing high oscillations with unbounded growth of
energy, as will be demonstrated in numerical examples below. Explanation of the
mechanism triggering this growth in energy is deferred until later in the examples sec-

tion.

We mention in passing that for systems with constant coefficients, the "#,-method"
shares similar properties with the "a-method” proposed by Hilber, Hughes & Taylor
[1977]. The former possesses some advantages over the latter, but more importantly,
lends itself mnicely to nonlinear systems with time-varying coefficients. Other type of
single-step structural dynamics algorithms, such as the "beta-m" method by Katona &
Zienkiewicz [1985], could also be employed. However, explicit integration methods, even
with high order of accuracy, are not recommended for this problem because of their
severe restriction on the time step size (conditional stability). An unconditionally stable
"explicit" algorithm was proposed by Trujillo [1972],f but suffers poor accuracy
(Belytschko [1983]). Further, a foremost advantage of explicit methods over implicit
methods rests on the constancy of the mass matrix (or better yet, a diagonal mass
matrix). This advantage is quickly nullified if the mass matrix is non-diagonal, and has
time-dependent coefficients such as in the present study. A recent state-of-the-art review

by Wood [1987] provides an extensive survey into numerical integrators employed in

t This method is based on application of operator splitting to the trapezoidal rule to avoid solving a system of
linear equations.
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structural dynamics. A word of caution is here warranted: Since most of the above-
mentioned algorithms were analyzed for a scalar differential equation (except the algo-
rithm by Gellert [1978]) with constant coefficients, their properties should not be freely
extended to systems with time-varying coefficients and with non-modal "damping" as
that encountered in the present study. As a consequence, the trapezoidal rule is

definitely adequate in our case.

In Algorithm 1, each step 7 (except Step 1) in the predictor stage requires solving a
system of linear equations to predict the structural motion. This process, often referred
to as function evaluation, is particularly an expensive step in our problem. Linear mul-
tistep methods require less function evaluations than single-step Runge-Kutta methods,
and therefore will prove to be advantageous in decreasing computational effort in the
present study.t We consider therefore in Algorithm 2 a combination of linear multistep

methods and the "#,-method." Let

dl'+l

o[l .= olil(7,, dy, ), where ol .= and o — ¢ (4.15)

dti+1 ’

Algorithm 2: (linear multistep predictor/corrector)

Data: hd Algo const.. T g, m, {0‘:'1 /Bw i= lr"',Q}y {>‘:'7 Bi; = 0,,((]—1)},
e Current time step size &,

e Solution at time t;: {Z;, ®%, .. ., o)}, dy, vy, a,.
Predictor (P):
1) Compute {®x_y, ..., ®4_, 4} from {&f) .. . ol
2) Zk(?r)l = i:[o‘iZk"J"l—l + hBi®i—jv -
=1

3) Solve for af%, such that K(Z9,)al9, = (29, tew1)
where K and f are computed as in (4.12).

4) Displacement: Compute df%, using af9, as in (4.13b).

5) Auzial velocity: Set [vklﬂ]m) =v},

. © 0
Transverse velocity: Compute {vfﬂ] using [211?+1J as in (4.13a).

t In general, when solving ODE’s, one should also account for the overhead cost. Then linear multistep
methods do not necessarily come out as winners over Runge-Kutta methods (Gupta {1980)).
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0
6) Aaial acceleration: Set (a,,1+1]( ) =0.

Corrector (EC)™:
For each (i € {1,..,m}), do {

7) Evaluate q)k-l-l = q)(Zk(:l-—ll)) déi’k—ll)) tk+1)'

. g1
8) z{), = 2N Zeoi + hpp®i_ ]

J=0
9) Solve for afl, such that K(Z{®,) af), = £(Z{)1, terr) ,
where K and f; are computed as in (4.12).

10) Compute v{], and df), using a{] as in (4.13).

}
11) Evaluation (E): &4, = (27, i), ter1).
]
Remark 4.5. In the above, Step 2 contains the ¢-step Adams-Bashford and the
Crane-Klopfenstein methods, whereas Step 5 may be specialized to the (¢—1)-step
Adams-Moulton method, with m being the number of simple iterations in the corrector

stage (see, e.g., Lambert [1973]). For ¢ = 4, the 4-step Adams-Bashford method has

coefficients
ay= 1, ap= ag= ay= 0, and {248;} = {55, —59, 37, -9} ,

while the Crane-Klopfenstein method has coeflicients

a; = 1547652 | B, =  2.002247
ay = —1.867503 | B, = —2.031690
ag= 2017204 | B3=  1.818609

a, = —0.697353 | B, = —0.714320
and the 3-step Adams-Moulton method has coefficients
Moo= 1, M= Xg= Az3= 0, and {24p;} = {9,19, —5,1} . O
Remark 4.6. In step 1, with the step size & given, the value of
{®p_y ..., ®p_yyqp from {@, ..., @[} (and vice versa) is easily obtained by interpo-

lation of a polynomial of degree ¢ (see, e.g., Gear [1971, p.149]). This procedure (due to

