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Using an asymmetrical set of vernier stimuli (�15 00,�10 00,
�5 00,þ10 00,þ15 00) together with reverse feedback on the
small subthreshold offset stimulus (�5 00) induces
response bias in performance (Aberg & Herzog, 2012;
Herzog, Eward, Hermens, & Fahle, 2006; Herzog & Fahle,
1999). These conditions are of interest for testing models
of perceptual learning because the world does not
always present balanced stimulus frequencies or
accurate feedback. Here we provide a comprehensive
model for the complex set of asymmetric training results
using the augmented Hebbian reweighting model (Liu,
Dosher, & Lu, 2014; Petrov, Dosher, & Lu, 2005, 2006)
and the multilocation integrated reweighting theory
(Dosher, Jeter, Liu, & Lu, 2013). The augmented Hebbian
learning algorithm incorporates trial-by-trial feedback,
when present, as another input to the decision unit and
uses the observer’s internal response to update the
weights otherwise; block feedback alters the weights on
bias correction (Liu et al., 2014). Asymmetric training
with reversed feedback incorporates biases into the
weights between representation and decision. The
model correctly predicts the basic induction effect, its
dependence on trial-by-trial feedback, and the specificity
of bias to stimulus orientation and spatial location,
extending the range of augmented Hebbian reweighting
accounts of perceptual learning.

Introduction

In perceptual learning, performance improves with
practice by improving the sensitivity to or discrimina-
tion between stimuli (Fahle & Poggio, 2002; Lu &
Dosher, 2012; Sagi, 2011; Sasaki, Nanez, & Watanabe,
2010). However, the training experiences during per-

ceptual learning in some circumstances may also alter
or shift the apparent response biases in addition to
improving sensitivity (Jones, Moore, Amitay, & Shub,
2013; Wenger & Rasche, 2006). Although most
experimental training protocols are designed with
balanced stimulus presentations and accurate feedback,
other training experiences are designed to induce
systematic tendencies toward biased responses. Fur-
thermore, relative stimulus frequencies and accurate
feedback may not occur in real-world environments. A
series of recent studies by Herzog and colleagues
(Aberg & Herzog, 2012; Herzog, Eward, Hermens, &
Fahle, 2006; Herzog & Fahle, 1999) explored the
consequences for sensitivity and bias in perceptual
learning using asymmetric training sets and reverse
(false) feedback under varied feedback conditions.
Their basic induction protocol trained line offset
vernier stimuli and used trial-by-trial feedback on
errors. Reverse feedback on a single subthreshold offset
stimulus (i.e., �5 00 left) in the presence of balanced
superthreshold left and right offset stimuli was
sufficient to introduce systematic biases in responding,
shifting responses to all stimuli in the direction of the
reversed (false) feedback. (In this notation, the 00 stands
for arcseconds of visual angle, and the value is negative
where the bottom line is to the left of the top line.)
Understanding the mechanisms of perceptual learning
in these imbalanced training environments poses a
challenge to theories and models of perceptual learning.
Accounting for these results may be an important step
in generalizing training protocols to practical applica-
tions where the training experiences may incorporate
imbalanced stimulus frequencies and occasional mis-
leading feedback.
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Some of the classic models of perceptual learning
(Herzog & Fahle, 1998; Poggio, Fahle, & Edelman,
1992; Weiss, Edelman, & Fahle, 1993) were developed
to account for perceptual learning in these hyperacuity
tasks. These articles showed that a variety of learning
algorithms could account for improvements in perfor-
mance with practice, including in some cases unsuper-
vised learning (Weiss et al., 1993), and identified
challenges in modeling perceptual learning (Herzog &
Fahle, 1998). The models have not been systematically
applied to the induced bias problem.

In this article, we examine the ability of the fully
implemented augmented Hebbian reweighting model
(AHRM) of perceptual learning and its extensions to
account for the data in the induced bias paradigms of
Herzog and colleagues. The AHRM is a computationally
implemented perceptual learning model that takes
stimulus images as inputs, generates choice responses on
each trial, and uses a Hebbian learning rule that is
augmented by feedback and bias control to improve
performance. The AHRM model was initially developed
to account for perceptual learning in nonstationary
environments with biased external noise (Petrov, Dosher,
& Lu, 2005, 2006). The AHRM has also been used to
model the mechanisms of perceptual learning (Lu, Liu, &
Dosher, 2010), the effectiveness of training in different
difficulty levels (Liu, Lu, & Dosher, 2010, 2012), and
feedback effects (Liu, Dosher, & Lu, 2014; Petrov et al.,
2005, 2006). Most recently, Liu et al. (2014) extended the
AHRM to account for learning curves under different
forms of feedback, including no-feedback, false-feed-
back, block-feedback, and trial-by-trial feedback exper-
iments (Herzog & Fahle, 1997; for a review see Dosher &
Lu, 2009). Dosher, Jeter, Liu, and Lu (2013) developed
an integrated reweighting theory (IRT) that extended the
AHRM by using multilevel representations to account
for specificity and transfer over retinal locations.

The data on asymmetric training and reversed
feedback provide new tests of these models and the
hypothesis that much of perceptual learning is achieved
through reweighting—the changed readout of evidence
from stable perceptual representations (Dosher & Lu,
1998, 1999). We show that the reweighting theories
provide an excellent account of perceptual learning in
asymmetric and biased training protocols, accounting
for many of the phenomena in these interesting studies

and extending the application range of the theoretical
framework of the AHRM and IRT.

Induction of response bias by reverse feedback
in asymmetric sets

Figure 1 illustrates the bias-induction training proto-
col from the studies of perceptual learning in vernier
judgments (i.e., Herzog & Fahle, 1999), which includes
asymmetric training sets and reverse feedback. In the
basic design, the vernier training set consists of stimuli
with two bars in which the bottom bar is aligned slightly
to the left or right of the top bar—here (in different
trials) by�15 00,�1000,�5 00,þ1000, orþ1500. Feedback is
accurate for the medium and large (suprathreshold)
offsets, but feedback is reversed for the smallest
(subthreshold) offset, which is objectively shifted left by
a very small amount while the feedback specifies a right
response. Variations on the basic training set used
different relative proportions of the stimuli during
training and different proportions of feedback reversal
(Herzog & Fahle, 1999) and showed sensitivity to the
specific asymmetric and reversed feedback training.

Training distinct and separate bias patterns for
stimuli and judgments using different orientations or at
different spatial positions demonstrated a remarkable
specificity of these effects (Herzog et al., 2006).
Different types and sequences of feedback were
differentially effective in training bias, leading to the
conclusion that training sensitivity and training biases
show different and interacting results (Aberg & Herzog,
2012). Finally, the prior literature makes some claims
about differential consolidation of sensitivity and bias
criterion effects (Aberg & Herzog, 2012).

Augmented Hebbian reweighting and
perceptual learning

Dosher and Lu (1998, 1999) proposed that many
perceptual learning phenomena could be modeled
through reweighting sensory evidence to a decision
(Dosher & Lu, 1998, 1999). This principle has been
implemented within the context of an AHRM (Petrov
et al., 2005, 2006; see also Dosher et al., 2013; Liu et al.,
2010, 2012, 2014). Perceptual learning occurs through
reweighting of evidence from stable perceptual repre-
sentations to a decision structure for a specific
perceptual task (Dosher & Lu, 2009). The reweighting
model for perceptual learning consists of a representa-
tion module, or visual front end, and a decision module
that takes the activities of representation units and
generates a response. A learning module alters the
weights of the connection between the representation
system and decision using Hebbian learning augmented
by feedback, when it is present, and a criterion-control

Figure 1. The basic asymmetric vernier training stimulus set with

reversed (false) feedback indicated. Only one vernier stimulus is

shown on any trial.
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unit that tracks the balance of responses in an
experimental situation. Figure 2 illustrates the structure
of the AHRM. Accounting for performance and
learning in any particular task requires a representation
system that codes the information relevant to that task.
For example, motion tasks require a front-end repre-
sentation module that extracts motion from the
stimulus (Lu et al., 2010; Tlapale, Dosher, & Lu, 2013,
2014). A Hebbian learning rule incrementally updates
the weights between the representation system and the
decision system, although other learning systems have
also been proposed (i.e., Jacobs, 2009). The model
exactly replicates the sequences of training trials
experienced by the observer to generate behavioral
predictions for each training protocol.

