Lawrence Berkeley National Laboratory

Recent Work

Title

PREPARATION OF McI4(Me2ECH2CH2EMe2)2 AND MC14 [(1,2-Me2As)2C6H4]2 WHERE M IS THORIUM OR URANIUM AND E IS NITROGEN OR PHOSHORUS. CRYSTAL STRUCTURE OF UCI4 [(1,2-Me2As)2C6H4]2

Permalink

https://escholarship.org/uc/item/9dg1m65z

Authors

Edwards, P.G. Andersen, R.A. Gellert, R.W.

Publication Date

1986-07-01

-BL-214-

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Materials & Molecular Research Division

HECEIVED LAWRENCE BERKELEY LABORATORY

Submitted to Inorganic Chemistry

LIBRARY AND DOCUMENTS SECTION

SEP 1 6 1986

PREPARATION OF $MCl_4(Me_2ECH_2CH_2EMe_2)_2$ AND $MCl_4[(1,2-Me_2As)_2C_6H_4]_2$ WHERE M IS THORIUM OR URANIUM AND E IS NITROGEN OR PHOSHORUS. CRYSTAL STRUCTURE OF $UCl_4[(1,2-Me_2As)_2C_6H_4]_2$

P.G. Edwards, R.A. Andersen, and R.W. Gellert

July 1986

This is a Library Circulating Copy which may be borrowed for two weeks:

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Preparation of $MCl_4(Me_2ECH_2CH_2EMe_2)_2$ and $MCl_4[(1,2-Me_2As)_2C_6H_4]_2$ where M is Thorium or Uranium and E is Nitrogen or Phosphorus. Crystal Structure of $UCl_4[(1,2-Me_2As)_2C_6H_4]_2$.

Peter G. Edwards,^a Richard A. Andersen,^{a*} and Robert W. Gellert^b

- a) Chemistry Department and Materials and Molecular Research Division of Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720.
- b) Chemistry Department, California State University, Los Angeles, Los Angeles, California 90032.

* Address all correspondence to this author at Chemistry Department, University of California, Berkeley.

Abstract

The compounds $MCl_{\mu}(Me_2ECH_2CH_2EMe_2)_2$ where M is Th or U and E is N or P have been prepared. Variable temperature NMR spectra show that the geometry of the eight coordinate complexes are based upon that of a D_{2d} dodecahedron with the chloride ligands on the B-sites and the nitrogen or phosphorus atoms on the A-sites. The nitrogen complexes, $MCl_{\mu}(tmed)_{2}$, are fluxional on the ¹H NMR time scale and the fluxional process is suggested to be the $\Lambda = \Delta$ motion of the ethylene-backbone in the five-membered ring of $MN(Me)_2CH_2CH_2NMe_2$ that is fast at high temperature and slow at low temperature. The complexes MCl_u(dmpe), are fluxional at all temperatures. The arsenic complexes $MCl_{\mu}[(1,2 Me_2As)_2C_6H_{\mu}]_2$ have also been prepared for M = Th or U. Crystals of $UCl_4(diars)_2$ are tetragonal, $I\overline{4}2m$ with a = 9.407(1) and b = 17.318(2)A, z = 2, $V = 1532.5A^3$, d (calc) = 2.063 g cm⁻³, and d (obsd) is 2.07 g cm⁻³. The structure was refined by full matrix least-squares to a conventional R-factor of 0.020 using 556 data with $F_0^2 > 2\sigma (F_0^2)$. The geometry is almost a perfect D_{2d} -dodecahedron with the chloride ligands on the B-sites and the arsenic atoms on the A-sites. The U-As distance is 3.049(1)A and the U-Cl distance is 2.618(3)A. Qualitative equilibrium constant studies in toluene show that for UCl_{μ} the ligand displacement series is dmpe > tmed > diars and for the ${\rm ThCl}_{\rm h}$ the series is dmpe \geq tmed > diars.

Several tertiary phosphine complexes of the f-block metals have been claimed, though most of these claims have been shown to be erroneous.^{1a} We have described recently the successful preparation of actinide^{1b} and lanthanide^{1c,d} complexes with the bidentate phosphine ligand bis-1,2-dimethylphosphinoethane, dmpe. The trivalent and tetravalent uranium complexes, $U(C_5Me_5)_2(H)(dmpe)^{2a}$ and $U(BH_3Me)_4(dmpe)^{2b}$ respectively, as well as other phosphine complexes have been reported.^{2c-f} The literature on tertiary arsine complexes of the f-block elements is as confusing as that of the tertiary phosphine complexes. It has been claimed that thorium tetrachloride does not yield a complex with bis-1,2-dimethylarsinobenzene, diars.^{3a} Further, neither uranium tetrachloride nor the tetrabromide are said to give diars complexes,^{3b} though a light yellow, insoluble, 1:1 complex^{3c} and a blue-grey, insoluble, 1:2 complex of uranium tetrachloride have been reported.^{3d}

As a consequence of the inability to isolate simple actinide coordination complexes of phosphines, the actinide metals have been classified as class a or hard acceptors.⁴ This classification, based upon ligand displacement reactions, classifies those acceptors whose coordinative affinity for a given Group 5 donor lies in the order N >> P > As as a class a and those acceptors whose coordinative affinity lies in the order N << P < As as class b. The classification scheme is generally accepted though the reasons for its origin are controversial.⁵ The isolation of phosphine complexes of the actinide metals appears to challenge the class a classification of these metals. However,

question of classification and a study of ligand displacement reactions is required. In this paper we describe the preparation and crystal structure of $\text{UCl}_4(\text{diars})_2$, a preliminary study of ligand displacement equilibria, and full synthetic details for complexes of the type $MX_{\mu}(\text{bidentate Ligand})_2$.

Synthetic and Spectroscopic Studies. In order to determine equilibrium constants for the ligand displacement reactions we needed to prepare a series of complexes of the type $MCl_{\mu}(Me_2ECH_2CH_2EMe_2)_2$ where M is thorium or uranium and E is nitrogen, phosphorus, or arsenic. The phosphine complexes have been described briefly.^{1b} The structure of eight coordinate U(OPh) (Me_PCH_CH_PMe_) is based upon a D_ddodecahedron with the oxygen atoms on the B-sites and the phosphorus atoms on the A-sites. The halide complexes of thorium and uranium are presumed to have a similar structure.⁶ Solution spectroscopic properties are consistent with, though do not prove, the solid state structure since the low temperature 1 H and 13 C NMR spectra of the complexes show that the methyl and methylene groups are equivalent, see experimental section for details. These results, however, do not rule out rapid fluxional processes that cause the resonances to be equivalent on the NMR time scale since stereochemical nonrigidity is common in eight coordination.

