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Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions characterized by a porous endo-
thelium. The lack of a sufficient endothelial barrier can result inmicrobleeds and frank intracerebral
hemorrhage. A primary mechanism for lesion development is a sequence variant in at least 1 of the
3CCMgenes (CCM1,CCM2, andCCM3), which influence various signaling pathways that lead to
the CCM phenotype. A common downstream process associated with CCM gene loss of function
involves overactivation of RhoA and its effector Rho-associated kinase (ROCK). In this study, we
review RhoA/ROCK–related mechanisms involved in CCM pathophysiology as potential thera-
peutic targets. Literature searches were conducted in PubMed using combinations of search terms
related to RhoA/ROCK and CCMs. In endothelial cells, CCM1, CCM2, and CCM3 proteins
normally associate to form the CCM protein complex, which regulates the functions of a wide
variety of protein targets (e.g., MAP3K3, SMURF1, SOK-1, and ICAP-1) that directly or indirectly
increase RhoA/ROCK activity. Loss of CCM complex function and increased RhoA/ROCK
activity can lead to the formation of stress fibers that contribute to endothelial junction instability.
Other RhoA/ROCK–mediated pathophysiologic outcomes include a shift to a senescence-
associated secretory phenotype (primarily mediated by ROCK2), which is characterized by en-
dothelial cell migration, cell cycle arrest, extracellularmatrix degradation, leukocyte chemotaxis, and
inflammation. ROCK represents a potential therapeutic target, and direct (fasudil, NRL-1049) and
indirect (statins) ROCK inhibitors have demonstrated various levels of efficacy in reducing lesion
burden in preclinical models of CCM. Current (atorvastatin) and planned (NRL-1049) clinical
studies will determine the efficacy of ROCK inhibitors for CCM in humans, for which noUS Food
and Drug Administration–approved or EU-approved pharmacologic treatment exists.

Introduction
Cerebral cavernous malformations (CCMs) are vascular lesions of the brain,1 characterized by a
dysfunctional endothelium,2 which can lead to microbleeds and intracerebral hemorrhage.3,4 CCMs
are relatively common, occurring in up to 1% of the population.5 CCMs have been classified as
familial or sporadic, with the sporadic form representing approximately 80% of cases with CCM.6,7

Familial CCM is characterized bymultiple lesions, whereas sporadicCCM is typically associatedwith
a single lesion.1 In vascular endothelial cells, Krev1 interaction trapped protein 1 (KRIT1, CCM1),
CCM2, and programmed cell death protein 10 (PDCD10, CCM3) associate to form a protein
(CCM) complex, and these proteins are essential for normal endothelial cell-cell junctions.8-13 A loss
of function in at least 1 of these proteins disrupts CCM-complex function, which is an underlying
mechanism for lesion development.1 The familial form of CCM is associated with germline and
somatic sequence variants inCCM1,CCM2, orCCM3 genes. Sporadic CCM results from 2 somatic
sequence variants in a CCM gene (CCM1, CCM2, CCM3) or 1 somatic gain-of-function (GOF)
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sequence variant to MAP3K3 (MEKK3).1,14 Somatic sequence
variants associated with sporadic CCM can develop after expo-
sure to ionizing radiation,1 although the underlying causes are not
fully understood. In addition, PIK3CA somatic GOF sequence
variants along with CCM LOF sequence variants have been
detected in familial and sporadic CCMs15 and can increase lesion
growth and risk of hemorrhage.16

A common downstream process associated with CCM gene loss
of function involves overactivation of RhoA and its effector Rho-
associated kinase (ROCK). The objective of this narrative review
was to describe pathologic endothelial mechanisms of CCM
formation that involve RhoA/ROCK activation, including
isoform-specific functions, as described in preclinical and clinical
studies of CCM. ROCK inhibitors that have been used to ame-
liorate lesion burden in studies of CCM are also reviewed. Lit-
erature searches were conducted in PubMed using combinations
of the following search terms: cerebral cavernous malformation,
cavernoma, cavernous angioma, RhoA, Rho-associated protein
kinase, Rho-associated kinase, Rho-associated coiled-coil con-
taining kinase, and ROCK.

