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ABSTRACT

Overlép Domain Decomposition Technique

for Modeling Wave Propagation

by
Jianli Fan
Doctor of ‘Philosophy in Engineering
University of California, Berkeley

Professor James W. Rector III, Chair

This dissertation presents the results of research on the development of a generél
computationally efficient overlap domain decomposition (ODD) technique based on
Huygens’ Principle for modeling wave propagétion. The ODD technique divides a large
domain into seve;al smaller oi/erlapping subdomains, and allows the exchange of waves
between the subdomains through the overlapping ;egions, without the need for any
internal interface cdnnecting_conditions.' Calculations are performed indepéndently in
each subdomaih, and the wavefield in the whole domain is then obtained from the local
solutions in the subdomains. The ODD technique itself is nbt restricted to a specific
numerical method. Different numerical methbds for solving the wave equation cah. be
incorpb'rated into the ODﬁ framework without any boundary conditions at the interfaces
between subdomains. This flexibility is particularly advantageous because it enables
-highly accurate but computationally expehsive methods to be used in subdomains with
strong gradients "in the wavefield and faster less accurate methods in the remaining

subdomains to achieve a desired level of accuracy and computing speed.
1



The ODD technique is described in detail for 1-D cases and extended to 2-D and 3-D
cases.. The finite difference (FD) method and Fourier pseudospectral (PS) method for
solving the wave eqﬁation are incorporated into the ODD framework and the resulting
algorithms are given. The lengths of the oveflap areas for different methods in 1-D, 2-D,
and 3-D are presented. By using the ODD technique, éalculations can be “turned-off” in
subdoEnains that do not have appreciable waQe activity, resulting in savings of computing

time and memory use.

An example of guided wave propagation in a low velocity layer demonstrates the
flexibility and efficiency of the ODD technique. - The accurate but computatiénally
intensive PS method is used in the subd_omains containing the source and the low velocity
layer where the wavelength is shorter, and the FD method is applied to surrounding high
velocity media which have longer wavelengths. The results are compared to
experimental results from physical modeling. Both the physical and numerical models

show a concentration of wave energy along the low velocity layer.

Approved by: James W. Rector III, Committee Chairman
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CHAPTER ONE

INTRODUCTION AND OVERVIEW

1.1 Introduction

Geophysical wave propagation modeling commonly deals with problems of large
~ scale and complex structures characterized by irregular interfaces separating lithologic
umts such as low velocity layers and salt domes. Because these large-scale problems
often can be extremély computationally intensive, it is desirable to develop efficient
techniques that can reduce computation time .and memory requirements. Domain
decomposition techniques have recently emerged as an efficient approach for modeling
large problems. These techniqu_es provide a computational framework fof dividing a
. large geometric domain into several smaller subdomains, enabling the use of parallel
computing techniques, and different numerical methods for solving the wave equation in -

each subdomain.

The focus of this research is the development of a general overlap domain
decomposition (ODD) technique based on Huygens’ Principlc that couples different
numerical methods and reduces computafion time and memory for Wéve propagation
problems. 'fhe ODD technique splits a large domain into several smaller overlapping
subdomains. Wavefields are independently calculated in each- subdomain using a
numerical method for solving the wave equation, and waves are passed from one
subdomain to adjacent subdomains through the overlap regions. The wavefield in the

whole domain is then obtained from the local solutions in the subdomains.



The ODD techniqhe has several prominent features for wave propagation. First, it can
be. applied fo different _.numerical methods for-solving the wave equation (e.g. finite
different, pseudospectral, finite element, and staggered grid methods, etc.). In addition,
each subdomain can use a different numerical method. Second, the cor;lputing time and
memory can be reduced by decreasing the computational domain size and by “turning-
off” the calculations in thé subdomains which do not have wave activity. Third, the
boundary conditions between subdomains need not be specified since the bouhdary
values of each subdomain can be obtained from the‘ interior solution of the adjacent
subdomain. Fourth, parallel computing techniques can be easily appli¢d because each

subdomain solution is computed independently at each time step from its neighbors.

1.2 Review of Numerical Modeling of Wave Propagation in Geologic Media

~

There are a variety of methods for model.ing- wave propagation in elastic media that
can be claésiﬁed as follows: analytical methods (e.g. Green function and. Cagniard-de
Hoop methods), semi-analytical methods (e.g. integral equation method), ray-geometric
methods (ray tracing) and direct numerical methods (finite difference methods,
pseudospectral methods and finite element methods).. All these methods are based on a
solution of the governing equatioh of motion, but differ in the formulation of the

governing equations or in the means of finding the solution.

Analytical methods (e.g. Lamb, 1904 and Love, 1944) can yield exact results of high
accuracy which can serve as reférencé solutions for other modeling méthods. However,
as they. are based on closed form solutions of the governing equations, analytical
solutions exist only for prleems with Simple geometries. | |

2



The integral equation method (Cruse and Rizzo, 1968; and Cruse, 1968; 1987) can be
- applied to 2-D or 3-D structures, in principle. However, the computational effort and
storage requirements are too high for most practical applications with complex

geometries.

Ray-tracing methods (Cerveny, Molotkov and Psencik 1977) yield a high-frequency
approximation of the_ solution of the wave equation. Amplitudes and spectral
characteristics determined with these methods are not always ‘accurate, particularly when
the medium contains wavelength-scale heterogeneity and strong velocity gradient.

However, ray tracing methods are very efficient for computing the arrival times of waves.

Direct methods such as finite difference, pseudospectral and finite element methods
“are based on the numérical solution of the equation of motion on a discrete grid. Wave
propagation in complex geological structures can be modeled By these methods. The
solution at all grid points is computed at each time step, allowing snapshots of the
wavefield at a given time to be produced. Also, high accuracy solutions can be achieved
by using a fine grid. However, the computational effort may increase with square of the

number of grid points for 2-D problems and the cube for 3-D problems.

Finite difference (FD) methods have been used in seismology to solve wave
propagation problems since the 1960s. Pioneering works in applying the finite difference
method to seismological problems were conducted by Alterman and her co-workers
(Alterman and Kornfeld, 1968; Alterman and Karal; 1968; Alterman and Rotehberg,
1 969). - They developed numerical discrete solutions to the second order elastic wave
equations iﬁ homogeneous regions by the use of explicit time integration methods.

3



However, because practical problems usually involve complex structures, the
heterogeneous finite difference algorithm solition for the second order system of

equations was introduced by Boore (1972) and extended by Kelly et al. (1976).

Refinements such as higher drder derivative operators for the wave equation permit
the use of coarse gfids and results in potentially more efficient algorithms. Shubin and
Bell (1987) developed fourth-order schemés by adding correctio‘n terms to secbnd-order
. schemes, and Dablain (1986) considered a suite of clas‘sical finite differencé operators of

high order accuracy.

-An alternative way for modeling wave propagation can be achieved by replacing the
second-order wave equation by two first order equations (motion equation and
constitutive equation) on two staggered grids. Madariaga (1976) developed the first of
' the currently popular staggered grid finite difference algorithms based on the first order
equations. Fomberg (1996) applied the stagg;,red grid to Fourier pseudospectral

methods, and Grave (1996) used the technique to model 3-D elastic wave propagation.

The computational costs and memory requirements of numeriéal modeling. have
always been a concern, especially for 3-D elastic models. Under certain conditions,
substantial computational savings can be achieved by using coarse grid Fourier
pseudospectral (PS) methods as opposed to finite difference methods. The method was
originally proposed in Kreiss and Oliger (1972). Early exploration geophysical uses are
found in Gazdag (1981) and Kogloﬁ' and Baysal (1982). Additional basic theory can be
found in Orszag (1972) and Fornberg (1975, 1987 and 1996). Furumura (1998) applied
the Fourier pseudospectral mgthod to 3-D problems. As an alternative to the Fourier

4



traﬁsform, Kosloff ét al. (1990) déveloped the Chebychev pseudospéctral method to solve
elastic problems, and Saatcilar et al. (1990 and 1991) proposed a Hartley transform
pseudospectral method for solving the elastic wave equation. Tessmer et al. (1992) used
the Chebychev spectral method for one spatial direction and the Fourier spectral method
for the other direction. Carcione (1994) coupled Chebychev function with space
mapping for the wave equation in generalized coordinates. Tessmer and Kosloff (1994)

extended the Chebychev spectral method to 3-D elastic problems.

The finite element method (FEM) is well known for its great flexibility in solving
problems with complex geometries and heterogencous structures, such as irregular
surface topography, curved, dipping and rough interfaces, intrusions, cusps and holes. In
addition, boundary conditions such as a free surface can be easily faken into account.
This method has been largely employed in mechanical engiﬂeeﬂng, soil foundation
engineering, structural engineering, nondestructive testing, and earthquake engineering.
But it has not gained wide acceptance among geophysicists because, in its classical
formulation, it has. fairly low accuracy and computational efficiency for wave
propagation problems. Lysmer and Drake (1971) and Drake (1972) are among the first to
apply finite element modeling to seismic wavé pr.opagation.' They used an explicit
frequenéy domain formulation. An early 3-D application of finite elements to seismic
wave propagation can be found in Schlue (1979). Marfurt (1984) and Lewis (1984)
noted that significant computational cost savings can be achieved by using nested
dissection nutneriéal solution techniques (Gerge and Liu, 1981; Duff et al., 1986) in
simulating multiple shot rolls for seismology characterized by numerically sparse source.s

and receivers. For reaching a high accuracy, Priolo et al. (1994); Faccioli et al., 1996;

5



Komatitsch and Vilotte (1998)_adoptéd high order orthogonal interpolating functions for

elements, called spectral element méthOd, for simulating wave propagaﬁon.
1.3 Domain Decomposition Technique

The main idea of the domain decomposition algorithm for solving partial differential
equations is to divide a large domain into a number of subdomains and to solve a similar
problem on each subdomain. Recently, domain decomposition has been widely

devoloped (Keyes and Xu, 1995) because of its many advantages:

| ® Simplification of complex geometry. The decomposition can eitﬁer be fixed in time

or be changed dynamically as the geometry and/or the solution evolve.

® Allowing the use of different resolutions and/or numerical methods in different
subdomains. In each subdomain, one can choose a discretization method particularly
well suited to geologic struciufe, vsuch as a local low \}elocity zone.  Different time
steps can be used in different subdomains.

® Utilizing the capacity of parallel computers by assignf‘hg different subdomains to
diﬁ'erentvprocessors.

° | Pemﬁtting economical use of methods whose cost increases faster than linearly with

domain size, such as the finite element method and the pseudospectral method.

The domain decomposition can be categorized as the overlap and non-overlap domain
decompositions as showed on Figure 1.1. For the overlap domain decomposition, the
adjacent subdomains overlap each other near their boundaries and exchange the

information through the overlap region. For the non-overlap domain decomposition,
. _



adjacent subdomains connect through the artificial boundaries and artificial boundary

conditions are needed for exchanging information.

(2) (b)

Figure 1.1 (a) Overlap domain decomposition, (b) Non-dverlap domain deéomposition

Schwarz (1870) introduced the earliest overlap domain decomposition. By
overlapping, the classic Schwarz alternating method essentially amounts to obtaining
boundary valueé for each subdomain from the interior solution of another subdomain. A
simple and éommonly used demonstration problem is to solve Poiéson’s équation in an
L-shape domain by applyir‘1g fast Poisson solvers on two rectangular domains that overlap
lat the bend. Dryja and Widlund (1990) and Cai (1994) gave a general discussion about
the Schwartz alternating method for solving PDE problems. Instead of iteration by the
_Schwartz method, Kuzr_1etsov (1988) and Chen and Lazarov (1994) mathematically
proposed a non-iterative overlap domain decomposition for solving.parabolic partial
 differential equations such as heat transfer and difﬁlsion'problems. Liao and McMechan
(1993) applied the non-iterative overlap domain decomposition to the Fourier
pseudospectral method for modeling viscoacoustic wave propagation using a multi-
processor compﬁter to take advantage of the parallel computing. Xu and McMechan
(1998) extended the technique to the 2nd order finite different method for viscoelastic

media.



Quarteroni (1995) overviewed the non—overlap‘domain decomposition technique for
wave pfopagation problems. Liang and He (1993) and Hilbert et al. (1994) used
- Lagrange multiplier to connect adjacent subdomains for dynamic discontinuous block
systems. Tessmer, et al. (1992) coupled Fourier and Chebychev spectral methods by
domain decomposition. Carcione (1991) decomposed the wa\;e equation into incoming

and outgoing wave modes-at the boundaries of the subdomains.
- 1.4 Objectives and Overview

‘A potential limitation of non-overlapping techniques is the need for connectivity
conditions at the (artificial) subd;)main boundaries. The overlap domain decomposition
technique does not need artificial interface conditions and exchanges the information
through. overiap areas. The technique naturally fits wave propagation problems since
waves can be passe;d ﬁom one sqbdomain to other éubdomaiﬁs through the overlap.areas.
Thus, the ODD technique has only been applied to the Fourier pseudospectral method.
(Liao and McMechan, 1993) and finite difference method (Xu and McMechan, 1998) fof
wave propagation, but different methodé have not been co;1pled together by the ODD

technique. This dissertation addresses this problem of developing an ODD framework

that can be used to couple different numerical methods.

This dissertation proposes a genéral overlap domain decomposition (ODD) techﬁique
based on Huygens’ Principle for modeling wave propagation. This technique has the
following advantages: it can easily couple different methods without connectiﬁg
conditions at the interfaces, it can be directly implemented in uses paréllel computation, it

results in increases-efficiency for methods whose operation count (i.e., “cost”) increases



faster than linearly with domain size, and it can reduce computation time by “turning off”

the calculations in subdomains which do not have wave activity.

In Chapter 2, the ODD technique is i)roposed for wave propagation in a 1-D medium.
The ODD algorithm is applied to the 4th order accuracy FD method. The Fourier
pseudospectral (PS) method for solving the wave equation is then briefly described, and
the ODD algorithm for the PS method is introduced. Because of ihe periodic property of
Fourier transform, a tapering technique for each subdomain is introduced to allow the
ODD algorithm to be applied to the PS method. The ODD algorithm for mixed FD-PS
methods for different subdomains is introduced and evaluated. The results show good
agreement between the ODD FD, PS, miked FD-PS methods and the conventional FD

and PS methods. Also, the turning-off technique for inactive subdomains is introduced.

Similarly, the ODD technique for 2-D media and the implementations for acoustic and
elastic media are described in Chapter 3. The results between the ODD FD, PS, mixed

FD-PS methods and the conventional FD and PS ‘methods are then discussed and

compared.

Simulation of guided wave propagation in a low velocity layer is performed in Chapter
4. The composite ODD techniQue is 'emp'loy_ed, where the high accurate PS method is
used in the subdomain encompassing the low velocity layer where thé wavelength is
shorter, and the FD method is applied to surrounding high velocity medium in which

waves have longer wavelengths.

In Chapter 5, the 3-D ODD technique is described and the implementation for a 3-D

acoustic medium is introduced. Finally, major conclusions and future applications of the



ODD technique are identified in Chapter 6. A general description of possible integration
of other numerical methods such as FEM and BEM in to the ODD framework is

~ discussed.

The algorithm of the ODD technique with the finite difference and Fourier

A

- pseudospectral methods is numerically implemented by C++ language, and the code can
be run on IBM PC-Windows platform and any Unix platforms. The all results in tﬁis
dissertation are run in a Pentium Pro 200 PC with 128 MB memory, and some of results

are also tested on a SUN SPARC 10 Unix machine with 128 MB memory.
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CHAPTER TWO

OVERLAP DOMAIN DECOMPOSITION TECHNIQUE FOR
- WAVE PROPAGATION

2.1 Introduction

Huygens’ principle (Smith and Thomson, 1971; Dix, 1981) indicates that light wave
propagates as a wavefront, and that at any instant every point on the wavefront is the
origin source of a secondary wave which propagates outwards as a spherical wave. The
secondary waves then cofnbine to form a new wavefornt, so that successive positions of

the wavefront may be calculated by a step-by-step process.