Unfortunately the directly related arsenic ligand, $Me_2AsCH_2CH_2AsMe_2$, can only be prepared with difficulty and in low, erratic yields.⁸ Consequently, we chose to prepare complexes with the related diarsenic ligand, bis-1,2-dimethylarsinobenzene, diars.⁹ The thorium or uranium tetrachloride complexes, $MCl_{\mu}(diars)_2$, may be

. 4

prepared by allowing the metal tetrachlorides to dissolve in the neat ligand, followed by crystallization from dichloromethane.

The ¹H NMR spectra of both complexes show singlets at δ 1.59 (M=Th) and 1.79 (M=U) for the methyl groups. The aromatic protons comprise an AA'BB' spin system, the A protons being <u>ortho</u> and the B protons being <u>meta</u> to the Me₂As groups. The spectra were simulated in a AA'BB' spin system with $\delta A = \delta A' = 1.02$, $\delta B = \delta B' = -4.01$, $J_{AB} = 8.0Hz$, $J_{BB'} =$ 7.0Hz, $J_{A'B} = 1.25Hz$, and $J_{AA'} = 0.5Hz$ for the uranium complex and $\delta A =$ $\delta A' = 7.67$, $\delta B = \delta B' = 7.00$, $J_{AB} = 8.0Hz$, $J_{BB'} = 7.0Hz$, $J_{A'B} = 1.25Hz$, and $J_{AA'} = 0.5Hz$ for the thorium complex.¹⁰ The ¹³C{¹H} NMR spectra, which are listed in the experimental section, also show that the two diarsine ligands in MCl₄(diars)₂ are equivalent. This is also true in the solid state as shown below.

The nitrogen analogues of the phosphine complexes are unknown though they may be prepared by reaction of thorium or uranium tetrachloride with $Me_2NCH_2CH_2NMe_2(tmed)$ in toluene. The structure of $UCl_4(Me_2NCH_2CH_2NMe_2)_2$ is based upon a D_{2d} -dodecahedron with the chloride ligands occupying the B-sites and the nitrogen atoms occupying the Asites.⁶ Further, $UCl_4(tmed)_2$ and $UCl_4(dmpe)_2$ are isostructural in the solid state and we postulate that all of the compounds described in this manuscript are isostructural. The amine complexes, however, are fluxional molecules in solution. Thus, the ¹H NMR spectrum of Th $Cl_4(tmed)_2$ at +56°C in toluene-d₈ shows two singlets at $\delta 2.74$ (ν 1/2 = 1Hz) and 2.41 (ν 1/2 = 5Hz) in area ratio 3:1. The former resonance is due to the N-Me and the latter is due to the N-CH₂ protons. Lowering the temperature to -40°C results in the splitting of the N-Me protons

into two equal area singlets at $\delta 2.80$ and 2.67 (v 1/2 = 5Hz for each resonance) and the N-CH₂ protons appear as a pair of doublets centered at δ 3.01 and 1.47 with v 1/2 for each resonance of 13Hz and a doublet separation of 12Hz. Homonuclear decoupling shows that the doublets are related since irradiation of one doublet causes the other doublet to collapse into a singlet. Clearly the methyl and methylene protons are not equivalent and each Me₂NCH₂CH₂NMe₂ group may be described by the spin system X₃X'₃AA'BB'Y₃Y'₃. The decoupling experiments show that the spectrum is due to a single species in solution. The ¹H NMR spectrum in chloroform-d₁ is qualitatively similar to that in toluene. At +56°C a single resonance is observed at 300MHz at $\delta 2.87$ (v 1/2 = 1Hz) and at -61°C the N-Me resonance appears as a pair of doublets centered at $\delta 3.45$ and 2.28 with J = 12Hz and v 1/2 for all the resonances being ca. 6Hz.

The ¹³C NMR spectrum of ThCl₄(tmed)₂ in toluene-d₈ supports the ¹H NMR spectral data. At 27°C two resonances are observed, a triplet centered at $\delta 58.7 (J_{CH} = 134$ Hz) and a quartet centered at $\delta 50.9 (J_{CH} = 136$ Hz). Lowering the temperature to -50°C causes the methyl resonance in the ¹³C{¹H} NMR spectrum to split into two equal area resonances at $\delta 52.4$ and 49.6 though the methylene resonance remains a singlet. Thus the methyl carbon atoms are non-equivalent though the methylene carbon atoms are equivalent.

The NMR spectra of paramagnetic (f^2) UCl₄(tmed)₂ are related to those of the diamagnetic thorium analogue, with the exception that all of the coupling information in the paramagnetic molecule is lost. The ¹H NMR spectrum in methylenechloride-d₂ at -80°C shows two equal area

singlets at $\delta 17.6$ and -17.0 ($\nu 1/2$ in each case of 10Hz) due to the methyl protons and two singlets at $\delta -51.4$ and -90.0, with $\nu 1/2$ of 20Hz each, due to the methylene protons. At 25°C the resonances occur at $\delta 3.2$ and -0.8 ($\nu 1/2 = 120$ Hz) and $\delta -10.9$ and -20.3 ($\nu 1/2 = 90$ Hz) for the methyl and methylene protons, respectively. The 13 C { 1 H} NMR spectrum at -50°C in methylenechloride-d₂ shows three resonances at $\delta 23.1$ ($\nu 1/2 = 20$ Hz), -1.60 ($\nu 1/2 = 20$ Hz), and -95.6 ($\nu 1/2 = 55$ Hz), due to the non-equivalent methyl carbons and the equivalent methylene carbons, respectively.

Qualitatively similar ¹H and ¹³C {¹H} NMR spectra of the type observed for $MCl_4(tmed)_2$ have been observed previously in $M(CO)_4(tmed)$, where M is chromium, molybdenum, and tungsten.¹² The inequivalence of the methyl protons, methylene protons, and methyl carbons and the equivalence of methylene carbons at low temperature was ascribed to a $\Lambda = \Delta$ barrier to interconversion in the five-membered chelate ring. We invoke a similar explanation for the fluxional processes in the Me₂NCH₂CH₂NMe₂ complexes prepared in this work.