Nordsieck) allows a convenient change of time step size. O
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Algorithm 2 is a general predictor/corrector in P(EC)"E mode. For m = 1 and
g = 4, the Crane-Klopfenstein predictor combined with the 3-step Adams-Moulton
corrector is of 4th-order, and has a region of absolute stability comparable to that of the
classical (4th-order) Runge-Kutta method. This region of absolute stability is more than
twice larger than that of the Adams-Bashford-Moulton method in both P(EC)? mode
and in PECE mode (Lambert [1973, p.148]). Even though the two Algorithms 1 and 2
have similar properties regarding accuracy and stability, the computational effort in
Algorithm 2 with PECE mode is twice less: It requires only two solutions for structural
motion, instead of four as in Algorithm 1. Therefore, Algorithm 2 is definitely more
efficient than Algorithm 1, except that it is not self-starting. We will use Algorithm 1

to create the starting points for Algorithm 2.

Even though more efficient starters based on methods proposed by Gear [1980]
could be developed, but considering that the overall saving is not significant, in the
present work, all results are reported with Algorithm 1 as starter for Algorithm 2.
Robustness of the proposed predictor/corrector algorithms rests in part on the uncondi-
tional stability of the "¢,-method." Methods other than linear multistep ones, such as
extrapolation methods, could be explored as alternatives (Gupta, Sacks-Davis & Tischer
[1985]). Deuflhard [1985] provides an extensive review of extrapolation methods. Finally,
we note that the proposed algorithms are extendible to the case with fully nonlinear
beam theory (see Vu-Quoc [1986] and Vu-Quoc & Simo [1987] for a related algorithm to

solve an ODE/PDE system arised in satellite dynamics).

4.3. Discrete energy balance. The balance of system energy at time t can be
written as follows
t

K+ Y, — [[ F)y*(r) + T )dr= K, + ¥, (4.16)

where K, and ¥, are as given respectively in (2.3) and (3.14), the integral term is the

work done by external forces, K, the initial kinetic energy, and ¥, the initial potential
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energy. For small structural deformations, we consider the following approximation to

the kinetic energy and potential energy

® . —e . .1
K, ~ %M{[Yl + ul(YL,t) —Ru?s(YLt)2 + [uQ(Yl’t)}2}+ %’Iw [}_}%_Jz+ %ATMo&)(LLl']a)

Vo s dTs0d, (4.17b)

where «® is to be interpreted in the sense of (2.4a). It is important to note that despite
the approximation to the velocity employed in (4.17a), the equations of motion (3.18)
and (3.20) remain an approximation to the Euler-Lagrange equations derived from using
this approximated kinetic energy in the Lagrangian (3.1). However, for small deforma-
tions, this is a good approximation. The energy balance (4.16) together with approxima-
tions (4.17) provide a very useful guideline in the design of numerical integration
methods. We will show by numerical examples that the proposed algorithms maintain
well energy balance to within very small error tolerance. Recall that in linear structural
dynamics, the trapezoidal rule preserves exactly system energy (e.g., Hughes [1983]). In
addition to providing an indication to the soundness of integration algorithms, energy

balance is used to explain the Timoshenko paradox mentioned in the introduction.

5. Numerical examples

In this section, numerical results for our basic model of vehicle/structure interac-
tion are presented for a wide range of vehicle speeds. Emphasis is focused on results
which are not achievable using formulations based on the traditional assumption of
known vehicle nominal motion. Further, these examples demonstrate the adequacy of
the present formulation for vehicles moving at high speed on flexible structures, as well

as the reliability and efficiency of the proposed integration algorithms.

Finite element basis functions are used here in the discretization (4.4) such that for

a partition 0 =35, <..< Sy = L, the dof’s associated with node I € {1,...,N} are the dis-

placement components and their spatial derivatives (see (4.4e)):
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6{“1U0(Sl,t)

. 5.1
8s5+1 (5.1)

d[? ~

For complete continuity of the spatial derivatives appearing in (3.18) and (3.21), one
should use (at least) N' = 3 for the axial dof’s, and N2 = 4 for the transverse dof’s.
There are thus seven dof’s at each nodal point. It is easy to construct the basis fune-
tions Pf corresponding to these dof’s in terms of polynomials: For the axial displace-
ment, Py is a 5Sth-order polynomial, while for the transverse displacement P2 is a 7th-

order polynomial.