The studies by Herzog and colleagues considered in
the current simulation study used line offset vernier
stimuli. As in our previous simulation (Liu et al., 2014) of
the effects of different feedback manipulations on
learning line offset vernier judgments (Herzog & Fahle,
1997), we used a representation module with a set of
spatial frequency and orientation tuned units, originally
used to code oriented Gabor stimuli (Petrov et al., 2005,
2006) and used for modeling tilt judgments of noisy line
grids (Jacobs, 2009). This choice reflects the similarity
between line offset vernier and orientation judgments
(Saarinen & Levi, 1995;Weiss et al., 1993). (Elsewhere we
used radial basis location coding as the representation to
model perceptual learning in three-dot vernier offset and
bisection studies; Huang, Lu, & Dosher, 2012.) The IRT
(Dosher et al., 2013) extended the reweighting frame-
work by incorporating multilevel representations to
account for transfer over retinal positions.

The orientation–spatial frequency representation
module and the augmented Hebbian learning module
are based on those in previous articles (Liu et al., 2010,
2012, 2014; Lu et al., 2010; Petrov et al., 2005, 2006). A
short description of the model equations is provided in
Appendix A for convenience. The representational
subsystem consists of units or channels that are spatial
frequency and orientation selective, centered on five
spatial frequencies and seven (or 12) orientations that
span the orientation space. Each unit incorporates
nonlinearity, normalization, and stochastic internal
noise in the response and includes the response to
external noise in paradigms that incorporate external
noise in the stimulus (Dosher et al., 2013; Liu et al.,
2010, 2012; Lu et al., 2010; Petrov et al., 2005, 2006).
Many of the parameters, such as orientation and spatial
frequency bandwidths of the representation units, are set
a priori based on the physiology and prior applications;
the nonlinearity and normalization are broadly consis-
tent with normalization and gain control observed in
neural systems (Carandini, Heeger, & Movshon, 1997;
Heeger, 1992). This front end is designed to incorporate
many known properties of early visual processing, which
is important for predicting performance for stimuli of
different contrasts or different external noise. The
vernier stimuli in the studies by Herzog and colleagues
do not incorporate either contrast variation or external
noise. We use the full model for consistency and to allow
generalization to other kinds of experiments.

The induced biases and improvements in sensitivity
that result from asymmetric training and reversed
feedback under different feedback protocols provide a

Figure 2. An overview of the AHRM. There are three main subsystems or modules of the AHRM framework: a representation

subsystem, a decision subsystem, and a learning subsystem. In this application, the representation subsystem computes the

activations of spatial frequency and orientation tuned filters, subject to normalization gain control and internal noise; the decision

subsystem takes the weighted sum of activation outputs from the representation subsystem, adds in the bias term and the decision

noise, and uses a nonlinear decision unit to classify the stimulus and generate a response; and the learning subsystem incorporates

the feedback into a revised decision variable and updates the weights between the representation units and decision through

Hebbian learning. The model takes individual stimuli as inputs, generates responses, and learns in an exact simulation of the

experimental protocol experienced by the observer in a perceptual learning experiment.
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new challenge and test for the reweighting framework
and the AHRM model.

Method

AHRM model and simulation methods

The AHRM was implemented in MATLAB. On
each trial, the model processes grayscale images of the
experimental stimuli as inputs and generates binary
(left–right) responses as outputs. It learns on each trial
by adjusting the connection weights between the
representation units and the decision unit. The model
replays each experimental protocol, including the
number of trials of each kind of stimulus, the nature of
feedback, and the number of training sessions—that is,
it reprises the experimental protocols experienced by
the observers. Each simulated experiment was repeated
1,000 times to generate the predictions of the model.

Most of the parameters of the model are set a priori.
In particular, most front-end or representational
subsystem parameters were set from the physiological
literature or fixed based on model fits to experimental
data in a number of other applications (Dosher et al.,
2013; Liu et al., 2010, 2012; Lu et al., 2010; Petrov et
al., 2005, 2006; see Appendix A). Prior knowledge
about orientation was embodied in initial weights
(priors) set proportional to the preferred orientation of
the units wi¼ (hi / 45)winit. These parameters were held
constant over all of the simulations reported here.

A small number of variable parameters were chosen
to approximate the overall performance level and
learning rates of the target data set. These include the
internal multiplicative noise rm, decision noise rd,
scaling factor a, the weight on feedback wf, and (model)
learning rate g. The learning rate and weights on the
bias and feedback units were adjusted to approximate
the pattern of learning and bias in the data. Detailed
optimization of the fits of the model to the data, carried
out in some of our previous articles (Liu et al., 2010,
2012; Lu et al., 2010), are extremely time consuming—
sometimes taking months of grid search computations
to yield just slightly better fits. However, many regions
of the parameter space generate predictions consistent
with the qualitative properties of the observed data
pattern(s). Here we perform only approximate fits of
model to data in order to enable us to examine a wider
range of experimental findings. The match between
model and data is indexed by the rank-order correla-
tion between the model predictions and the observed
data points, Kendall’s s (Kendall, 1938; Kendall &
Gibbons, 1990)—a measure of concordance between
data and model predictions that is relatively robust to
distributional issues (Newson, 2002):

s ¼ ðnCÞ � ðnDÞ
1=2ðnÞðn� 1Þ ;

where nc is the number of data pairs with concordant
order between the two data sets and nD is the number of
data pairs with discordant order between the two data
sets. We also report the parametric estimate of the
proportion of variance accounted for by the model

r2 ¼ 1�

X
i¼1:n

ðxi � x̂iÞ2

X
i¼1:n

ðxi � x̄Þ2
;

where xi is an observed data value, x̂i is the
corresponding value predicted by the model, and x̄ is
the mean of the observed data. Since we do not carry
out precise quantitative fits of the model to data, the
values of the proportion of variance accounted for by
the model are lower than if we had. For a number of
experiments, these values were also limited by the small
range and noise in the behavioral data sets.

Experimental data sets

In this article, we selected representative experimental
data from the three induced bias articles of Herzog and
colleagues (Aberg & Herzog, 2012; Herzog et al., 2006;
Herzog & Fahle, 1999). These experiments began with an
initial assessment of threshold for each observer. The
largest offset condition was set to be suprathreshold,
while the medium and small offsets were slightly below
and clearly below threshold; the large offsets were
generally about three times the magnitude of small
offsets. The values (i.e.,�1500,�1000,�500, 1000, and 1500)
are listed as examples (see Figure 1). In many of these
experiments, the single reverse-feedback condition was
presented with probability 1/3. Herzog and Fahle (1999)
included five vernier offsets in their experiments. Herzog
et al. (2006) simplified the experiment to include only
three vernier offsets (i.e.,�15 00,�500, andþ1500). Feedback
is presented on errors for trial-by-trial conditions, while
overall accuracy is provided at block breaks for block-
feedback conditions. More details about each modeled
experiment are provided as they are treated.

Results

Inducing bias with asymmetric training and false
feedback

Herzog and Fahle (1999) were the first to introduce a
perceptual learning protocol specifically designed to

Journal of Vision (2015) 15(10):10, 1–21 Liu, Dosher, & Lu 4



induce biases as well as changes in discrimination
sensitivity. Their paradigm presented the asymmetric
stimulus set of line offset vernier stimuli that shifted the
bottom line left or right by medium or large shifts but
added (false) reverse feedback to a singleton small left
stimulus (or vice versa), where each stimulus offset is
tested with some frequency. The net effect is to
increasingly shift toward right responses—as though
the misleading feedback on this relatively ambiguous
(below-threshold offset) stimulus induces observers to
lower their criterion for a right response.