A diagram of the molecules $MX_4(Me_2ECH_2CH_2EMe_2)_2$ with idealized D_{2d} -dodecahedral symmetry is shown in Figure I. In this symmetry the methyl and methylene group protons are equivalent and the ¹H NMR spectrum will show two resonances in an area ratio of 24:8. The D_{2d} -symmetry is maintained when the ethylene-backbone of the $Me_2ECH_2CH_2EMe_2$ ligand is fluxional and the interconversion between Λ and Δ isomer is rapid. However, if the $\Lambda = \Delta$ interconversion is slow, then the symmetry planes in D_{2d} -symmetry are removed and the molecule has D_2 -symmetry. In idealized D_2 -symmetry the methyl and methylene protons

Figure I

are pairwise inequivalent and the spin system for $MCl_4(Me_2ECH_2CH_2EMe_2)_2$ is $[X_3X_3AA'BB'Y_3Y_3]_2$. A diagram is shown in Figure II, down the C_2 -axis. In the low temperature ¹H NMR spectrum of $MCl_4(tmed)_2$ the methyl region appears as two broadened resonances with $\delta X = \delta X'$ and $\delta Y = \delta Y'$. None of the coupling constants are resolved so a broadened resonance results. The methylene resonances have a similar appearance with $\delta A = \delta A'$ and $\delta B = \delta B'$. In the ¹³C {¹H} NMR spectrum, the methyl carbons are inequivalent and the methylene carbons are equivalent and the spectra show three equal area resonances. The spectra of $MCl_4(tmed)_2$, M = Th or U, below <u>ca</u>. -60°C show this behavior. At high temperature, <u>ca</u>. +60°C, the spectra of $ThCl_4(tmed)_2$ are similar to those found for all temperatures for the phosphine complexes, i.e., the methyl groups and the methylene groups are equivalent.

We interpret these variable temperature results by assuming that the molecules are undergoing intra-molecular exchange and that the low temperature solution structure is the same as that found in the solid state. The simplest explanation is that the ethylene protons of the $Me_2NCH_2CH_2NMe_2$ ligand are undergoing a $\Lambda = \Delta$ interconversion that is slow at -60°C but fast at +60°C. This postulate requires that the barrier in $MCl_4(dmpe)_2$ is low and the phosphine complexes are fluxional at all temperatures, which suggests that the origin of the barrier is steric. In the crystal structure of $UCl_4(tmed)_2$,⁶ the chloride ligands are in a staggered configuration relative to the nitrogen methyl groups as shown diagramatically in Figure II. The long U-N bond distance of $2.79 \pm 0.02A$ is <u>ca</u>. 0.1A longer than expected on the basis of the U-P distance in $U(OPh)_4(dmpe)_2^{-1}$ of $3.104 \pm 0.006A$ since the covalent radius

Figure II

of nitrogen is 0.40A smaller than phosphorus.^{13a} Even though the U-N distance is long, the non-bonded contact distances between the N-methyl carbon atoms and the chloride ligands are <u>ca</u>. 3.4A, close to the sum of the van der Waals radii for these two atoms.^{13b} Interconversion of the Λ and Δ conformers by way of an envelope transition state¹⁴ requires that the N-methyl groups move into an eclipsing configuration with the chloride ligands which increases the non-bonded repulsion energy and therefore the interconversion barrier.

Ligand Displacement Studies. We conducted a series of displacement studies by mixing an excess of free ligand with a coordination complex at -70°C in CD_2Cl_2 in a NMR tube and monitored the spectrum as a function of temperature. The initial and final spectra allowed us to determine a relative displacement series. The following results were observed. The UCl₄(dmpe)₂ does not exchange with tmed at 28°C nor with diars. Conversely, dmpe quantitatively displaces diars or tmed from their respective coordination complexes with UCl₄. In a related pair of experiments UCl₄(diars)₂ was mixed with tmed and UCl₄(tmed)₂ with diars. In both cases resonances due to UCl₄(tmed)₂, free diars and free tmed were observed in the ¹H NMR spectrum. We also observed resonances due to a new set of resonances which we ascribe to coordinated diars and coordinated tmed, i.e., presumably due to UCl₄(diars)(tmed). Therefore the equilibria shown in eq. (1) and (2) are established. From the

$$UCl_{4}(diars)_{2} + tmed \stackrel{K_{1}}{=} UCl_{4}(diars)(tmed) + diars$$
(1)
$$UCl_{4}(diars)(tmed) + tmed \stackrel{K_{2}}{=} UCl_{4}(tmed)_{2} + diars$$
(2)

integrated intensity of the various species present in the spectrum $\rm K_2$ is 0.9 at 19°C and $\rm K_1$ is large.

These studies do not allow us to calculate all equilibrium constants since the K's are commonly very small or very large. Qualitatively, however, we have been able to establish that for the reference acid UCl_µ, the coordinative affinity is dmpe > tmed > diars.

The displacement equilibria are slightly more complex for $ThCl_4(bidentate ligand)_2$ when compared to their uranium analogues. The diarsine ligand in $ThCl_4(diars)_2$ is completely displaced by $Me_2PCH_2CH_2PMe_2$. Conversely, the diarsine will not displace dmpe in $ThCl_4(dmpe)_2$. Thus, this displacement series, dmpe > diars, is analogous to that found in uranium. However, mixing $ThCl_4(tmed)_2$ with $Me_2PCH_2CH_2PMe_2$ or $ThCl_4(dmpe)_2$ with $Me_2NCH_2CH_2NMe_2$ gives an equilibrium mixture as defined by equations 3 and 4. Using

$$ThCl_{4}(dmpe)_{2} + tmed \stackrel{K_{1}}{=} ThCl_{4}(dmpe)(tmed) + dmpe$$
(3)
$$ThCl_{4}(dmpe)(tmed) + tmed \stackrel{K_{2}}{=} ThCl_{4}(tmed)_{2} + dmpe$$
(4)

³¹P {¹H} NMR spectroscopy, the relative amounts of $\text{ThCl}_4(\text{dmpe})_2$, $\delta = 7.27$, $\text{ThCl}_4(\text{dmpe})(\text{tmed})$, $\delta = 5.69$, and free dmpe, $\delta = 47.42$, may be estimated. Using the same solution the relative concentration of $\text{ThCl}_4(\text{tmed})_2$ and free tmed may be determined by ¹H NMR spectroscopy. Thus, we can estimate K₁ and K₂ to be 0.25 and 0.86 at 23°C, respectively. For the acceptor ThCl_4 the relative coordination affinity is dmpe \geq tmed > diars.