The proposed numerical procedure for analyzing vehicle/structure interaction has
been implemented in the research version of FEAP, the Finite Element Analysis Pro-
gram developed by R.L. Taylor — see Zienkiewicz [1977, Chap. 24] for a description of a
simple version. The beam element used in our work is implemented to allow the flexibil-

ity to choose different number of nodal dof’s, i.e., different values of N' and N2

All numerical results reported herein are obtained with the following algorithm con-
stants. In Algorithm 1, we use the constants for the classical Runge-Kutta method
(Remark 4.3), and in Algorithm 2 the constants for the Crane-Klopfenstein and the
Adams-Moulton methods (Remark 4.5). The PECE mode is chosen for Algorithm 2
(m = 1), and Algorithm 1 is used to compute the starting points. Integration of struec-
tural motion is performed with v = 1, i.e., the trapezoidal rule. In all examples, the time
step size is kept constant throughout the calculation. Effects of vehicle/structure
interaction will be studied in the following examples for a simple-span and a six-span
beam structure depicted in Figure 5.0. Also, all beam structures and their spatial

discretizations are uniform.

Example 5.1. Vehicle/structure interaction at different initial velocities.
Consider a wheel of mass M = 3000kg, rotatory inertia I, = 135kgm? radius R = 0.3m,
rolling over a simply supported beam. The distance from the beam centroidal line to the

wheel center of mass is R = 0.9m. The beam has a length L = 24m, mass per unit
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length A, = 1250kg/m, axial stifflness EA = 5x 10°N, and bending stiffness EI = 10°~Nm?2.
The wheel is subjected to a constant vertical force F? = —600,000N (cf. Figure 5.0). The
magnitude of this force is about 20 times that of the weight of the wheel (acceleration of
gravity 9.81m/s?). The maximum mid-span static deflection corresponding to this load is

0.1728m or about L /140.

The lowest flexural frequency is 2.44Hz; the lowest axial frequency is 20.8Hz (see
Remark 5.1). The following initial conditions are considered: Y'0)= 0, u(5,0) =
u,,(5,0) =0. The wheel motion is driven mainly by its initial velocity }./1(0). Four values
of initial velocities — 1m/s, 10m /s, 50m /s, and 100m/s — are chosen to study the

effects of complete vehicle/structure interaction. Often, the non-dimensional quantity

o= —— (5.2)

where f{ is the lowest flexural frequency of a beam of length L, is used to describe the
dynamic character of moving load problems (see Fryba [1972]). In this example, the
above initial velocities correspond to the values of « of 0.00854, 0.0854, 0.427, and 0.854,
respectively. To integrate the motion, we used 200 time steps with respect to the
traversing time on a rigid beam for each of the four cases (i.e., 24s, 2.4s, 0.48s, and
0.24s). Thus, the time step size h takes respectively the values 0.12s, 0.012s, 0.0024s,

and 0.0012s.

Nominal velocity. Time histories of nominal velocity for different initial velocities
are plotted in Figures 5.1a-d. The largest increase in nominal velocity (about 400%) is
obtained for the smallest initial velocity (}.”(0) = 1m/s, Figure 5.1a). As a result, the
traversing time on the present flexible beam is about one third of the traversing time on
a rigid beam. For an initial velocity of 10m /s, the increase in velocity is drastically
reduced to about 10% (Figure 5.1b), with an exit velocity of 9.96m/s. From Figures
5.1c-d, one can clearly observe a loss in nominal velocity at the end of the traversing: An

initial velocity of 50m /s drops by 1.29% to an exit velocity of 49.4m/s, while an initial
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velocity of 100m /s drops by 0.7% to an exit velocity of 99.34m /s. The peak-to-peak
variations in nominal velocity for these two cases are respectively 1.79% and 1.09% of the
initial velocity. For }:'1(0) = 100m /s, an analysis with 100 time steps, i.e., with
h = 0.0024s, shows little difference in the results (Figure 5.1d). We will therefore use

this time step size in the case of a six-span beam below (Examples 5.3 and 5.4).

Structural deflection. The greater loss of velocity for }.’1(0) = 50m/s is due to the
larger vertical displacement at the contact point, as recorded in Figure 5.1e. We note
the shift of the location of maximum displacement closer to the exit as initial velocity
increases. [Figure 5.1f shows the vertical mid-span displacement for different initial velo-
cities, where time is normalized with respect to the traversing time on a rigid beam for
each case. The dynamic magnification factor is 1.61 for ).’1(0) = 50m/s, and 1.77 for
)."(0) = 100m /s. Observe the free vibration of the beam, after the traversing of the vehi-

cle, clearly shown for 1(0) = Im/s.