Rho-Associated Kinase
ROCK is a serine/threonine kinase and downstream effector
of the GTPase RhoA.17 In blood vessels, RhoA/ROCK can
influence or stimulate contractility, migration, proliferation, dif-
ferentiation, and the integrity of cell-cell junctions.18-20 Rho-
associated kinase is widely expressed across diverse tissue types;
however, ROCK isoforms (ROCK1 and ROCK2) can display
tissue-specific expression patterns and functions.17,21 In endo-
thelial cells, ROCK has been associated with the development of
stress fibers, whereas ROCK2 directly influences the integrity of
endothelial cell-cell junctions.21,22 ROCK2 is the predominant
isoform in the brain,17 and increased expression or activation of
ROCK2 has been associated with various neurodegenerative
diseases (e.g., Alzheimer disease and Parkinson disease) and
chronic cerebral ischemia.23 Partial ablation of Rock2 in a hemi-
zygous CCM knockout mouse model (Ccm3+/−Rock2+/−) resul-
ted in fewer mice with lesions compared with partial ablation
of Rock1 (Ccm3+/−Rock1+/−), suggesting that ROCK2 is a key
isoform in the development of CCM lesions.24

Regulation of RhoA/ROCK Activity
by CCM Complex Proteins
Normally, the CCM protein complex inhibits RhoA/ROCK
signaling.1,11,22,25,26 Loss of CCM1, CCM2, or CCM3 function

leads to disinhibition of RhoA-dependent ROCK activity
(Figure 1).22,25,26 Protein-protein interactions have been
identified between CCM2 and RhoA27 as well as CCM1 and
ROCK1/ROCK2.12 Moreover, CCM2 associates with mitogen-
activated protein kinase kinase kinase 3 (MAP3K3),28,29 and a
loss of CCM complex function leads to greater activation of
MAP3K3.1,2,28,30 Somatic MAP3K3 GOF sequence variants
can also occur independent of CCM protein function. The
MAP3K3–mitogen-activated protein kinase kinase 5 (MAP2K5,
MEK5)–extracellular signal–regulated kinase 5 (ERK5, MAPK7)
pathway leads to activation ofmyocyte enhancer factor (MEF) 2A
and MEF2C transcription factors that induce expression of
Kruppel-like factor (KLF) 2 andKLF4 transcription factors,28,31,32

which increase RhoA-dependent ROCK activation.1,30

Other proteins interact with the CCM complex to participate in
MAP3K3-independent regulation of RhoA/ROCK activity.
SMAD-specific E3 ubiquitin protein ligase 1 colocalizes with
CCM2 and associated proteins (CCM complex),33 where it
degrades RhoA in a CCM2-dependent manner.33,34 Localized
degradation of RhoA may have physiologic relevance at sites of
CCM complex localization and function.34 Ste-20 oxidant stress
response kinase 1 (SOK-1, STK25), aGCK-III serine/threonine
kinase, associates with CCM3 to phosphorylate moesin, which
reduces RhoA activity.9,35 Loss of CCM3 and/or SOK-1 at-
tenuates the moesin inhibitory action on RhoA, leading to
RhoA activation.35 CCM1, CCM2, and integrin cytoplasmic
domain–associated protein–1 (ICAP-1) form a stable protein
complex, which maintains β1-integrin inactivation through an
ICAP-1–mediated protein interaction.36 A loss of CCM1 and
CCM2 leads to destabilization of ICAP-1, which leads to in-
creased activation of β1 integrins andRhoA/ROCK activation.36

Role of ROCK in CCM
Vascular Lesions
Formation of Stress Fibers
Stress fibers are composed of actin and myosin, anchored by
focal adhesions to the extracellular matrix (ECM).37,38 Stress
fibers have the capacity to contract and disrupt cell-cell junc-
tions,37 which can increase cerebrovascular permeability and
the risk of bleeding.2

Rho-associated kinase phosphorylates myosin regulatory
light chains (MRLCs) of myosin II,20,22,39 which leads to
increased actomyosin contractility and the formation of stress
fibers (Figure 1).20,22,37,40 ROCK also phosphorylates myosin
phosphatase target 1 subunit, a regulatory subunit of myosin

Glossary
CCMs = cerebral cavernous malformations; ECM = extracellular matrix;GOF = gain of function;HEG1 = heart of glass; ICAP-
1 = integrin cytoplasmic domain–associated protein–1; KLF = Kruppel-like factor; LIMK = LIM domain kinase 1;MAP2K5 =
mitogen-activated protein kinase kinase 5;MEF =myocyte enhancer factor;MRLCs =myosin regulatory light chains;ROCK =
Rho-associated kinase; tMCAO = transient middle cerebral artery occlusion; VEGF = vascular endothelial growth factor.
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light-chain phosphatase, which reduces dephosphorylation of
MRLC.19,20,41-44 In addition, ROCK phosphorylates LIM domain
kinase 1 (LIMK), which regulates cofilin-mediated and destrin-
mediated actin depolymerization and filament turnover.20,45