This chapter presents a general overlap domain decomposition (ODD) technique for
wave propagation motivated by Huygens’ Principle. The implementation of ODD
algorithms for the fourth order ﬁnite. difference (FD4) method, pseudospectral (PS)
method and mixed ,FD4'.PS method in a 1-D medium is introduced. A numerical
example is presented to compare the results from the ODD methods with the results from

conventional methods.
2.2 Overlap Domain Decomposition Technique

The overlap domain decomposition (ODD) technique is shown schematically in Figure
2.1 for 1-D wave propagation. The ODD algorithm can be described by the following

steps as shown in Figure 2.1:

11



Step 1. A large domain Q ([a, €] containing a wavefield f(x,n) is split into two
subdomains Q1 [a, d] with the wavefield f1(x,n), and Q2 [b, ] with the wavefield f2(x,n)

at a time step n.
flGen) =fen), xefa, dinQl, | 2.2.1)
REn) = f(x,n),_ x & [b, €] in Q2. ' 2.2.2)

Subdomains Q1 and Q2 have a common region Qo [b, d] called the overlapping
region. Note that both subdomains carry a common part of the wave in the overlapping
region Qo. The domain splitting introduces two artificial boundaries in the overlapping

region Qo [b, d] at point d for Q1 and at point b for Q2.

Step 2. Based on\l_Huyg‘ev:ns’ Pﬁnciple, the wavefields f1(x, n) and f2(x,n) at a time-step n
can be used as the sources for computing ..the wavefields fI(x,n+1) and f?(x,n+1 )
independently at a time step n+1 in Q, and Q,. The overlapping region Qo [b, d] belongs
to both subdomains and the wavefield in Qo is independently, calculated twice. Although
the artificial boundaries generate reflected waves, for a small time step d the reflected
waves from the boundaries should oniy affect a small regionv of the width dx=vdt, where v
is the wave velocity, near the artificial boundaries. If the length of the overlapping region
Qo is chosen longer than 2dx, then the reflected wa{/es are present only within the half

overlépping regions Q02 [c, d] in Q1 and Qol [b, c] in Q2 near the boundaries. The
- wavefields w1thm fhe half overlapping regions Qol [b, c] in Q1 and Qo2 [c, d] in Q2 are

not affected by these artificial reflections.
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Step I1:

J(x, n)in [a, ]

tn Q wave direction
. /\g /\c\' /\ 'e
o1 \/ o - :
Kk . : 5
«— Qo __5
Qo gy Qo2 _
o1 overlapping area
15w in [z, d] /\ N\
a b \/ [ d o2
' L2(x,n) in [b, €]
b c d \/ e
Step 2: Calculate wave propagation
—_— o1 dx=vdt .
S1(x n) in [a, (9/7/ : :
a ~ld_— [t wilin (2, ]
| oY)
S2(5 ntl) in b, €]
\ X/ i
Step 3. o1 /\ / f1(x, n+1) in [4, c]
a [ d
b . 02
\ / \ﬂ(x, ntl)in[c, €]
. b c \/ d \/ e
Step 4:
o Jx, ntl) in [a, ]
, VANV .
IAVARVARV

Figure 2.1. Schematic illustration of the 1-D overlap domain decomposition technique
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Step 3. Discard the “boundary contaminated” part of the wavefield from the region [c,
d] in Q1 and the region [b, ¢] in Q2. Then, combine the wavefield from the region [a, c]
in Q1 and the region [c, €] in Q2 to form the whole domain wavefield. Therefore, the

new wavefield f(x, n+l)is given by

fl(x,n+1) xe€la,c],

AL { f2Axn+1) xeleel. 2:23)

Thus, the reflected waves from the artificial boundaries are eliminated by taking the
contributions from the respective solutions corresponding to the half of the overlapping
region within each subdomain. The size of the overlapping region depends on the

numerical method used for wave propagation.
2.3 Application of the ODD to the Finite Difference (FD) Method

The ODD technique can be directly implementeci into the 1-D finite difference method.
“The key is how to determine the size of the overlapping area. In the following sections,
the 1-D finite difference method is briefly reviewed and then the implementation of the

ODD technique is discussed.
2.3.1 1-D Finite Difference Method

The 1-D wave equation for a medium with constant density p is

l o*u(x,t) _ O’ u(x,t)
. CZ atZ axZ ’

2.3.1)
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where u is the pressure, ¢ is the time, and ¢ is the wave velocity. For the FD method, the

space and time domains are divided into finite grids with the spacings of dx and df as
shown in Figure 2.2. In this figure, #(x,,?,) represents the pressure at the space point m

and the time step n.

- Centered FD approximaﬁons are made for both space and time derivatives of equation

(2.3.1). For example, the fourth-order space FD and second-order time FD formulas are

azu(xm,t") _ 1 [_ u(xm+2’tn) + 16u(xm+l’tn) - 30u(xm’tn)jl + O([Ax]4) (2 3 2)

axt 12Ax | +16u(x,_.t,) — u(x, ,.t,)
and
O%u(x,,,L, 1 |
fat;' )= Ve [6(X s ty) — 20(X,58,) +u(x,,t, V]+O(AT).  (2.3.3)
x: 1 m-2 m-1 m m+l m+2 m+3 ...... M

o AWV [ e ] em

U(Xps Gg) -oeeee WX o)

x: 1 wee m2 m-l m m+tl m+2 m+3 ... M
@ VNIV e | un
UKy ) ooennn UK ) |
x: 1 wee . m-2 m-1 m mtl m+t2 m+3 ... M
o VAV AVAVAVA = = e
UK o) oo UKrss Gorr)

Figure 2.2. One dimensional gri(i for the finite difference method.
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From equation (2.3.2)-and (2.3.3) the explicit FD scheme for the wave equation (2.3.1)

is

'u(xm’ n+l) 2u(xm’t ) u(xm’tn I)

zAtz u( m+2° ")+1&l( m+1° n) 30”( m> n) 4 2 ' .
oA Lléu( Xpp1sty) ~ (% 51, ]+O(-[Ax] A4, 234

The algorithm of the above equation is graphically shown in Figure 2.3. It is easy to
see that u at time step n+1 only depends on u at the previous two time steps n and n-1.
Furthermore, to determine u(xy,, tp+]), only five values of u at adjacent grid points from

m-2 to m+2 at time steps n and n-1 are required.

1 o m2 ml  m mtl me2 mH3 ... M

. t: n-1

Q I aVAVASVAVAVAVA ;
u(xmatn-.l)
€ i aVA - b __
1o £) U 6 Wk ) W0k &) U0y ) tn

{ . VA VAV/\VAV/ i=
' t: n+1

l m+2 n

u(x_m,tn;l) Z Zayu(x,,t)

i=m-2 j=n-1

Figure 2.3. The finite different method with 4" order in space and 2™ order in time
differencing, where a;jj are the coefficients in Equation (2.3.4).
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2.3.2 ODD for the 1-D Finite Difference Method

- To apply the ODD technique to equation (2.3.4), we divide the domain Q into two
subdomains Q1 (dafk shaded area) and Q2 (light shaded area) as in Figure 2.4, where grid
points 1, ... , m-2, m-1, m belong to Q1 apd grid points m+1, m+2, ..., Mwbelong to Q2.
Grid point m is the last point in Q1 where spatial derivative must be calculated; point
m+1 is the first I’)oint in Q2. The amount of overlap required between these two
subdomains can be determined as follows. According to equation (2.3.4), in order to

compute u(x,,,¢,,,) in Q1, the values of two previous time steps are needed from the grid
points m-2 through m+2. Assume that the pressures u(x;,t,)and u(x;,, ;) from the
previous time steps n-1 and n are known values. If QI is overlapped to cover the grid

points m+1 and m+2, then #(x,,,,,,) can be solved within Q1.

The grid points m+1 and m+2 which origiﬁally only belong to Q2 now also belong to
Q1; therefore, these points form the overlapping region. u(x,,,?,,,) can be ;:alculated
from Q1 just as in thé conventional FD. Similar to the grid point m+1 in Q2, by adding
two grid points m-1 aﬁd m to 2, u(xml,th+,5 can be calculated at the grid point m+1 in
Q2 using the values of u from grid points m-1 and m+3. The total overlapping region
now spans the gﬁd points from m-1 through m+2. As can be seen from this analysis, the
overlapping region only needs four grid poihts for 4™ order space differencing (Figure
2.4) to get the same results as the conventional FD method applied to the total domain Q.

More grid points in the overlapping region do not affect results.
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x 1 S e M2 mgl m.....m#xl...m+2 m+3 ... M
A IR SRR o}
Calculate u at grid point m in subdomain Q1
Fx 1 ... M2 m-1 m m+l mi2 \'\‘\
01 N0 t: n+1
m+2 n
Ui stpn) = X 2 Bgu(xist))
\.\ i=m-2 j=n-~ .//'
Calculate u at grid point m+1 in subdomain Q2
,// x: m-1 m .
t:n
NSNS o2 | tntd
m+3 n '
| U( Xy stry) = 1, D a u(x;,t,)
A i=m~1 j=n-1 S
Combine two subdomains tqgether to get # at all grid points
X: .. m-2 mi M
t: n+1
Overlap region
which needs minimum 4
grid points

Figure 2.4. The ODD scheme for the 1-D FD method with 4® order space and 2™
order time differencing.
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It should be noted that the results at grid points m+1, m+2 in Q1 and m-1, m in Q1 near
the artificial boundaries are not used and only the uncontaminated results in the inner

region are used to form the solution at time step n+1. Therefore, the artificial boundaries

do not adversely affect the solution.

2.4 Application of ODD to the Fourier Pseudospectral Method
2.4.1 1-D Fourier Pseudospectral Method

The Fourier pseudospectral (PS) method has been successfﬁlly developed in recent
years for acoustic and elastic wave propagation problems (Gazdag, 19;81; Kosloff and
Baysal, 1982; Fornberg, 1987 and 1996; Kosloff et al., 1990; Furumura et al., 1995 and
1998). Unlike the FD method, the PS method uses a Fourier transform to calculate the

spatial derivatives.

Let #(k,,t,) denote the Fourier transform of u(x,,t,),...,u(x,,,t,);...,te(x,,,t,) with -

respect to the variable x, and |
. M-l . "
(ks 1,)= D u(x,t, ), 2.4.1)
m=0

where k, = 27l /(NAx),Ax = x,, - x,,.,. The inverse Fourier transform of #(k,,t,)is given

by
1 M-l R ' . .
U(X s t,) == D 1k, t, )€™ (2.42)
M I=0 o

From equation (2.4.2), the first and second-order spatial derivatives are
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au(xml’tn 1 & n ikyx,
e DN R (2.423)
=0

O*u(x,,t,) 1 U . i,
——%;—LHZ —k,* ik, )e" 4
1=0

The PS method solution for the 1-D wave equation (2.3.1) is then

u(x,,t,,,)=2u(x,,t,)—u(x,,t )
2.0 1 & 24 A iy '
+ AP =D (ki )e | (2.4.5)
M i3 :

An important difference between the PS and the FD methods is that calculation of the
derivative by the PS method requiresvthe values of u at all the grid points. For this
reason, the PS method is eﬁectively employs higher-order spatial differencing resulting in.
more acc‘uraté caléiilation of the derivatives. However, because a Fourier transform is
required for each derivative calcillation, it is computationally more intensive than the FD

method.

A nagging problem which arises in application of the Fourier PS method for wave
propagation is the presence of wraparound boundaries (Kosloff et él., 1982; Furumura
and Takenaka 1995) from the boundaries of the numerical mesh shown in Figure 2.5. |
When a wavefront reaching the one side of the boundar_iés, the wavefrqnt comes from the
other side of the boundaries due to the periodic property of the trigonometric series of
F oﬁrier transform. A tapering function was proposed by Cerjan et al. (1985) to eliminate

the wraparound problems.
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——p» wave direction
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\VAAVARV,
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* \/\/

t=n+1:

Wraparound

Figure. 2.5. Wraparound problem by using the Fourier pseudospectral method.

2.4.2 ODD for 1-D Fourier Pseudospectral (PS) method

The ODD technique can also be applied to the Fourier PS method. Two problems
which arise when the ODD technique developed in the previous section is applied to
equation (2.3.1) are: (1) the wraparound which occurs at the overlapping boundaries, and

(2) the need to known the pressure at all the grid points of the pré_vious time steps.

The wraparound effect can be circumvented by applying a taper to the wavefield at the
boundaries of each subdomain (Liao and McMechan, 1993). By tapering the wavefield
to zero ﬁear the boundaries of all the subdomains, the Fourier wraparound cohtributioris
become zero and the transfer of artificial waves to the other ends of the subdomains is

eliminated.
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Because the PS method uses values at all grid points to compute the derivatives at a
single point, it may be argued that the tapering the original function might yiéld an
incorrect result even though the vélue at the grid point of interest is not aitered. However,
mathematically, the derivatives at one point belong the local properties of the function at
that point. Thus, the derivatives at the point are only dependent on the property of the
local region and are not significantly affected by points ‘far away. Since the tapering
introduced in the PS ODD technique is ‘peﬁor@éd only within the oﬁter region of the
overlapping area, it has little effect on the derivatives cqmputed for a grid point within the
non-overlapping region and inner overlapping regions in Figure 2.6. So, the derivétives
computed for all grid points are not affected by the taper function, if the width of the

overlapping region is chosen wide enough ( must be greater than the length of the taper).

Figure 2.6 illustrates an example of tapering functions 7/(x) and T2(x) that are applied

to the subdomains. Based on the Hanning window (Oppenheim and Schafer, 1975), the

t
f

two functions are defined as given below:

(0 S x.€[a a+¢]
0.5+0.5cos(n(x—-a—-¢€)/l+x) xela+e,a+e+]] .
Ti(x)=41 xefla+te+l,c+e]> (2.4.6)
0.5 + 0.5 cos( fr(x—c—s)/l.) xel[c+e,d-¢]
[0 xeld-¢,d]
(0 , ' xe[b,b+¢]
10.5+0.5cos(n(x—b—¢€)/1+ ) xe[b+eg,c—¢]
T2(x)=11 v | xelc—¢g,e—e-1], (247
0.5+0.5cos(n(x—(e—e-1)/1) xele—e—-1l,e-¢]
0 xele—g,e]
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Figure 2.6. Overlap domain decomposition scheme for the 1-D PS method.
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where the 2/+4¢ is the length of the overlapping area, and € is on the order of 2dx. The

procedure of Figure 2.6 can be described as:

Step 1: Apply the taper functions T/(x) and T2(x) to the subdomains Q1 and Q2. The

new wavefield functions are:
gl(x, t:n) = TI(x)-fI(x, t:n) xe [a, d] in QI, (2.4.8)

g2(x, tn) = T2(x)}f2(x tn) . xe[be]inQ2 (2.4.9)

Wavefield functions g/ and g2 are not equal to fI and f2 for the outer regions of the
overlapping area [c, d] in Q1 and [b, c] in Q2. These become zero near the artificial

boundaries x=b and x=d, and are equal to fI and S2 within the inner regions ([a+I+¢&, d-I-€

1in QI and [ b+l+¢, e-l-€] in Q2).

Step 2: Calculations by the PS method are independently carried out in Q1 and Q2.

There are no reflections at x=b and x=d since g/ and g2 are zero near the artificial

!
i

boundaries.

Step 3: Take the inner regions of wavefields [a+I+¢, c] in Q1 and [c, e-I-€]in Q2 that

are not modified by the taper functions and form the final wavefield f{ x, r:n+1).

- The length of the overlapping area is approximately 21, which is the wavelength of the
cosine function used for the taper functions T/(x) and T2(x). For wave propagation
problems, we choose the length of the overlapping area to be on the order of the

(

wavelength of the central frequency of the source wavelet.
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2.5 Application of ODD to the Mixed PS and FD Method

Because the computations within individual subdomains are carried out independently
using the ODD technique, the FD and PS methods can be easily coupled together. Figure
2.7 shows how the PS in subdomain Q1 and the FD subdomain Q2 can be coﬁpled. A

similar procedure as in Section 2.4 is followed to compute the wavefield.

Step 1: Apply taper function TI (x) to the wavefield in subdomain Q1 whére the PS
method is applied. The wavefield in subdomain Q2 is computed with the FD method. So

no tapering is required. The new wavefield functions become

glx, t:n) =Tl(x)-fl(x, t:n) x€e[a, d] in Q1. 2.5.1)

f(x, t:n) x € [b, e] in Q2. (2.52)

Step 2: Separately calculate the wavefields at time step n+1 using the PS method in Q1
'and the FD4 method in Q2. In Q1 there is no reflection from the artificial boundary at

x=d where the wavefield is tapered to zero. In contrast, the reflection occurs at x=b in

Q2 but there is no wraparound to the side at x=d since the FD method is being used.

Step 3: Take the inner parts of wavefields within [a+/+¢, c] in Q1 and [c, e] in Q2, to

form the final wavefield f{'x, t:n+1).