Contact force. Recorded in Figure 5.1g are time histories of the vertical contact
force FZ, for initial velocities of 50m /s and 100m/s. As noted in Remark 3.2, the inertia
force Mu? is non-negligible at high speed, as attested by the magnitude of the normal-
ized contact force in Figure 5.1g: For an initial velocity of 100m /s, this inertia force
could reach 60% of the vertical force 72. The vertical contact force F? and the vertical
force F? differ only slightly at low speed — for the initial velocities of Im/s and 10m/s,

this difference is computed to be within 3% of the vertical force F2.

Energy balance. The soundness of numerical algorithms depends in part on how
well the computed results satisfy energy balance. The variation of the terms in the
expression for energy balance (4.16), as a function of time, for an initial velocity of
10m /s Is plotted in Figure 5.1h, where the legend "energy balance" means the left hand
side of (4.16). (At this scale, the kinetic energy of the beam is too small to be well dis-

cernible, and is not plotted.)
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Using Algorithm 1 throughout, the maximum offset of energy balance for
Y1(0) = 10m/s is 0.13% of the initial kinetic energy K, (= 0.225x 10°%kgm?/s?); this max-
imum offset is about 0.03% of IK, (= 5.625X 10%gm?2/s2) for Y(0) = 50m /s, and 0.018%
of K, (= 22.5% 10%gm?/s2) for Y(0) = 100m /s.

Using Algorithm 2, with Algorithm 1 as starter, the offset of energy balance for
).’1(0) = 10m/s is 0.27% of K,. The maximum offset occurs at the transition from Algo-
rithm 1 to Algorithm 2 at the start of the calculation, as shown in Figure 5.1i. From
then on, both curves in this figure show a similar pattern. A smaller time step size
should be used to reduce this initial offset. On the other hand, the maximum offset in
energy balance for initial velocities of 50 and 100m /s are 0.014% and 0.008% of their
respective J,. These maxima occur near the end of the traversing. Thus, the offset of
energy balance in Algorithm 2 is roughly half of that produced in Algorithm 1. This
remark is also true in later examples. Algorithm 2 therefore not only reduces
significantly the computational effort, but satisfies better the energy balance in com-

parison with Algorithm 1.

Plotted in Figure 5.1j are both the energy balance and the wheel kinetic energy as
a function of time for ).’1(0) = 100m/s. The drop in nominal velocity at the exit (Figure
5.1d) induces a loss in the vehicle kinetic energy, as part of this energy is transferred to
the beam to leave the beam in free vibration after the passage of the vehicle. This
energy transfer effectively explains the Timoshenko paradox. One would then immedi-
ately ask how much the drop in nominal velocity would be for a vehicle moving over a

multiple-span beam structure. This situation will be considered in Example 5.3.

Remark 5.1. For completeness, we record here the computed eigen-frequencies of
the above simply supported beam using different types of spatial discretization. Let f
be the frequency of the ith mode for displacement «® Expressions for of the exact fre-

quencies are

1
EA |2

o 1
Ar B (5.3)
2L? |A,

(27 —1)

2:
i r

/i

i
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Refinement (h-version or p-version) of spatial discretization is characterized by the tri-
plet (N, N', N¥). We recall that N is the number of nodal points, and N° is the number
of dof’s per node corresponding to displacement u® Reported in the third column of
Table 5.1 are the frequencies obtained with the discretization of type (3,3,4), which was
used in the above calculation. The beam thus has 7 dof’s for axial displacement u!, and

8 dof’s for transverse displacement «? (boundary conditions included).

Table 5.1. FEigen-frequencies of simply supported beam.

Frequency Exact Computed with Discretization (N,N',N?%)
(Hz) values || (334) || (312) | (81,0) | (502
fi 20.8333 || 20.8333 || 21.3721 20.8771 —
fa 62.5000 || 62.5000 || 74.6610 63.6859 —_
fi 2.43917 || 2.43917 || 2.44880 —_ 2.43981
E 9.75669 || 9.75669 || 10.8291 — 9.79520
f2 21.9525 || 21.9530 |} 27.2199 — 22.3537
2 39.0267 || 39.0279 || 49.6253 — 43.3165
2 60.9793 || 61.3685 e — 68.8514

For a fair comparison of performance with the lower order p-discretization
(N', N®) = (1,2), we consider in the last three columns: (i) discretization (3,1,2) which has
3 nodes, (i) discretization (8,1,0) which has 7 axial dof’s, and (iii) discretization (5,0,2)
which has 8 flexural dof’s. All four types of discretization have boundary conditions
u'(0,t) = u*0,t) = w*L,t)=0. The discretization (3,3,4) can include, in addition, the
boundary conditions u',5(L,t) = u%45(0,¢t) = w?gs(L,t) =0. It can be seen from Table
5.1 that the best results are obtained with a spatial discretization of type (3,3,4). So
using (N, N%) = (3,4), we not only achieve continuity of the necessary derivatives, but

obtain more accurate frequencies than using (N', N = (1,2). O e

Example 5.2. Growth of energy and proposed treatment. Here is an exam-
ple where without the special treatment in Step 5 and Step 6 of Algorithms 1 and 2, one

could encounter an undesirable growth in the offset of energy balance. Consider the
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Maglev model B (Remark 3.1) with mass M = 12,000kg, and I, = E = 0. A vertical
force of F? = —600,000N is applied at its center of mass. The beam has the same pro-
perties as in Example 5.1. Let the system be driven by the initial conditions: YY0) = 0,
Y'(0) = 30m/s (o= 0.256), u(S,0) = u,($,0)=0. 200 time steps with s = 0.004s are
used in the calculation.