These studies show that chelating, alkyl-phosphines are very good ligands for UCl₄, and they are significantly better ligands than amines or arsines. The reasons for this could be steric, since the crystal structure of UCl₄(tmed)₂ shows significant distortion due to intramolecular repulsion. This study has concentrated upon chelate ligands and complications due to entropy and ring strain cannot be readily evaluated. In future we intend to design systems with monodentate ligands so that some of these difficulties will be overcome.¹⁵

<u>Crystal Structure of $UCl_{4}(diars)_{2}$ </u>. An ORTEP drawing of $UCl_{4}(diars)_{2}$ is shown in Figure III. Positional parameters are in Table I, bond length and bond angles are in Table II, and crystal data are in Table IV. The uranium atom is located on a special position, $\overline{4}2m$ in the space group. The geometry of the complex is related to a dodecahedron with the arsenic atoms on the A-sites and the chloride atoms on the Bsites.¹⁶ The distortion away from idealized dodecahedral symmetry can be described in terms of the shape parameters, δ' and ϕ as defined in ref. 17. The shape parameters for $UCl_{4}(tmed)_{2}$, $U(OPh)_{4}(dmpe)_{2}$, and $UCl_{4}(diars)_{2}$ are listed in Table III.

The U-Cl distance of 2.618(3)A is similar to that of 2.609 \pm 0.009A found in UCl₄(tmed)₂.⁶ The U-As distance of 3.049(1)A is unique, though it is in the region expected since the Nb-As distance in NbCl₄(diars)₂ is 2.732(8)A¹⁸ and the radius of Nb(IV) in eight coordination is estimated to be 0.21A shorter than that of U(IV) in eight coordination.¹⁹ It is of interest to note that the Nb-Cl bond distance of 2.515(1)A in NbCl₄(diars)₂ is only 0.10A shorter than the U-Cl bond

distance in $\text{UCl}_4(\text{diars})_2$ whereas the Nb-As bond distance is 0.32A shorter than the U-As bond distance. On average, the Nb(IV) radius in eight coordination is therefore 0.21A smaller than that of U(IV), as predicted.¹⁹

Experimental Section

All operations were performed under argon. Elemental analyses were done by the microanalytical laboratory of this department. Proton, carbon, and phosphorus nuclear magnetic resonance spectra were recorded on a JEOL FX90 Q machine. Some proton spectra were recorded on the UCB-300 machine, operating at 300MHz.

ThCl_h(Me_PCH_CH_PMe_)

1,2-Bis(dimethylphosphino)ethane (6 mL, 0.036 mol) was added dropwise to thorium tetrachloride (4.3g, 0.0012 mol) at 0°C with stirring. The suspension was warmed to room temperature then heated to 80 °C for 24 h. The mixture was cooled to room temperature, the solid was washed with pentane (2 x 10 mL) and the white residue was extracted with dichloromethane (2 x 30 mL). The combined extracts were concentrated to saturation then cooled to -20°C. The colorless prisms were collected, washed with pentane (2 x 10 mL) and dried under reduced pressure. A second crop of crystals was obtained from the mother liquor, the combined yield was 5.2g (67%). When heated in a sealed capillary, the complex did not melt to 360°C. The analytical and NMR data are in footnote 8 of reference 1b. IR (Nujol mull): 1^µ15m, 1291m, 1272m, 1161w, 1150w, 1120w, 1080m, br, 965w, 946s, 921m, 884w, 858w, 821w, 720w, 691m, 638w, 622w, and 233s cm⁻¹.

ThI_H(Me₂PCH₂CH₂PMe₂)₂

1,2-Bis(dimethylphosphino)ethane (0.7 mL, 0.0042 mol) was added to thorium tetraiodide (1.0g, 0.0014 mol) in dichloromethane (20 mL). The supernatant liquid slowly turned pink as the thorium tetraiodide dissolved over 12 hr. The volatile material was evaporated and the pink

residue was crystallized from a minimum amount of dichloromethane in 72% (1.0g) yield. The complex does not melt to 360°C. The analytical and NMR spectral data are reported in footnote 6 in reference 1b. IR: 1415m, 1299m, 1281m, 1170w, 1137m, 1088w, 1000w, 949s, 931s, 896m, 869m, 837w, 803w, 732s, 702s, and 643s cm⁻¹.

UC1 (Me PCH CH PMe)

To a suspension of uranium tetrachloride (5.8g, 0.015 mol) in dichloromethane (50 mL) was added 1,2-bis(dimethylphosphino)ethane (8mL, 0.048 mol). The supernatant liquid became blue-green within minutes and the suspension was stirred for 12 h. The solution was filtered, the filtrate was concentrated to saturation and cooled (-20°C). The green prisms were collected, washed with pentane (2 x 5 mL) and dried under reduced pressure. The mother liquor and combined washings were cooled (-70°C) to give a second crop of crystals in combined yield of 89% (9.3g). The complex may be crystallized from toluene (-20°C). The complex is soluble in halogenated and aromatic hydrocarbons and slightly soluble in aliphatic hydrocarbons and diethyl ether. The complex decomposes at 315°C without melting. The analytical and NMR spectral data are in footnote 3 of reference 1b. The infrared spectrum is virtually superimposable upon that of $\text{ThCl}_4(\text{dmpe})_2$, except that v U-Cl appears at 245(s) cm⁻¹. The complex may be crystallized from diethylether or tetrahydrofuran without change. Heating in vacuum to 160°C does not liberate the coordinated phosphine.

UBr_h(Me₂PCH₂CH₂PMe₂)₂

This complex was prepared in a manner analogous to $\text{UCl}_4(\text{dmpe})_2$ in 78% yield. The analytical and NMR spectral data are reported in

footnote 5 of reference 1b. The infrared spectrum is superimposable upon that of $UCl_4(dmpe)_2$ with the exception that no absorptions were observed below 641 cm⁻¹.

