
UC Davis
IDAV Publications

Title
Opening the Black Box - Data Driven Visualization of Neural Networks

Permalink
https://escholarship.org/uc/item/9dd6f376

Authors
Tzeng, Fan-Yin
Ma, Kwan-Liu

Publication Date
2005

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9dd6f376
https://escholarship.org
http://www.cdlib.org/

Opening the Black Box — Data Driven Visualization of Neural Networks

Fan-Yin Tzeng∗ Kwan-Liu Ma∗

Department of Computer Science

University of California at Davis

ABSTRACT

Artificial neural networks are computer software or hardware mod-
els inspired by the structure and behavior of neurons in the human
nervous system. As a powerful learning tool, increasingly neural
networks have been adopted by many large-scale information pro-
cessing applications but there is no a set of well defined criteria for
choosing a neural network. The user mostly treats a neural network
as a black box and cannot explain how learning from input data was
done nor how performance can be consistently ensured. We have
experimented with several information visualization designs aiming
to open the black box to possibly uncover underlying dependencies
between the input data and the output data of a neural network. In
this paper, we present our designs and show that the visualizations
not only help us design more efficient neural networks, but also as-
sist us in the process of using neural networks for problem solving
such as performing a classification task.

Keywords: Artificial Neural Network, Information Visualization,
Visualization Application, Classification, Machine Learning.

1 INTRODUCTION

In a human brain, a massively parallel information processing sys-
tem is formed by about ten billion nerve cells (neurons) and their
synapses. Artificial neural networks (ANN) [30] are a class of tech-
niques that mimic the processes found in biological neural networks
and well established in the machine learning community for pre-
dicting and learning from a given set of data. There are over 50
different types of ANN in use today. ANNs and other learning
tools such as Support Vector Machines [3] have gained increased
use in a variety of application areas, which should help dispel the
misconceptions of Artificial Intelligence (and ANN).

ANNs are based on the combination of neurons, connections
and transfer functions with various learning algorithms and layout
methods for the neurons and their connections. After learning, an
ANN represents a high-dimensional non-linear function.

A common problem in using ANN is that they act essentially
as a black box [25] that performs the assigned tasks for the user.
The information stored in a neural network is a set of numerical
weights and connections that provides no direct clues as to how
the task is performed or what the relationship is between inputs
and outputs. This limits the usage and acceptance of ANN since
in many applications in science and engineering it is demanded to
use techniques based on analytical functions that can be understood
and validated. Further complicating the use of neural networks is
the tedious process of parameter selection. Even when performing
very similar tasks, the proper choice of network parameters can vary
widely. These parameters, which include neural network structure,

∗IDAV & Department of Computer Science, University of California,
One Shields Avenue, Davis 95616, {tzengf,ma}@cs.ucdavis.edu

error bound, learning rate, training algorithm, hidden layer size, and
the data vector used, are often chosen in a trial-and-error process.

We believe visualization, which proves to help illustrate and un-
derstand the behaviors of complex systems, can also help us un-
derstand ANNs and design better ANNs. Previous attempts in us-
ing visualization to gain understanding into ANNs, as discussed in
Section 3, mainly studied the weights and connections of a neural
network and analyzed neural networks in isolation; the data used
by the neural network were mostly not looked at.

We therefore take a data-driven approach to the problem of visu-
alizing ANN since gaining insights into a neural network requires
the study of not only the network but also how it responds to the
input data that it was designed to process. The methods we present
enable the interactive exploration of both the input data and the neu-
ral network so as to gain more complete picture of how the neural
network performs its task. The visualizations can also assist in the
selection of network structure and other parameters for an assigned
task, with the objectives to achieve better results and minimize the
cost in terms of both space and time. Equally important is that the
user can apply our visualization methods to study how neural net-
works use data, and gain further understanding into the potentially
complex data relationships. In our work, we have applied visu-
alization techniques to feed-forward neural networks trained with
the back-propagation training algorithm [23], which is one of the
most popular neural networks used for classification. Our designs
and findings have helped us develop better intelligent visualization
systems, and should also help others gain both understanding and
confidence in using ANNs.

2 ARTIFICIAL NEURAL NETWORKS

Figure 1 shows the structure of a three-layer artificial neural net-
work. Each node in a layer is connected to all nodes (neurons) in
the adjacent layer. Each connection between neurons has a weight,
with the weights modulating the value across the connection. If the
nodes in the input layer are represented by I1, I2, I3, ... ,Im, the
nodes in the hidden layer are H1, H2, H3, ... , Hn, and Wi j is the
weight on the connection between Ii and H j , the value of a node in
the hidden layer can be shown as

H j = T F(
n

∑
i=1

Wi j × Ii).