Oscillations in numerical results. The time history of the nominal velocity )}1(t) is
plotted in Figure 5.2a: The solid line is the result obtained with Algorithm 2; the dotted
line is the result obtained if we do not reset the axial velocity and acceleration (Steps 5
and 6), and use (4.13a) to compute both the axial velocity and the transverse velocity.
Oscillations in the dotted line appear very early, with increasing amplitude compared to
the smoothness of the solid line. This oscillatory pattern is even more pronounced in the
time histories of nominal acceleration (Figure 5.2b) and of energy balance (Figure 5.2¢).
We note that oscillations also occur in Algorithm 1, with somewhat smaller amplitude, if
the special treatment in Steps 5 and 6 is absent. Thus, the proposed algorithms
effectively remove oscillations, which are clearly unacceptable. The offset in energy bal-
ance for Algorithm 2 (solid line in Figure 5.2¢) is less than 0.0013% of the initial kinetic
energy K, (= 5.4x 10°%gm?/s%). This offset is 0.0026% for Algorithm 1, in agreement

with our remark in the previous example.

Source of oscillations. The mechanism triggering the aforementioned oscillatory
phenomenon can be explained by looking at the equations of motion (3.18) and (3.20a),
recalling that I, = R =0. In particular, consider the axial acceleration ul,,. This
acceleration can be viewed as a driving force for the nominal motion, and is related to ¥*
by equation (3.18a). On the other hand, we consider the first term in equation (3.20a) —
which contains ¥! and vl (Y',t) — as a forcing term in solving for the predicted struc-
tural axial motion u!. The numerical error thus acquired — mainly in the predictor

stage — is then fed back to the nominal motion through the axial acceleration !, in

equation (3.18a), as noted. Depending on the initial velocity ):'1(0), this error could
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accumulate quickly, and grows in amplitude to create the observed oscillations. More-

over, oscillations arise more noticeably for larger ratio M/A,L.

Finally, we note that parameters in the model could play a réle in "dampening out"
these oscillations: For instance, the case where the term I,/R* in (3.18¢) is non-zero
(positive). Then the error fed back has diminishing influence on the vehicle motion —
more so with larger value of I,/R% It should be noticed that this type of energy growth
does not occur to the transverse displacement «? for a similar reason: the presence of the

factor u?

s << 1 of «?, (see (3.18b)) as a "dampening" factor. In general, however, the
proposed treatment of the axial acceleration during the predictor stage is an efficient

way to eliminate oscillations. e

Example 5.3. High-speed vehicle on a six-span guideway: Energy transfer.
The purpose of this example is to show the effect of vehicle/structure interaction on a
long guideway. We consider here a similar situation as in Example 5.1, except that the
structure is a six-span continuous beam, each span of I = 24m. Other parameters of
the model are identical to those in Example 5.1, except that here R = 0. The maximum
static deflection is reduced from L /140 to about L /200. The boundary conditions here
are such that «'(0,¢)= w*kL,t)= 0 for k=0,1,.,6, and ul,s(6L,t) = u?45(0,t) =
u?ss(6L,t) = 0. Each span of the beam is modeled by one element of the type
(N', N%) = (3,3), which allows discontinuity of w2 (related to shear force) at the sup-
ports. The initial velocity is set to 1;1(0) = 100m/s. From experience in Example 5.1,
600 time steps (or 100 steps per span) are used to cover the traversing time on rigid
guideway of 1.44s, i.e., b = 0.0024s.

Nominal velocity. The vehicle nominal velocity drops steadily to a significant
amount (Figure 5.3a). At the exit, this drop is about 3.5% of the initial velocity. Also,
the computed nominal velocity with this discretization differs little from that obtained
with a finer space-time discretization (two elements per span, and & = 0.0012s), as seen

from Figure 5.3a.
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Energy balance. The observed drop in nominal velocity is a result of energy
transfer from the vehicle to the guideway, see Figure 5.3b. The loss in wheel kinetic
energy is about 6.3% of the initial value. In Algorithm 2, the offset in energy balance is
less than 0.018% of the initial kinetic energy K, (= 22.5x 10%kgm?/s?); this offset is about
0.031% of K, for Algorithm 1. It is interesting to note that if the guideway (a
multiple-span structure, but not necessarily continuous) is sufficiently long, a vehicle
moving under its initial speed and its own weight, without other external force, will
experience a continuous drop in speed due to energy transfer, even in the absence of any

energy-dissipative mechanism such as mechanical friction or aerodynamic drag.