We simulated the data of experiment 3 of Herzog
and Fahle (1999). Other experimental variants in their
article manipulated the relative frequencies of the five
stimuli (i.e., �15 00, �10 00, �5 00, þ10 00, andþ15 00) and the
frequency of reversed feedback for the unique small
offset stimulus (�5 00) in various ways. We chose
experiment 3 because it used a design with 1/3
probability of the reversed-feedback condition, which is
typical of the designs in subsequent articles, and
because the data were representative of the magnitude
of the basic effect across multiple experiments.

This training affected performance on the small
offset stimuli that received reversed feedback but also
affected performance for the medium (610 00) and large
(615 00) offset stimuli. Figure 3 shows the stimuli
(Figure 3a), the biased response data from the
experiment of Herzog and Fahle (1999; Figure 3c), and
corresponding predictions of the AHRM model (Fig-
ure 3d). It also shows the evidence (activity) in the
orientation and spatial frequency tuned units (filters)
for these stimuli (Figure 3b).

As seen by comparing the model predictions in
Figure 3d with the data in Figure 3c, the AHRMmodel
naturally accounts for the biased responding induced
by these asymmetric training paradigms. Reversed
feedback on the�5 00 stimulus results in the observer
learning to shift toward feedback-consistent right
responses. This increasingly reduces the percentage
correct for the left offset stimuli (left offset stimuli were
the only data shown in the original article). Then, when
the reversed feedback is replaced with accurate
feedback (at the vertical dashed line), performance
shifts rapidly toward more left responses and therefore
increased percentage correct on left offset stimuli. The
model predictions qualitatively replicate the pattern in
the data; they are rank-order consistent with the
observed data (Kendall’s s¼ 0.692, p � 0.001). The
proportion variance accounted for by the model is r2¼
0.636 (p , 0.01). Model parameters, selected to
approximately mimic the levels in observed data, are
listed in Table 1. A time-intensive grid search on model
parameters and the corresponding simulated results
would almost surely provide a slightly improved
detailed fit to the data, but the predicted ordinal
pattern occurs over most of the model parameter space.

The multiple experiments in the original article
(Herzog & Fahle, 1999) showed a similar general
pattern: With different probabilities of the smallest left
offset with reversed feedback (labeled right), perfor-
mance of all left verniers dropped and then quickly
rebounded with the introduction of correct feedback.
Also, if the probability of reversed feedback is higher,
the biasing effect is more prominent. We show the
AHRM prediction for experiment 3, but the AHRM is
broadly consistent with all the experiments in the study.

The AHRM model accounts for these results in the
following way. During bias induction training, reverse
feedback for the small offset-left stimulus shifts the
weights toward the right response. The reverse feedback
for this small offset drives the postsynaptic activity at
the decision unit toward the incorrect response, shifting
weights to favor the rewarded response through
Hebbian learning. These changes are concentrated in
the weights for orientation channels near the vertical
(08, þ158, and�158) that are most sensitive to the very
small angles of the vernier stimuli. Subsequent training
with accurate feedback shifts weights to favor the now-
dominant left feedback.

In the AHRM account, then, the induced biases seen
in the empirical data are predominantly encoded by
reweighting the activity in the sensory representations
into the decision unit toward the dominant feedback
category—a learned weight-encoded bias. In fact, the
bias control unit of the AHRM, which seeks to balance
the two responses in the recency-weighted response
history, tends to moderate or oppose induced weight
changes that lead to an imbalanced response history.
Examples of changes in weight structures of the
AHRM are displayed and discussed in more detail in
Appendix B.

Induced biases depend on trial-by-trial feedback

Aberg and Herzog (2012) examined the extent to
which the perceptual learning–induced biases in dis-
crimination, first documented in Herzog and Fahle
(1999), reflect the trial-by-trial feedback of those
studies. They compared the induced bias effect in
separate groups of observers trained in the trial-by-trial
reversed feedback protocol of their original demon-
strations, a trial-by-trial correct-feedback condition
(that eliminated the reversed feedback for the�5 00 offset
stimuli), seven-trial blocked correct feedback, seven-
trial blocked reversed feedback, 84-trial blocked
reversed feedback, and no feedback. In the blocked
conditions, the corresponding aggregate accuracy
information was presented at the end of blocks of the
specified length. Each of the six feedback groups was
first trained with the assigned feedback, followed by
three blocks without feedback, and then three blocks

Journal of Vision (2015) 15(10):10, 1–21 Liu, Dosher, & Lu 5



with accurate feedback. The trial-by-trial reversed-
feedback condition is a near replication of the pattern
shown in Herzog and Fahle (1999), with several (three)
no-feedback training blocks interposed between the

induction training and the final correct feedback
blocks.

Figure 4 shows the original data display, an
alternative graphing of the data that better illustrates

Figure 3. Perceptual learning of biased responding through practice on an asymmetric stimulus set and selective reverse feedback in a

line offset vernier task and predictions of the AHRM reweighting model of perceptual learning. (a) The asymmetric stimulus set used

in the experiment. (b) The differential evidence in representation units of the AHRM representation system for these stimuli. (c)

Percentage correct for left offset stimuli from Herzog and Fahle (1999, experiment 3, figure 9; corresponding data for right offset

stimuli not shown). The vertical line corresponds to an elimination of reverse feedback for the �5 00 stimulus. (d) Corresponding

pattern of bias predictions from the AHRM model (parameter values from Table 1; see text) in lines and data in symbols. Panel c is

adapted with permission from Herzog, M.H., & Fahle, M. (1999). ‘‘Effects of biased feedback on learning and deciding in a vernier

discrimination task.’’ Vision Research, 39(25), 4232–4243.
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the relation to stimulus variation, and predictions of
the AHRM model. Figure 4a duplicates the data graph
from Aberg and Herzog (2012, figure 2), which graphed
performance as the hit rate (left stimuli categorized as
left and right stimuli categorized as right) for each
stimulus type (labeled big left, middle left, small left,
middle right, and big right). Figure 4b shows the same
data as percentage right in order to more clearly show
the separation of performance for the five vernier
offsets and more clearly track the overall shifts toward
left or right responses both in the data and in the model
predictions. Figure 4e duplicates the data from Aberg
and Herzog (2012, figure 3) for derived criteria from
signal detection analysis, and Figure 4f shows the
AHRM predictions.

The AHRM model generates predictions that
generally parallel the effects of perceptual training
under the six feedback conditions. It replicates the
original learning effects with induced biases by trial-by-
trial feedback with reversed feedback for the small left
condition (top right subpanel). This shifts the perfor-
mance upward, toward right responses, corresponding
with the distribution of feedback. The AHRM correctly
predicts shifts downward (toward increased left re-
sponses) for the trial-by-trial correct-feedback condi-
tion (upper middle subpanel), in which left feedback
dominates, reflecting the relative frequencies of the
stimuli. The model also correctly predicts weak or
nonexistent induced bias in the no-feedback and
various blocked-feedback conditions.

Figure 4d shows the relationship between the
observed data and the model predictions for each
training feedback group in separate subpanels. Note
that the variation in observed performance (Figure 4d)
for each stimulus over the course of learning partly
reflects binomial variability in observed proportions
given the sample sizes in the experiment. The model
predicts upward shifts (more right responses) for the
reverse-feedback conditions and downward shifts (more
left responses) for the correct-feedback conditions.
Other than minor adjustments in the initial scaling
constants (as) and noise terms used to approximately
match performance in the initial training blocks, the
same model parameters were used to predict perfor-
mance in the different feedback groups. Figure 4e and f
shows criterion estimates derived from a signal detec-
tion analysis for the data and the model; the data show
smaller deviations between the derived criteria of the
reversed and accurate trial-by-trial feedback conditions
at a single point in block 11, not mirrored in the model
predictions (for discussion, see Aberg & Herzog, 2012).
This issue is not seen in corresponding fits to the
percentage right. (The model predictions are a better
match to criterion estimates from all data rather than
from the subthreshold singleton used in Figure 4e by
Aberg and Herzog [2012].)