To obtain smooth solutions across the subdomains, the PS and FD differencing

schemes used in each subdomain should have similar accuracies.
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Figure 2.7. ODD scheme for the 1-D mixed PS and FD method.
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2.6 Stability Conditions

In this section, the stability conditions are derived for the numerical methods uséd in
the previous sections. Consider an isotropic, honiogeneous medium, for which the density
- p and velocity Cy are éonstants. If the spatial derivative is known, the solﬁfion of the
wave equation (2.3.1) in the Section 2.3 with second order accuracy in time can be

written as

2 Ou(x,,t,)

u(x, ,t,,) =2u(x,,t,)—u(x,,t, )+ CoAt o (2.6.1)
A parameter ¢ is defined as
r=C2AP a—zzg—;’t-"—) /u(xm,t,,) . (2.6.2)
Substiﬁting equation (2.6.2) into equation (2.6.1) gives
'z;(x,,,,tm,) = 2+ D)ulx,,t,) —u(x,,t, ). C(263)
Equation (2.6.3) can be expressed in matrix form as
ux,st) | (2+7 -1 lu(x,,t,) |
[u(xm,t,,) ] - [1 0 :l[u(xm,tn_l )}‘ _(2'6'4)
vll,etting |
247 -1 _ '
4= L 0 J (2.6.5)
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and

w" =[u'(x""t") } (2.6.6)

u(xm 2 tn—l )
equation (2.6.4) can be written as
W =Aw". - 2.6.7)

The necessary condition for stability is the Von Neumann condition that requires all the
eigenvalues 4; of the amplification matrix 4 be bounded by 1.0 in magnitude (Boore,

1972; Smith, 1965; Gazdag, 1980)
4| <1. - |  (2:6.8)
To obtaip the eigenvalues, set
AL-4=o. . (269

where [ is the identity matrix of order.
Substituting equation (2.6.5) into equation (2.6.9) gives -

A-(Q2+7) 1

=0, 2.6.10
_1 2 | ( )
'or

A -Q+1)A+1=0." (2.6.11)
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This yields the eigenvalues

A =0.5[(2+7) (2 +7) —4]. (2.6.12)

By applying the above equation to equation (2.6.8), the stability condition for equation

(2.6.1) can be obtained as (see Appendix C for details)
0272-4. (2.6.13)

If different numerical methods are used to compute the second order spatial derivative,
the resulting 7’s are assessed for their stability conditions. In the following section,
stability conditions for three numerical differencing methods ™ and 4" order finite

difference and Fourier pseudospectral methods) are discussed.

2.6.1 Stability Condition for the 2nd Order FD Method

From the results of Section 2.4, the second order spatial derivatives of equation (2.6.1)

can be discretized using 2™ order differences as

O’u(x,,t) 1
o' AP

[u(xm+1 o0,) - 2u(3cm o)+ u(x, 1, )] . (2.6.14)

A solution of equation (2.3.1) is assumed to have a harmonic form

U(X,y1,) = e =y E ) (2.6.15)

where x =m-Ax, t = n- At and the wavenumber £ is in the spatial frequency of the
numerical mesh.

Substituting this harmonic solution into equation (2.6.14) produces
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[e"‘A" -2+ e""‘A‘]

2 : (- wr)
Ou(x,,t,) _Upe” "

o’ Ax?
oLy A
= 2 M) [ vy - 1) 26.16)
Ax .
)
R Ldi] (kAzx /2) u(x,,t,).
Using the definition of 7 in equation (2.6.2) gives
.2 .
7 =-4C,2 A ﬂ’%’@—) (26.17)

Substituting the above equation into the stability condition equation (2.6.13) gives

0>-4C,

22
2,2 S0 (Alch2x/2)2_4,

or

-1< C/;f’ sin(kAx/2) <1. (2.6.18)

Since sin(kAx/2) <1, the stability condition for the 2™ order FD method is

C,At
Ax

<1. (2.6.19)

2.6.2 Stability Condition for the 4th order FD method

" The second order spatial derivative of equation (2.6.1) can be discretized'by the fourth

order finite difference as
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azu(xm 2'n )
- a2
Ox : (2.6.20)

:122x2 [ 208+ 160G £, = 30, + 160k 1) = 208,

- Substituting the harmonic solution in equation (2.6.15) into the above equation

produces

Pu(x, ,t,)  ue =™
ox? 12Ax?
u(x

6;’ )[ (cos(2kAx)—1) +16(cos(kAx) —1)] (2.6.21)

_u(x,t,)
== —Cm> 12 [16sin’ (kAx/2) —sin® (kAx)].

[ ™% +16e™ —30+16e™ — "> |

Using the definition of 7 in equation (2.6.3), now 7 has a form

T =

.2 ain?
“CozNz 165sin° (kAx/2) —sin (kAx).

T (2.6.22)

Substitution of the above equation into the stability condition equation (2.6.13) yields -

C,At

1/2
< 2.6.23
V12Ax (2.623)
where
[16sin?(kAx/2) — sin®(kAx)]"2 < 4. (2.6.24)
Therefore, the stability condition for the 4™ order FD method is
CAr 3
—— <—=0.866 . 6.2
A 2 366 . “ (2A 6.25)
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2.6.3 Stability Condition for the Fourier PS Method

The Fourier expansion of u(x, t) can be expressed as

- M-1 ] Mt ix'
U(Xot,) = D Uy (Xpst,) =— Y ks t, )" (2.6.26)
=0 M =0 ‘ )

The stability condition shown in equation (2.6.13) can be applied to each term of the

above equation. For a single / term of equation (2.6.26), the second order derivative is

O’uy(x,,t,) 1

ox? M
= (=, Yy (x,,1,)-

—k )ikt Ye"

According to the definition of 7 in equation (2.6.2) and the stability condition in

equation (2.6.13)
r=C AP (-k*) >4
or,

2 (2.6.28)
!

C,Ar <
: k
The largest k; is at the Nyquist spatial frequency for which k=r/Ax. A substitution of

this value in the equation (2.6.28) gives the -stability condition for the Fourier PS method

CoA? 2 0637, (2.629)
T .

Equation (2.6.29) shows that the stability condition for the PS method requires relative
smaller time step compared to the stability conditions for the FD methods in equations

- (2.6.19) and (2.6.25).
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2.7 Dispersion Condition

In a homogeneous acoustic or eléstic medium, waves with any frequencies propagate
with the same velocity (Graff, 1975; Aki and Richards, 1980). When solving the wave
equation by the numerical methods, the wa\_)e velocitiés >bec‘ome functions of the
discretization intervals of 4r and Ax. This phenomenon is called the dispersion. The
previous section gives the relations between the Ar and Ax for the stability of the
numerical methodsf This section will states how many grid points of Af and Ax are
needed for the certain frequency and wavelength of the wave under the limited -
dispersiofx. The dispersion analysis for the second order time and fourth order space
~ finite diffgrence method performed in this sectiqn is similar to the method by Dablain

(1984) for the second order accuracy finite difference method. The temporal and spatial

dispersions are first discussed separately, and then the coupled dispersion is studied.
2.7.1 Temporal Dispersion

Consider an isotropic, homogeneous medium with constant density p and velocity Cy.

Assume a solution of equation (2.3.1) of the form
u= upe' ™" | 2.7.1)

where x=mAx, t=nAt, and k is the wavenumber in the band of the numerical mesh. The

temporal pdﬂion of equation (2.3.1) can be discretized by second order FD as

o’u(x,,t) . 1
(at’; ) = Atz- [u_(xm’ tn+l ) - 2u(xm, t") + u(xm’ tn—l )] s v (272)
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and equation (2.3.1) can be expressed as

O*u(x ,t :
t. )=C ——S—”’—") 2.7.3)

1
. F[u(xm o) —2u(x,,,t,)+u(x %

m?

Substituting the harmonic solution of equation (2.7.1) into the above equation produces

1 i i
—A—tz-[e“‘A’—2+e‘"A']=—C02k2,

or
2 2
F[cos(wét) -11=-C,k". | 2.74)
By definition, thf _phase speed‘ Cp is
C,,'=% ’ o .7.5)

Equation (2.7.5) is now substituted into e'quation (2.7.’4) to obtain the dispersion

relationship for the temporal discretization

2602

5 _
—_— At)—-1]1=~-C," —-,
v [cos( wA?) — 1] 0 sz

or

2 ’ 2 .
Cpr ____ 9 , 2.7.6)
Cr 2fcos(8)—1] |

where 8 = wAt. This equation can be simplified as
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2 2
€ .__9 @.7.7)
¢ asin’(8/2) ,

" The normalized phase velocity dispersion relationship can be written as

Co 0 - (278)

C, 2sin(8/2)

Assuming that low frequencies or very small time steps are taken, i.e., 6~0, then

equation (2.7.8) can be approximated by a Taylor’s series as - |

G 0 ~1+ 2 @79
CO 2[___(_)3_*___.] 24
2 312

Since & can be expressed as

0 = wAt = 27fAt = 2#% =21f , | | (2.7.10)

where f is frequency, T is the period, and f= At/T, 1/ is the number of time steps per

period, and equation (2.7.8) can be rewritten as

c, . Q) . = ., : g
il PO (PR =1+=—pB%*=1+1.658"°. 2.7.11
C, 24 6 ﬂ P ( )

Equation (2.7.8) and (2.7.11) indicate that as Ar increases or the frequericies become
greater, the tendency is for parts of the wavelet to be advanced with respect to the true

phase velocity. Figure 2.7.1 shows the dispersion curves by equation (2.7.8) and
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(2.7.11), which indicates that the relative error of phase velocity is less than 1% when g

is less than 0.07 (13 time steps per period ).

1.2 -‘r LR ! T T T ﬁ? L) T T ¥ !ﬁi T T T ! T LI
1.15
1.1 | =
1.05 | ]
Cp/C 1 F i j
: : analytical 1
0.95 [roormrenearee frommeessresneees i R Taylor Series |-
! : e i é ]
0.9 ffrrrorereee e oo oo - ]
R S S— A — A—
0‘8 : I. 1 3 1 .‘i 3 1 1 1 i 1 (] 1 1 i ) S . A j 1 L L. 1
0o 0.05 0.1 © 0.15 0.2 0.25
p=A4a/T

Figure 2.7.1. Temporal dispersion curves of phase velocity for finite dlfference
solutions with second order accuracy in time.

Similarly, the dispersion analysis can be applied to group velocity. The group velocity

Cg is computed by

dw '
C,=—, ’ 2.712

The equation (2.7.4) can be rewritten as
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-2
4sin (szt/Z) _ Cozkz,

or

2sin(wAt/2)

=Gk | (2.7.13)

By taking the derivative of equation (2.7.13), the dispersion equation of group velocity

is derived as
cos(wAt/2)dw = C,dk . @27.14)
Combining this yyith'equation (2.7.10) and (2.7.12), the normalized group velocity is

Co  do 1 _ 1

C, C,dk cos(@At/2) cos(@/2)’ @7.13)
and its approximation by a Taylor’s series is ;
S _ __ 1 zl+ﬁ, | (2.7.16)
G , _(6/2) 2) ( 9/2)" +. 8
or
(frﬂ) ~1+4.95. @1

0
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Equation (2.7.16) and (2.7.A17) indicate that as At increases or the frequency becomes
greater, the group velocity tends to be faster than the true velo'city. Figure 2.7.2 shows .
the dispersion curves computed by equation (2.7.15) and (2.7.175. The figure indicates
that the relative error of group velocity is less than 1% when S is less than 0.04 (25 time
steps per period). This analysis reveals that the error for the group velocity is almost

twice the error for the phase velocity.

1.2 T L] T T ! T T T T ! L] T T T ! T T T |,I T T T '7-

1.15

1.1

1.05 |

Cg/C 1 F i .

; : analytical

0.95 [rrormmmene provemsarssnes R Taylor series |

0.9 frrrreeerere b froreeenneeees oo e 3

Y S M S ——

0-8 : 1 1 1 A i 1 1 1 () i i 1 1 1 li 1 i ] 1 - i A A i L :
0 0.05 - 0.1 0.15 0.2 0.25

B=AUT

Figure 2.7.2. Temporal dispersion curves of group velocity for finite difference
solutions with second order accuracy in time.
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2.7.2 Spatial Dispersion

The spatial dispersion can be examined following a similar procedure as the temporal

dispersion. The spatial derivative of equation (2.3.1) can be discretized by the fourth

order FD as

&'u(x,,t,)
6t2
C2

T 1248

(2.7.18)
[-u(x,.,, ,,)+16u( _ ,,) 30u(x, t)+16u(xm_l,t) u(x, ,,t).

‘Substituting the harmonic solution of equation (2.7.1) into the above equation produces

2, i(kmAx—wnAr)
| — @uye Cote _ [_ 2285 1 166™% _30 416" _eikZAx] ’
12Ax '
or
C2
® = 6A;2 [(cos(2kAx) - 1) — 16(cos(kAx) —1)]. (2.7.19)
Let

w = kdx. (2.7.20)

and substituting equation (2.7.5) and (2.7.20) into equation (2.7.19). This gives the

dispersion relationship

&3
G

cos2y ) —16(cosy -1]. 2.721)
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_Then, expressing cosy and cos2 y by Taylor’s series

G My Lo Lo Lo o 1ap L
Fg"sv/[[l a B @) @yl
or

Co ¥

~
~

Ct 90

The above dispersion relationship can be approximated by

S 1— E_ '
C, 180
Since

k=22

l .

where 1 is the wavelength. Let

Ax
a=—,

A

'//2 +_1_!//4 ___!_ 6..._1]:|’

(2.7.22)

(2.7.23)

(2.7.24)

(2.7.25)

where 1/« is the number of grid points per wavelength. Substituting equation (2.7.24)

and 2.7.25 into equation (2.7.20) gives
v=2ncx.

Therefore, equation (2.7.23) can be expressed as .
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5 a' ~1-8.64a". (2.7.27)

Equation (2.7.23) and (2.7.27) indicate that as Ax increases or the wavelength becomes
smaller, the computed phase velocity tends to be slower than the true.velocity. Figure
2.7.3 shows the dispersion curves computed from equation (2.7.21) and (2.7.27). The
plot indicates that the relative errdr in phase velocity is less than 1% when « is less than

0.17 (6 grid points per wavelength).

1.2 AL | IR ! T ! TTTT ! LIRS S
8 5 T e 7
- : ; analytical :
LR e T e --- - -Taylorseries | -]
g ; § 2 ! ]
1.05 [ A S roseenee A 7
Cp/Cy R
085 [ e e . .
-
0.85 [ i I frrmarmeeneees rorroremreaes .
0'8 L L ] 1 I4I 1 1 3 A. l 1 ‘ l 1 1
0 0.05 0.1 0.15 0.2 0.25
o= Ax/A

Figure 2.7.3. Spatial dispersion curves of phase velocity for finite difference
solutions with fourth order accuracy in space. '
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The group velocity Cg can be obtained by taking the derivative of equation (2.7.19)

-C? ’
20dw = —— 2.7.28
6Ax2 ( )
yielding
_do _ C;
8siny —sin2 2.7.29
G~ dk ~ SArw [ V- ‘/’] | ( )
Substituting equation (2.7.5) into the above equation gives
C, 1 C :
—& =—[8siny —sin2p|=> 2.7.30
"o [8siny . v] C, (2.7.30)
or
Cs 8siny —sin2y @731)

Fo ) J6](cos2y —1)—16(cosy - 1)]*

Equation (2.7.30) cé.n be expressed by using Taylor’s series for siny and sin2 y as

C | 5 1 3 1 5 CO
C—o E[S(y/——«// oV )—(251(*5(2%”') 5@ )]Ep—

or

C, v'|C :
Co 1V |&
e [ : 0] o @73

Substituting the eqﬁation (2.7.23) into the above equation results in

42



Ce __‘/14_ ‘_‘/’_4 ,
C0~[1 30]/[1 90}. (2.7.33)

Using the Taylor’s series expression again for the denominator, we have

4
Co o1 ¥ (2.7.34)
C, 45 |

Substituting equation (2.7.26) into the above equation gives

C 167’
=6 -2 =1-3456a". (2.7.35)
C, 45
1.2 T T T T ! T ,' T L ! T ¥ T T ! L] T T 7—!’ T T T T ]
: ’ . ' H ]
TR eSS SR o— e eneerens S 3
C L ! ]
C : analytical ]
LU [ e EEREE Taylorseries |~ .
- H H A
1.05 | .
1
Co/C r
0.95
09 |
0.85 |-
0'8 :J i 3 b i J 1 1 1 i 1 1 1 i 1. i 1 1 i 1 ] B | B
0 0.05 0.1 0.15 0.2 0.25

o= Ax/A

Figure 2.7.4. Spatial dispersion curves of group velocity for finite
difference solutions with fourth order accuracy in space.
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Equatiori (2.7.34) and (2.7.35) indicate the computed group velocity tends to be slower
than the true velocity that as Ax increases or the wavelengthé become smaller. The
dispersion curves by equation (2.7.31) and (2.7.35) are showed in Figure 2.7 4. | The plot
indicates that the relative error in group velocity is less than 1% when « is less than 0.12
~ (8 grid points per wavelength). The error for group velocity is much larger than the error
for phase velocity, while it is also true for the temporal dispersibn discussed in last

section.
2.7.3 Coupled Temporal and Spatial Dispersion

By comparing the dispersion behaviors of the computed relative phase and group
velocities in preceding two sections, it is noticed that the temporal dispersion acts in the
opposite sense as the spatial dispersion. Therefore, the combination of two dispersions is

expected to reduce the total dispersion.