Influence lines. Dynamic influence lines at mid-span (beam mid-span deflection vs.
vehicle nominal position) are given in Figure 5.3c for the first span, and in Figure 5.3d
for the last span, together with the corresponding static influence lines. In the first span,
there is a characteristic delay in the dynamic response at the beginning, and a sustained
motion toward the end of the traversing, instead of a "motion" whose amplitude dies
out quickly as in the static case (Figure 5.3c). In the sixth span, on the other hand, the
response begins to build up quickly, with increasing amplitude, as soon as the vehicle
enters the third span (Figure 5.3d). This amplitude build-up could be explained by the
fact that the initial value of o = 0.854 is close to the critical value of 1.f However, as
noted above, for a sufficiently long continuous guideway and without the aid of any
other external force, this amplitude growth in structural motion could not become

unbounded because of the continuing loss in vehicle kinetic energy.

Contact force. We have in this example a case where the contact force |FZ2|
reaches 2.5 times the vertical force |F?| (Figure 5.3¢). Again, this points to the impor-
tance of the inertia term Mu?, which must be retained if the equation for nominal

motion is to be valid at high speed, as noted in Remark 3.2. The horizontal contact

t For this type of resonance, we refer to Smith, Gilchrist & Wormley {1975] where the case of a moving force
with constant speed is studied.
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force F!, has a maximum value of about 109 of the vertical force |F?| (Figure 5.3f).

Remark 5.2. The eigen-frequencies of the six-span beam used in this example are

reported in the Table 5.2

Table 5.2. FEigen-frequencies of siz-span beam.

Frequency | Computed X; in (5.4)
Values (Hz) || Computed Exact
fi 3.4722 — —
[ 10.4167 — —
Ii 2.4409 3.143 3.142
f3 2.6295 3.262 3.261
fi 3.1293 3.558 3.556
fé 3.8165 3.930 3.927
12 4.5747 4.302 4.208
fé 5.2485 4.608 4.601
f? 9.8360 6.309 6.283
fé 10.2467 6.439 6.410
I3 11.2498 6.747 6.708
& 12.5411 7.124 7.069

The exact values of the axial frequencies f;! and of the flexural frequencies f;? are given

according to

L L
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: (5.4)

where the values of \; can be found in Smith, Gilchrist & Wormley [1975]. 0 o

Example 5.4. Effects of braking on vehicle/structure system. The same
model parameters as those in Example 5.3 are used here, except B = 0.9m. We consider

the effects of applying the following braking torque

—27,000t (Nm) for t € [0, 0.1]
r(t) = —2,700 (Nm) for t > 0.1s (55)

to the wheel. On a rigid structure, the full torque creates a deceleration of 2m/s2.

References on analysis of braking effects of vehicle on bridge can be found, e.g., in Gupta
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& Traill-Nash [1980], and Lex-Mulcahy [1983]. Note that the vehicle models in these
references have no mass in direct contact with the structure, and hence are simpler to

handle. However, application of braking torque is not possible in these models.

Nominal velocity. Results are given for three initial velocities: 50m/s, 75m /s, and
100m /s. From Figures 5.4a-c, one observes the increasingly pronounced effects of struc-
ture flexibility with increasing vehicle speed, as compared with the case of braking on a
rigid structure. For the cases with ).’1(0) = 50m/s and 75m /s, the nominal velocity fol-
lows more or less that obtained on a rigid structure (Figure 5.4a-b). By contrast, the
case with 1./1(0) = 100m /s leads to a significant difference in the results (Figure 5.4c).
Compared with the drop in velocity at exit of a rigid structure, the structure flexibility
induces an additional drop of about 7% for }.’1(0)= 50m /s (Figure 5.4a), 169% for
710) = 75m /s (Figure 5.4b), and a sharply larger amount of 140% for Y(0) = 100m /s
(Figure 5.4c: The exit velocity is 93.4m/s on flexible structure, compared with 97.2m /s
on rigid structure). We note that, in traditional analysis of vehicle/structure interaction,

the prescribed nominal velocity would coincide with that on a rigid structure.