Likewise, an output node Ok of the neural network can be shown as

Ok = T F(
m

∑
i=1

W jk ×H j).

In order for a neural network to model non-linear relationships
between inputs and outputs, a non-linear transformation is required.
T F(x) is the non-linear transfer function shown in the right side of
the nodes in Figure 1. In our work we use the standard sigmoid
function which can be expressed as f (x) = 1/

(

1+ e−x), and is the
most commonly used transfer function for classification tasks in
neural networks. When calculating the value of an output node, the

same transfer function is applied after summing up the results from
the previous layer. This transfer function can convert the neural
network from a linear to a non-linear system.

Input Layer Hidden Layer Output Layer

Input 1

Input 2

Input 3

Input m

I1

I2

I3

Im

Output

Hw(1, 1)

O
w

(1, 1)

Ow(2, 1)

Ow(3, 1)

O
w

(n
, 1

)

Hw(2, 1
)

H1

H2

H3

Hn

O1

Figure 1: A three-layered artificial neural network

A training process is required to activate the neural network. To
train a network, a set of training inputs and desired outputs are re-
quired. At the beginning, the weights are set at random, and are
iteratively modified to obtain a network which minimizes the error
at the output for the training data. Once training has occurred, the
network can be applied to data that was not part of the training set.

After training, that is, when the error between neural network
outputs and the desired outputs is lower than a threshold, the neural
network can be used to process data similar to the training samples
by taking the new set of data as input, and calculating the output
value Ok using the same formula above.

3 RELATED WORKS

To better understand the underlying behavior of a neural network,
there has been some research devoted in visualizing the neural net-
works. Craven and Shavlik [5] surveyed a number of visualiza-
tion techniques for understanding the learning and decision-making
processes of neural networks, including Hinton diagrams, bond di-
agrams, hyperplane diagrams, response-function plots, and trajec-
tory diagrams. A Hinton diagram uses a data matrix to represent
the topological information of the neural network. A Bond dia-
gram shows the neural network topology and applies triangles with
different sizes to show the weights. These techniques are used to
illustrate the idea of neural networks but are not practical due to the
difficulty of showing a large network clearly. Streeter et al. [26] de-
scribed an interactive visualization tool for feed-forward neural net-
works. Tree/graph based visualization is used in their work. They
display network topology and connection weights as well as the
evolutionary adaptation process when the user is allowed to inter-
actively adjust training parameters during adaptation. The weights
are used directly without taking the weight in the next levels into
account when a large weight does not necessarily indicate the im-
portance of an input. A small weight in the next layer can cancel
the influence of the previous weight. They also demonstrated that a
larger network can be handled, but when a large number of weights
are used, the visualization can become too complex and difficult to
understand. In our work, we not only visualize the weights along
with the selected data, but convert the weight information and the
statistics of the selected data into color and size representations for
the input nodes. More recently, Duch [8, 9] introduced a new pro-
jection on a lattice of hypercube nodes to visualize the hidden and

output node activities in a high dimensional space. This method
can be applied to any type of neural networks. However, only the
nodes are shown when the connections might also provide valuable
information.

In addition to the visualization of the neural network, rule extrac-
tion and numerical methods are also applied to study the contribu-
tion of variables in a neural network [14]. Rule extraction was first
mentioned by Gallant [11] to describe the neural networks with a
more understandable representation. Andrews et al. [2] and Tickle
et al. [28] survey the rule extraction methods and divide them into
categories. Garson [12] and Goh [15] multiply the weights between
layers to obtain the relative importance of the input variables. Since
the absolute values of the weights are used, the result does not pro-
vide the direction of the relationship. Olden and Jackson [21] in-
troduce a randomization approach to statistically analyze the input
importance based on Garson’s method [12]. Dimopoulos et al. [6]
compute the partial derivatives of the neural network’s output ac-
cording to the inputs. The results can be positive or negative. If
the partial derivative is negative, it indicates that the output of the
neural network increases when the studied input variable decreases.
A SSD (Sum of Square Derivatives) value can also be calculated
which indicates the importance of each input variable. Scardi and
Harding [24] modify only one of the input variables at a time and
the corresponding output is used to determine the influence of each
input variable. The stepwise methods [20, 27] add or reject one
input variable at a time and the MSE (mean square error) of the
output is used to identify the most important variables. Both the
Scardi and Harding’s and the stepwise methods are computational
expensive since the network needs to be re-calculated a lot of times
to obtain results corresponding to different input conditions.