Subsfi_tuting equation (2.7.1) into equation (2.3.4)

sin®(wAz/2) R CIL 16sin* (kAx/2) —sin?(kAx) sy -0

AP 1247
or
sin(@t/2) =~ 1[16sin2(kAx/2).—siri"(kAx)]”zA, (2736)
J124Ax
and

44



[16sin2 (kAx /2) —sin® (kAx)]"?]. (2.7.37)

= —sm [
\/_
Combing equations (2.7.5) and.(2.7.37), the phase velocity can be expressed as

6 _ o [
C, Cpk CkAt F

[16s1n (kAx/2) -sin®(kAx)]"*]. (2.7.38)

Let p=Codt/Ax and k=2 /4, dispersion condition have a formula

o2 o [p16sin?(w /2) = sin® )] /V12]. (2.7.39)
o PV ' | |

1.05 {_

Cp/C 1F

0.95 |
09 |

0.85 |

08 L

o= Ax/A

Flgure 2.7.5. Dispersion curves of phase veloc1ty for finite difference solutions
with 4th order accuracy in space and 2™ order accuracy in time.
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Figure 2.7.5 shows the dispersion curves computed by equation (2.7.39) for a range of
p’s. When Ax/A is small (Ax is small or wavelength is large), the temporal derivative @ -
order) dominates the total dispersion since it has a.lower accuracy than spatial derivative
(4™ order). With decreasing p (or Af), the spatial dispersion becomes more dominant
resulting in negative dispersion. The figure also indicates that the relative error of phase

velocity is less than 1% when « is less than 0.08 (12 grid points per wavelength).
To examine the dispersion of the group Velocity, equation (2.7.36) is differentiated.

sin(wAr) do 2 8sin(kAx) —sin(2kAx) k.

-C 2.7.40
0 6 Ax ( )
The group velocity can be expressed as
CG dw _ CyAt 8sin(kAx) — sin(2kAx)
G, C dk~ 6Ax sin{wA?)
_ (2.7.41)
_ Gyt 83in(kAx) sin(2kAx) '
6o . G ,,)
0
or
C_p sm(w) sm(2w)
c, 6 (2.7.42)

sin Cp
@wc)

0

‘Figure 2.7.6 shows the group velocity dispersion curves computed by equation (2.7.42)
for arange of p’s. Similar to the dispersion relationship of the phase velocity, the group

velocity exhibits positive dispersion primarily due to the temporal dispersion when Ax/A
' 46



is small, and‘ negative dispersion due to the spatial dispersion for a large Ax/A. With
increasing p (decreasing A4f), the negative dispersion dominates due to the increasing
spatial dispersion. The figure also indicates thét the maximum dispersion in phase
velocity is less than 1% when «a is less than 0.04 (25 grid points per wavelength). It
should be noted that the dispersion of group velocity is much larger than dispersion of

phase velocity.

Figures 2.7.5 and 2.7.6 indicate that small p (Codt/Ax) énd a (Ax/A) give less

dispersion, which can guide to choose the time step A and grid step 4x.

12

1.1

1.05 |

Cp/C
0.95 |

0.9

0.85

0‘8 L 1 I 1

o= Ax/A

Figure 2.7.6. Dispersion curves of group velocity for finite difference
solutions with 4th order accuracy in space and 2™ order accuracy in time.
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- 2.8 Turning On & Off Subdomains Computations

For some wave propagationvproblems, the w’aveﬁeld is concentrated within certain
areas of the compﬁtational domain at a. particular time stép. When the domain
decomposition technique is applied, some of the subdomains may not contain any wave
energy at that particular time step. Figure 2.8 sho_ws a computational domain with three
subdomains at three different time steps T1, T2 and T3. At time step T1, the waves exist
only within the subdomain Q1. Thérefore, only the wave wnhm the subdorhain Q1 need
to be computed. Similarly, at time step T2 or T3, only the wave within subciomain Q2 or
Q3 is computed, respectively. Such a computational scheme saves a significant amount
of computational time. The computation for a subdomain may be “turned on” or “off”

according the following criteria
If | u(xm t)| < €, Xm € Qi, then turn off Qi at time step ¢,
If | u(xm tz)| > €, xm € Qi, then turn on Qi at time step #,,

where ¢ is the maximum error (i.e., numerical noise generated by the finite difference

approximations).
0 _ Overlap area Overlap area
TIQI iS “on” s {f-—’\—\: f_/\_\
.Q2,Q3 are “of” |><source 4wa|v/“>e SR .§ : J
: L _J T J
Q1 Q2 Q3
T2: Q2 is “on” COENENEY —
Ql,Q3are“off” |>< !----s % I ‘l
T3: Q3 is “on” DODCE T
7 a1, 2 are o X H ol >

Figure 2.8. Schematic illustration of how the subdomains can be turned on and turned
off during the calculation by ODD to reduce the number of computations.
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2.9 Example

The ﬁnite difference method and pseudospe;:tralv method have been widely studied
(Alford et al., 1974; Kelly et al., 1976; Dablain 1986; Gazdag, 1981; Kosloff and Baysal,

| 1982; Fomberg, 1987, 1996; Kosloff et al., 1990). Here, the solutions obtained.from
ODD FD and PS methods are compared with the results from con‘yentional FD and PS

methods.

The model for the 1-D comparative study is illustrated in Figure 2.9.1. The source on
the left generates a Ricker wavelet (Appendix A) with a central frequency of 25 Hz. The
total model is 2560 m long, the wave velocity is 3000 m/s with the wavelength of 120 m
for the central frequency, and the distance between the source and receiver is 2200 m

(approximately 18 wavelengths).

__________

Q ] el .
@ [ X "~ v
2200 m —>
0 o Overlap area Overlap area
(b) l X q RN §'-'-'-'§ V ‘l

—
= |
| N S
L~
N
—

Y \{
Q1 Q2 Q3

Figure 2.9.1 The 1-D model for the ODD tests: (a) single domain model and
(b) three subdomain ODD model. ’

Figure 2.9.1(a) shows the single domaih model for which the conventional 4™ order
FD and PS are applied. Figure 2.9.1(b) shows the three subdomain model to which the

ODD PS, ODD FD4, and mixed ODD PS-FD4 (PS in Q2, FD4 in Q1 and Q3) methods
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are applied. The ODD methods use the “turn-off” technique that computes only

wavefields within subdomains with significant wave energy.

The.waveforms frbm different methods are plotted in Figure 2.9.2. The results show a
good agreement. The relative differences are less than 0.02% between.the ODD and
conventional methéds. This example dembnstrates that .thf: domain decomposition
technique and the “turn-off” technique both work very well. In the 1-D case, the time
and memory required for the computation are not significant and the ODD and “turn-on-
and-off” techniques do not have a significant effect. These techniques becomes very

efficient for 2-D cases and, especially, for 3-D cases.

1,5 [ ] 1 | { L 1 T v 14 | I L 13 R

- Analytic ]

- _ —A—FD4 .

1T F —o— ODD FD4XFD4 |7

- | |-=%--PS = .

o 05 F - -+--ODD PS E

T Qf/ \ —&—ODD FD4xPS |-

Ei 0 _E o P F P k /&—x—a-nm-m—s- ~

05 F .

1 F 3

_1.5 N 1 1 L i Vl 1 l"l. 1 1 1 . | 1 i 1 1 g1 1 1 1
0.7 0.72 0.74 0.76 0.78 08 0.82 0.84
Time (sec.)

Figure 2.9.2. Comparison of waveforms for the 1-D model generated using the ODD
and conventional numerical methods.
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2.10 Summary

In this chapter, the ODD technique is proposed for wave propagation in a 1-D medium,
- and it is tested by the implementation of th¢ ODD algorithms for the fourth order finite
difference (FD4) method, pseudospectral (PS) method and mixed FD4-PS method. The
results show good agreement between the ODD FD, PS, rﬁixed FD-PS methods and the

conventional FD and PS methods.

The stability conditiqris for the FD4 and PS methods are derived, which gives the
criteria for choosing the ratio of Cpdt/Ax. The temporal, spatial, and mixed temporal and
spatial dispersion relations are given for the FD4 and PS methods, which vi_ndicates the
minimum time steps for the certain frequency (or period) and the minimum grid points
for the relative wavelength. It also shows that the dispersiori for group velocity is much
‘larger than the digpersion for phase velocity. The tuxhing-off technique for inactive

" subdomain is introduced and it works well.
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CHAPTER THREE
 OVERLAP DOMAIN DECOMPOSITION FOR 2-D PROBLEMS

3.1 Introduction

 The 1-D ODD methodology can be directly extended to 2-D wavé propagation
‘problems by overlapping in two, dimensions. Since the 2-D wave equations are quite
different from the 1-D wave equation especially for elastic media, necessary
modiﬁca.tions have to be made to the ODD teéhnique. In this chapter, first, the ODD
algorithm for 2-D wave propagation problems is described. Secbnd, acoustic and elastic
wave equations are introduced. Third, the ODD implementatidns for FD and PS methods

are explained and several examples are given.
3.2 2-D Overlap_ Domain Decomposition Technique

The domain decomposition for the 2-D wave propagation problems is shown
schematically in Figure 3.2.1. A singlei domain is divided into six subdomains. The
light-shaded regions are overlappiﬁg areas shared Between neighboring subdomains.
These overlapping areas allow transfer of thé wave from one subdomain to the other. For
example, the center subdomain Q2 is considered first. The subdomain QZ is sﬁrrounded
by four dverlapping areas. Withiq the oveﬂapping area, the reflecting zone are indicated
by the dotted regions covering the artificial boundaries. The rest of subdomain Q2
without the 'reﬂecting. zone is called the central region of subdomain 2. When

computing the wavefield in subdomain Q2 at a time step, waves reflect from the artificial
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boundaries when' they reach the artificial boundaries. If the width ofi the reflecting zone
1S iarger than dx=vdt, the reflecting waves are limited to the reflecting zone within a time
step dt. Only the wavefield from central region of Q2 is used to construct the wavefield
in the domain Q and the results from the reflecting zone are discarded. By not using this
contaminated information, the reflections, from these artificial boundaries are eliminated.
But, when the Q1 is computed, the wavefield of the uncontaminated central region bf the
left neighbor €21 now contains (overlapps) the wavefield of the left reflecting zone of €22.
Similarly, the wavefields of the subdomains €23, 4 and Q5 overlap right, upper, and
lower reflecting zones in 2. After finishing the computations in all the subdomains, the
wavefield of the entire domain €2 can be constructed from the central regions of all the

subdomains.
3.3 Turning on and Turning off Computations in Inactive Subdomains

If durir;g the course of the calculation, the waves have not spread over the entire
domain at a particular time step, some of subdomains will ﬁot contain any wave energy.
Therefore, the calculations_in these “inactive” subdomains are not necessary and can-be
turned off. Figure 3.3.1 shows a domain with nine subdomains at two different time steps
T1 and T2. At time step T1, the wave is present only within subdomain 6. There'fore,
computations need to be performed only in subdomain Q6 since there is no wave energy
in the other subdomains. Similarly, at time step T2, computations need only in
subdomains Q1, Q4 and Q7 respectively. Such a procedure can save a significant

amount of computing time by turning off the inactive subdomains.
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Figure 3.3.1. Active and inactive subdomains at (a) an early time step and (b) a later
time step, where “A” and “T” represent “active” and “inactive”, respectively.
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3.4 Application of ODD to 2-D Acoustic Problems

Let x and z be the horizontal and vertical rectangular coordinates in a two-dimensional
medium, and let the z-axis be positive downward. For an isotropic and homogeneous

medium, the acoustic wave equation reads

0*P(x,z,t) 0*P(x,z,t)
2 - 2T 2
Ox 0z c ot

0*P(x,z,t
(x2 )+S, - (3.4.1)

1
2
where P(x, z, t) represents the pressure, ¢ the wave velocity and S, z, ¢) the source term
which equals the divergence of the body force divided by the density.

3.4.1 ODD for the 2-D Acoustic Finite Difference Method

The spatial derivatives in equation (3.4.1) can be discretized using the fourth order

finite difference method as

O’P(x;,2,,t) 1 & ' | .
(a’xZ ) = AxZ Zajp(xl+j’zm’ti)+0([4x]4) s (3-4-2)
je2
O’ P(x,,2,,¢, 1 & N
(6122 ) = Az Zzajp(xl,zmj’ti)+0([AZ]4), (3.4.3)
J= . _

where q; are the constant coefficients of the fourth order FD such as a.;=-1/12, a;=4/3,

ap=-5/2, a;=4/3 and a;=-1/12. The temporal derivative for second order accuracy is

O*P(x,,z,.t,) 1

p% = [P Zpsty) = 2P (X1 2ol ) + P(Eps 205k, )]+ O(ALT). (3.4.9)
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Applying equation (3.4.2), (3.4.3) and (3.4.4) to equation (3.4.1), a FD formula can be

expressed as

P(xl’ m’ n+l) 2}’(‘xl’zm’ n) P(xl’ m? n—l)

Ait [Za P(xn,,z,,,,t):l Ait [Za P(x),2,, ,)J ’ (34.5)

J=-2 J==2

+EMS O[T [Az) [AT).

Equation (3.4.5) shows that the spatial derivatives at a point [/, m] need four values at
neighboring grid points in each direction. According the study of Chapter 2, the -

minimum number of overlapping grid points should be four in each direction.

‘For a heterogeneous medium in which both density and seismic wave velocity are

spatially variable, the acoustic wave equation is

1 0P(x,z,t) ), 16P(x,zt) 1 8*P(x,z, n. L
2 X2 : S, (3.4.6)
ax p Ox 6z 0z T p ot

where p is the density and S is the body force source. Compared to equation (3 .4.‘1), the
two terms on the left-hand side now contain two first order spatial derivatives instead of a
single step of the second order derivatives in both x and y directions because the density
and velocity are no longer constant. Then the FD for’mulé with 4ih order accuracy in

space become

91’("_16’?.& IZb P, 57,0,) + O([AXT'),
. j=—-2

aﬂ%ﬁ L Zb P(E2,,51,)+ O],
Az ;5

(3.4.7)
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where b} are the constant coefficients of fourth order FD giving by b.,= 1/12, b.; = -2/3,
by=0, b;=2/3 and b,=-1/12.

. Now, we set
-1 O0P(x,,z,,t,)
p(xI’Zm) ax o
1 OP(x,,z,,t,)

X15Zm5t,) = , 4.
g(x, ) n) . (3.4.9)

f(x2,,t,) = , (3.4.8)

and spatial derivatives of equation (3.4.6) can be written as »

a( 1 aP(x,,zm,tn>]=af(x,,zm,t,,)

a ppz,) o 6410
1 2 ‘ . o
=—ijf(x,+j,zm,t,,)+0([Ax] )a
A5
B 1 POzt Oe(nZut,)
o2\ plx,2,) @& & sath
|2 oy (3.4.
=—ijg(xpzm+jatn)+0([AZ] )
=

Once fand g are éomputed from equation (3.4.7) to (3.4.9), two appliéétions of spatial
derivatives in equation (3.4.6) can be computed from equation (3.4.10) to (3.4.11). Since
each applications of the first order spatial derivative requires four neighboring grid points
in a single direction, eight grid neighboring pbints are used to éomputé the two
applications of derivative. Figure 3.4.1 graphically describes the two applications of the
first derivatives along the x direction and the required overlapping area containing eight

grid points.

57



By applying equation (3.4.10), (3.4.11) and (3.4.4) into equation (3.4.6), the final FD

method scheme for a heterogeneous medium can be written as

P(x,,z,,,’,t,,+l)=2P(x,,z 4 )_P(xn ”'l)
' + € pAt2

> b, (Kry s 2st) + Z 8%, 2, 0t)  (3.4.12)
J=2
+c pAtzS +0([Ax]', [Az]', [AF).
Overlapping Area »
- " —
xl. m4 m3 m2 ml m mtl m2 m+t3 mH4 ... M

Q T\~

m+4

f(x 2,z,t)—- pr(x,,zt) f(x,.,,2,8) = pr(x,,z,t)

i=m-4

T

ax(l OP(x,z, t)) ’fbf(éc,,z 9

p ax i=m-2

Figure 3.4.1 The overlappihg area for the FD method in heterogeneous media.