The AHRM simulation accounts for the data pattern
qualitatively; the approximate fit also does a relatively
good job quantitatively. The simulated model predic-
tions are rank-order consistent with the observed data
(Kendall’s s¼ 0.772, p � 0.01). The proportion

Variable Parameter Value

Parameters set a priori Orientation spacing Dh ¼ 158

Spatial frequency spacing Df ¼ 0.5 octave

Maximum activation level Amax ¼ 1

Weight bounds wmin/max ¼ 61

Running average rate q ¼ 0.02

Activation function gain c ¼ 0.8

Bias weight wb ¼ (2*pc – 1)*wbf

Normalization constant k ¼ 0

Internal additive noise r1 ¼ 0

Initial weight scaling factor wini ¼ 0.169

Parameters constrained

by published data

Orientation tuning bandwidth hh ¼ 308

Frequency tuning bandwidth hf ¼ 1.0 octave

Radial kernel width hr ¼ 2.08 of visual angle

Parameters optimized to

fit the present data

Feedback weight wf ¼ 0.2

Bias control weight factor wbf ¼ 0.04

Study 1 Study 2 Study 3 Study 4

Representation scaling factor a ¼ 0.4 0.4;0.45 0.3 0.3

Internal multiplicative noise rm ¼ 0.01 0.01;0.03 0.02 0.02

Decision noise rd ¼ 0.024 0.012;0.016 0.015 0.01

Learning rate g ¼ 5e-4 3e-4 4e-4 3e-4

Table 1. Model parameters.

Journal of Vision (2015) 15(10):10, 1–21 Liu, Dosher, & Lu 7



Figure 4. The dependence of induced bias in asymmetric training protocols on the type of feedback used in training and predictions of

the AHRM. The stimulus sets are the same as those in Figure 3. (a) Performance (percentage hits) in six feedback conditions (no

feedback, trial-by-trial correct feedback, trial-by-trial reversed feedback, seven-trial blocked correct feedback, seven-trial blocked

reversed feedback, and 84-trial blocked reversed feedback) from Aberg and Herzog (2012, figure 2). (b) The data in panel a graphed as

percentage right reveals the different response rates for big left, middle left, small left, middle right, and big right stimuli. (c) The

predictions of the AHRM model for the six feedback groups (lines) along with the experimental data (dots). (d) The relationship between

the observed percentage right and the AHRM predictions. (e) Derived measures of average decision criteria as a function of block of

training for the six feedback groups from Aberg and Herzog (2012, figure 3). (f) Predictions of the AHRM model corresponding with the

data in panel e. See the text for a discussion. Panels a and e are adapted with permission from Aberg, K.C., & Herzog, M.H. (2012).

‘‘Different types of feedback change decision criterion and sensitivity differently in perceptual learning.’’ Journal of Vision, 12(3):3, 1–11.
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variance accounted for by the model is r2¼ 0.883 (p�
0.01). Although parameters in the model are varied to
get the scale and overall rates, the differential feedback
conditions all use the same parameters, with the
exception of small differences in scaling factor and
noise terms to slightly adjust for minor overall group
differences. Model parameters are listed in Table 1.
Further search of the parameter space might slightly
improve the fit. These model results are consistent with
an earlier AHRM account of differential learning when
using different forms of feedback in standard (unbi-
ased) vernier perceptual learning (see Liu et al., 2014).

As in the previous analysis of the bias-induction
paradigm, the shifts in bias in the AHRM account
are encoded into the structure of weights into the
decision unit. The false feedback in the trial-by-trial
reverse-feedback condition shifts behavior toward a
right response, while accurate trial-by-trial feedback
shifts toward left responses. As found previously
(Herzog & Fahle, 1997), no-feedback conditions do
little to improve performance accuracy. Although
block feedback can in some circumstances promote
learning (Herzog & Fahle, 1997), in this case it is
ineffective.

The model simulations of the trial-by-trial reverse-
feedback condition follow those for the previous
experiment, as the weights shift in the same direction as
the preponderance of the feedback, or right. The
weights tend not to change substantially in the absence
of feedback because the (early) postsynaptic activation
at the decision unit tends to be very small for vernier
stimuli: The orientations are all very close to vertical or
zero. Trial-by-trial accurate feedback shifts weights and
performance in favor of the dominant left response.
Although block feedback can lead to learning in
balanced designs, it is not sufficient to induce the
overall shifts to right or left response because only trial-
by-trial feedback can shift the postsynaptic weight
toward a particular response. See Appendix B for a
depiction of the changes in the weight structures and a
more detailed discussion.

Overall, then, the AHRM provides an integrated
predictive account of the complex pattern of results
for different forms of feedback in these asymmetric
training conditions with no feedback, reversed and
correct trial-by-trial feedback, and various forms of
blocked feedback. Although parameters are selected
to approximately match the level and scale of the
empirical data, the differences between feedback
conditions are qualitative predictions of the model.
Other interesting issues discussed in Aberg and
Herzog (2012), such as those related to overnight
consolidation effects and so forth, are not incorpo-
rated in the current AHRM; they are considered
briefly in the Discussion.

Independent (opposite) induced bias in
different trained orientations

The induced biases created by the basic induction
paradigm can be specific to the trained stimuli. One
interesting demonstration of the specificity of induced
bias was experiment 3 in Herzog et al. (2006). This
experiment trained either horizontal or vertical offset
stimuli with different stimulus–feedback regimes in
succession. The theoretical purpose was to examine
whether the induced biases are learned separately for
the horizontal and vertical stimuli or whether they
instead reflect the consequences of perceptual learning
on a single shared criterion function for the response.
Horizontal and vertical offset stimuli were trained
successively in different phases (blocks). The sequence
of training phases was designed to induce biases toward
opposite response keys in the horizontal and vertical
offset stimuli. Initial biases in the other orientation
were measured in sessions of balanced testing of very
small offset stimuli without feedback. Compared with
Herzog and Fahle (1999), Herzog et al. (2006)
simplified the stimulus set, which consisted of only a
balanced set of large offsets together with a singleton
small offset.

Phase H1 tested small (65 00) horizontal offsets to
measure baseline bias. Phase V1 trained vertical offsets
(i.e.,�15 00,�5 00, andþ15 00) with reverse feedback for the
small (�5 00) offset to induce bias; the small offset was
chosen in the direction of ‘‘the natural response bias’’
for each observer (so the bias is somewhat exaggerat-
ed). Phase V2 tested the persistence of induced bias
without feedback with the same stimulus set (i.e.,�15 00,
�5 00, andþ15 00). Phase V1 was repeated to refresh the
induced vertical bias. Phase H1* tested very small
(61 00) horizontal offsets without feedback—essentially
a pure assessment of bias—and found hit rates for both
stimuli near 50%. Phase H2 trained horizontal offsets
(i.e.,�15 00,þ5 00, andþ15 00) with reverse feedback for the
small offset such that the induced bias would shift
responses to the opposite response key, as for V1.
Phase V3 tested very small (61 00) vertical offsets
without feedback to document the persistence of
(opposite response key) vertical bias. Finally, phase V1
was repeated to show the persistence of the induced
vertical bias. In short, this study showed that biases for
horizontal or vertical offset stimuli could be induced to
favor the opposite keys with little interaction between
them. Additionally, there was a tendency for the
induced biases to reduce somewhat during no-feedback
phases, suggesting a return to balanced responding in
the absence of continued false feedback.

Our simulation recapitulated the same series of
training blocks. The simulation placed the small offset
singleton receiving false feedback in opposite vertical
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and horizontal directions (i.e., one was negative and the
other was positive).

We simplified the implementation of the simulation
by approximating the smallest 61 00 vernier used in the
H1 and V3 phases. The 61 00 is such a tiny offset that it
would have required stimulus images of much higher
resolution to render; we substituted it with a 5 00 vernier
to retain consistency with other simulations and to
reduce computational demands during parameter
selection runs. The predicted performance on the small
offset is only slightly more than the empirical perfor-
mance in the 1 00 vernier. The bias control (reflecting the
local response history) was implemented separately for
vertical and horizontal tasks. In this experiment the
horizontal and vertical tasks were in any event trained
in different sessions, so it is reasonable for them to be
separate.