Contact force. Had we prescribed the vehicle nominal motion to be the same as
that on a rigid structure, this would result in a drastic difference in the magnitude of
horizontal contact force: For initial velocities of ).’1(0) = 75m/s and 100m /s, compare
respectively Figures 5.4d and 5.4f (unknown nominal motion) with Figures 5.4e and 5.4g
(prescribed nominal motion). Figures 5.4f and 5.4g are plotted at different scales to
reveal a shifting pattern of the average contact force in Figure 54f, as a result of
vehicle/structure interaction at high speed. For lower speed, this contact force does not
depart significantly from the case of traversing a rigid structure (Figure 5.4d). The rea-
son for the much larger horizontal contact force in the prescribed nominal motion case (3
to 4 times the contact force for unknown nominal motion) is due to the extra constraint

forces that must be applied on the vehicle to make it follow the prescribed motion.
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6. Closure

We have presented a methodology for analyzing the interaction between high-speed
vehicles and supporting flexible structures. The present approach departs completely
from traditional practice of assuming known vehicle motion. Nonlinear equations of
motion for a basic model, with a general form of contact constraint and valid for large
structural deformation, are derived using Hamilton’s principle. Additional assumptions,
essentially on small structural deformation, are introduced to simplify these equations to
a mildly nonlinear form. We propose efficient numerical algorithms to integrate the sys-

tem of DAE’s resulting from applying Galerkin spatial discretization.

Several examples are presented to illustrate the proposed approach. Discrete
energy balance check, monitoring the numerical results, testifies to the reliability of these
results, and therefore the viability of the method. We have shown some significant
differences in the results, compared to those obtained in an analysis where vehicle nomi-
nal motion is prescribed. Further, energy transfer from the traversing vehicle to the
supporting structure — decrease in vehicle kinetic energy, increase in energy stored in
the structure, and balance of system energy — is clearly demonstrated. We thus

effectively resolve the Timoshenko paradox in the spirit of Maunder [1960).

The present basic model is applicable to both wheel-on-rail and Maglev vehicles,
and serves as a building block for general vehicle/structure models. The proposed
numerical integration algorithms are not restricted to the basic model, but are as well

applicable in this general situation.
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Figure captions
Figure 3.1. Basic problem. Model parameters.

Figure 5.0. Basic vehicle/structure models. Simple-span and six-span beam struc-
tures.

Figure 5.1a. Vehicle/structure interaction at different initial velocities. Nominal
velocity vs. Time. Initial velocity Yl( )= 1lm/s. Beam length L = 24m.

Figure 5.1b. Vehicle/structure interaction at different initial velocities. Nominal
velocity vs. Time. Initial velocity Yl( )= 10m/s. Beam length L = 24m.

Figure 5.1c. Vehicle/structure interaction at different initial velocities. Nominal
velocity vs. Time. Initial velocity Yl( )= 50m/s. Beam length L = 24m.

Figure 5.1d. Vehicle/structure interaction at different initial velocities. Nominal
velocity vs. Time. Initial velocity Y'(0) = 100m/s. Beam length L = 24m. Solid line:
200 time steps. Dotted line: 100 time steps.

Figure 5.1e. Vehicle/structure interaction at different initial velocities. Vertical
displacement at contact point (normalized wrt 0.1728m) vs. Nominal position.
Y'Y0)= 1m/s, 10m/s, 50m /s, 100m/s. L = 24m.

Figure 5.1f. Vehicle/structure interaction at different initial velocities. Vertical
mid-span displacement, (normalized wrt 0.1728m) vs. Time (normalized wrt traversing
time on rigid beam). Y'(0)= 1m/s, 10m/s, 50m /s, 100m /s. L = 24m.

Figure 5.1g. Vehicle/structure interaction at different Jnitial velocities. Vertical
contact force F? (normalized wrt vertical force F2) vs. Time. Y1(0) = 50m /s, 100m /s.

Flgure 5.1h. Vehicle/structure interaction at different initial velocities. Energy
(x 10%) vs. Time. Initial velocity Y'(0) = 10m/s.

Figure 5.1i. Vehicle/structure interaction at different initial velocities. Energy
balance (x 10°) vs. Time. Offset of energy at transition from Algorithm 1 to Algorithm
2. YY0)= 10m/s. h = 0.012s.

Figure 5.1j. Vehicle/structure interaction at different initial velocities. Energy
(x 10%) vs. Time. Initial velocity Y'(0) = 100m /s.

Figure 5.2a. Growth of energy and proposed treatment. Nominal velocity vs.
Time. Solid line: Algorithm 2. Dotted line: without treatment for axial motion.

Figure 5.2b. Growth of energy and proposed treatment. Nominal acceleration vs.
Time. Solid line: Algorithm 2. Dotted line: without treatment for axial motion.

Figure 5.2c. Growth of energy and proposed treatment. Energy balance (x 10°) vs.
Time. Solid line: Algorithm 2. Dotted line: without treatment for axial motion.
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Figure 5.3a. High-speed vehicle on a siz-span guideway. Nominal velocity vs.
Time.

Figure 5.3b. High-speed vehicle on a siz-span guideway. Energy vs. Time. Solid
line: energy balance (x 10°). Dotted line: wheel kinetic energy.