3.4.2 ODD for the 2-D Acoustic Fourier Pseudospectral (PS) Method

For 2-D problems, the PS method uses a Fourier transform to calculate the spatial
derivatives in the two directions. The 2-D Fourier PS method can be summarized as

follows. |
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The. 2-D Fourier transform of P/x(0), y(0), tm)], ..., Plx(), y(m), tm)], ..., Plx(L),

y(M), t(n)] can be expressed as:

M-1L1-1

Pl (1), k,(m), t(n)]= ZZP[x(z) (), t(n)le B DXOkm=(D) (3 4 13y

J=0 i=0

where the wavenumbers k (I)=24/(LAx), k,(m)=2mam/(MAz) and Ax=x,-x_,,

Az =z, -z, . The inverse Fourier transform is:

M-11-1

P[x(i), z( 7, t(n)] = Z}l\? ZZ p[k (D), k,(m), t(n)Je™ OOk m)z) (3.4.14)

m=0 /=0

Then the first and second order spatial derivatives can be obtained from the above

equation

OP[x(i),z(j),t(n)] _ 1 A:Vji[ ik (l)] P[k ).k (m) t(n)]e'k L (Dx(i)+ik, (m)z(j) , (3.4.15)
Ox LM m=0 =0 -

aP[x(i),;z(j),t(n)] _ Ljunfg[ ik (m)]- B[k, (), k. (m), t(n)]e”"(')"(')+"‘ @) (3.4.16)

azp[x(i),z(j),t(n)] l ‘f:""i[ K- P[k (), k, (m), t(n) | D=k m) (3 4.17)

2
ax m—OI-——O

0" Plx(@),z(/),t(m)] _ 1 ‘ﬁi[ K2 (m)]- Pk (0), k (M), ORmD (3 4 18)

2
aZ : m=ol—0

Combining equation (3.1.7), (3.4.18) and (3.4.4), the PS scheme for a homogeneous

medium wave equation (3.4.1) is
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Plx(@), 2(j), tn + )] = 2P[x(1), 2(j), {(n)] - P[X(i), z(j),t(n=1)]

M-1L-

+C AL UMZZ[ k% () - kzz(m)] Plk (D), k,(m),t(n)™= "% ‘"""”} (3.4.19)

m=0 /=0

For a heterogeneous medium, similar to the FD scheme, two steps are réquired to

compute the spatial derivatives for the wave eqﬁation (3.4.12)

Fl 1 aP[x(z'),zm,t(n)]):af[x(f),z(j),t(n)]
ox \ p[x(i), z(j)] Ox ox

1 M-l L-

LM m=0

ik, (1) f Tk, (1), k, (m), ()l OOk ma) (3.4.20)

~

=0

8 ( 1 aP[x(z'),z(n,t(n)]J:ag[x(i),zm,t(n)]

P[x(i),z(j)] 0z dz
1 gjg’k (m)glk, (D), k., (m), ()X ‘"'”“’. (3.4.21)

LM m=0 I=0

Applying the above two equations and equation (3.4.4) into the wave equation

(3.4.12), the final PS solution for the hetefogeneous medium is

- P[x(i), 2()),4(n+ 1)1 = 2P[x(2),z(j), 6(m)] - P[X(i),Z(J'), t(n—1)]
ZAtZ M-1L-1

*ar Zog({ ik, () f1k, (1), e, (m),t(n)]

+ ik, (m) - gk, (), k,(m), t(n)]} - ™ OX DMy = (3 4 59y

The application of the overlap domain decomposition technique to the 2-D PS method
'requires that taper functions be applied to each PS subdomain in both the x and z
directions. The length of the overlapping area should be about one wavelength to -

effectively avoid wraparound across the subdomain boundaries.
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3.4.3 Acoustic Example

The layer model consists of ‘a low-velocity (2000 m/s) layer overlying a high-velocity
(3000m/s) layer (Figure 3.4.2a). The distance between the source and receiver is 400 m
(five wavelengths long). The parameters for the computation are listed in the Table 3.4.1.
The subdomains and their ovelapping areas for the overlap domain decompbsition of this
- model are shown in Figure 3.4.2b. This entire domain is decomposed into 25

subdomains.

For comparison, five different combinations of computation have been performed: (1)
single domain conventional 4th order finite difference (FD4) method and (2) PS method,
(3) 25 subdomain ODD FD4 method and (4) PS method, and (5) hybrid ODD PS-FD4

method (PS in the source subdomain and FD in the surrounding subdomains).

Table 3.4.1 Model Parameters for the Numerical Example

SFC.

Input source Ax Ay 6 (vat/i)
Ricker Wavelet |  5m sm | 5x10° 02

Two snapshots of the acoustic waveﬁeid calculated at time 0.1 s and 0.4 s with the
ODD PS-FD4 method (25 subdomains) are shown in Figure 3.4.3. At 0.1 s, the wave
only propagates a short disfance and is still within the central subdomain. At this point in
time, the calculation only needs to be applied to the central subdomain. As the wave
propagates into neighboring subdomains, the subdofnains are turned on and turn off

depending on if there is any wave energy within these subdomains.

61




-

SR RN

RE--HRRERERE-ARERENEN!
L BN R e
'LIL

(a) (b)

(@ (b)

Figure 3.4.3. Snapshots of acoustic wavefield (a) at 0.1 s and (b) at 0.4 s.
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The waveforms calculated by different methods for the 2-D acoustic model are shown
in Figure 3.4.4 and relative computing times (Pentium Pro 200 computer with 128 MB
memory) are shown in Table 3.4.2. The analytical solution has been calcuiated by
integration of the 3-D Green’s function which is given in 'Appehdix B. All numerical
results match the analytical solution very well. The relative differences are less than
0.1% between the ODD and the conventional methods. However, the ODD FD4 method
takes only about the half of the computing time of the cqnventional FD4 method and the
ODD PS method takes only one third of the computing time of the conventional PS
method. Furthermore, ODD methods take about two thirds of the memory requirementbs

of conventional methods.

1.5 — !

i Analytic
i ® FD4
1 . , -x— ODD FD4xFD4 |......
R --%--PS
L = -+--0DD PSxPS
i - &— ODD FD4xPS
05

Amplitudé

o

TV 117

-0.5

LENLE L

022 024 0.26 028 03 - 0.32 034 0.36 0.38
Time(sec.)

Figure 3.4.4. Waveforms from different ODD methods for 2-D acoustic model.
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Table 3.4.2 Computing time of different method for an acoustic model

Methods FD4 ODD FD4 PS ODD PS ODD PSxFD4
Computing time | 3 hrs 1.5 hrs 19 hrs 6 hrs 4 hrs
Memory 11 mb 7.3mb 11 mb 7.3 mb 7.3 mb
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3.5 Application of OOD to 2-D Elastic Problems

The elastic wave equation in a 2-D heterogeneous medium in the rectangular

coordinates x'and z can be written (K(_)lsky, 1963; Karal and Keller, 1959)

ol .(6u ow oul| o (ow
— | A —+—|+2u— |+ —| 4 —+
x| \ax o ox | oz| \ox

ar(au 6w) ow| 8 (6w
—| A —+— [+2u— |+—| 4 —+
oz| \ox &z oz | x|\ ox

oz or

(3.5.1)
Q_u_) — .6_211)..{_5'
x)| P T

where u# and w are displacements in x and z directions, 4 and g are the Lame parameters

which are dependent upon the space variables x and z, and S, and S, are the source

functions. These two coupled, second order partial differential equations can be used to

describe the motion of P and S waves.

For a homogeneous medium where p, A and u are constant, these equations can be

written in simpler forms

!
H

0*u

(1+2u 62u+ o*w N 62u_ o*w
ox®  Oxoz 0z> 6x0z

=p—+S,,

N
(3.5.2)

(A+2u

0*u . o*w o*w ~ 0%u
ox0z 6z° ox!  oxoz

65

orr

2
)zpa w+S’



3.5.1 ODD for the 2-D Elastic Finite Difference Method

Similar to the acoustic problem, a homogeneous medium is considered first. The
finite difference formulas with 4th order accuracy in space for the 2nd order spatial

derivatives are

0*u(x,,z ot
(alxzm ) _ sz Z:Za U(xp, ;s 2,5t:) +O(Ax]),
o

0%u(x,,z .t 1 3
( Lom n) = 2 zaju(xlszm+j’ti)+O([AZ]4)’

oz* Az" ;5

(3.5.3)

O*w(x;,2,,t,) 1
Al = sZmst;) + O([Ax
e o Za W51 pp2nly) + O3,

2
0 w(xl’zm’t") 1 Za W(xp m+19t)+0([AZ]

P
oz j—2

where g; are the constant factors of fourth order FD, a.,=-1/12, a.;=4/3, ap=-5/2, a; =
4/3 and a;=-1/12. The other two cross second order spatial derivatives need two
applications of the first order spatial derivatives by FD in two different directions. For

example, the z-direction derivatives are computed as follows

S zt) = 2 Z I = LS4, 2,1+ 0T,
z M ,-—z
(3.5.4)
0 sZpmsl,
g(xl’zm’tn)_i(XITzz——)' Zb w(x,, m+j? n)+0([AZ] )
X; j-—2
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where b; are the constant factors of fourth order FD: b.,=1/12, b.;=-2/3, by= 0, b; = 2/3.

and b,=-1/12. The cross second order derivatives become

Ou(x,,z,,t,) _ ¥y zpt,)

=L S fw02t) + O],

otz x| M5
(3.5.5)
O*W(x,,2,,L,) ag(x, z,,t )] 4
L 2—m’ b.g(x,,z,,t)+O(Ax]").
pes & L. Z; 1 8(Xp, > Zns ;) + O([AXT')
The final FD formulas for equation (3.5.2) can be written as
u(xl’zn’th) =2u(xl’zn’ n) u(x]’ —l)
+a2At2 Za u(x,+j,zm,t )+—z g(x1+j’zm’tn)]
% ’='2 (3.5.6)
+ﬂ Atz[— Za u(xl’ m+J’ Z g(x1+j’zm’tn)]
J=2 j—-—2
+pAL’S, +O([Ax]', [Az]', [AT),
and
W(xl, +1) =2W(x,,2n,t )_w(xl’ —1)
+a2At2[— Za WOy Zys ) + = Zb N(CAEIND)
AZ j=-2 ,=-2
(3.5.7)

+ﬂ Atz[—— za w(x,, m+j’ Zb f(xl'tl’z""t )]

J=2 j=2

+ pACS, + O([AxT' [Az] [ATP),

where o and £ are the P and S wave velocities given by a=.(1+2x)/p and

B =+ulp,respectively.
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The ODD technique can be easily applied to the above elastic problems following the
approach presented in Section 24 When applying the ODD to equation (3.5.3), at least
four grid’ points for the overlapping area are required. ‘Although équation (3.5.5) needs
two api)lications of first order derivatives, the two applications are in diffefent directions

* and the overlapping area in each direction only needs four grid points.

For a heterogeneous medium, similar finite difference formulas can be formed for
equation (3.5.1). Two more functions need to be introduced besides those given in

equation (3.5.4),

h(x,, ) &l(xl’ Zb u(x1+_,a atn)+Q[Ax]4)s '
| (3.5.8)
k(x,,2,,,t,) = Mnty) 1 Zb WXy, > Zot) + ([ AX]),

Ox

Zy J =2

Substituting equation (3.5.4), (3.5.8) and (3.4.4) into the equation (3.5.1), we have the

FD formula for a heterogeneous medium,

U(X)5 2,5 bp) = 20(x), 2,,,8,) — U(x), 2, —1)
+A’7[¥—— b (Ao A o1, + 8t D4 205 pt Vi 1)} (B.59)

J=—2

+—Zbﬂ(2,..+,,t W&z, j58,) + [ (258 )}+Sx]+0([AX]4,[A_Z]‘,[At]2),

and
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M}('xl’zm’tnﬂ) = 2W(x/,2"',t',) - w(x,,z»,,,;t,,_l)

A1 o
+7[ZZ— zbj {/?’(Znﬁj’tn)[h(zm+j’tn) +g(zm+j’tn)]+2ﬂ(zm+j’tn)g(znuj’tn)} (3510)

j==2

b S Bt R 0,) (ot )+ 5,1+ O[] AT,

. To apply the ODD technique to the above equations, two applications of first order
derivatives ( £ g A k in equatioh (3.5.4) and (3.5.8) first, then u and w in equation
(3.5.9) and (3.5.10) ) in the same direction arevrequired, and the overlapping areas need
four grid points for éach first derivatives. Thus two applications require a total of at least
eight grid points for the overlapping areas in both x and z directions similar to the

discuséion in the Sectioh 34.1.

The following table gives the minimum number of overlapping grid points for the
ODD FD methods depending -on their equations and approximations for different

problems.

I

Compared to 2-D acoustic case, elastic problems have 'two components (¢ and w)
instead of only one pressure component fqr acoustic problems; and elastic problems need
to calculate fourteen spatial derivatives in equation (3.5.1) instead of four derivatives for
acoustic problem in equation (3.4.6) for heterogeneous media. So elastic problems'
require much more memory and computation time with the same dimension of aco;mtic

problems.
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Table 3.5. The numbers of the overlapping grid points for FD ODD method

FD 2" order 4™ order -4" order 2™ order 4™ order
acoustic acoustic elastic acoustic or | acoustic or
Methods (const P) (const P) (const P) elastic - elastic
Min overlap 2 4 4 4 8
Gird points '

3.5.2 ODD for the 2-D Elastic Fourier Pseudospectral Method

The ODD algorithm for 2-D Fourier PS method is similar to that of the 2-D acoustic
method. The implementation is described in Appendix D. The length of overlapping

area required by the 2-D Fourier PS ODD method is again about one wavelength.

3.5.3 Elastic Example

' The elastic model is shown in F igure 3.5.1. Tﬁe geometry is the same as the acoustic
model, but the media are elastic. The source is a horizontally polarized Ricker wavelet
with the central frequency of 25 Hz. This whole domain is also divided into 25
subdomains as displayed in Figure 3.4.2.
Different combinations of computational methods ‘have Been applied to this model for
comparison. All methods use thev same _parémeters (Table 3.4.1) fér the simulations.
Figure 3.5.2a to 3.5.2.e show the snapshots of horizontal and vertical displacgmqnts at 0.4 ‘ .
s simulated by the FD4, ODD FD4, PS, ODD PS and mixed ODD PS-FD4 methods,
_where “P” and “S” indicate for direct P and S waves; “PPR” and “PSR” for P to P and P

to S reflecting waves; and “PPT” and “PST” for PtoPandPto S transmitting waves.
N
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The waveforms fecorded at a receiver 400 m away from the source for all the above

methods are shown in Figure 3.5.3-4. The computation times are listed in Table 3.5.1.

In Figure 3.5.2a, b, the direct S wave (“S”) and transmitting S waves (“SST”)
calculated by the FD4 and ODD FD4 method have a lot high frequency ringings due to
the dispersion. However, the relative wavefields are quite »smooth with very little
dispersion in Figure 3.5.2¢ to Figure 3.5.2¢ calculated by the PS, ODD PS and ODD PS-
FD4 methods. Figure 3.5.3 and 3.5.4 show the differences among these waveforms by
comparing the numerical wavefields with an analytic solution. The waveforms from the
FD4 methods have high frequency dispersion noise and the poor matches to the analytic
solution (Figure 3.5.4). In general, it can be stated that the results of the PS, ODD PS and
ODD PS-FD4 methods show negligible.dispersion and a closer match to the analytic

solution.

The feason for the lack of numerical dispersion in the PS, ODD PS and PS-FD4
methods is the higher accuracy difference provided by the P(S method. In the ODD PS-
FD4 sirﬁulation (Figure 3.5.2¢) from the above example, th; PS method is only used in
the center subdomain where the source is located. The PS method yields a higher
accuracy solution near the source where the gradients in the displacement are higher,
especially for the S wave which has shorter wavelengfh. The FD4 method can, how?ver,
carry the simulations accurately in the surrounding subdomains after the wavefield is
propagated from the source subdomain with PS method. Although the FD4 has lower
accuracy, it is much faster than the PS method. These two numerical methods can be

coupled together to forman efficient numerical algorithm to reduce computational time

and to keep the high accuracy.
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Figure 3.5.1. Model for the 2-D elastic simulation.