We modify Garson’s method for defining node importance in our
data-driven neural network, and provide a more convenient way for
the user to interpret the results. In addition to node importance, the
uncertainty and errors are also visualized and discussed to help both
the designer and the user of a neural network.

4 ANN VISUALIZATION

Our work focuses on the application of visualizing neural networks.
In order to study this application, we apply our techniques in using
neural networks to solve two specific problems, volume classifica-
tion and spam classification.

Neural networks have been used for higher-dimensional classi-
fication in biomedical imaging [13, 16, 22] and volume visualiza-
tion [29] to identify and show features more precisely. In our work,
we use the volume classification framework described in our pre-
vious research [29]. The neural network is first trained by a small
set of input data including the corresponding class IDs provided by
the user. The input vector of a training data includes the voxel’s
scalar value, gradient magnitude, its six neighbors’ scalar values,
and its position. For example, the user provides sample data from
regions of the volume they would like to visualize, and the network
can learn to classify the entire volume.

The second application of our work is spam classification. With
the wide usage of email, spam has become a problem that limits
the effectiveness of email as a communication media. In early ap-
proaches, classification rules were defined by hand, but were costly
and impractical since the spammer also learns and adapts their
messages. Therefore, machine learning techniques are becoming
more and more popular for learning and performing text classifica-
tion [1, 4, 7, 31].

Neural network is employed in our spam classification work.
The neural network is trained by a set of pre-classified spam and
non-spam email where words or phrases in an email form the in-
put vectors. The trained network can recognize the pattern of spam
and filter new incoming messages. The user can then select a para-

graph, an email, or a set of email as the input data when visualizing
the network.

The information of a neural network is stored in its weights.
However, the weights are difficult to interpret and represent only
through mathematical formula or numerical analysis methods. We
show the neural network analysis through visualization since under-
standing of the data-driven neural network requires interactivity to
explore different sets of selected data, and visualization allows the
user to perceive and process large amounts of information rapidly
and make effective comparisons. The visualization methods include
dual-space interactive weight visualization, which allows the user
to probe into the data domain and visualize the corresponding net-
work, errors, and uncertainty visualization to help both the designer
and the user of a neural network.

4.1 Visualizing Weights – with single data

In our system, the user is provided with a probe to select data of
interest in the data domain and visualize the neural network as data
are passing through the network. That is, the user is able to look at
local properties of the data selected through the dual-space interac-
tion.

To highlight the information in a neural network, we color the
input and output nodes based on a selected voxel’s value, where
low value maps to blue, middle value maps to yellow, and high
value maps to pink. The data is then multiplied by the weights
and added together at the nodes as described in Section 2. When
visualizing the weights in a neural network, we focus on the input-
hidden layer so that the results can be mapped to the input data
domain, which the user is more familiar with. A more important
connection has higher weights on it, and its connected nodes have
a higher impact to the output result, which is also valuable infor-
mation about the data. We set the connection’s width based on how
important this connection is. However, a large weight between the
input-hidden layer might connect to a small weight between the
hidden-output layer and the effect will be canceled. That is, the re-
sulting visualization could be misleading if the weights were used
directly. Therefore, we propagate all the layer’s influence by multi-
plying each weight between the input-hidden layer and the weight
between the hidden-output layer which connect to the same hidden
node.

Figure 2 shows the result of visualizing a neural network which
performs volume classification to classify the brain material from
an MRI head data set. The neural network is first trained by ex-
amples of brain and non-brain materials provided by the user. A
voxel is then selected to perform the classification. When a voxel
at the lower left of the slice is selected, the color of the output node
shows that this data is not in the classified material. In addition, the
connections indicate that the position and data value are the main
factors of the selected voxel’s classified result. In the right image,
another neural network is shown where the user selected a voxel
within the brain, and almost all inputs except the gradient magni-
tude are used for classifying this voxel to the brain material.

Although the trained network is the same, different behaviors
occur when different inputs are selected, and can help the user to
better understand the data set.

4.2 Visualizing Weights – with a set of data

In addition to selecting a single piece of data, our system also allows
the user to select a region of data or even an entire data set, and
visualize the neural network with the selected data.