Figure 5 shows the design of Herzog et al. (2006)
experiment 3, the empirical results, and the corre-
sponding predictions of the AHRM model. The model
predictions are rank-order consistent with the observed
data (Kendall’s s ¼ 0. 575, p � 0.01). The simulation
shows a good qualitative fit of the data pattern: The
bias developed for vertical and horizontal verniers is
independent. The proportion variance accounted for by
the model is r2 ¼ 0.667 (p , 0.01). Model parameters,
selected to approximately parallel the data, are also
listed in Table 1. A time-intensive grid search of the
model parameters might improve the quantitative fit,
which tracks the sum of the squared deviations between
the model predictions and the data. In this case the
model and data also differ for structural reasons. Our
simulation did not implement the choice of Herzog et
al. (2006) to assign the direction of induced bias in
initial training in the same direction as a predetermined
response bias for each observer, which led to an
amplified initial bias in the empirical data. The
simulation shows the predicted results for symmetric
initial weights (priors) and a criterion control unit
seeking a 50%–50% response distribution. The AHRM
could be modified to incorporate either initial or
ongoing preference for one response over the other in
criterion control to mimic a natural bias in responses;
we elected not to complicate the simulation in this way.
Instead, we focus here on predicting the striking general
patterns in the data in which the responses to the larger
left and right stimuli diverge during the false feedback
phase and converge once feedback is corrected.

The AHRM accounts for the oppositely induced
biases from the feedback to train the weights for the
channels around the circular orientation dimension.
The AHRM representation units were extended to 12
orientations to cover both vertical and horizontal
stimuli. Activations for the two sets of offsets (V and
H) are focused in separate orientation (and spatial
frequency) tuned representation units, so learned biases

that are incorporated in learned weights are easily
segregated in the model. This is essentially specificity
arrived at by segregation in the representation domain.
See Appendix B for examples and further discussion of
the weight change profiles for this experiment.

Opposite induced biases in different spatial
locations

The next demonstration of specificity showed that
induced biases could be trained in opposite directions
in different spatial locations of the display for vertical
vernier judgments. Herzog et al. (2006) experiment 2
used a simplified induction design with only a single
larger paired offset (i.e., 615 00) and one smaller offset
(i.e., �5 00 for the left location and þ5 00 for the right
location) that received reverse (false) feedback. This
experiment created opposite induced biases in the two
locations on the screen.

Figure 6 illustrates the stimuli (Figure 6a) and the
empirical data (Figure 6c). A single two-line vernier test
in one of the two locations is trained on each trial. To
model perceptual learning in different spatial locations,
we used the IRT (Dosher et al., 2013; see Figure 6b for
a schematic illustration). The theory was designed on
principles similar to those of the AHRM but uses
multilevel or multilayer representation structure to
make predictions about transfer and specificity over
learning in different spatial locations. It includes both
location-specific representation layers and a location-
independent representation layer. The model makes
predictions about learning in several locations trained
in interleaved training protocols, as in this experiment.
Figure 6d shows predictions of the IRT for the spatially
separate bias experiment. Note that this graph uses the
format and labels of the source article, which labels the
two large offset stimuli as singleton and partner (large)
and the smaller offset stimuli as partner (small); the
graph shows the hit rate for each (rather than
percentage right). The induced biases are in the
opposite direction in the two locations.

The IRT framework makes predictions that are
rank-order consistent with the observed data (Kendall’s
s¼ 0.750, p � 0.01). The percentage variance
accounted for by the model is r2¼ 0.860 (p , 0.01).
Model parameters were selected to approximate the
levels in observed data (see Table 1). Further search of
the parameter space might improve the match to
overall performance level and hence the proportion of
variance accounted for by the model. The model is
exactly symmetric in the two locations, while the data
appear to show lower performance for the right
location (Figure 6c, right), accounting for much of the
reduction in the proportion of variance accounted for
by the model. This might have been handled by
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incorporating differences in scaling factors or internal
noises in the two locations, but we elected not to pursue
this because, as indicated by the high Kendall’s s, the
model does a very good job of accounting for the
qualitative patterns of opposite bias induction followed
by convergence with accurate feedback. The biases
developed for two locations are generally independent
of each other in both the data and the model.

In the IRT, location-independent representations are
balanced over trials in reverse feedback for right and
left responses, and the biases induced from reversed
feedback carried average out in the weights from the
location-independent representation layer to decision,
so this layer does not contribute to the induced biases.
The running average of postsynaptic activation of

verniers was independently tracked for each location,
which supported segregated bias learning. Appendix B
provides examples of changing model weights and
discusses the impact of location-specific representations
and other implementation details.

Discussion

Herzog and colleagues demonstrated a very inter-
esting series of phenomena related to induced bias, as
well as improved discrimination, that can result from
perceptual training. These training conditions pose
challenges for models of perceptual learning because

reversed

Figure 5. Separate and opposite biases induced by opposite feedback training for horizontal and vertical offset verniers and

predictions of the AHRM. (a) The three vernier stimuli and reverse feedback regime. (b) The illustration of training phases and

number of training blocks. In order, phase H1 tested small (65 00) horizontal offsets, phase V1 trained vertical offsets (�15 00, �5 00,

þ15 00) with reverse feedback for the small (�5 00) offset to induce bias in the direction of the natural response bias, phase V2 tested V1

stimuli without feedback, phase V1 was repeated, phase H1* tested very small (61 00) horizontal offsets without feedback, phase H2

trained horizontal offsets (�15 00,þ5 00,þ15 00) with reverse feedback to induce an opposite bias to V1, phase V3 tested very small (61 00)

vertical offsets without feedback, and V1 was repeated. (c) Observed hit rate across these phases of training from Herzog et al. (2006,

figure 7). (d) Predictions of the AHRM model for the conditions in panel c, using 5 00 instead of 1 00 in H1 and V3. Lines are simulations,

and symbols are data. Panels b and c are adapted with permission from Herzog, M.H., Eward, K.R.F., Hermens, F., & Fahle, M. (2006).

‘‘Reverse feedback induces position and orientation specific changes.’’ Vision Research, 46(22), 3761–3770.
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they extend the generality of these models to situations
that provide faulty feedback and/or imbalanced train-
ing sets. Both may be relevant to training situations in
the real world.

In this article, we have demonstrated that the
AHRM (Liu et al., 2010, 2012, 2014; Lu et al., 2010;
Petrov et al., 2005, 2006) and the IRT (Dosher et al.,
2013) that extends reweighting to multiple locations
and multilevel representations account for the major
phenomena in induced bias in the target articles,
including the following: (a) bias induction by reverse
feedback in asymmetric training sets; (b) the patterns of
induced bias with different feedback and training
regimens, including the importance of trial-by-trial

feedback for achieving the bias induction result; (c) the
ability to induce separate and opposite biases for
sufficiently different stimuli that activate separate parts
of the representation space; and (d) the ability to induce
opposite biases for tasks in different spatial locations.
While there may be subtle aspects of performance that
the model in its current implementation only approx-
imates, the perceptual learning by reweighting frame-
work provides an excellent account of the broad
phenomena of false or reversed feedback and induced
biases in performance.

Here, we showed the consistency of the model by
documenting that the model predicts qualitative
patterns that parallel those documented in the corre-

Figure 6. Inducing opposite biases in different spatial locations and predictions of the IRT, which accounts for perceptual learning in

different spatial locations. (a) Opposite asymmetric stimulus sets and opposite reverse feedback used to induce opposing biases in

the two spatial locations. A single two-line offset in one is trained on each trial. (b) The IRT schema extends the AHRM to multiple

layers of stimulus representation, including location-specific and location-independent representations. (c) Data from Herzog et al.

(2006, figure 5). (d) Predictions from IRT in the conditions in panel c in lines and data in symbols. Panel c is reproduced with

permission from Herzog, M.H., Eward, K.R.F., Hermens, F., & Fahle, M. (2006). ‘‘Reverse feedback induces position and orientation

specific changes.’’ Vision Research, 46(22), 3761–3770.
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sponding experimental paradigms. The qualitative and
ordinal predictions of the model characterize most of
the relevant regions of the parameter space of the
models. Further (prohibitively) time-consuming fits
might improve the quantitative fit of the model to
data—largely by finding the exact interacting combi-
nation of internal noises and nonlinearities in the
decision summations. Or, exact fits might require
slightly different implementations of stimulus repre-
sentations or elaboration of the representation layers to
simulate statistical populations of tuned units.