Phosphorylation of cofilin and destrin by ROCK-LIMK pre-
vents cofilin-dependent and destrin-dependent actin cytoskeletal
depolymerization, resulting in a greater number of actin

filaments.20,22,45 Myosin II cross-linking with actin results in the
formation of actomyosin and stress fibers.20,22

Endothelial Cell Migration and Angiogenesis
Depending on the strength of cell adhesion, increased stress
fiber formation can either reduce or promote endothelial cell
migration.20,37,46 In the presence of angiogenic factors, such as

Figure 1 RhoA/ROCK Signaling in CCM

CCMprotein complex regulation of RhoA/ROCK: Loss of function in CCM1, CCM2, or CCM3 proteins leads to activation of RhoA/ROCK. Stress fiber formation: ROCK
activity increases phosphorylation status of MRLC, the formation of actomyosin, and stress fibers. RhoA isoprenylation and VEGF-A signaling: VEGF/VEGFR-2
enhances HSP90-dependent RhoA/ROCK activity, phosphorylation of JNK/FAK1, and endothelial cell migration and angiogenesis. Endothelial cell invasiveness,
leukocyte chemotaxis, and inflammation: ROCK2 regulates the expression of cell cycle activators and inhibitors, leading to cell cycle arrest and senescence. RhoA/
ROCK activity increases expression of SNAIL1 and SLUG to promote endothelial to mesenchymal transition and endothelial cell invasiveness, while cell adhesion
proteins and chemokines are upregulated to promote leukocyte chemotaxis and inflammation. Endothelial cell junctions: Basal ROCK2 activity is required for
normal endothelial intercellular junctions, and a loss of CCM1at adherens junctions prevents ROCK2 recruitment, resulting in junctional instability. Abbreviations: B
= binding; CCL= CCmotif chemokine ligand;CCM= cerebral cavernousmalformation; CDK1= cyclin-dependent kinase 1; CKS1= cyclin-dependent kinase regulatory
subunit 1; CM = covalentmodifications; CS = complex subunit; E2F1 = E2F transcription factor 1; ERK5 = extracellular signal–regulated protein kinase 5; FAK1 = focal
adhesion kinase 1; GGTase-1 = geranylgeranyltransferase type 1; HEG1 = heart of glass; HSP90 = heat shock protein 90; ICAP-1 = integrin cytoplasmic domain–
associatedprotein-1; IE = influenceonexpression; IL = interleukin; ITGB1= β1 integrin; JNK= c-JunN-terminal kinase; KLF2= Kruppel-like factor 2; KLF4= Kruppel-like
factor 4; Krit1 = Krev1 interaction trappedprotein 1; LIMK= LIMdomain kinase 1;MAP2K5=mitogen-activatedprotein kinase kinase 5;MAP3K3=mitogen-activated
protein kinase kinase kinase 3; MAPK8-10 = mitogen-activated protein kinases 8–10; MEF2A = myocyte enhancer factor 2A; MEF2C = myocyte enhancer factor 2C;
MEK5 = mitogen/extracellular signal-regulated kinase kinase-5; MLCP = myosin light-chain phosphatase; MMP-9 = matrix metalloproteinase-9; MRLC = myosin
regulatory light chain; PDCD10 = programmed cell death protein 10; RAP-1A = Ras-related protein Rap-1A; ROCK1 = Rho-associated kinase 1; ROCK2 = Rho-
associated kinase 2; SLUG = zinc finger protein SNAI2; SMURF1 = SMAD specific E3 ubiquitin protein ligase 1; SNAIL = zinc finger protein SNAI1; SOK-1 = Ste-20
oxidant stress response kinase 1; TR = transcription regulation; VCAM1 = vascular cell adhesion molecule 1; VE-cadherin = vascular endothelial cadherin; VEGF =
vascular endothelial growth factor; VEGFR-2 = vascular endothelial growth factor receptor 2. Symbols: +P, phosphorylation; -P, dephosphorylation; ?, unspecified
interactions. Symbol colors: Green indicates positive/activation, red indicates negative/inhibition, and gray is unspecified. An X indicates disruption in disease. See
eAppendix 1 (links.lww.com/NXG/A667) for full graphic key.
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vascular endothelial growth factor (VEGF), endothelial
ROCK activation contributes to focal adhesion turnover, actin
polymerization, and the development of stress fibers, leading
to cell migration and angiogenesis.46 Pathologic angiogenesis
can contribute to the development and growth of vascular
lesions in CCM.1