The connections of a neural network are shown with width rep-
resenting the weight strength. Input node size is assigned based on
the node importance, and input nodes are colored based on their
statistical information. A hidden node’s size shows its contribution

Low High

s

g

n

p

Figure 2: Dual-space interaction between the data and neural net-

work. In the input layer, s is the scalar value, g is the gradient

magnitude, n is the neighboring information, and p is the x, y, and

z position of the voxel. When a different voxel is probed, the visu-

alization of the data-driven neural network would change. The left

image shows the importance of position to assign the selected voxel

on the left to a class, and the right image indicates that classifying

the brain relies on all dimensions except the gradient magnitude.

to the final result. The user can then remove nodes that are not
necessary using the computed node importance as a reference.

To estimate the importance of each input variable, we adapt Gar-
son’s method to our approach which considers the selected region
of data. In Garson’s method [12], the contribution of input node i
to the output o through a hidden node j is computed by multiply-
ing the input-hidden weight strength and the hidden-output weight
strength.

ci jo = wi j ×w jo

The relative contribution from each input node k to a hidden node
j can be represented as

ri jo =
|Ci jo|

∑m
k=1 |Ck jo|

,

and the total contribution from an input node i is

Si =
n

∑
j=1

ri jo.

Finally, we can calculate the relative importance of an input node
as

RIi = (Si/
m

∑
k=1

Sk).

The relative contribution is used to show the width of the connec-
tions between input and hidden layers.

For two input variables which have the same influence on the re-
sults, the weights connected to them can be very different since the
classification process includes the multiplication of input variables
and weights. For example, if an input variable is small, the con-
nections through this input node need to be larger to bring the input
variable to the same level of importance as other nodes which have
higher values. However, when only interpreting the network, this
property is ignored.

Instead of using the network’s weights directly, for selected data
we divide the weights between the input-hidden layer by the mean,
which is the average of all the data. This can make the node impor-
tance evaluation more accurate and specific to the data used. The
use of mean is based on the assumption that the selected data have
similar properties so that the input values are close to their mean. To

compensate the estimation of using mean to represent a set of data,
we also show the standard deviation (std) on the nodes to indicate
data spread. The standard deviation can be represented as

S =

√

1
n−1

n

∑
i=1

(Xi −M)2,

where n is the number of all the data, Xi is the value of the ith data,
and M is the mean.

The colors of input nodes are assigned based on the similarity
of the mean and standard deviation using the table in Figure 3.
The color’s red (R) component increases when the mean increases,
green (G) increases when the standard deviation decreases, and blue
(B) remains constant. From an input node’s color, the user can ob-
tain information about what the selected data’s distribution is.

In addition to the input nodes, hidden nodes can also provide
valuable information. For hidden node j, a value H j is calculated
by passing the mean value of the selected data to the neural network.

H j = Sigmoid(
n

∑
i=0

Wi j ×Meani),

where n is the number of input nodes and Wi j is the weight on the
connection between input node i and hidden node j. The sum of
all hidden nodes is equal to the output of the neural network after
applying a sigmoid function. The percentage of H j to the sum of all
hidden nodes can thus be used to represent the relative contribution
of H j to the output, and used to assign the size of hidden node j.

mean increase

s
td

 d
e
c
re

a
s
e

Figure 3: A table for assigning an input node’s color based on its

mean and standard deviation. A green node indicates the inputs have

low mean and high standard deviation, and a red node represents high

mean and low standard deviation distribution.

In Figure 4, two neural networks are shown. The lower left im-
age is a neural network used to classify the head material and the
rest of the MRI head using five properties as inputs, and all the train-
ing data assigned to the head class are used as the selected data for
visualization with the neural network. A thicker connection from
the input layer shows the corresponding input node is more impor-
tant to the final result, and there is a threshold that hides the con-
nections that are less important. As shown in Figure 4, scalar value
is the most important feature to classify the data when the gradient
and position have only minor impacts on the result. This matches
the fact that the head can be easily separated with a traditional 1-D
transfer function, which maps data value to opacity directly.