All these phenomena of induced bias are consistent
with (a) the theoretical framework that models
perceptual learning as predominantly accomplished by
incremental reweighting of evidence from stable sen-
sory representations and (b) the broad principles of
augmented Hebbian learning, which incorporates
feedback when available. Recent work of others has
suggested combined models of perceptual learning in
which sensory representations are altered in some cases,
whereas reweighting dominates perceptual learning in
others (Sasaki et al., 2010). While we cannot rule out
changes in the sensory representations through train-
ing, neither are they necessary to account for these
phenomena of induced bias. Indeed, the fact that
induced bias is so often reversible in relatively few
sessions seems most compatible with trained changes in
the learned weights between representation and deci-
sion units, or properties of session-specific bias tracking
and control. Of these two, the observed induced biases
are accomplished in the model by changing the learned
weights in the direction of the feedback, while input
from the bias control unit may serve to moderate these
learned effects.

Changing model weights shifts the evidence distri-
bution, and both shifting evidence and changing
criterion contribute to the d0 and criterion c estimates
of standard signal detection. Indeed, the model predicts
that the learned biases predominantly reflect shifts in
evidence distributions feeding into decision—and only
secondarily as compensatory variations in criterion
offsets. This same caveat is true for all signal detection
theory–based estimates in evaluation of behavioral
data: What looks like shift in bias or criterion can in
many cases be equivalently produced by a shift in
evidence distributions. That is, moving a criterion
down can be equivalent to moving the mean of
evidence distributions up.

The augmented Hebbian learning system of the
AHRM and IRT accommodates both unsupervised
and supervised learning: It allows learning in the
absence of feedback while incorporating available
feedback. The effect of trial-by-trial feedback is
obviously critical in the induced bias paradigms. Other
models of perceptual learning that are broadly consis-
tent with the reweighting framework but that use

different learning mechanisms include an adaptive
precision pooling model (Jacobs, 2009) and reward-
based learning (Law & Gold, 2009). The adaptive
precision pooling model, using the orientation–spatial
frequency visual front end of the AHRM but Bayesian
optimal estimation, makes predictions about learning
that largely exceed behavioral performance; it is
unclear how well it would account for the bias
induction data. The architecture of the reward model
(Law & Gold, 2009) is essentially parallel to that of the
AHRM, but the representations were developed for
motion discrimination. Detailed computational evalu-
ation of these alternative learning mechanisms would
require development and testing essentially comparable
to the tests provided for the AHRM and IRT models
that use the augmented Hebbian learning mechanism.

The AHRM and IRT models here predict some
second-order effects for specific successive training
regimens (i.e., potential effects of interleaving no-
feedback training between reversed-feedback and ac-
curate-feedback cycles; see Appendix B) that would
require new experiments with other training manipu-
lations to test or that, if the predictions are not verified,
might suggest technical modifications in the imple-
mentation of Hebbian learning. While interesting, these
are beyond the scope of the current article.

In these designs, stimulus frequencies (and feedback)
were biased. Observers, however, likely have an a priori
expectation preferring equal response frequencies. The
current simulation approximated the observed response
proportions in the empirical data quite well with a
modest weight on criterion control tracking deviations
from balanced responding. In previous simulations of
trial-by-trial feedback—the only cases where an un-
balanced situation may be obvious to the observer—
feedback dominates over the criterion control in
learning (Liu et al., 2014). Although a criterion control
unit tracking a known unequal stimulus frequency may
be more optimal in some situations, our data did not
require it. Furthermore, absent explicit instructions,
one would need a theory of how observers settled on a
particular unequal response target. There are several
possible implementations of this, and each would
require significant investigation.

Aberg and Herzog (2012) also discuss factors that
stand outside of the domain of the AHRM and IRT
models as currently implemented. They argue that
sensitivity and bias criterion effects may be differen-
tially sensitive to overnight consolidation, based on the
similarity of the derived criteria for reverse and correct
trial-by-trial feedback conditions in block 11, immedi-
ately following a night of sleep. Our computational
model framework does not currently incorporate
specific mechanisms for overnight consolidation, al-
though the postsynaptic running average ō (see
Appendix A) is reset in a new session. The AHRM
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model seems to provide reasonable predictions at the
level of performance accuracy, and the variation in
criterion estimates focus on the data for a single block
after an overnight sleep. Additionally, effects of
overnight consolidation (Karni, Tanne, Rubenstein,
Askenasy, & Sagi, 1994) are not always observed
(Aberg, Tartaglia, & Herzog, 2009); such effects may
occur more prominently in certain tasks. Other factors
outside the usual models of perceptual learning
(Herzog & Fahle, 1998) may also require extensions of
the model framework.

In summary, this article has demonstrated the ability
of a reweighting framework in general, and the AHRM
and IRT models in particular, to broadly account for
the interesting effects of recent induced bias paradigms
in perceptual learning. In the model, the induced biases
are predominantly encoded in learned weight structures
that connect stable sensory representations of the
stimuli to decision structures. Further computational
investigation may elucidate whether other similar
computational models with somewhat different imple-
mentations of stimulus encoding, decision, or learning
modules are similarly able to account for these data.
The current article extended the application range of
the reweighting models to training situations with
asymmetric sets of training stimuli and therefore
asymmetric feedback ratios associated with reverse or
correct feedback.

Keywords: perceptual learning, reverse feedback,
asymmetric training, augmented Hebbian learning, bias
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Appendix A

This article examines the proposition that perceptual
learning of sensitivity and bias is consistent with
incremental reweighting of sensory evidence (Dosher &
Lu, 1998, 1999). The AHRM simulates a multichannel
network model. It takes stimulus images as input,
produces a task response, and reweights (updates
weights) the connections from representation units to a
decision unit. Learning is augmented by inputs from
feedback and from a criterion control unit. Appendix A
provides a brief summary of representation, decision,
and learning subsystems or modules of the corre-
sponding implementation of the AHRM, shown
schematically in Figure 2. Descriptions of the model
can be found in previous studies (Liu et al., 2010, 2012,
2014; Lu et al., 2010; Petrov et al., 2005, 2006). A
related theoretical framework, the IRT (Dosher et al.,
2013), is briefly discussed at the end of Appendix A.

The representation subsystem (module) used in this
article consists of orientation- and frequency-selective
units. The orientation evidence coded in the activations
of these orientation–spatial frequency units is used to
discriminate the ‘‘tilt’’ of the line offset vernier stimuli.
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This system has been used to model perceptual learning
performance for tasks involving the discrimination of
the orientation of Gabor patches (i.e., Petrov et al.,
2005) and of depth tilt of grid patterns (Jacobs, 2009).
Alternative representation modules have been used to
model learning in motion tasks (Tlapale et al., 2013,
2014) or three-point vernier or bisection judgments
(Huang et al., 2012).

The activation values of the orientation–spatial
frequency filters A(h,f) compute the normalized spectral
energy in the image in each channel. First, retinotopic
phase-sensitive maps S(x,y,h,f,/) are computed for the
input image I(x,y):

Sðx; y; h; f;/Þ ¼ RFh;f;/ðx; yÞ � Iðx; yÞ
� �2

: ð1Þ

These units at location (x,y) are tuned to spatial
frequency f, orientation h, and spatial phase /. The set
of filters consisted of the joint product of five spatial
frequencies (8, 11.3, 16, 22.6, 32 cycles/degree), seven
orientations (08, 6158, 6308, 6458), and four spatial
phases (08, 908, 1808, 2708). (The simulation with both
vertical and horizontal verniers requires 12 orientations
spanning from �908 to 758 with a step size of 158.)
Spatial frequency tuning and orientation tuning band-
widths were set at hf ¼ 1 octaves and hh¼ 308 (half
amplitude, full bandwidth). These values are the same
as those used in prior applications of this form of the
AHRM (Dosher et al., 2013; Liu et al., 2010, 2012;
Petrov et al., 2005, 2006) and were based on estimates
of cellular tuning bandwidths in the primary visual
cortex.