(a) horizontal displacement (b) vertical displacement

Figure 3.5.2a. Snapshots at 0.4 s computed with the FD method with a single domain.
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(a) horizontal displacement (b) vertical displacement

Figure 3.5.2b. Snapshots at 0.4 s computed with the ODD FD method (25 subdomains).

(a) horizontal displacement (b) vertical displacement

Figure 3.5.2c. Snapshots at 0.4 s computed with the PS method with a single domain.
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(a) horizontal displacement (b) vertical displacement

Figure 3.5.2d. Snapshots at 0.4 s computed with the ODD PS method (25 subdomains).

(a) horizontal displacement (b) vertical displacement

Figure 3.5.2e. Snapshots at 0.4 s computed with the ODD PS-FD4 method

(25 subdomains).
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Waveforms from different methods for 2-D elastic model.
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Figure 3.5.4. Expanded view of the lower part of curves in Figure 3.5.3.
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Table 3.5.1 shows the computing time and memory usage by the different methods
(Pentium Pro 200 computer with 128 MB memory). The ODD FD4 and ODD PS
methods without turning-off technique are little slower than the conventional one domain
FD4 and PS methods because of the communication time between the subdomains.
However, the ODD FD4 and ODD PS methods with turning-off technique are faster than
the conventional FD4 and PS methods. The ODD mixed PS-FD4 method with turning-
off technique has the higher accuracy and faster speed. All the ODD methods use less
memory. The FD4 employs lower accuracy differencing and, thus, requires a fine grid to
’properl.y handle the strong gradients produced by the point source. To get the results by
FD4 method with the same accuracy as the PS and ODD PS-FD4 methods, the spatial
grid interval for FD4 could be used as a quarter of the interval for PS method (Fornberg,
1987, 1996). It would increase memory needed for the example by a factor of 16, which
is beyond the capacity of the computer. This example demonstrates that the ODD
method can be used to speed up the computation, decrease the usage of memory, in
addition, to couple different numerical methods together to increase the accuracy of

simulation.

Table 3.5.1. Computation times and memory usage by the different methods.

Methods FD4 | ODDFD4| PS ODD PS ODD
FD4 & PS
Computing 0.67hrs | 0.5 hrs 13 hrs 8 hrs 1.1 hrs
time
Memory (MB) | 34.88 23.84 36.91 23.84 23.84
Computing time | - ¢, 540, fastest slower slow fast
(comparison)
Accuracy low low high high high
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3.6 Stability and Dispersion Condition

The general wave propagation equation for 2-D problems can be written as:

- 9*P(x,z;t)

Y = L[P(x,z.,t)_] , (3.6.1)

where L is a spatial derivative operator. The second order accuracy time FD is
P(x,2,1,,) = 2P(x,2,1,) = P(%, 2,1, ,) + AP L[ P(x, 2,1,)] . (3.6.2)
Similar to Section 3.6, r is defined as

y
r= —P—(Zz’—t)—L[P(x, z1)]. | | (3.6.3)

Substituting equaﬁon (3.6.3) into equation (3.6.2) gives
P(x,z,t,,,)=Q2+1)P(x,2,¢,) - P(x,2,t,.,) . (3.64)

Since equation (3.6.4) has the same form as the 1-D case in equation (3.6.3), following
the discussion in Section 3.6, the stability condition for 2-D problems is the same as for

1-D case in equation (3.6.13),
0>7>-4. o (3.6.5)
3.6.1 Stability Condition for 2-D Acoustic Problems |

From the 2-D acoustic wave equation (3.4.1) and definition of 7 in equation (3.6.3),.

we have
77



2 A 42 2 ¢ aZP ¢
- QA | TPzl 0Pzl | (3.6.6)
P(x,z,t) ox” . 0z
For the fourth order FD method using a harmonic solution of the form given in
equation (3:6.4), 7 becomes
(3] il
- ¢, At2[16s1n (k,Ax/2)—sin®(k, Ax) 16sin”(k, Az /2) - sin (szz)], (3.6.7)

3Ax? 3Az*

where k, and k, are the wave numbers in the two directions. Letting Ax = Az in

~ equation (3.6.7) gives

_2G, At2

[16sin®(k, Ax/ 2) sin’(k, Ax)] (3.6.8)

Substituting equation (3.6.24) and 3.6.8 into equation (3.6.5) gives the stability

condition

Cat 31, 612, (3.6.9)

szﬁ

Compared to the 1-D stability condition in equation. (3.6.23), the 2-D stability is more

demanding by a factor of 1/ V2.

For the Fourier pseudospectral method, 7 is obtained as

7 =-C ATk + k2] | (3.6.10)
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Substituting the preceding equation into equation (3.6.5) gives,

2
CoAt < ——— (3.6.11)

N
where k;=7z/Ax and k,=/Az, which are the largest values at the spatial Nyquist frequency.

Substitution of these values in equation (3.6.7) gives the stability condition

Cott S_%_l_ = ﬂ ~0.45. _ (3.6.12)
Ax ﬂﬁ V4

This shows that the 2-D stability condition differs from the 1-D condition by a factor

of 1//2.
3.6.2 Stability Condition for 2-D Elastic Problems

The elastic wave equation (3.5 2) can be rewrite without the source terms as

.(3.6.13)

2., A2 2 2 2 2, 2
o 61;+8v2v+6(u+_w) + B 612¢+6v2v_6(u+w) =6(u-2kw)
ox® Oz Ox0z oz° ox Ox0z ot

Using the definition of 7 in equation (3.6.3), we have

Ar? (*u *w & (u.+ ) [ w Fu+w)] .
= + + + + 3 .
: (u+w) [a (axz oz? oxoz B 72 . o2 ooz . (3.6.149)

Substituting a solution of equation (3.5.3) of harmonic form

u(x’ z, t) — uoei(lcx.x+k,z-ax)’
W(x, z,£) = w,e k¥t (3.6.15)
3%
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into equation (3.6.14) with fourth order spatial finite differencihg gives

2442 i 02 il .2 a2 .
o & At [16s1n (k Ax/2)—sin (kxAx)u+ 16sin°(k,Az/2) —sin (k‘AZ)w _

u+w ’ 3Ax? A 3Az*
N 8sin(k, Ax) —sin(2k, Ax) 8sin(k,Az) —sin(2k,Az) (w+w)]
6Ax 64z . (3.6.16)
B2AP 16sin®(k, Ax/2)—sin’(k,Ax)  16sin’(k,Az/2)~sin’(k,Az)
Tarwl A% v 302 “
8sin(k, Ax) —sin(2k, Ax) 8sin(k,Az) —sin(2k,Az)
- 6Ax 6Az

(u+w)]

Letting Ax = Az in the above equation gives

a’Af? 16sin’(k Ax/2) —sin®(k,Ax) N sin?(k,Ax)(4 — cos(k,Ax))* .

- 2 [ ]
Ax 3 9 (3.6.17)
BEA? 16sin’(k Ax/2)~sin’(k,Ax) sin’(k Ax)(4 - cos(k Ax))’

~a 3 B 9 ]'

Since sin(k, Ax) <1 and (4 —cos(k,Ax)) <5, gives
sin®(k,Ax)(4 — cos(k,Ax))* <25. (3.6.18)
Using equation (3.6.24) and equation (3.6.18), then

16sin’ (k,Ax /2) - sin’ (k,Ax) | sin’ (k,Ax)(4 — cos(k,Ax))* 16 25 73

. (3.6.19
3 9 3 9 9 ( )

Substituting equation (3.6.17) into equation (3.6.5) and using equation (3.6.19), we get

‘the stability condition
2 + ZAt_ .
N +BA 6 600 © (3.6.20)
Ax J73
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This inequality can also be written in more revealing forms

Ax

N

At <0.702 (3.6.21)

or

Y / 2 -

For the Fourier pseudospectral method, we have

(u " [a (E2u+ k2w + ke, (u+ w))+ B2 (2w +_ka; —kk u+w).  (3.623)

Substituting the above equation into equation (3.6{.5), we have
2 2 2 2 272 2 1
AP < Au+ Wt (Ku+ 2w+ k ke, (u+w))+ B2(2w+ Ku—k &, (u+ w))| . (3.6.24)

Letting k,=#/Ax and k,=m/Az, which are the largest vélue at the spatial Nyquist

frequency, and Ax = Az, equation (3.6.24) becomes,

2Ax
At < , 3.6.25
Jora (3:62)
and the stability condition is
aAt 21 A2
— < —=—"=045. 3.6.26
Ax 7 ﬁ .4 ( )



3.6.3 Dispersion for 2-D Acoustic Problems

Substituting the harmonic solution equation (3.6.4) into equation (3.4.4) gives the
~ dispersion condition for the second order time and fourth order space accuracy finite
difference method,
S 2 gt r6sin? (25— sin (i, Ax) + 165i? (222 —sin’ (k. A}, (3.6.27)
G pv V2o 2 2
where = kAx from equation (2.7.19). Letting k.= kcos@ and k,= ksing in the above

equation gives

§£=—2—sin-‘{—ﬁ’=2[16sirf(fc7°sf)-si;f(y/cosga)+165ixf(ﬂ%@)—sixf(¢sin¢)]"z ). (3.5.28)

G py

Figure '3.6.1 shows the dispefsion curve predicted by equation (3.6.28). The
maximum relative error of phase velocity occurs when the wave propagates along the x-
axis and z-axis, and the minimum error occurs along the direction with the angle of 45" to
the x-axis. The relative error in the phase velocity is less than 1% when « is less than

02(¢ gnd points per wavelength).

82 .



240 300
270

Figure 3.6.1. Phase velocity dispersion curves for the 2-D finite difference solution
with fourth order accuracy in space and second order accuracy in time.

3.6.4 Dispersion for 2-D Elastic Problems

The general dispersion relation for 2-D elastic probiems is quite complicated.
Therefore, two special cases are examined here. When a wave propagates along the x-
and z-axes, the problem becomes the 1-D case. Next, if Axis equal to Az, the wave
propagates in the direction 45° from the x and z directions. The dispersion relation for

such a wave is

AP 16sint (k,Ax/2) ~sin’ (k, Ax) N sin’ (k,Ax)(4 — cos(k, Ax))

4sin’(aAt/2) =

A=t 3 9 : (3.6.29)
BN 16sin’ (k,Ax/2)—sin’ (k Ax)  sin’(k Ax)(4 - cos(k,Ax))
e 3 T }
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where @ and f are the P and S wave velocities. If @ =20, p= At/ Ax and k =27,

equation (3.6.29) becomes

, 16sin?(k,Ax/2) —sin’ (k,Ax) o sin®(k,Ax)(4 — cos(k, Ax))?

4sin®(wAt/2) =5p 3 3 (3.6.30)
Using the definition of phase veldcity in equation (2.7.4) gives
91; =2 .92 (3.6.31)
C, C,k C,2k e

Combining the above two equations, the dispersion relation is obtained as

1 sin'l(E[S 16sin’ (w/2) -'-siﬁ2 W) N sin? (w)(4 - cos(w))* ],/2] , (3.632)

Cr_
C, 2py 2 3 | 3

- where y = kAx from equation (2.7.18).

Figure 3.6.2 shows the dispersion curve predicted by equation ‘(3.6‘.3.2), which
indicates that as 4x increases or the wavelength become smaller, the phase velocity tends
to be faster than the true velocity. When o is less than 0.08 (6 grid points per

wavelength), the relative error in the phase velocity is less than 1%.
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Figﬁre 3.6.2. Phase velocity dispersion curve for the 2-D finite difference
solution with fourth order accuracy in space for a wave propagating along
the direction 45° to the x- and z-axes.
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3.7 Summary

This chapter extended the 6DD techniqﬁe fc;r 2-D acotistic and elastic media. The
algorithms for the finite difference aﬁd pseudospectral mefhod were described. - The
relative stability éonditions and dispersion condvit.ions are given, which indicated that
smaller time steps and grid points are required for 2-D problems éompared to 1-D

problems.

The examples demonstra%ed that the ODD techniqué couple different numerical
methods fogether to increase the accuracy of simulation and speed up the computation,
where the accurate but computationally expensive PS method can be used in the
subdomains which need a high accurate method (containing the source and the low
velocity layer) and the faster FD method is applied to the rest subdomains. In 'additfon,
the number of grid points can be reduced by ‘using the higher accurate method, which can

decrease the usage of memory.
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' CHAPTER FOUR

SIMULATION OF GUIDED WAVES USING THE ODD TECHNIQUE

4.1 Introduction

The term waveguides or guided waves refers to a class of waves which propagate
within thin layers, free surface, or along interfaces between two media (Miklowitz, 1951;
1978; Brekhovskikh 1980). Interfaces can be discontinuous planes of contacts such as
joints and faults. Guided waves that travel along these interfaces are called interface
wéves such as Stoneley interface waves (Love, 1911; Aki and Richards, 1980) and
fracture interface waves (Pyrak-Nolte and Cook, 1‘987). Guided waves which propagate
in thin and low ve{opity layers are typically called channel waves (Buchanan et al., 1981;

Krohn, 1990).

The distinctive characteristics of the guided wave is that the seismic energy is
localized within a narrow zone WMch may extend only a few wavelengths outside of the
iﬁterface or layer. As a consequency of this localization, the guided wave can travel long
distances with less loss in amplitude than body waves. The potential use of guided waves
is to interpret the broperties of interfaces and thin layers that play an important role for
underground fluid flow, mining and oil and gas production. Channel waves have been
used extensively in the coal mining industry to locate discontinuities in coal seams that
disrupt the longwall mining prdcess (Dresen et al., .1985; Buchanan and Jackson, 1986;
Gritto and Dresen, 1992). More recently, guided waves have been employed to

determine the continuity of flow units and bounding surfaces in oil and gas reservoirs

87



(Krohn, 1992; Lines et al., 1992). Interface waves have been studied by Pyrak-Nolte and
Cook (1987) using the displacement-discontinuity model. These interface waves also
have been observed in the laboratory (Pyrak-Nolte et al., 1992) and in numerical

boundary element simulations (Gu, 1994).

In this chapter, channel waves traveling along a low velocity layer are simulated using
the ODD technique with the PS-FD4 method. These results are compared to physical

measurements.
4.2 Numerical Simulations and Experimental Measurements of Channel Waves

A physical low velocity layer model was built with acrylic plates to form a 2—D (plane
stress) model for investigating chaﬁnel waves in the laboratory. The experiments are
conducted by measuring the wave along a profile crossing the channel. Based on the
same model, numerical simulations are conducted by the overlap domain dpcomposition
technique. The results of the physical and numerical modeling are compared for particle

motions and frequency characteristics.
4.2.1 Experimental Model Setup

| Figure 4.1 shows the experimental setup for the low velocity channel. A Lexan strip
" (Polycarbonate, Vp=1550 m/s, Vs=897 m/s) has been used for a 30 mm wide low-
§elocity channel which was glued (Cyanoacrylate adhesive) with twb higher velocity
acrylic plates (Vp=2235 m/s, Vs=1333 m/s). Both‘platés have the densities of 1200

kg/m’>.. The distance between the source and receiver was 0.55 m.
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The source was a radial expansion mode PZT piezoelectric crystal which was bonded
to the edge of the plastic plate at the center of the channel. The transducer was excited by
a high voltage electric pulse with a single cycle of a 45 kHz sine wave. A miniature
piezoelectric accelerometer (PCB 309A Piezotronics) was used as the receiver. Particle
motions were measured by varying the positions and orientations of the accelerometer
along the plate. For the acrylic plate, the 45 kHz source generated P waves with a 52 mm
wavelength and S waves with a 30 mm wavelength. For the Lexan plate, the
wavelengths were 34 mm and 20 mm for P and S waves, respectively. These
wavelengths enabled the 3 mm wide accelerometer to accurately detect the particle

motions on the plastic plates.

Low velocity layer:
width: 0.03 m

Vp = 1550 m/s

Vs = 897 m/s

Figure 4.1. Experimental setup for the low velocity channel model.
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4.2.2 Numerical Model Setup for the ODD technique

Using the same physical parameters from the experiment, numerical simulations were
conducted using the overlap domain decomposition technique. The ODD numerical
model with nine subdomains is shown in Figure 4.2. The central horizontal zone has the
low velocity layer which contains both the source and the interfaces with the surrounding
higher velocity media. This zone needs an accurate numerical method to properly handle
the shorter wavelengths. Therefore, the PS method is used in the middle subdomains
which cover the low velocity layer, and the FD4 method is applied to the surrounding
subdomains. Without using the ODD technique to couple the PS and FD4 methods, the
memory usage can be 16 times more by FD method and the computing time can be 10
times longer by PS method to calculate the same accurate results. Table 4.1 shows the

parameters used for the numerical simulations for the channel model.