The right image in Figure 4 shows the result of classifying the
boundaries, which are the regions with high gradient magnitude.
In this example, the gradient magnitude and neighbors play a more
important role in the classification, and the scalar value and position
do not contribute significantly to the final result. Based on the size
of hidden nodes, we remove four less important hidden nodes (the
1st, 10th, 13th, and 14th from the bottom) from the neural network
after it is trained. The cost of classification is reduced by 15% when
the result is only about 0.5% different from the original result.

s: scalar g: gradient magnitude

n: neighbors p: position

s: scalar g: gradient magnitude

n: neighbors p: position

s

g

n

p

 p

s

g

Figure 4: The left image shows a neural network which is trained for

classifying the entire head from the data set. The scalar value is the

main criterion considered in this classification. The right image is the

result of classifying the boundaries. In this case, neighbors and gra-

dient magnitude are shown to be more important. The classification

result is shown at the upper right of each network.

The most direct way to measure the performance of a neural net-
work is to look at the error between the training results and the
desired outputs over time. This error shows how well the neural
network learned to perform classification, and also provides infor-
mation about convergence. To validate our method and results ob-
tained so far, we calculate the mean square error for different pa-
rameter combination, and compare the results with our visualiza-
tion of neural networks.

Figure 5 presents an example of visualizing both the weights and
the errors together using 20 hidden nodes and 11 input nodes. In the
top image, scalar and gradient information are shown to be unim-
portant because the weights are smaller than the threshold and the
connections are not shown. This can be validated by visualizing
the errors in the bottom image. When only using scalar and gra-
dient as inputs, the mean square errors are high and converge at
the end. This indicates that even if more training time is given, the
neural network cannot improve further. With additional neighbor-
ing information, the neural network can learn better but still with
relatively high errors compared to the case of using scalar, gradi-
ent, neighbors, and position. The orange and blue curves show the
results of removing scalar and gradient from the input dimensions.
These two input combinations obtain results similar to when using
all input dimensions.

With this system, we discovered that when the hidden layer size
is small, scalar and gradient information are more important than
the neighboring information because the network is not able to learn
the complex relationship and direct criteria for classification such
as scalar value and gradient are more helpful. When a larger net-
work is used, it is able to learn indirect relationships such as tex-
ture, gradient, and local data range from the neighbors. This makes
the scalar and gradient information, which can be derived from the
neighbors, less important.

E
rr

o
r

(M
S

E
)

s,g

s,g,n

n,pg,n,p

s,g,n,p

sgnp

Figure 5: The neural network for classifying the brain material is

shown on the right. Scalar and gradient magnitude are unimportant

compared to the neighboring information and position, and this can

be verified by visualizing errors shown at the bottom.

4.3 Spam Classifier

To demonstrate our methods with a larger network, we choose the
application of spam classification using a data set that contains 400
email in the training set with 117 spam and 283 non-spam mes-
sages, and 200 email messages in the testing set where 61 of them
are spam email.

Neural networks are powerful because of their ability to process
high-dimensional data and to learn the non-linear relationships be-
tween inputs. Therefore, in most neural network applications such
as text classification, the inputs are high-dimensional. Dimension
reduction techniques are common and often required in the field
of neural networks since large networks lead to slow performance.
The selection of important input variables and the removal of unim-
portant ones can help to improve performance when maintaining
the classification or clustering ability [19].

Figure 6 shows a spam-classifier neural network using 82 input
nodes and 100 hidden nodes. The input, hidden, and output layers
are shown from bottom to top. The network is trained to assign
the email into two classes, spam and not spam. The data feeding
through the network is a subset of the spam in the training set.

From the visualization of input nodes, we can identify important
terms for classifying spam based on the nodes’ visual properties.
In Figure 6, the nodes for “free” and “need” are large, which indi-
cate that they are two important words to distinguish spam and not
spam in the data set. “Http” occurs in almost all the spam, which
is indicated by the red color of the node since red represents high
mean and low standard deviation. High mean and low standard de-
viation are obtained when the elements in the data have similarly
high values, and a high value is assigned when the word is in spam.
However, “http” is also a commonly used term in normal email, so
the node size is not as big as “free” and “need”. In Figure 6, the

node represents “information” is very small since “information” is
used in both spam and not spam with similar frequency, and not a
useful criterion for classifying spam. “Problem” is a medium size
node shown in green in the network. Green is assigned to nodes
with low mean, that is, the data does not exist in most spam.

When more nodes and connections are used in a neural network,
the visualization becomes more cluttered and difficult to study. Fig-
ure 7 shows the result of ordering the input nodes onto a panel ac-
cording to the statistics information where the colors and sizes of
each node in Figure 6 and Figure 7 are the same. From left to
right are the input nodes with increasing frequency of appearing in
spam. This simplifies the visualization and provides a more orga-
nized view of the input nodes.