UC1₄(Me₂NCH₂CH₂NMe₂)₂

To a suspension of uranium tetrachloride (1.0g, 0.0026 mol) in toluene (20 mL) cooled to -20°C was added the diamine (1.0g, 0.0086 mol). After warming to room temperature the suspension was stirred until a homogeneous solution was obtained, ca. 4h. The green solution was filtered and the volume of the filtrate was reduced to saturation. Cooling (-20°C) gave large, green prisms which were collected, washed with pentane (5 mL) and dried under reduced pressure to yield 1.3g (85%) of an amorphous powder, mp 180°C (dec.). The complex is soluble in halogenated and aromatic hydrocarbons and slightly soluble in aliphatic hydrocarbons and diethyl ether. The diamine is displaced by tetrahydrofuran to give a complex that we have not characterized. <u>Anal</u>. Calcd for $C_{12}H_{32}Cl_4N_4U$: C, 23.5; H, 5.27; H, 9.15. Found: C, 23.1; H, 5.41; N, 9.08. IR: 1301m, 1281m, 1236m, 1185w, 1167m, 1119m, 1101m, 1076m, 1040m, 1011s, 1002s, 989m, 949s, 917m, 791s, 782m, 720m, br, 596m, 494m, br, 458m, br, and 374m cm⁻¹.

ThCl₄(Me₂NCH₂CH₂NMe₂)₂

The complex was prepared in a manner similar to that of its uranium analogue and crystallized from toluene (-20°C) as colorless prisms in 80% yield, mp 210°C (dec.). <u>Anal</u>. Calcd for $C_{12}H_{32}Cl_4N_4Th$: C, 23.8; H, 5.32; N, 9.24; Cl, 23.4. Found: C, 23.9; H, 5.23; N, 9.19; Cl, 22.8. The infrared spectrum is essentially identical to that of UCl₁(tmed)₂.

 $\underline{\text{UCl}}_{4}[(1,2-\text{Me}_{2}\text{As})_{2}C_{6}H_{4}]_{2}$

1,2-Bis(dimethylarsine)benzene (1.9g, 0.0066 mol) was added to uranium tetrachloride (1.0g, 0.0026 mol) and the mixture was stirred for 3d, giving a blue-grey suspension. The suspension was extracted with dichloromethane (5 x 20 mL) and the combined extracts were concentrated to <u>ca</u>. 50 mL and cooled (-20°C). The pale blue-violet prisms (2.0g, 81%) were collected and dried under reduced pressure, mp 160°C (dec.). <u>Anal</u>. Calcd for $C_{20}H_{32}As_{4}Cl_{4}U$: C, 25.2; H, 3.36; Cl, 14.9. Found: C, 24.5; H, 3.34; Cl, 14.8. IR: 3160w, br, 1303w, 1270m, 1247w, 1236w, 1210w, 1168m, 1147m, 1121m, 1090m, 1028m, 970m, br, 902s, 871s, 846m, 757s, 723s, 602s, 445s, and 257s cm⁻¹. The complex is insoluble in aliphatic hydrocarbons and diethyl ether and slightly soluble in halogenated hydrocarbons and tetrahydrofuran. Crystallization of UCl₄(diars)₂ from tetrahydrofuran gives UCl₄(diars)(thf)₂. <u>Anal</u>. Calcd for C₁₈H₃₂As₂Cl₄O₂U: C, 26.7; H, 3.95; Cl, 17.5. Found: 25.7; H, 3.76; Cl, 16.4

$\frac{\text{ThCl}_{\text{H}}[(1,2-\text{Me}_{2}\text{As})_{2}C_{6}H_{\text{H}}]}{2}$

Thorium tetrachloride (1.0g, 0.0027 mol) and the diarsine (1.9g, 0.0066 mol) were mixed and the mixture was heated to 90°C for 3d. The pale grey suspension was cooled to room temperature and extracted with dichloromethane (5 x 20 mL). The combined extracts were concentrated to <u>ca</u>. 50 mL and cooled (-20°C). The colorless prisms (1.9g, 76% yield) were collected and dried under reduced pressure. The complex decomposed at <u>ca</u>. 200°C without melting. <u>Anal</u>. Calcd for $C_{20}H_{32}As_4Cl_4Th$: C, 25.4; H, 3.41; Cl, 15.0. Found: C, 25.7; H, 3.44; Cl. 14.4. The infrared spectrum is essentially identical to that of its uranium analogue.

UC1₄[Me₂PCH₂CH₂PMe₂][Me₂NCH₂CH₂NMe₂]

To a solution of $UCl_{\mu}(tmed)_{2}$ (1.2g, 0.0020 mol) in dichloromethane (20 mL) at -40°C was added 1,2-bis(dimethylphosphino)ethane (0.3 mL, 0.0020 mol) and the solution was stirred at -30°C for 1 h. The light green solution was filtered rapidly and the filtrate was concentrated at -40°C to ca. 5 mL. Pentane (ca. 5 mL) was added, followed by rapid filtration and cooling to -80°C. The bright green prisms were collected $(-40^{\circ}C)$ and washed with cold $(-40^{\circ}C)$ pentane (5 mL) and dried under reduced pressure, mp 90°C (dec.). The yield was essentially quantitative. The dry crystals were stable at 20°C for at least two weeks though solutions decompose above -20°C. For spectroscopic studies, the complex was dissolved in solvents cooled to -70°C and the solutions were never allowed to warm above -30°C. ¹H NMR (CD_2Cl_2 ,-30°C): δ 11.9 (6H)s, Me₂N; 2.90 (6H)s, Me₂P; 1.90 (6H)s, PMe₂; -20.6 (6H)s, Me₂N; -23.6 (2H)s, PCH₂; -36.5 (2H)s, PCH₂; -37.1 (2H)₂, CH₂N; -56.2 (2H)s, CH₂N. <u>Anal</u>. Caled for C₁₂H₃₂Cl₄N₂P₂U: C, 22.3; H, 4.99; N, 4.34; P, 9.59; Cl, 21.9. Found: C, 22.2; H, 5.45; N, 4.29; P, 9.60; Cl, 21.5.