RhoA isoprenylation and VEGF-A/VEGF receptor 2 (VEGFR-
2) signaling influences RhoA/ROCK function, which leads to
endothelial cell migration during angiogenesis (Figure 1).27,46

Cholesterol biosynthesis products, such as geranylgeranyl pyro-
phosphate, are required for isoprenylation and membrane lo-
calization of RhoA to exert its effects; isoprenylation is catalyzed
by geranylgeranyltransferase type 1 (GGTase-1) via the transfer
of the geranylgeranylmoiety from geranylgeranyl pyrophosphate
to RhoA.47-50 VEGF-A–stimulated VEGFR-2 interacts with heat
shock protein 90 (HSP90) that activates RhoA/ROCK1,
resulting in phosphorylation of focal adhesion kinase 1
(FAK1).46,51,52 An interaction between CCM3 and VEGFR-2
has been described in which a loss of CCM3 attenuated VEGF-
A/VEGFR-2 signaling.53 However, other studies have either
failed to detect a direct interaction between CCM3 and VEGF
signaling or have detected an increase in VEGF signaling with a
loss of CCM3.54,55 This remains an area for further study.

Isoprenylation of RhoA is necessary for RhoA-dependent
phosphorylation of c-Jun N-terminal kinase (JNK, MAPK8-
10) and FAK1 (Figure 1).27,47 Activated JNK and FAK1 in-
crease vascular permeability and promote endothelial cell
migration27,46,51,52,56

Endothelial Cell Invasiveness, Leukocyte
Chemotaxis, and Inflammation
Cell senescence underlies various disease states, including car-
diovascular disease and neurologic disorders.57,58 Increases in
ROCK1 and ROCK2 activity due to a loss of CCM2 function
lead to reprogramming of endothelial cells into a senescence-
associated secretory phenotype.59 The phenotype is character-
ized by the production of factors including proinflammatory
cytokines, chemokines, and matrix metalloproteinases.59,60

Endothelial cell reprogramming involves the following
mechanisms that depend on ROCK activity.59 A ROCK-
mediated increase in stress fiber formation results in pre-
mature senescence of CCM2-deficient endothelial cells.
ROCK2 is more effective than ROCK1 in upregulating the
expression of cell cycle inhibitors (such as p21 and p15) and
downregulating the expression of cell cycle activators (such as
cyclin A2, cyclin-dependent kinase 1 [CDK1, p34], cyclin-
dependent kinase regulatory subunit 1B [CKS1B], and E2F
transcription factor 1 [E2F1]),59 leading to cell cycle arrest
and subsequent cellular senescence (Figure 1).59,60,e1 ROCK1
and ROCK2 increase gene expression for proteins (zinc finger
protein SNAI1 [SNAIL] and zinc finger protein SNAI2
[SLUG]) that promote endothelial to mesenchymal transi-
tion (EndMT) (Figure 1).59,e2 EndMT may contribute to
vascular lesions in CCM as well as endothelial cell

invasiveness.59,e3-e5 ROCK1 and ROCK2 upregulate gene
expression associated with cell adhesion proteins (such as
vascular cell adhesion molecule 1 [VCAM1]) and chemokines
(such as CC motif chemokine ligand [CCL] 1, CCL2, CCL5,
and interleukin [IL]–8e6) that are involved in leukocyte che-
motaxis (Figure 1).59,e7 ROCK2 has been shown to be the main
ROCK isoform that increases leukocyte and endothelial cell
chemotaxis (chemoattraction).59 Leukocyte chemotaxis then
promotes inflammation that contributes to vascular lesions in
CCM.59,e6-e8 ROCK1 and ROCK2 also increase the expression
of cytokines (such as IL-1 alpha and IL-1 beta) that are involved
in inflammation and are characteristic of the senescence-
associated secretory phenotype.59,60,e9 ROCK1 has been
shown to be the main isoform that contributes to ECM degra-
dation,59 which is associated with increased activity of matrix
metalloproteinases (MMPs), and ECM degradation can further
promote leukocyte chemotaxis.e10 In addition, ROCK2 can in-
fluence the expression of MMP-9,e11 which has a role in ECM
degradation.e12 ECM degradation and cellular senescence also
support the invasiveness of endothelial cells in CCM.59