4.4 Visualizing Uncertainty

During classification, the neural network outputs a value represent-
ing the uncertainty of the classification. High and low values in-
dicate the input belongs to the two user-specified classes with low
uncertainty, and middle values indicate high uncertainty where the
data is difficult for the neural network to classify. Parallel coordi-
nate [18] is a method to represent multi-dimensional data and is a
well-known technique for information visualization [10, 17]. In our
work, parallel coordinates are used to show the inputs and outputs
when training or classifying using a neural network.

Figure 8 shows the result of using parallel coordinates when the
task is to classify volume data into brain and all the other materi-
als. The input vector includes each voxel’s scalar value, gradient
magnitude, six neighbors’ scalar values, and the position. The last
dimension of the parallel coordinate system is the output (or desired
output for training), and the other dimensions are used for the input
vectors. Figure 8 shows the training samples with the desired out-
puts on the left, and the classification results on the right. In the left
image, the desired outputs are binary, and the material of interest
is mapped to red when the others are mapped to light blue. In the
right image, outputs are the results of applying the trained neural
network to the whole data set. Dark blue lines are used to highlight
the data that are difficult for the system to classify.

When looking at the dark blue data, more understanding of the
classification can be obtained. For example, the training data (left
image) only contains data with low values for position z, and in the
right image, the dark blue data always have high values for position
z. That is, the training set includes insufficient number of examples
with high z value for the neural network to learn this case. The user
can then provide more training samples that consider high z values.
This provides immediate understanding of the types of data that are
well-classified and not well-classified.

An additional application designed specifically for volume data
is to visualize the uncertainty of the classification result in the orig-
inal volume data space. The left image in Figure 9 is a slice of the
volume data with colors showing the classification result. When
a voxel is mapped to pink or blue, it shows that this voxel is well
classified to one of the classes. Colors in the middle of the col-
orbar, for example, yellow and green, are used when the data are
not well-classified by the neural network. This gives the user a bet-
ter understanding of the data in the spatial domain. However, the
green-to-yellow colors not only represent data that are difficult to
classify, but also the boundaries between the brain and other ma-
terials due to the interpolation during rendering. Therefore, when
rendering the uncertainty information of the entire volume, a thin
green-to-yellow layer will cover the whole brain. This can cause
misunderstanding of the classification results as shown in the mid-
dle image of Figure 9.

To remove the uncertainty caused by interpolation, we modify
the coloring method as shown in Figure 10. In the left is a curved
surface representing the boundary of the classification. Two adja-
cent voxels in the direction of the surface normal are assigned to

http

information

need freeproblem

Figure 6: A spam classifier with 82 input nodes and 100 hidden nodes. From bottom to top: Input layer, hidden layer, and output layer.

The network is trained to classify email into spam and not spam where each input is a term in the email, and the data feeding through the

network is a subset of the spam in the training set.

High meanLow mean

Low std

High std

(In most spam)(Not in most spam)

http

free

need

Figure 7: Result of ordering the input nodes onto a panel according

to the statistics information where the colors and sizes of each node

are the same as those in Figure 6. This provides a simple view of the

input nodes.

pink and blue based on the user defined color map. During render-
ing, the opacity of a voxel is obtained by looking up a transfer func-
tion with the interpolated data value, and case 1 shows the segment
between the two voxels with the interpolated color. After being
multiplied by the interpolated opacity, the color on the classifica-
tion boundary becomes yellow, which is not desired. Case 2 is the
desired color assignment. There is a binary color assignment be-
tween the two voxels. Our method is shown in Case 3. For a voxel
p2, the opacity is assigned based on the interpolated result, and the
voxel p1, which is one voxel away from p2 in the opposite direction
of the surface normal, is used to look up the color assigned to p2.
The result is shown in the right image of Figure 9. The colors are
assigned by the neighboring voxel along the opposite direction of
the normal so that only the classification uncertainty is shown. This
image can help the user to identify regions that are not well classi-
fied in the 3D volume and guide the user to provide more training
samples or add classification criteria to the current neural network.

Scalar Gradient x y z OutputScalar Gradient x y z Output

Figure 8: Parallel coordinates showing the classification uncertainty.

The red and light blue lines represent two different classes, and the

dark blue lines represent the data that is not well-classified. The

left image shows the training data where data with high z values is

missing, and the right image is the result of classification where the

blue data also have high values for position z. This suggests that the

training set is not wide enough and more samples with high z values

are needed.