Using the fast Fourier transform, the input image
I(x, y) is convolved with each unit, followed in
succession by half-squaring rectification, spatial phase
pooling, and then inhibitory normalization (Heeger,
1992), respectively:

Eðx; y; h; fÞ ¼
X

/

Sðx; y; h; f;/Þ þ e1 ð2Þ

and

Cðx; y; h; fÞ ¼ aEðx; y; h; fÞ
kþNðfÞ : ð3Þ

In these equations, the normalization pool Nf is
tuned weakly for spatial frequency and is independent
of orientation (see Petrov et al., 2005). a is a scaling
factor; the saturation constant k is relevant for
extremely small contrasts. In this application, we pool
over spatial phase and a stimulus evidence region with
kernel of radius Wr.

The representation activations become stochastic
due to two internal noises. The internal additive noise
term e1 has mean 0 and standard deviation r1, with a
Gaussian distribution. The internal multiplicative noise
e2 of mean 0 and standard deviation r2 introduces

another source of stochastic variability. The activation
in each orientation and spatial frequency tuned unit is
computed as follows:

A0ðh; fÞ ¼
X
x;y

Wrðx; yÞCðx; y; h; fÞ þ e2 ð4Þ

This intermediate value is passed through an
activation function with gain parameter c that range
limits the final activation of the representation units:

Aðh; fÞ ¼
1� e�cA 0

1þ e�cA 0 Amax; ifA0 � 0

0; otherwise

:

8><
>:

ð5Þ

The decision subsystem combines the activation
pattern over the representation units to yield a decision
by weighting the input from each representation unit
(35 units for AHRM, 60 for IRT) by wi and a bias
factor b with weight wb and incorporating random
Gaussian decision noise ed (mean 0 and standard
deviation rd):

u ¼
X35

i¼1

wiAðhi; fiÞ � wbbþ ed: ð6Þ

The ‘‘early’’ activation of the decision unit o0 is a
sigmoid function of the weighted activations u with
gain c:

o0 ¼ GðuÞ ¼ 1� e� cu

1þ e�cu
Amax ð7Þ

A negative o0 maps to one response (left), while a
positive o0 maps to the other response (right).

The learning subsystem updates the synaptic con-
nection weights from sensory representation units to
the decision unit on every trial. If trial-by-trial feedback
(F ¼61) is available, it shifts the activation in the
decision unit to a late level o:

o ¼ Gðuþ wfFÞ ðlateÞ: ð8Þ
Hebbian learning processes operate on the late

phase activation of the decision unit. If trial-by-trial
feedback is available and the feedback weight is
relatively high, then the activation will go to its
maximum (6Amax ¼ 61); smaller feedback weights
may only slightly shift activation toward the correct
response. If feedback is not present, learning
operates without the benefit of this shift toward a
correct response (o ¼ o 0). Except for very low
accuracy conditions, the learned weights tend to
move toward a more optimal weight distribution
because o 0 tends to correlate with the correct
response.

The amount of change in connection weights
depends jointly on the learning rate g, the presynaptic
activation A(h,f), how far the postsynaptic activation is
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from its long-term average, (o – ō), and the distance
between the current weights and their saturation values,
wmin or wmax. Weights are changed (learned) according
to this rule:

Dwi ¼ ðwi � wminÞ di½ ��þðwmax � wiÞ di½ �þ ð9Þ
with

di ¼ gAðhi; fiÞðo� ōÞ ð10Þ
and average postsynaptic activation of

ōðtþ 1Þ ¼ qoðtÞ þ ð1� qÞōðtÞ: ð11Þ
The average postsynaptic activation ō is inherited

from block to block and is independently tracked for
inputs of different orientations or from different
locations. It is only reset between sessions, such as after
a night’s sleep as in Aberg and Herzog (2012). This
treatment better replicates the qualitative pattern of the
behavioral results.

The role and implementation of the top-down bias
control unit is to balance the ongoing frequency of
the left–right decisions, which indirectly augments
learning. The bias correction term b tracks devia-
tions of the recent response frequencies from 50% (or
the instructed presentation probabilities) of the
simulated observer. Criterion control input b
weighted by wb is input to the decision unit. The bias
on each trial is an exponentially weighted average of
the responses with a time constant of 50 trials (q ¼
0.02):

rðtþ 1Þ ¼ qRðtÞ þ ð1� qÞrðtÞ; ð12Þ

bðtþ 1Þ ¼ a rðtÞ: ð13Þ
R(t) is the current trial’s response (left¼�1 and right

¼þ1), and r(t) is the response running average that
exponentially discounts past trials. Bias control is more
important to learning in the absence of trial-by-trial
external feedback (Petrov et al., 2006).

The bias correction term shifts the response
criterion to counterbalance a shift in the proportion
of right responses. The experiments by Herzog and
colleagues present more left stimuli but systematically
bias feedback toward right and are designed to
generate biases in responding. This is equivalent to
shifting the criterion in a compensatory direction.
Higher bias weights (wb) increase the impact of the
bias correction term. Liu et al. (2014) used a
hypothesized relationship between the accuracy in the
last block of trials—either from block feedback or
estimated in trial feedback conditions—and the bias
weight (wb). In essence, the system has more
confidence in the bias information when accuracy is
high and less confidence in the bias information when
accuracy is low. The minimum and maximum of the
bias weight are at 0 and 1 for performance accuracies

(proportion correct) between chance at 0.50 and
perfect performance at 1.0, with the bias weight set to
twice the percentage correct minus one. The bias
weight changes after every block in the block-
feedback conditions.

Appendix B

Appendix B presents and discusses aspects of the
learned weight structures in the AHRM or IRT models
for the model fits to experiments provided in the article.
The vernier stimuli are so similar to one another that
most of the reliable information is carried in changes in
the activity levels of orientation channels very near the
vertical (or horizontal for horizontal vernier judg-
ments). The AHRM and IRT models begin with
weights that build in prior knowledge of left and right
tilting patterns in vertical vernier judgments: wi ¼ (h /
45)winit. Learning and bias in these experiments reflect
relatively subtle changes that tilt these weights toward
one response or the other; the left and right vernier is
very similar in representation space (see Figure 3b), and
the percentage changes of weights are in many cases
quite small. In order to make these subtle changes more
visible, we display changes in the weights as a function
of training, relative to initial values. We chose to scale
these as proportional changes relative to the average
magnitude of all the initial weights. In previous
applications of the model to experiments with widely
varying stimuli, changes were visible in the weights
themselves (Dosher et al., 2013; Liu et al., 2014; Petrov
et al., 2005, 2006).

Inducing bias with asymmetric training and false
feedback

The simulation of Herzog and Fahle (1999) exper-
iment 3 modeled the primary induction paradigm.
Percentage changes in the weights from different
orientation and spatial frequency channels are shown
for the successive phases of reverse trial-by-trial
feedback and accurate feedback training (after the
vertical line) in Figure B1. The color of the line codes
the orientation of the channels, and lines of the same
color are for different spatial frequencies. Training with
reverse feedback on the smallest left stimulus shifts the
weights upward, tracking the dominance of right
feedback. Subsequent training with accurate feedback
shifts weights toward left, now tracking the more likely
left feedback. Indeed, the largest shifts are for
orientation channels of 08,þ158, and�158 that are most
sensitive to the very small angles of the vernier stimuli.
The shifts in the first phase change more slowly than
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those after the switch to accurate feedback. This occurs
for two reasons. In reverse feedback, the slight stimulus
information in the small subthreshold offset in the
initial weights opposes its false feedback, while with
accurate feedback they move in the same direction.
Additionally, in the Hebbian rule, the size of the weight
change di ¼ gA(hifi)(o – ō) is proportional to the
difference of the postsynaptic output and its average
over time. The contrasts with a right-shifted average
postsynaptic output, ō, inherited from the reverse
feedback phase, increases the effective weight change d
at the beginning of the correct trial-by-trial feedback
phase.