Endothelial Cell Junctions
Tight junctions and adherens junctions are specialized protein
complexes that partly form interendothelial junctions and con-
tribute to the blood-brain barrier.e13 CCM1binds toROCK2 and
recruits ROCK2 to the vascular endothelial (VE)–cadherin/beta-
catenin complex of adherens junctions, where ROCK2 interacts
with vascular endothelial cadherin (VE-cadherin) and beta-
catenin, promoting VE-cadherin-VE-cadherin interendothelial
junctions (Figure 1). Loss of CCM1 may prevent ROCK2 re-
cruitment to the VE-cadherin/beta-catenin complex, attenuating
stabilization of adherens junctions and increasing vascular per-
meability.12 The formation of stress fibers leads to increased focal
adhesions and destabilization of adherens junctions, which fur-
ther increases vascular permeability.37 In turn, this increased
vascular permeability is associated with bleeding, a hallmark of
CCMdisease.1Heart of glass (HEG1), a transmembrane protein,
binds to CCM1 and recruits the CCM complex to the cell
membrane to control junctional stability.11,e14,e15 Ras-related
protein Rap-1A (RAP-1A) also binds to CCM1 and relocalizes
CCM1 from microtubules to the cell membrane to stabilize
interendothelial junctions by inhibiting the RhoA/ROCK
signaling pathway.e16,e17 Thus, CCM1 sequence variants may
disrupt HEG1-mediated and RAP-1A–mediated stability of
interendothelial junctions.

ROCK as a Therapeutic Target
Rho-associated kinase inhibition to reduce lesion burden
(e.g., size, number) has been tested using a specific but
isoform-nonselective ROCK inhibitor (fasudil); statins
(simvastatin, atorvastatin), which have pleiotropic effects that
include ROCK inhibition; and a selective ROCK2 inhibitor
(NRL-1049, formerly BA-1049).24,e18-e20 In heterozygous
CCM1-knockout mice (Ccm1+/−Msh2−/−), fasudil treatment
(100 mg/kg/d) that began at weaning and continued until
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4–5 months of age reduced the prevalence of CCM lesions
compared with placebo, with greater effects noted on the
prevalence of multicavernous stage 2 lesions.e18,e20 Lesion size
was smaller with fasudil treatment, and there were lower rates
of inflammation and endothelial cell proliferation.e20 In het-
erozygous CCM3-knockout mice (Ccm3+/−Trp53−/−), lesion
volume was lower with fasudil treatment (100 mg/kg/d)
compared with placebo.e19 In addition, lesional bleeding was
lower inCcm1+/−Msh2−/− and Ccm3+/−Trp53−/−mice treated
with fasudil.e18-e20 Fasudil was not associated with a negative
influence on survival in Ccm1+/−Msh2−/−, Ccm2+/−Trp53−/−,
or Ccm3+/−Trp53−/− mice, indicating that the dosage used
was well tolerated in these models. Fasudil is approved in
Japan for treatment of cerebral vasospasm with intracranial
hemorrhage;e21 however, it is not clinically approved for any
indication in the United States.

Atorvastatin and simvastatin have been examined for their
potential to reduce lesion burden in animal models of CCM.
In Ccm3+/−Trp53−/− and Ccm3+/−Msh2−/− mice, atorvastatin
(80 mg/kg/d, treated from weaning to age 5 months) at-
tenuated lesion volume and bleeding compared with place-
bo.e19 Simvastatin (40 mg/kg/d, treated from weaning until
age 4–5months) did not decrease lesion number or volume in
Ccm1+/−Msh2−/−,Ccm2+/−Trp53−/−, orCcm3+/−(inTrp53−/−

and Msh2−/− sensitized backgrounds) mice, although it was
effective at reducing lesion bleeding.e18,e19 A phase 1/2
randomized, double-blind, placebo-controlled trial
(NCT02603328) is currently being conducted to investigate
atorvastatin (40–80 mg/d) in patients with CCM who expe-
rienced symptomatic bleeding within 1 year of enrollment.e22 A
randomized controlled pilot study that examined simvastatin
treatment (20–40mg/d) in patients with familial CCMdid not
report a difference in CCM permeability (percentage change
between first [baseline] and second [3 months after treatment]
dynamic contrast-enhanced perfusion magnetic resonance

images, with and without normalizing to white matter) com-
pared with the control arm.e23