Figure 5.3c. High-speed vehicle on a siz-span guideway. Influence line: Vertical
mid-span deflection in first span vs. Nominal position. Solid line: dynamic. Dotted line:
static.

Figure 5.3d. High-speed vehicle on a siz-span guideway. Influence line: Vertical
mid-span deflection in 6th span vs. Nominal position. Solid line: dynamic. Dotted line:
static.

Figure 5.3e. High-speed vehicle on a siz-span guideway. Vertical contact force F?
(normalized wrt vertical force F2) vs. Time.

Figure 5.3f. High-speed vehicle on a siz-span guideway. Horizontal contact force
F/ (normalized wrt vertical force |F?|) vs. Time.

Figure 5.4a. Effects of braking op vehicle/structure system. Nominal velocity vs.
Time. Six-span beam. Initial velocity Y'(0) = 50m /s.

Figure 5.4b. Effects of braking on vehicle/structure system. Nominal velocity vs.
Time. Six-span beam. Initial velocity Y'(0) = 75m/s.

Figure 5.4c. Effects of braking on vehicle/structure system. Nominal velocity vs.
Time. Six-span beam. Initial velocity Y'(0) = 100m /s.

Figure 5.4d. Effects of braking on vehicle/structure system. (Nominal motion as
unknown.) Horizontal contact force F}! (normalized wrt vertical force |F2]|) vs. Time.
Solid line: flexible structure. Dotted line: rigid structure. Y'(0) = 75m /s.

Figure 5.4e. Effects of braking on vehicle/structure system. (Nominal motion as on
rigid beam.) Horizontal contact force F! (normalized wrt vertical force |F2|) vs. Time.
Solid line: flexible structure. Dotted line: rigid structure. Y!(0) = 75m /s.

Figure 5.4f. Effects of braking on vehicle/structure system. (Nominal motion as
unknown.) Horizontal contact force F.' (normalized wrt vertical force |F2|) vs. Time.
Solid line: flexible structure. Dotted line: rigid structure. Y'(0) = 100m /s.

Figure 5.4g. Lffects of braking on vehicle/structure system. (Nominal motion as on
rigid beam.) Horizontal contact force F! (normalized wrt vertical force |F?2|) vs. Time.
Solid line: flexible structure. Dotted line: rigid structure. Y'(0) = 100m /s.
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Figure 5.3b. High-speed vehicle on a siz-span guideway. Energy vs. Time. Solid
line: energy balance (x 10°). Dotted line: wheel kinetic energy.
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Figure 5.3c. High-speed vehicle on a siz-span guideway. Influence line: Vertical
mid-span deflection in first span vs. Nominal position. Solid line: dynamic. Dotted line:

static.
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Figure 5.3d. High-speed vehicle on a siz-span guideway. Influence line: Vertical
mid-span deflection in 6th span vs. Nominal position. Solid line: dynamic. Dotted line:
static.
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Figure 5.3e. High-speed vehicle on a siz-span guideway. Vertical contact force F2
(normalized wrt vertical force F2) vs. Time.
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Figure 5.3f. High-speed vehicle on a siz-span guideway. Horizontal contact force
F.! (normalized wrt vertical force |F?|) vs. Time.
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Figure 5.4a. Effects of braking op vehicle/structure system. Nominal velocity vs.
Time. Six-span beam. Initial velocity Y!(0) = 50m/s.
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Figure 5.4b. Effects of braking op vehicle/structure system.

Time. Six-span beam. Initial velocity Y'(0) = 75m/s.
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Figure 5.4c. Effects of braking on vehicle/structure system.
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Figure 5.4d. Effects of braking on vehicle/structure system. (Nominal motion as

unknown.) Horizontal contact force F! (normalized wrt vertical force [F?|) vs. Time.
Solid line: flexible structure. Dotted line: rigid structure. Y(0) = 75m/s.
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o Figure 5.4e. Effects of braking on vehicle/structure system. (Nominal motion as on
rigid beam.) Horizontal contact force F! (normalized wrt vertical force |F?]) vs. Time.
Solid line: flexible structure. Dotted line: rigid structure. Y!(0) = 75m/s.
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Figure 5.4f. Effects of braking on vehicle/structure system. (Nominal motion as
unknown.) Horizontal contact force F! (normalized wrt vertical force |F?|) vs. Time.
Solid line: flexible structure. Dotted line: rigid structure. Y'(0) = 100m /s.
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Figure 5.4g. Effects of braking on vehicle/structure system. (Nominal motion as on
rigid beam.) Horizontal contact force F!' (normalized wrt vertical force |F?|) vs. Time.
Solid line: flexible structure. Dotted line: rigid structure. Y!(0) = 100m/s.