Collection and Reduction of X-Ray Data

Light blue crystals of the complex were mounted in quartz capillaries under nitrogen. A crystal selected for X-ray analysis was centrifuged into the narrow tip of the capillary. Lattice parameters were refined from 24 selected reflections <13° < 20 < 32°) by using the Enraf-Nonius CAD-4 automatic centering and least-squares routines.²⁰ Systematic absences are consistent with space groups $D_{2d}^9 - I\bar{4}m2$ and $D_{2d}^{11} - I\bar{4}2m$. The latter was assumed and confirmed by successful solution

and refinement of the structure. Crystal and data collection parameters are listed in Table IV. Intensity data were collected on a CAD-4 automated diffractometer to 20=55° by using the 0-20 scan mode and a scan range determined by $\Delta 0 = (0.50 \pm 0.347 \tan 0)^\circ$ with an additional 0.25($\Delta 0$) at both ends of the scan for background measurements. The intensities of three standard reflections measured every 2 hr. showed only random statistical fluctuations (±1%) over the period of data collection. The data (4 sets) were corrected for Lorentz, polarization, absorption and merged (R=2.7%). Of the 556 unique reflections, 525 have $F_0^{-2} > 2g(F_0^{-2})$ and were used for solution and refinement of the structure.²¹ Neutral atom scattering factors were obtained from standard tables.^{22a} Anomalous dispersion corrections were applied to uranium and arsenic atoms.^{22b}

Solution and Refinement of the Structure

 $\text{UCl}_4(\text{diars})_2$ is situated in space group $I\bar{4}2m$ such that one fourth (7 atoms) of the molecule constitute the asymmetric unit (the uranium atom is located on a $\bar{4}2m$ site; all nonhydrogen atoms, except the methyl-carbon atoms, are on the mirror plane x,x,z).

The structure was solved by Patterson and Fourier methods and refined²³ by full matrix least-squares procedure. The positions of the uranium and arsenic atoms were obtained through a three-dimensional Patterson synthesis. Four cycles of isotropic least-squares refinement (R=0.16) followed by a difference Fourier map revealed the positions of all nonhydrogen atoms. Subsequent anisotropic refinement minimizing $Ew(|F_0|-|F_0|)^2$, where $w=1/\sigma^2(F_0)$, converged to a final residual index of $R_{e}(F_0) = 0.020$ and $R_{wf}(F_0) = 0.027$. The R index for all data is 0.025.

No correction for extinction 2^4 was applied. The final difference map revealed no additional chemical features in the unit cell.

- (1)(a) For a listing of literature references, see footnotes in 1b,c.
 (b) Edwards, P.G.; Andersen, R.A.; Zalkin, A. J. Am. Chem. Soc.
 1981, 103, 7792; Organometallics, 1984, 3, 293. (c) Tilley,
 T.D.; Andersen, R.A.; Zalkin, A. J. Am. Chem. Soc., 1982, 104,
 3725; Inorg. Chem. 1983, 22, 856. (d) Stults, S.D.; Zalkin, A.
 submitted to Acta Cryst.
- (2)(a) Duttera, M.R.; Fagan, P.J.; Marks, T.J.; Day, V.W. J. Am. Chem. Soc. 1982, 104, 865. (b) Brennan, J.G.; Shinomoto, R.; Zalkin, A.; Edelstein, N.M. <u>Inorg. Chem.</u> 1984, 23, 4143. (c)
 Wasserman, H.J.; Moody, D.C.; Ryan, R.R. <u>J. Chem. Soc. Chem.</u> <u>Comm.</u> 1984, 532. (d) Wasserman, H.J.; Moody, D.C.; Paine, R.T.; Salzar, K.V. <u>J. Chem. Soc. Chem. Comm.</u> 1984, 533. (e) Brennan, J.G.; Zalkin, A. <u>Acta Cryst</u> 1985, <u>C41</u>, 1038. (f) Duttera, M.R.; Day, V.W.; Marks, T.J. <u>J. Am. Chem. Soc.</u> 1984, 106, 2907.
- (3)(a) Clark, R.J.H.; Lewis, J.; Nyholm, R.S. <u>J. Chem. Soc.</u> 1962, 2460. (b) Allison, J.A.C.; Mann, F.G. <u>Ibid</u>. 1949, 2915. (c) Selbin, J.; Ahmad, N.; Pribble, M.J. <u>J. Inorg. Nucl. Chem</u>. 1970, <u>32</u>, 3249. (d) Dentscher, R.L.; Keppert, D.L. <u>Inorg.</u> <u>Chem</u>. 1970, <u>9</u>, 2305. (e) For a review of diars complexes see "Transition Metal Complexes of Phosphorus, Arsenic, and Antimony Ligands," McAuliffe, C.A. ed. John Wiley, New York, 1973, p. 306.
- (4)(a) Ahrland, S.; Chatt, J.; Davies, N.R. <u>Quart. Rev.</u> 1958, <u>12</u>, 265.
 (b) Pearson, R.J. <u>J. Am. Chem. Soc.</u> 1963, <u>85</u>, 3533.

- (5)(a) Ahrland, S. <u>Structure and Bonding</u> 1966, <u>1</u>, 207; 1973, <u>15</u>, 167.
 (b) Jorgensen, C.K. <u>Ibid</u>. 1966, <u>1</u>, 234.
 (c) Williams, R.J.P.;
 Hale, J.D. <u>Ibid</u>. 1966, <u>1</u>, 249.
 (d) Jensen, W.B. "The Lewis Acid-Base Concepts" John Wiley, New York, 1980.
- (6) The phosphine complex $UCl_4(dmpe)_2$, orthorhombic, $P2_12_12_1$, a = 13.870(3)Å, b = 42.304(7)Å, c = 13.001(3)Å, V = 7628Å³, z = 12^{b} , is isostructural with $UCl_4(tmed)_2$, orthorhombic, $P2_12_12_1$, a = 13.094(4)Å, b = 13.265(4)Å, c = 12.633(4)Å, V = 2199Å, ³ z = 4.^c The X-ray structure of the amine complex has been solved and the chloride ligands are on the B-sites and the nitrogen atoms are on the A-sites in a D_{2d} -dodecahedron. (b) Zalkin, A. personal communication. (c) Zalkin,A.; Edwards, P.G.; Zhang, D.; Andersen, R.A. submitted to <u>Acta Cryst</u>.
- (7) Fay, R.C.; Howie, J.K. J. Am.Chem. Soc. 1977, <u>99</u>, 8110; 1979, <u>101</u>, 1115. (b) Muetterties, E.L. <u>Tetrahedron</u> 1974, <u>30</u>, 1595.
 (c) "Dynamic Nuclear Magnetic Resonance Spectroscopy," Jackman, L.M. and Cotton, F.A. eds. Academic Press, New York, 1975, p. 369. (d) "NMR of Paramagnetic Molecules", La Mar, G.N.; Horrocks, W.D.; Holm, R.H. eds. Academic Press, New York 1973, 243.