NRL-1049 is a novel selective inhibitor of ROCK2, the
predominant isoform in the CNS and a key isoform in
the development of CCM lesions.24 The effectiveness of
NRL-1049 in reducing lesion burden and bleeding was
investigated in hemizygous CCM1 (Ccm1+/−Msh2−/−) and
CCM3 (Ccm3+/−Trp53−/−) knockout mice. NRL-1049
(100 mg/kg/d) or placebo treatment was initiated at
weaning and continued until 3 (Ccm3+/−Trp53−/−) or 4
(Ccm1+/−Msh2−/−) months of age. In both Ccm1+/−Msh2−/−

and Ccm3+/−Trp53−/− knockout mice, lesion volume was
reduced with NRL-1049 compared with placebo (Figure 2, A
and B). In Ccm3+/−Trp53−/− mice, the mutant model with
greater lesion burden, NRL-1049 also reduced lesion volume
at the 10-mg/kg/d dose level. The effect of NRL-1049 on
lesion volume was most conspicuous on multicavernous
stage 2 lesions. Significant attenuation of lesional bleeding
(Figure 2, C and D) was detected at all doses tested (1, 10,
and 100 mg/kg/d) compared with placebo. Survival in these
animal models was not influenced by treatment.24 An in-
vestigational new drug application with the US Food and
Drug Administration was filed for NRL-1049,e24 and a
clinical trial to examine the safety, dosing tolerability, and
pharmacokinetics in healthy volunteers began in 2023.e25

In all, these data suggest that ROCK inhibition may be an
effective strategy to reduce CCM lesion burden. In addition,
ROCK inhibitors, such as fasudil and NRL-1049, have re-
duced lesion burden in multiple CCM genotypes. Although
different ROCK pathways have been associated with specific
CCM proteins in preclinical studies, the common down-
stream RhoA/ROCK effect is significant and commensurate
with the severity of disease irrespective of the causative CCM
protein.

Figure 2 Effect of Rho-Associated Kinase (ROCK) Inhibition on Cavernous Cerebral Malformation Lesion and Bleeding

(A–B): Representative microcomputed tomography images il-
lustrating the effect of treatment with placebo (A) or NRL-1049
(B), a selectiveROCK2 inhibitor, onCCMlesions inCcm3+/−Trp53−/−

mice. (C–D): Representative Perls’ Prussian blue staining, which
detects nonheme iron, illustrating the effect of placebo (C) or
NRL-1049 (D) on lesional bleeding. Bar, 500 μm. Adapted with
permission from McKerracher, et al.24
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ROCK Isoforms and
Vascular Dysfunction
Rho-associated kinase 2 has been characterized as the primary
ROCK isoform that underlies vascular dysfunction (con-
tractility, morphology) in murine models.e26,e27 In a pre-
clinical study, pharmacologically induced changes in vascular
stiffness and morphology were examined in Rock1+/− and
Rock2+/− mice.e26 Compared with wild-type control mice,
increases in blood pressure as well as vascular stiffening
and remodeling after a 4-week treatment with angiotensin II
(500 ng/kg/min) plus L-Nω-nitroarginine methyl ester
(L-NAME, 0.5 g/L) were attenuated more in Rock2+/− than
Rock1+/− mice. Treatment-mediated increases in collagen fi-
bers and hypertrophy of the aorta were decreased in Rock2+/−

mice, whereas elastic fibers were preserved.e26 In a separate
study, the role of ROCK2 in neuroprotection was evaluated in
a model of cerebral ischemia (transient middle cerebral artery
occlusion [tMCAO]).e27 In brain and heart endothelial cells
isolated from endothelial-specific Rock2−/− and/or constitu-
tive Rock2+/− mice, endothelial nitric oxide synthase expres-
sion and nitric oxide production were greater compared with
control mice following tMCAO. Similarly, endothelium-
dependent relaxation of the aorta was also greater in Rock2+/−