Figure 9: Classification uncertainty shown in the volume data domain. The colorbar is used for color mapping to different uncertainty values.

The left image is a slice classified by a trained neural network. The middle image the result of rendering the uncertainty directly as a volume,

where a thin layer of green material is introduced by the interpolation during rendering. The right image shows the result of color assignment

using our method as presented in Figure 10.

Opacity = 1

Opacity = 0

Opacity* =

Opacity =

Opacity =

Case 1: Interpolation

Case 2: Desired Result

Case 3: Our Method

P1

P2

N

P1.position = P2.position - N

P2.color = P1.color

*

*

Figure 10: Three different methods for assigning a interpolated color

for classification uncertainty. Case 1: Assign color based on the

interpolate value by looking up the color map. This will cause a

thin layer of wrong color because of the interpolation. Case 2: The

desired color assignment. The color changes at the boundary of two

materials where no blending region exists. Case 3: Assign a voxel’s

color based on the value of the neighboring voxel along the opposite

normal direction. After applying the interpolated opacity, the same

color as in Case 2 can be obtained.

5 CONCLUSION

Machine learning is gaining widespread use in a variety of appli-
cation areas. Methods such as artificial neural networks prove to
be powerful in performing certain tasks and would become even
more widely employed if they can be better understood by the users.
Generally, users need to know how a decision is made and how
cost/performance can be better managed. We have shown that prop-
erly designed visualizations can give us a sense of the behaviors of
the network, how input data are used in the decision, and the level
of uncertainty. In particular, we show that it is advantageous to cou-
ple visualization of network with visualization of the data. While
the visualization cannot explain the learning, it effectively provides
pointers to the user for refining their problem solving strategies us-
ing machine learning. Future work includes studying different neu-
ral networks and other machine learning methods.

ACKNOWLEDGMENTS

This work has been sponsored in part by the U.S. National Sci-
ence Foundation under contracts ACI 9983641 (PECASE), ACI
0222991, and ANI 0220147 (ITR), ACI 0325934 (ITR), and the
U.S. Department of Energy under Lawrence Livermore National
Laboratory Agreement No. B537770, No. 548210 and No. 550194.
The authors would like to thank members of the UCD visualization
and graphics group for the valuable discussion and providing the
test data sets.

REFERENCES

[1] Kjersti Aas and Line Eikvil. Text categorization: A survey. Technical
Report 941, Norwegian Computing Center, 1999.

[2] Robert Andrews, Joachim Diederich, and Alan B. Tickle. A survey
and critique of techniques for extracting rules from trained artificial
neural networks. Knowledge Based Systems, 8(6):373–389, 1995.

[3] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A
comparison of neural network and fuzzy clustering techniques in seg-
menting magnetic resonance images of the brain. In Proceedings of
the fifth annual workshop on Computational learning theory, pages
144–152, 1992.

[4] William W. Cohen and Yoram Singer. Context-sensitive learning
methods for text categorization. ACM Transactions on Information
Systems (TOIS), 17(2):141–173, 1999.

[5] Mark Craven and Jude Shavlik. Visualizing learning and computa-
tion in artificial neural networks. International Journal on Artificial
Intelligence Tools, 1(3):399–425, 1992.

[6] Ioannis Dimopoulos, J. Chronopoulos, Aikaterini Chronopoulou-
Sereli, and Sovan Lek. Neural network models to study relationships

between lead concentration in grasses and permanent urban descrip-
tors in athens city (greece). Ecological Modelling, 120(2–3):157–165,
1999.

[7] Harris Drucker, Donghui Wu, and Vladimir N. Vapnik. Support vec-
tor machines for spam categorization. IEEE Transaction on Neural
Networks, 10(5):1048–1054, September 1999.

[8] Wlodzislaw Duch. Visualization of hidden node activity in neural net-
works: I. visualization methods. In Proceedings of the International
Conference on Artificial Intelligence and Soft Computing, pages 38–
43, 2004.

[9] Wlodzislaw Duch. Visualization of hidden node activity in neural
networks: Ii. application to rbf networks. In Proceedings of the In-
ternational Conference on Artificial Intelligence and Soft Computing,
pages 44–49, 2004.

[10] Ying-Huey Fua, Matthew O. Ward, and Elke A. Rundensteiner. Hier-
archical parallel coordinates for exploration of large datasets. In IEEE
Visualization 1999 Proceedings, pages 43–50, 1999.