(10) The simulated spectrum of the free ligand gave the values, $\delta A = \delta A' = 7.33$, $\delta B = \delta B' = 7.14$, $J_{AB} = 7.85$ Hz, $J_{BB'} = 7.0$ Hz, $J_{A'B} = 1.2$ Hz, and $J_{AA'} = 0.5$ Hz.

- (11) For a comprehensive listing of amine complexes see "Gmelin Handbuch der Anorganischen Chemie, Uran Suppl." Vol E1 (1979) and E2 (1980).
- (12)(a) Hawkins, C.J.; Peachey, R.M.; Szoredi, C.L. <u>Inorg. Nucl. Chem.</u> <u>Let.</u> 1976, <u>12</u>, 881; 1977, <u>13</u>, 197. (b) <u>Aust. J. Chem.</u> 1978, <u>31</u>, 973.
- (13)(a) "The Nature of the Chemical Bond," L. Pauling, 3rd edition,Cornell University Press, Ithaca, NY 1960, p. 246 (b) p. 260.
- (14) Gollogly, J.R.; Hawkins, C.J.; Beattie, J.K. <u>Inorg. Chem</u>. 1971,
 10, 317.
- Brennan, J.G. Ph.D. Thesis, University of California, Berkeley,1985.
- (16) Hoard, J.L.; Silverton, J.V. Inorg. Chem. 1963, 2, 235.
- (17)(a) Porari-Koshits, M.A.; Aslanov, L.A. J. Struct. Chem. 1972, <u>13</u>, 244.
 (b) Muetterties, E.L.; Guggenberger, L.J. J. Am. Chem. Soc. 1974, <u>96</u>, 1748.
- (18) Keppert, D.L., Skelton, B.W.; White, A.H. J. Chem. Soc. Dalton Trans. 1981, 652.
- (19) Shannon, R.D. Acta Cryst. 1976, A32, 751.
- (20) Intensity data were collected at CHEXRAY-University of California Chemistry Department Crystallographic Facility. The reduction formulae standard for the CAD-4 system are as follows: The net intensity I = w/NPI(C-2B), where w=20.1166x(attenuator factor, x was 18.2 when set), NPI = ratio of the maximum scan rate to scan rate for the measurement, C = total scan count, and B = total background count. $\sigma(F_0^{-2}) =$

w/Lp.NPI[C+4B + $(PI^2)^2$]1/2, where P = 0.06 is a factor used to lower the weight of intense reflections. $\sigma(Fo) = \sigma(F_0^2)/2F_0$. An empirical absorption correction ($\mu = 96.6 \text{ cm}^{-1}$) was applied using psi-scans of five reflections having 20 values between 13 and 30.

(21)

- (22) "International Tables for X-ray Crystallography", Kynoch Press:
 Birmingham, England, 1975: Vol. IV; (a) Table 2.2A, pp. 72-98;
 (b) Table 2.3.1, pp. 149-150.
- (23) All crystallographic computing was performed on a CDC Cyber 170/750 computer at California State University, Data Center, LA, using CRYSYS a system of computer programs which include CRYGLS, a modified version of Martin-Busing-Levy group leastsquares program; FOURMAPS - Fourier program incorporating XFFT and SEARCH of MULTAN; modified version of C.K. Johnsons ORTEP and other programs developed and adapted for the CDC system by one of us (RWG).
- (24) Three strong reflections 101, 110 and 006 indicated secondary extinction effects and were excluded from the final cycles of refinement.

Acknowledgement

This work is supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. We thank Dr. F.J. Hollander of the CHEXRAY facility, University of California, Berkeley for collecting the X-ray data and Professor C.J. Hawkins, Dr. J.G. Brennan and Dr. K. Smith for stimulating discussions on fluxional processes in eight coordination.

<u>Supplementary Material Available</u>. Listing of Structure Factor Tables (4 pages). Ordering information is given on any current masthead.

Table I.

Positional Parameters for $UCl_4(diars)_2$

Atom	Х	Y	Z
U 1	0.00000	0.00000	0.00000
As	0.12537(11)	0.12537(11)	-0.14739(5)
CL	0.18907(32)	0.18907(32)	0.04203(16)
СМ	0.1087(11)	0.3305(8)	-0.1608(5)
C1	0.0525(11)	0.0525(11)	-0.2444(4)
C2	0.1028(14)	0.1028(14)	-0.3157(5)
С3	0.0500(13)	0.0500(14)	-0.3844(5)

Some	Selected	Bond	Lengths	(A)	and	Bond	Angles	(deg)	in	UC1 ₄ (d	iars) ₂
	U-As	i					3.049((1)			
	As-C	(M)									

As-C(1)	1.939(8)
C(1)-C(2)	1.405(12)
C(2)-C(3)	1.381(14)
C(3)-C(3')	1.331(18)

Cl(1)-U-Cl(2')	147.72(9)
Cl(1)-U-Cl(2)	94.43(9)
As(1)-U-As(1')	66.32(3)
As(1)-U-As(2)	134.49(3)
Cl(1')-U-As(1')	76.54(7)
Cl(2')-U-As(1')	72.98(6)
Cl(2)-U-As(1')	139.30(6)
C(M)-As-C(M)	98.31(36)
C(1)-As-U	116.85(28)
C(M)-As-U	116.83(26)
As-C(1)-C(1')	120.00(56)

Table II

Compound	δ'(deg)	φ(deg)
UC1 ₄ (tmed) ₂	20.4,21.9,38.7,39.6	1.6
UCl ₄ (diars) ₂	24.1, 24.1, 24.1, 24.1	0
U(OPh) ₄ (dmpe) ₂	13.0,15.5,8.26,11.1	1.7
Idealized dodecahedron (D_{2d})	29.5, 29.5, 29.5, 29.5	0
Idealized bicapped		
trigonal prisms (C _{2v})	0,21.8,48.2,48.2	14.1
Idealized square		
antiprism(D _{4h})	0,0,52.4,52.4	24.5

Table III. Shape Parameters

.

Table IV.