mice compared with wild-type control.e27

Rho-associated kinase 1 and ROCK2 are essential for normal
development; however, ablation of these isoforms yields dif-
ferent phenotypes, underscoring isoform-specific functions of
ROCK. Homozygous ROCK1 knockout mice (Rock1−/−) are
born with ventral wall deformities (omphalocele) and eyelid
dysfunction (eyes open at birth), and most die shortly after
birth.e28 By contrast, most Rock2−/− mice die in utero likely
because of vascular dysfunction (e.g., thrombus formation) in
the labyrinth layer of the placenta.e29 Hemorrhage of the hind
limb has also been observed in Rock2−/− embryos.e29 In this
review, mechanistic studies that examined ROCK in CCM
used mammalian and nonmammalian models as well as var-
ious cell lines. In some cases, ROCK1 and ROCK2 were
characterized in specific signaling pathways of CCM; as such,
both ROCK112 and ROCK224,e18 have been considered as
potential therapeutic targets. However, ROCK2 is the pri-
mary isoform expressed in human brain,17 and ROCK2 ab-
lation leads to a greater reduction in lesion burden of CCM
knockout mice.24 In addition, ROCK2 inhibition avoids tox-
icities (e.g., abnormal hepatic function, intracranial hemor-
rhage, and hypotension) associated with nonselective ROCK
inhibition.e30 Taken together, selective ROCK2 inhibition
may hold greater therapeutic value for vascular diseases, such
as CCM.

CCM: A Paradigm Disease
The pathophysiology of CCM shares common mechanisms
with other disease states and with aging. Observations from
studies of pharmacologic treatments for CCM may serve as

proof of concept for future studies in other therapeutic areas.
In a neuronal injury model (optic nerve crush), knockdown of
ROCK2 reduced cell death and axonal degeneration and in-
creased axon outgrowth.e31 The degree of axon outgrowth
rescued with ROCK2 knockdown was similar to previous
reports using nonselective ROCK inhibitors, suggesting that
ROCK2 is the primary ROCK isoform involved.e31 ROCK
mechanisms are involved in eye diseases and disorders, such
as glaucoma, Fuchs’ dystrophy, and diabetic retinopathy.e32

ROCK-mediated mechanisms that lead to increases in in-
traocular pressure, endothelial apoptosis, and leukocyte ad-
hesion, as well as reductions in endothelial proliferation, might
be attenuated with ROCK inhibition.e32 In addition, ROCK
inhibition attenuated dopaminergic cell loss in a mouse model
of Parkinson disease and preserved dopaminergic nerve ter-
minals in culture.e33 In the context of Alzheimer disease,
ROCK inhibition has demonstrated effectiveness to attenuate
Aβ levels, tau accumulation/phosphorylation, dendritic spine
loss, and inflammatory responses.50 In a mouse model of
amyotrophic lateral sclerosis, ROCK inhibition maintained
neuromuscular junctions, partly through reductions in micro-
gliosis and proinflammatory cytokines/chemokines.50

In a transcriptomic analysis of brain tissue from patients with
CCM, 320 genes (inflammation and extracellular matrix
pathways) common to aging and CCM were dysregulated.e34

Plasma levels of C-reactive protein (CRP) and angiopoietin 2
were higher with age, independent of CCM status (old non-
CCM [50–79 years] vs young non-CCM [18–49 years]).
Young patients with CCM (young sporadic CCM or young
familial CCM) had higher levels of CRP and angiopoietin 2
compared with young patients without CCM (young non-
CCM). Differences in plasma VEGF levels according to age
andCCMmirrored those described for CRP and angiopoietin 2
with an exception for young sporadic CCM, which had VEGF
levels similar to young non-CCM. Brain white matter per-
meability was greater with age and in those with familial
CCM, whereas total iron deposition (bleeding) in frontal,
parietal, and temporal lobes was elevated with age.e34

The pathophysiology of CCM is complex but not exclusive,
with similar pathologic mechanisms (e.g., involving ROCK)
described across various disease states and with aging. There-
fore, studies of pharmacologic treatments of CCMcould lay the
foundation for future studies in other therapeutic areas.

Conclusions
Overactivation of RhoA-ROCK signaling is a significant
mechanism that underlies the development of CCMs. Cel-
lular signaling and function in CCM is dynamic and complex,
and ROCK isoforms exhibit varying degrees of control on
pathologic processes that contribute to lesion burden and
bleeding. Specific inhibition of ROCK isoforms could be an
effective treatment strategy for CCMs, addressing an impor-
tant and currently unmet need for pharmacologic treatment.
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