Figure 4.3 shows the two snapshots for the mixed ODD PS-FD4 and conventional
FD4 methods at a time 0.4 ms for the horizontal component of the wavefield. Both
approaches use the same parameters for the computations. It is very clear that the
accuracy of the ODD method is higher than that of the FD method, which shows strong
numerical dispersion. Therefore, the mixed ODD PS-FD4 method is used for all the
numerical simulations. The details of differences between two approaches are shown in

Appendix E.
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Table 4.1. Parameters for the numerical computations.

Input source

Ax

Ay

At

A/dx

As/dx

Ricker Wavelet

5 mm

5 mm

5e-7 sec

20

12

Subdomains
with FD4

Subdomains
with PS

Subdomains
with FD4

Figure 4.2. The subdomains used in the ODD numerical modeling.
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Figure 4.3. Snapshots of horizontal components from the numerical simulations:
(a) six subdomain ODD PS-FD4 method and (b) FD4 method.
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4.2.3 Comparison of Results from Experiments and Numerical Simulations

The wavefield was measured along a vertical profile crossing the channel located 55
cm from the source for two receiver orientations at an interval of 0.3 cm (Figure 4.1).
Figure 4.4 and 4.5 show the horizontal and vertical components of the wavefield from the

experimental measurements and numerical simulations.

Two types of waves were generated by the horizontally polarized P type source
located at the center of the channel. The first-arriving wave is a P-wave that mainly has
particle motion (energy) in the horizontal direction. The later-arriving wave is a Rayleigh
channel wave, which unlike an S-wave, has large wavemotion in both horizontal and
vertical directions. The experimental measurement and the numerical simulation show
good agreement for both waves. The waveforms show clear symmetry for the horizontal
components with respect to the center of the channel and anti-symmetry for the vertical
components. This is expected as a horizontally polarized source located at the center of

the channel will generate primarily symmetric extensional modes.

From the measured and computed arrivals of the waves, it can be seen that both waves
travel slower within and near the low velocity channel. In Figure 4.4 and 4.5, the P1, S1
and P2, S2 indicate the predicted arrival times of P and S waves propagating in the
homogeneous higher velocity medium and lower velocity medium, respectively. The
arrivals of the P type wave within and near the channel are after P1, but before P2, i.e. the
velocities of the waves are between V1 and V2. Similarly, the R type wave travels with a

velocity between S1 and S2.
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Figure 4.4. Horizontal components of the wavefield measured along a vertical profile
crossing the channel: (a) experimental measurement and (b) PS-FD computation.
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Figure 4.5. Vertical components of the wavefield measured along a vertical profile
crossing the channel: (a) experimental measurement and (b) PS-FD computation.
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The amplitudes of the waves change dramatically across the channel. To examine the
changes quantitatively, the maximum amplitudes and energy of the P and R type waves
were measured at a range of offsets from the center of the channel and are displayed in
Figure 4.6 to 4.9 for both the horizontal and vertical components. The maximum
amplitude is the normalized difference between the maximum and the minimum peak
values of each time series. The energy is computed from the normalized square of the

amplitudes along the windowed arrival for the P and R type waves.

For the horizontal component, the maximum amplitude of the P arrival has a peak
value at the center of the channel. With increasing offset, the amplitude first decreases to
a minimum value at the interfaces, then increases in the high-velocity media. In contrast,
although the maximum amplitude of R type wave has the maximum value at the center of
the channel, with increasing offset, the amplitude first decreases rapidly within the low-
velocity channel and then continues to decrease slowly in the high-velocity media. For
the vertical component, the maximum amplitudes of both P and R type wave have
minimum values at the center (anti-symmetry), and with increasing offset, the amplitudes
first increase and reach peaks outside of the channel (near the interfaces), then decrease
in the high-velocity media. The profiles of the vertical components for the experimental

and numerical results match well.

There are several disagreements between the experimental measurements and
numerical simulations. The experimental results are not perfectly symmetric and anti-
symmetric as in the numerical simulations. This is most likely due to the variability in
the physical model (e.g., non-uniform bonding of the Lexan to acrylic) and errors in the

measurements. The amplitudes of the P and R type waves from the experiments are
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smaller than the amplitudes from the numerical simulations. A potential reason for this is
that the lower Lexan plastic layer is more attenuating than the high acrylic plastic
halfspaces (i.e., the numerical model did not have attenuation). In Figure 4.7, the peaks
of the vertical component from the experimental results are slightly further away from the
interfaces than the peaks from the numerical results. This probably results because the
receivers could not be put on the glued interfaces as the surfaces were not flat enough to

take reliable measurements with the accelerometer.

The energy profiles (Figure 4.8 and 4.9) show similar properties as the maximum
amplitude profiles. The total energy (P+R) is also shown in the plots. It is quite clear
that the energy is concentrated within the channel for the horizontal component and near

the channel for the vertical component.

The spectra of ’;ile waveforms measured‘ across the channel are shown in Figure 4.10
and 4.11. The most significant characteristics in the plot are the high frequency waves
within the channel for the horizontal component and along the interfaces of the channel
for the vertical component. As a consequence, the wave enefgy is distributed in a region

of triangular shape in the spectral profiles across the channel.

The above comparison between the experimental measurements and numerical
simulations demonstrate that the numerical simulations using the ODD technique can
reproduce the basic results observed in the laboratory experiments. Since the
construction of a physical model and the measurement of the wavefield is both difficult
and time consuming, numerical simulations can be used as an alternative way to study

properties of channel waves.
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Figure 4.6. Profiles of maximum amplitude of the horizontal component:
(a) experimental measurement and (b) PS-FD computation.
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Figure 4.7. Profiles of maximum amplitude of the vertical component:
(a) experimental measurement and (b) PS-FD computation.
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Figure 4.8. Energy profiles of the horizontal component:
(a) experimental measurement and (b) PS-FD computation.

100



(a)

)
)
2
fam!
@
—6.0—‘5 1 | 1
0.0 .23 Q.75 1.0
Amplitude
(b)
)
&
2
&=
o

_6‘0‘; 1 T 1
0.0 0.25 0.75 1.0

Amplitude

Figure 4.9. Energy profiles of the vertical components:
(a) experimental measurement and (b) PS-FD computation.
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Figure 4.10. The spectra of the horizontal component of the wavefield:
(a) experimental measurement and (b) PS-FD computation.
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Figure 4.11. The spectra of the vertical component of the wavefield:

(a) experimental measurement and (b) PS-FD computation.

103



4.3 Summary

In this chapter simulations of guided wave propagation in a low velocity layer is
performed by the ODD technique, where the high accurate PS method is used in the
subdomain encompassing the low velocity layer where the wavelength is shorter and the
source is located, and the FD method is applied to surrounding high velocity medium in
which waves have longer wavelengths. This example again demonstrates the flexibility

and efficiency of the ODD technique.

The numerical results show that the wave energy and high frequency components are
concentrated along the low velocity layer. The results are compared to experimental

results from physical modeling and they show a good agreement.
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CHAPTER FIVE
OVERLAP DOMAIN DECOMPOSITION FOR 3-D ACOUSTIC PROBLEMS
5.1 Introduction

Recent advances in computational technology have made it possible to perform
relative large-scale- seismic modeling. A typical single CPU computer can handle a
model with a dimension of 570x350x110 (about 22 millions grid points) and take several
days for a finite-difference simulation (Graves, 1998). If the grid spacing is 10 m, the
physical dimension of the model is 5.7 km x 3.5 km x 1.1 km. A model of 13.9 km x
13.9 km x 8.0 km with a 20 m spaced grid (a total grid size of 695x695x400, about 200
million grid points, taking over 5 GB computer memory in a finite-difference method)
can be simulated only by using domain decc;mﬁosition and parallel computing techniques
(Aminzadeh et al., 1994 and 1995, Bradley et al. 1997). Consequently, domain

decomposition techniques become more important for 3-D simulations.
5.2 3-D Acoustic Finite Difference Method

Let x, y and z be rectangular coordinates in a three-dimensional medium, and let the z-
axis be positive downward. For an isotropic medium with both density and seismic wave
velocity that are spatially constant, the acoustic wave equation is

0*P(x,y,2,t) N 0*P(x,y,z2,1) . O’ P(x,y,2,t) _ 1 0*P(x,y,2,t)
o’ oy’ oz* c’ ot

+S, (5.1)

where P(x, y, z, t) represents the pressure, ¢ the wave velocity, and S(x, y, z, ¢) the source
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term, which equals the divergence of the body force divided by the density.

The spatial derivatives can be expressed by the fourth-order FD as

0> P(x,,t, 1 &
(1o6) - LS4 PGy, o) +O(AST)
ox =2
0*P(y,.t) 1
;;’ 1 o 2,8, aiys )+ O8N (52)
=
0*P(z ,t, 1
( 2 ) 2 ZajP(Zn+j’ti)+0([Az]4)’
Oz j=2

where ag; are the constant factors of fourth-order FD: a;=-1/12, a.;=4/3, ap=-5/2, a;=

4/3 and a,=-1/12. The temporal derivative has the second order FD form

9*P(x,, o2 sl 1
( [a;:z l) =F[P(x,,ym,z”,t,.+l)—2P(x,,ym,zn,t,)+P(x,,ym,z",t,._l)]+0([At]2), (53)

If Ax=Ay=Az, the solution can be obtained for the grid point [/, m, n] at next time

step i+ by substituting equations (5.2) and (5.3) to equation (5.1)

P(X)s Vs Zps bisg) = 2P(Xps Vs Zys ;) = P(Xps Yys Zps biy)
] &
+E Zzaj[P(xl+j’ym’zn’ti)+P(xl’ym+j’zn’ti)+P(Zn+j’ym’zn’ti)] (54)
o
+ A8 +O([Ax] [Az]*, [A),

For a heterogeneous medium in which both density and seismic wave velocity are

spatially variable, the acoustic wave equation is

o (1 oP o (1oP o (1 oP 1 8%P
s s | i) s | ) e =3 7+ S, (5.5)
ox\ p Ox oz\ p Oy oz\ p Oz c’p Ot
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where P = P(x, y, z, t) is the pressure and p = p(x, y, z, ) is the density. Compared to
equation (5.1), the two passes of the first order spatial derivatives are required instead of
the one application of second order derivatives in X, y and z directions since the density
and velocity are no longer constant. The finite difference formulas for 4th order accuracy

in the spatial derivatives are

2
aP(xl’meZniti) = 1 ijP(x“_j,ym,zn,ti)-i-O([Ax]4)

Ox Ax ;=
OP(X), Y Zysts) _ 1 3 y
m>Znsti :___zzblnx, o js 2 b ) O A%
oy Ay = P ) (L) .
OP (%), V.1 2;51;) 1 Zz O(IA
, 0z B _AZ bjP(xlem’zn+j’ti)+ (I 2]4)’

j=2

where b, are the constant factors of fourth-order FD: b.,= 1/12, b.; = -2/3, bp= 0, b; =

2/3 and b,=-1/12. Now we set _

1 oP X, m,z",t
F(Xs Vs Zyst) = (x5y )
p(xl’ym9zn) ax
: 1 oP X, m,zn,t
8(Xps YmsZpsty) = LY. ) (5.7
p(xl’ym?zn) ay
Bl ¥ s 2,50 ) = 1 ap(x,,y,,,,z,,,t)’
P(X13Yps2,) 0z
and the spatial derivatives of equation (5.5)
i 1 AaP(x[’ym’z",ti) = af(xl’ym’anti)
ax p(xlsym,z,,) 6x ax
(5.8)

1 2
7 2.0, (X1 js Vs Zot)) + O([Ax]*).
Ax® =,
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Similar equations can be written for the derivatives of g and A, allowing the final FD

solution for a heterogeneous 3-D medium to be written as

P(xl’ynx’zn’t+li):2P(xl’ym’zn’ti)_P(xl’ym’zn’ti—l)
] ‘
+E Z;bj[f(xlﬁ’ym’zn’ti)+g(xl+j’ym+j’zn’ti)+h(xl’ym’zn+j’ti)] (59)
J=—

+c? pAiS + O([Ax]' [Az]* [AT).
5.3 Application of ODD for the 3-D Acoustic Finite Difference Method

Similar to the 2-D case, the overlap domain decomposition technique can be easily
applied to three directions. Figure 5.1 shows 3-D subdomains and overlap areas. For the
homégeneous problems, equation (5.2) indicates that the spatial derivative at point [/, m,
n] needs only four nearby grid points values in each direction. The minimum number of
overlap grid points should be four in each direction according to the study of Chapter 2.
For heterogeneous problems using equation (5.2), the overlapping area should cover at

least eight grid points in each direction.

Figure 5.2 shows snapshots from a simulation of seismic waves through a
homogeneous cube of material with a point source at the center. Figure 5.2(a) is a single-
domain FD4 snapshot, while Figure 5.2(b) is a snapshot from an eight-subdomain ODD
FD4 run. The two results are identical, demonstrating that the ODD technique can also be

applied to 3-D problems.

To demonstrate the value of the ODD technique, computation times and memory
requirements are calculated for the 3-D migration geometry shown in Figure 5.3.

Assuming a spatial grid interval of 5 m for a FD4 method, the number of grid points is
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1000x600x600 (360 million). By using the ODD technique, a PS method can be applied
for the low velocity layer and a FD4 method for the remaining volume, the spatial grid
interval can be increased by a factor of 4 to 20 m while still preserving numerical
accuracy (Fornberg, 1987). The number of grid points is reduced by a factor of 64
(4x4x4) to 250x175x175 (5.625 million). The computing time also can be reduced
dramatically by decreasing the number of grid points and coupling the PS and FD4
method. Based on estimations by Fornberg (1987) and Marfurt (1984), the relative
memory usage and computing time between the ODD PS-FD4 and conventional FD4 are

shown in Table 5.1, where N is the number of the grid points in one direction.

Figure 5.1. Subdomains and overlap areas for the 3-D overlap domain decomposition.

109



(b) Eight subdomain ODD FD method

Figure 5.2. Snapshots from a 3-D acoustic simulation with a point source.
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Figure. 5.3. A 3-D migration geometry.

Table 5.1. The potential of the 3-D computation times and memory usage by the
different methods. '

Method , Number of grid points Relative computer cost -
at each spatial ciirec'tion CPUtime  Memory

Conventional PS : N 1 1
ODD PS (w/o turning-off) N 1 07

" ODD PS (turning-off) N 05 ;07
Conventional FD4 - 4N 8 64
ODD FD4 (w/o turning—o-ﬁ) 4N 10 - 43
ODD FD4 (turning-off) 4N 6 43
ODD PS-FD4 (w/o turning-off) N 0.15 0.7
ODD PS-FD4 (turning-off) _ N 0.1 0.7

5.2 Summary

This chapter described the ODD technique for 3-D problems and shown an acoustic
example. The relative savings of the computing time and memory usage by using the

ODD technique and “turning-off” technique are estimated.
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CHAPTER SIX
CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This work has pfesented a geheral overlap domainbdecompositiovn (ODD) technique
based on Huygens’ Princible for numérical modeling of wave propagation. The ODD
: iechnique is described in detail for 1-D cases and extended to 2-D and 3-D cases. The
finite difference (F b) method and Fourier pseudospectral @S) ‘method for solving wave
equations incorporated into the ODD framework and the resultiﬁg algorithms are given.
. The lengths of the overlap areas for different methods in 1-D, Z-D, and 3-D are presented.
»'Ihe ODD algorithms are wéll suited for the FD method, the PS method, and the coupled
FD and PS method. By using the ODD technique, calculations can be turned-off in
subdomains that do not have appreciable wave activity, resulting in savings of computing
time and memory use.. The object-oriented ODD FD and PS code imblerﬁented by C++
language based on the ODD algorithm has been develope;d for wave simulations in which
either FD or PS method can be selected in each subdomain. The examples show the

advantages of the using ODD technique for modeling wave propagation.

| VThe ODD technique for the FD method gives identical solutions as the conventional
FD method does. The overlap areas of the ODD FD method with fourth order accuracy
need at least four grid points for a homogeneous acoustic or elastic medium and at least
eight grid points for a heterogeneous acoustic or elastic medium. T};e number of grid

points per wavelength for the FD method to achieve stable and nondispersive results is
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about 10 to 35, deI.)ending’on the model corﬁplexity. 'In the application of the ODD
technique to the PS method, a tapering technique for each subdomain was introduced to
avoid the wraparound problem which' resqlts from the periodic property of Fourier
transform. The wavelength of the taper functions should match the wavelength of the -
wave (i.e., the length of overlapping area should be about one wavelength). The number
of grid points per wavelength for the PS method té achieve stable and nondispersive
results is about :5 to 20. To couple the FD and PS methods, subdomains with the PS
method require taper functions, while subdomains with the FD method do not need taper
functions. Examples show that the results of the ODD technique match very well with
the results by conventional method, and that the ODD technique can save computation

time and reduce memory requirements.