Induced biases depend on trial-by-trial feedback

The next simulation examined the ability of the
AHRM model to handle the data of Aberg and Herzog
(2012) comparing different kinds of feedback. In these
panels, the first phase (up to the first vertical line)
corresponds with the feedback condition of the label
(e.g., no feedback, reverse trial-by-trial feedback); the
second phase has three blocks of no feedback; and the
third phase has three blocks of accurate trial-by-trial

Figure B1. Percentage weight changes for different orientation

and spatial frequency channels in the two phases of training for

the model of Herzog and Fahle (1999, experiment 3). The color

represents the orientation of the channels; multiple lines of the

same color are for different spatial frequencies. Upward shifts in

weights cause response shifts toward right, whereas downward

shifts in weights cause response shifts toward left.

Figure B2. Percentage weight changes for different orientation and spatial frequency channels in the three phases of training of Aberg

and Herzog (2012). The color conventions follow those in Figure B1. Training with reverse trial-by-trial feedback shifts the weights

upward, corresponding to the bias to right feedback, whereas accurate trial-by-trial feedback shifts weights left, tracking the more

frequent left stimuli and feedback.
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feedback. The patterns of weight change in the model
are shown in Figure B2. Consistent with the pattern in
the data and the predictions of the AHRM model, only
the accurate trial-by-trial feedback or the reverse trial-
by-trial feedback conditions substantially change per-
formance in the first phase. Trial-by-trial feedback
moves the postsynaptic output toward the biasing
direction. Block feedback only changes the weight on
the bias control unit, which operates to eliminate bias
in the response frequencies. Correspondingly, these two
trial-by-trial feedback conditions are the only ones that
exhibit significant percentage weight changes in this
phase of training. The no-feedback condition and all of
the block-feedback variants show essentially no change.
Any weight changes in the first phase are largely
maintained during the middle three-block phase of
practice without feedback. Then, the weights are shifted
left, toward the dominant left feedback and the
asymmetric stimuli in the correct (accurate) feedback in
the final phase of training. The weight change in this
third phase reprises that in the first phase of the correct-
feedback condition, starting from the weight state at
the end of phase two. This rerelease of new learning
after the no-feedback training phase is also a peculiar
interaction in which the size of weight change depends
on the contrast of the postsynaptic output and its
running average, or (o – ō). At the beginning of
training, the running average begins at zero; as time
goes on, the average postsynaptic activity trends
negative, or left, and so the asymmetric left feedback

has a smaller impact and weight change slows in the
trial-by-trial feedback conditions. Three blocks of
training with vernier stimuli without feedback, where
the postsynaptic output reflects only stimulus infor-
mation yielding postsynaptic outputs that are so close
to zero, reinstates the conditions of early learning.

Although this prediction seems consistent with the
marked down trend in percentage right data in the last
three blocks of correct feedback training in the
behavioral data (see Figure 6), it is not clear how
strongly this feature of the model is tested in the current
data sets. This peculiar predicted interaction with
interspersed no-feedback training seems to be a
property of the small offsets of the vernier stimuli
combined with the asymmetric stimulus design. If taken
seriously, this property seems to predict a possibly
testable advantage to cycling feedback training with
no-feedback training.

Independent (opposite) induced bias in
different trained orientations

The AHRM model fairly naturally predicts the
specificity of induced bias to training of vertical and
horizontal vernier offsets in experiment 3 of Herzog et
al. (2006). To simulate this experiment, the number of
orientation channels is increased to cover the full
circular orientation dimension. The percentage weight
changes from the simulation of the many subphases of

Figure B3. Percentage weight changes for different orientation and spatial frequency channels in the three phases of training of

Herzog et al. (2006, experiment 3). The color conventions follow those of earlier figures. Orientations near vertical (top) and

horizontal (bottom) are shown separately for clarity. Training with reverse trial-by-trial feedback shifts the weights upward for vertical

stimuli and in the opposite direction for horizontal stimuli.
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training in this experiment are shown in separate panels
for the orientations around vertical (top) and around
horizontal (bottom) in Figure B3. In this design, the
induced bias is in opposite directions. The induced bias
for reverse feedback is scaled upward for vertical
training (for consistency with the earlier graphs for the
primary induction experiments); because the induced
bias is in the opposite direction, it is scaled downward
for horizontal training. In the experiment, these might
correspond, for example, with right-hand and left-hand
biases. The simulation tracks the average postsynaptic
activity separately for horizontal and vertical judg-
ments, which are instructed as different tasks and
appear in different test or training blocks. As discussed
in the Results, the model implementation approximat-
ed the 61 00 vernier offsets that were used essentially to
measure pure bias in the system with 65 00 in order to
retain smaller image representations.

After a brief baseline measure for small horizontal
offsets without feedback, different variants of vertical
vernier tasks were trained in succession, followed by
near-zero horizontal vernier offsets without feedback
beginning at block 21 and (opposite) reverse trial-by-
trial feedback at block 35. Because the change in any
given weight di depends directly on the activity in that
spatial frequency and orientation channel A(h,f) and
because that activity is largely focused on orientations
near the vertical for vertical vernier judgments (and
vice versa for horizontal), the weight changes on units
relevant to horizontal judgments are largely un-
changed (except for random drift) during the vertical
vernier training phases. Similarly, the weight changes
on units relevant to vertical judgments are largely

unchanged (except for random drift) during the
horizontal vernier training phases. Otherwise, the
percentage weight changes during reverse feedback
training and accurate feedback training phases mirror
those described earlier.

Opposite induced biases in different spatial
locations

Last, the IRT model was applied to the data from
Herzog et al. (2006) experiment 2 showing that biases
could be separately and oppositely induced for training
in separate spatial locations. The IRT architecture and
framework is an extension of the AHRM designed to
account for transfer and learning interactions between
training in separate spatial locations. Partial specificity
to location is an often-reported property of perceptual
learning (i.e., Schoups et al., 1995, for orientation).
Learning the weights on location-specific sensory
representations mediates location-specific perceptual
learning, while learning the weights on location-
independent representations scaffolds transfer from
one location to another and accounts for interactions
of training in different locations. Although the data
might be consistent with a multilocation AHRM
without the location-independent layer, we used the full
IRT to simulate the experiment because it has been
used previously to model other multilocation transfer
(Dosher et al., 2013) or multilocation learning interac-
tions (Dosher et al., 2012). The location-independent
representations are more broadly tuned and noisier
than the location-specific ones. In this simulation, the

Figure B4. Percentage weight changes for different orientation and spatial frequency channels in location-specific and location-

independent representations during the two phases of training of Herzog et al. (2006). The color conventions follow those of earlier

figures.
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average postsynaptic activities are tracked separately
for the location-specific units.

The weight changes in the simulation that result from
opposed asymmetric bias induction in the two locations
are shown in Figure B4. The top panels show the
percentage weight changes for the two separate location-
specific representations, which show the now-familiar
pattern for reverse trial-by-trial feedback bias induction
(in opposite directions in the two locations) followed by
a correction with a switch to correct (accurate) trial-by-
trial feedback. The bottom panel shows steady and
symmetric spread in the weights on the location-
independent representations. These changes are some-
what faster, reflecting twice the number of total training
trials; the symmetry reflects the cancellation of induced
bias due to balanced trials in the left and right locations.
Some of the improvements in discrimination perfor-
mance are carried by the unbiased shifts in the location-
independent weights, while the induced biases are
carried by the location-specific weights. This is a

demonstration that the IRT, which has been applied in
other multilocation training paradigms, can model this
opposed-bias experiment as well.

Summary

The AHRM simulations and the IRT simulation
provide a consistent account of the basic bias-induction
paradigm, the differential effects of different forms of
feedback on performance, and the specificity of
separate and opposite biases induced for vertical and
horizontal vernier judgments and for vertical vernier
judgments in separate spatial locations. Some specific
attributes of the particular implementation of Hebbian
learning, such as the role of the average postsynaptic
activity levels in resetting more rapid learning in the
transition between certain feedback regimes, might
yield interesting, testable predictions.
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