[11] Stephan I. Gallant. Connectionist expert systems. Communications of
the ACM, 31(2):152–169, 1988.

[12] G. David Garson. Interpreting neural-network connection weights. AI.
Expert, 6(4):47–51, 1991.

[13] Erol Gelenbe, Yutao Feng, K. Ranga, and R. Krishnan. Neural net-
works for volumetric MR imaging of the brain. pages 194–202, Au-
gust 1996.

[14] Muriel Gevrey, Ioannis Dimopoulos, and Sovan Lek. Review and
comparison of methods to study the contribution of variables in ar-
tificial neural network models. Ecological Modelling, 160:249–264,
2003.

[15] A.T.C. Goh. Back-propagation neural networks for modeling complex
systems. Artificial Intelligence in Engineering, 9(3):143–151, 1995.

[16] Lawrence O. Hall, Amine M. Bensaid, Laurence P. Clarke, Robert P.
Velthuizen, Martin S. Silbiger, and James C. Bezdek. A comparison
of neural network and fuzzy clustering techniques in segmenting mag-
netic resonance images of the brain. In IEEE Transactions on Neural
Networks, volume 3, pages 672–682, September 1992.

[17] Helwig Hauser, Florian Ledermann, and Helmut Doleisch. Angular
brushing of extended parallel coordinates. In In Proceedings of IEEE
Symposium on Information Visualization 2002 (InfoVis 2002), pages
127–130, 2002.

[18] Alfred Inselberg. The plane with parallel coordinates. The Visual
Computer, 1(2):69–92, 1985.

[19] Savio L. Y. Lam and Dik Lun Lee. Feature reduction for neural net-
work based text categorization. In Proceedings of the Sixth Interna-
tional Conference on Database Systems for Advanced Applications
(DASFAA), pages 195–202, 1999.

[20] Holger R. Maier, Graeme C. Dandy, and Michael D. Burch. Use of
artificial neural networks for modelling cyanobacteria anabaena spp.
in the river murray, south australia. Ecological Modelling, 105:257–
272, 1998.

[21] Julian D. Olden and Donald A. Jackson. Illuminating the“black box”
a randomization approach for understanding variable contributions in
artificial neural networks. Ecological Modelling, 154(1–2):135–150,
2002.

[22] Leonid I. Perlovsky. Neural Networks and Intellect: Using Model-
Based Concepts. Oxford University Press, 2000.

[23] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning representations by backpropagation error. Nature, 323:533–
536, 1986.

[24] Michele Scardi and Lawrence W. Harding. Developing an empirical
model of phytoplankton primary production: a neural network case
study. Ecological Modelling, 120:220–233, 1999.

[25] Jonas Sjberg, Qinghua Zhang, Lennart Ljung, Albert Benveniste,
Bernard Delyon, Pierre-Yves Glorennec, Hkan Hjalmarsson, and
Anatoli Juditsky. Nonlinear black-box modeling in system identifica-
tion: a unified overview. Automatica (Journal of IFAC), 31(12):1691–
1724, 1995.

[26] Matthew J. Streeter, Matthew O. Ward, and Sergio A. Alvarez. Nvis:
An interactive visualization tool for neural networks. In Proceed-
ings of SPIE Symposium on Visual Data Exploration and Analysis VII,
pages 234–241, 2001.

[27] A. H. Sung. Ranking importance of input parameters of neural net-
works. Expert Systems with Applications, 15:405–411, 1998.

[28] Alan B. Tickle, Robert Andrews, Mostefa Golea, and Joachim
Diederich. The truth will come to light: Directions and challenges
in extracting the knowledge embedded within trained artificial neural
networks. IEEE Transactions on Neural Networks, 9(6):1057–1068,
1998.

[29] Fan-Yin Tzeng, Eric B. Lum, and Kwan-Liu Ma. An intelli-
gent system approach to higher-dimensional classification of volume
data. IEEE Transactions on Visualization and Computer Graphics,
11(3):273–284, 2005.

[30] Paul Werbos. Beyond Regression: New Tools for Prediction and Anal-
ysis in the Behavioral Sciences. PhD thesis, Department of Applied
Mathematics, Harvard University, 1974.

[31] Erik Wiener, Jan O. Pedersen, and Andreas S. Weigend. A neural
network approach to topic spotting. In Proceedings of SDAIR ’95, 4th
Annual Symposium on Document Analysis and Information Retrieval,
pages 317–332, 1995.