An example of bchannel wave prbpagation in a low velocity layer demonstrates the
flexibility and efficiency of the ODD technique. The accurate but computationally
expensive PS method can be used in the subdomains containing the source and the low
velocity layer (where the waveléngth is shorter). The faster FD method is applied to the
surrounding high velocity media (which has longer wavelength). The results are
compared to experimental results from physical modeling and they show a good
agreement. Both models show that the wave energy and high frequency components are

concentrated along the low velocity layer.

6.2 Future Work

Because the ODD technique breaks a large problem into many independent subdomain
computations, it is well suited to parallel computation. This promises to give even more
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power to the ODD techhique. The ODD technique is based on Huygens’ Principle, and it
only requires exchange of the final computing results between two neighboring
subdomains thrdugh the overlap areas. Therefore, the ODD technique itself is not
restricted te a specific numerical method and it can be easily applied to different
numerical methods such as the staggered grid finite difference method, the finite element
method ana boundary element method for solving the wave equation. In addition,
different methods can be used in each subdomain to achieve a desired level of accuracy
and computing speed. The applicaﬁon of the ODD technique to implicit FD or PS
method could reduce a significant computing time by breaking down the size _of matrices.
Optimization of the domain decomposition turn-on & off technique may be achieved by

artificial intelligence.

Due to the high costs (computing time and memory usage) of the 3-D finite-difference
scheme, current 3-D prestack migration typically uses a ray-traeing scheme (i.e.
Kirchhoff migration). However, calculations of migration tables based on Kirchhoff
methods may result in significant traveltime errors in complex geometries (Nichols,
1996). The low cost and highly accurate mixed ODD pseudospectral and finite-

difference scheme could be quite suitable for 3-D migration.
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APPENDIX A

RICKER WAVELET

(a) Ricker Wavelet
The formula of the Ricker wavelet (Ricker, 1953; and Bayliss et al., 1986) is

-ty 2

LO=2ACTRY 05k refo, 7y 7%

where T is the period of the source function, ¢ is time from O to 7, ris 7/7 and #; is 0.57.
The central frequency f; is about 2.25/T. Figure A.l1 shows the source wavelet with a

central frequency f, = 25 Hz (T =2.25/25 = 0.09 s) and Figure A.2 shows its spectra.
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Figure A.1. The wavelet of the Ricker wavelet.
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Figure A.2. The spectra of the Ricker wavelet.

(b) Integrated Ricker Wavelet

The formula of the integrated Ricker wavelet (Ricker, 1953; and Bayliss et al., 1986)

is

The central frequency £. now is about 1.6/7. Figure A.3 shows the wavelet of the source
function for a central frequency f. = 25 Hz (T =1.6/25 = 0.064 s), and Figure A.4 shows
its spectra. Compared to the Ricker wavelet in Figure A.1, the integrated Ricker wavelet

has a shorter period, but a wider frequency range when the central frequencies are the

same.
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APPENDIXB
ANALYTIC SOLUTION FOR 2-D ACOUSTIC AND ELASTIC MEDIA
(1) Analytical Solution in a 2-D Homogeneous, Isotropic Acoustic Medium

The pressure Green’s function in a 3-D acoustic medium (Friedlander, 1958;
Miklowitz, 1978) is

1 F(@~-r/c)

G(X',t) = ,
0= X, X"

(B-1)

where c is the velocity, r is distance from a point source at X to a receiver at X” (Figure
B.1), F(t-r/c) is a causal source function (zero for t-r/c < 0).

o

Receiver G(X’)

Source F(X, t)

r . }Xz

Figure B.1. The Green’s function for a point source.

If the source is not a point source then the solution can written as
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1 Cj- F(X,t—r/c)

dv, - B-2
4t d T xy (5-2)

G(X',1) =

Q

where (2(X) is the volume in which the source is located, and »(X,.X’) and F(X,t) are

functions of space. Figure B.2 shows the source area and receiver.

A

Reéeiver G(X?)

rX, X’)

Source F(X, t) Q

> X2

X1 .
Figure B.2. Geometry for a distributed source.

A 2-D medium with a point source (Figure B.3) is equivalent to an infinite line source

in a 3-D medium (Figure B.4).

The solution of a point source in a 2-D medium can be obtained by integration of the

Green’s function along an infinite line source in a 3-D medium.
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X2

Receiver G(X’)

r(X,X’
> x
Line Source|F(X, t)

Figure B.3. A point source in a 2-D medium.

H*
r(X,X’)
Line SourcelfF(t)
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Figure B4. An infinite line source in a 3-D medium.
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1 %t F(x,,t—rl/c) :
G(X',t)= 3 , -
(x50 4’ J r(xy, X') s (B-3)

-0

where #(x,, X') =+/x2 +r2 as shown in Figure B.4. Since F(t-+/c) is zero when t-+/c <

0 (r>ct or x,>.(ct)* —r} ). The integration can be rewritten as

f— S+ x2
R Tk L LR

g dx
e’ o \/r2 + x2
—-a 0 3

G(X'at)=4 3 » (B_4)

where a = \[(ct)* -1} .

Figure B.3 shows the geometry for an example of a homogeneous rhediﬁm with
velocity of 2000 m/s. A receiver is located 500 m away from a 2-D point source (a 3-D
line source). The source uses a unit intensity iintegrated Ricker waveiet (equation A-1)
with a central frequency f. = 25 Hz (T =1.6/25 - 6.4 s). The waveform is calculated by

Simpson numerical integration.

Figure B.6 shows the waveform computed from equation (B-4), and Figure B.7 shows
the corresponding spectra. Compared to the source wavelet in Figure A.l, the waveforrh
has a tail and the amplitude o'f the negative part of the wavelet is much smaller than that
for the positive part. In addition, the central frequency is about 17 Hz which is lower

than the 25 Hz of the source wavelet.
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V =2000 m/s
A=80m

Source
500 m \

Receiver

Figure B.5. Geometry for the calcuiation of the analytic Green’s function
' solution in a 2-D homogeneous medium.
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Figure B.6. Waveform for a receiver 500 m away from the source.
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Figufe B.7. Spectrum of the waveform for a receiver 500 m away from the source.

(2) Analytic Solution in a 2-D Homogeneous, Isotropic Elastic Medium

The Green’s function in a 3-D elastic medium under a body force F(#) in x-direction

(Aki and Richards, 1980; Miklowitz, 1978) is

. 1 N
u, (X', t)= Zr;(:"}’,-}’j _5"7);3—[/“ tF(t—1)dt

1 1
S+ W}’,)’j ;F(t —i) (B-S)
1 N r |
- v =8 )~F( -1,
47[pﬂ2(}/'}’l } ”)}" ( ﬂ)
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where ¢, § are P-wave, S-wave velocities, respectively, p is density of the medium, Jj is

the Dirac delta function, y and y are direction cosines,

x, Or
1 T e
' B-6
5 E0
Vi ¥ axj'

In equation (B-1), the first term is called the near-field term since its amplitude
 decreases very abruptly (r”®) with increasing distance r and it only can be seen near the
source. The second and third terms decrease quite slowly (r'') and travel with P-wave

and S-wave velocities, respectively. These terms are the far-field P-wave and S-wave.

Similar to the acoustic case, the solution for 2-D problem cén be obtained by
integration of theAGreen’s fun_cgion in equation (B-5) along the infinite source in one
direction. Here an éxample of a 2-D point source with an integrated Ricker wavelet is
performed by integration. The)source acts in the x,-direction and the receiver is placed

on the x;-axis (F iguré B.8). The displacement in the x,-direction can be integrated as

u, (X', 1) = —— [’a[(3’_°£o__ 1)i3 L ’a” rF(t—r)dr}dx3

Rl :
—=—~F( -L -7
4rrpa fﬂr rr )dx3 (B )
1 it r
- -1D)—-F((t-—)dx,,
yp—E ( )r ( ﬂ) 3

where a = J(at)? - 12, b_= B =12 and r=x2+17.
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Figure B.8. An infinite line source in a 3-D medium.

Figure B.9 shows the waveforms from a receiver and the different components which

are contributing from the terms in equation (B-5). The receiver is 400 m away from the

intensity integrated Ricker wavelet (equation A-1) in the hombgeneous medium with

o=2191 m/s, f=1265 m/s and p = 2000 kg/m’

2-D point source (a 3-D line source) with a unit intensity Ricker-integral source a unit

. The waveform is calculated by Simpson

numerical integration. Figure B.7 shows their spectra.
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Figure B.9. Waveform from a receiver 400 m away from a point source.
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Figure B.10. Spectra of the waveform for a receiver 400 m away from a point source.
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APPENDIX C

STABILITY CONDITION SOLUTION

(1) The Stability Condition by the Von Neumman Approach

The finite difference scheme from the equation (2.6.12) in the Section 2.6 is

At2 azu(xm s tn )

u(xm’tnﬂ) = 2u(x 5 ) - u(xm’ tn—l ) + Cg ax2

m3>°n

(C-1)

n

2 .
" Using the definition of equation (2.6.2), z=C>Af —a——yg—";’tﬁl /u(xm,t ), the

eigenvalues of stability c,onditionvcan be rewritten from the equaﬁon (2.6.12) in Section

26as -

A, =05[(2+7)++Jr(4+7)],
A, =05[(2+7)- w/r(4 +7)]

(C-2)

According to the Von Neumman condition, if llil <1, the finite difference scheme of

(C-1) is stable. We need to find 7 to satisfy the Von Neumman condition.

(i) If 7>0, therefore, r+4>4,1/r(4+r) >0 and 2+7>2.Then

A =05[(2+7)+r(4+7)]>0.5[2+0]> 1. | (C-3)

Therefore, the FD scheme (C-1) is not stable.
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(i) If r<—4,then 7+4<0,7(4+7)>0, -\t (4+7)<0,2+7 <-2 and

A, =0.5[(2+7)— 74 +7)]<0.5[-2 - 0] < -1. (C-4)

Therefore, the FD scheme (C-1) is not stable.

Gii) If 0272 -4 ,then 7+4<0,4/7(4+7) <0 and \/—r(4+z')ZO.Theequation_ |

(C-2) can be rewritten as

A =0.5[(2+7)+i-r(4+7)], (C-5)

where i ='+/— 1 and the magnitude of 4, is |

. I/l,-l =0.5[(2 + 1)’ _+‘ mzll/z |
= 0.5[(4 + 47+ 72 — 47 — 72)]"2 (C-6)
=1. '

Therefore, the ’F D schexﬁe (C-1) is stable. Thé stability condition is
02724, o (C-7)
(2) The Stability Condition by Another Approach
Assume a solution of equation (2.6.1) have a form
U( X, 1)= 1ge’ ™ = g Fmbr- ) | ' (C-8)
where x=mAx, t=nAt and the wavenumber £ is in th¢ band of the numerical mesh.

A second order differénce of the time portion of equation (2.6.1) can be discretized as
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Su(x, ¢ 1
(dé" ”) = At2 [u(xm’ tn+l ) - 2u(xm’tn) + u(x'"’t"‘l )] "

(C-9)

Substituting the harmonic solution of equation (C-7) into above equation produces

2 i(kx—wt)
2°u(x,,t,) _ U

dz : At2 [e-iwAl - 2 + eiwAl]

= % [COS(wAt) - 1]u(xm s t” )

4sin’*(wAt/2
_ tsilaurn,

Xt )
At m )

Substituting the above equation into equation (2.6.1) gives

_ 4sin*(wAt/2)

2 O%u(x,,,t,)
Af? )

u(xm’tn) = CO &2

Using the definition of 7 in equation (2.6.3), gives

—-2=sin2(wm/2).

For equation (C-12) to hold for real @, the time step must satisfy the relation -

or
0>27=>2-4.

This stability condition is the same as the condition in equation (C-7).
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APPENDIXD

PSEUDOSPECTRAL FORMULA FOR AN ELASTIC MEDIA

For equation (3.5.1), the Fourier PS method needs two passes of the Fourier transform

to calculate the spatial derivatives in two directions. The Fourier transforms of

u[x(1),z(m),t(n)] and w{x(/), z(m), t(n)] are:

© M-1L-1

Ak, (1), (m), 1(n) = ZZu[x(l) 2()), ()l MO - (D.1)
Wik (1), k.(m),((n) = lei wlx(1),2(/), t(n)]e""'("‘(""" A (D.2)

where the wavenumbers & (I)=2#4l/(N-Ax), k(m)=2mm/(M-Az) and
C M=x,-x,,, Az=2z, —zm_,"'. At the same time, u[x(/),z(m),t(n)] and

w[x(0), z(m),t(n)] can be expressed as the inverse Fourier transforms

ulk,().k,(m), () =21ﬁ§§u[x(z) () H RO ORI (3
J=0 i=0
WK, () 1) =2 S5 605, 2, RO D)
: =0 i=0

Then the first order spatial derivatives can be obtained from the above equation

f= 6u[x(l)sazz(1),f(n)] = L;{{fi lk (m) u[k (l) k (m) t(n)]e:k,(l)x(:hlk,(m)z(j) (D 5)

— aw[x(l)aazz(j),t(n)] : L;l :IZ:Z ik (m) M/[k (l) k (m) t(n)klk_‘.(l)x(l)+lk , (m)z(f) (D 6)
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2 Q@20 Hm] 1 K

‘ Ox LMn—OI—O

k= aw[x(l);z(.])at(n)] : LMES ik (l) W[k (l) k (m) t(n)]e'k (D) x(Ey ik, (m)z2( ) (D 8) '

ax m=0 /=0

Define

a[x(1),z(m)] = Ax(D), 2m)] {lx(7), Z(ﬁ?)] +glx(1), 2(m)] + 2 x(0), 2(m) A x(1), 2(m)]},

D.9)
Bx(1), 2(m)] = ] x(D), 2(m) k[ x(D), 2(m)]+ fTx(0), 2(m)]} » (D.10)

c[x(D), z2(m)] = A[x(D), z(m)]{A[x(1), z(m)] + gl x(1), 2(m)] + 2 [ (1), 2(m)g[ (1), 2(m)]} .
~ (D.11)

Then, using the Fourier transform again for the derivatives in equation 3.5.1, the final

- PS solution for a heterogeneous medium is

u(xl’ym’ n? +l)_2u(xl’yl ’Zn I) u(xl ym Zn tl l)

+éti{_1__A§LZl: ik (1) a[k D,k (m) t(n)k'k 2 (D)x(i)ik, (m)z(j) (D.12)
P LM m=0 =0

M-1L-1

MZZ ik, (m) - B[k (1), k,(m), {(n) ™= k= y

L m=0 I=0

and

w(xl’ym’ n’tl+]) zw('xl ym’ "> 1) w(xl’ym’ n> l—l)
Atz M-I L-1

+—{m 2.3 ik, (m) &k, ),k ), H{n) D= ©13)

M-1L-1

Y, ZZ ik, (1) - B[k, (1), k, (m), {(n) ™=@ kstmziy

L m=0 I=0
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APPENDIX E

COMPARISON BETWEEN THE ODD FD-PS AND THE FD
METHODS IN THE CHANNEL MODELING

Figure E.1 shows a snapshot and a waveform along the center of channel by the
mixed ODD PS-FD4 inethod at a time 0.4 ms for the horizontal component of the
wavefield. And Figure E.2 shows the results by the conventional FD4 method with the |
same parameters. The waveform By the FD4 method in Figure E.2(b) has high frequency
noise compared to the clean waveform obtained with the ODD PS-FD4 method in Figure
E.1(b). .For comparison of the -reéults, Figure E.3 plots the relative errors of the FD4
method (differences from the results between the ODD PS-FD4 method and the FD4
method). The snapshot in F igure E.3(a) shows that the errors by the FD4 methqd mainly )
come from the S wave and the wave in the low velocity channel which have short
wavelengths. The same errors shown in the waveform in Figure E.3(b) are the high
frequency components which are caused by the numerical dispersion produced by the

lower accurate FD4 method.

This comparison demonstrates the flexibility and efficiency of coupling of the
different numerical methods using the ODD technique. Therefore, the mixed ODD PS-

FD4 method was used for all the numerical simulations for the channel wave modeling.
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Figure E.1. The horizontal component for the six subdomain ODD PS-FD4:
(a) snapshot, and (b) waveform along the center of channel. '
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Figure E.2. The horizontal component for the conventional FD method:
(a) snapshot, and (b) waveform along the center of channel.
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methods: (a) snapshot, and (b) waveform along the center of channel.
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