Crystallographic data for the X-ray diffraction study of UCl₄(diars)₂

formula	UAS4C14C20H32												
temp. °O (±3°C)	25												
fw	952.01												
space group	142m												
a, A	9.407(1)												
c, A	17.318(2)												
v, A ³	1532.5												
Ζ.	2												
d(calcd), g/cm ³	2.063												
d(obsd), g/cm ³	2.07												
crystal size, mm	0.3 x 0.3 x 0.2												
crystal decomposition, %	0												
x-ray exposure time, h	53												
$\mu(Mo K\alpha)$, cm ⁻¹	96.58												
radiation	Mo Kā (0.71073A).												
monochromator	graphite												
detector aperture, mm													
horizontal (Α + Btanθ)													
Α	2.0												
В	1.0												
vertical	3.0												
collection range	+h ±k ±1, 3° ≦ 20 ≦ 55°												
scan type	θ-2θ												

scan width (Δθ), deg. θ-scan rate (variable max, deg/min min. deg/min no. of unique data no. of data Fo² > 2g(Fo²) P no. of variables

£

R(Fo) (b)0.020Rw(Fo) (b)0.027esd in observn of unit wt.1.24largest shift/error value0.02on final cycle0.02largest peak in final diff0.93

- rier, e/A³ 0.93
- (a) The observed density was obtained by flotation in a ${\rm CCl}_4/{\rm CH}_2{\rm Br}_2$ mixture.
- (b) $R_{F}(F_{O}) = \Sigma |F_{O}| |F_{O}|/\Sigma F_{O}, R_{WF}(F_{O}) = [\Sigma w < |F_{O}| |F_{O}| > 2/\Sigma w |F_{O}|^{2}]11/2$

6.7

0.69

556

525

0.06

42

0.50 + 0.347tan0

Figure III. ORTEP diagram of $UCl_4(diars)_2$; 50% probability ellipsoids.

Supplementary Material For

Preparation of $MCl_4(Me_2ECH_2CH_2EMe_2)_2$ and $MCl_4[(1,2-Me_2As)_2C_6H_4]_2$ where M is Thorium or Uranium and E is Nitrogen or Phosphorus.

Crystal Structure of $UCl_4[(1,2-Me_2As)_2C_6H_4]_2$.

Peter G. Edwards, Richard A. Andersen, and Robert W. Gellert

Structure Factor Tables and Thermal Parameters (4 pages)

Anisotropic Thermal Parameters

Atom	U11	U22	U33	U12	U13	U23
U	0.00650(7)	0.00650(7)	0.00156(2)	0	0	۳ 0
As	0.0085(11)	0.0085(11)	0.00190(3)	-0.00234(6)	0.00011(5)	0.00011(5) +
C1	0.0132(4)	0.0132(4)	0.00325(9)	-0.0058(2)	-0.00073(2)	-0.00073(2)
СМ	0.0239(14)	0.0076(7)	0.0038(3)	-0.0033(7)	-0.0007(5)	0.0005(4)
C1	0.0090(10)	0.0090(10)	0.0016(2)	-0.0014(6)	0.00008(5)	0.00008(5)
C2	0.012(1)	0.012(1)	0.0021(3)	-0.0003(8)	0.0011(7)	0.0011(3)
C3	0.013(1)	0.013(1)	0.0017(2)	-0.0003(8)	0.0007(6)	0.0007(6)

OBSERVED AND CALCULATED STRUCTURE FACTORS OF UCL4(DIARS)2 COMPLEX

.....

, ;

			10 X	10 X	PHASE				10 X	10 X	PHASE				10 X	10 X	PHASE
н	K	L	FOBS	FCAL	ANGLE	H	ĸ	L	FOBS	FCAL	ANGLE	Н	K	L	FOBS	FCAL	ANGLE
											÷						
2	0	0	1187	1108	9	11	4	1	651	699	8	3	2	3	1575	1564	27
Ā	õ	ō	1060	878	178	6	5	1	1352	1202	50	5	2	3	634	660	-15
6	ň	ň	1146	1140	2/0	ŝ	5	î	228	228	68	7	2	2	088	838	_15
0	0	~	1/20	1212	11	10	5	1	220	606	_15	`	2	2	900 025	0.10	-15
10	0	0	1430	1212	11	10	5	1	009	000	-15	, ,	2	3	835	011	34
10	U	0	044	634	11	1	6	1	/21	699	58	11	2	3	418	448	23
1	1	0	3078	3397	4	9	6	1	628	656	-11	4	3	3	198	215	-51
3	1	0	600	464	13	8	7	1	838	856	10	6	3	3	871	760	-5
5	1	0	365	347	17	9	8	1	548	621	8	8	3	3	1473	1324	11
7	1	0	1328	1177	10	0	0	2	539	768	10	10	3	3	455	468	27
9	1	0	1065	979	10	2	0	2	561	512	20	5	4	3	125	80	-58
2	2	0	2232	2052	5	4	0	2	1978	1804	7	7	4	3	1595	1425	17
4	2	Ő	1295	1240	8	6	Õ	2	1214	1218	7	ġ	Å	3	962	942	
6	2	ň	676	687	13	Ř	ň	2	322	288	23	11	Å	3	120	122	38
8	2	ň	801	797	10	10	Ň	2	732	672	11		5	2	1308	1122	25
10	4	0	227	250	10	10	Ň	2	732	552	12	0	5	2	1200	1120	2)
10	2	0	334	330	19	14	U 1	2	1005	332	15	10	2	2	904	092	0
12	2	0	344	3/8	10	1	1	2	1365	1245	51	10	5	3	38/	419	-2
3	3	0	2654	2441	5	3	1	2	1644	1579	51	7	6	3	594	570	14
5	3	0	1240	1252	10	5	1	2	1661	1641	-19	9	6	3	382	405	0
7	3	0	446	416	13	7	1	2	1056	858	-37	8	7	3	140	175	14
9	3	0	164	150	32	9	1	2	819	759	50	9	8	3	139	150	8
11	3	0	541	575	14	11	1	2	645	675	31	0	0	4	414	335	171
	4	õ	2514	2457	7	2	2	2	1722	1787	41	2	0	Å	947	1021	10
6	4	ň	1013	2457	10	7	2	2	1138	1078	17	7	ň	4	2581	2626	6
è	7	ň	262	220	170	4	2	2	1366	1277	_54	6	õ	7	091	060	å
10	4	~	404	400	16	0	2	2	1020	12//	- 11	0	Š		201	200	144
10	4	0	420	422	10	10	2	2	1023	923	11	10	0	4	323	232	100
2	2	U	2141	1806	0	10	2	2	932	893	60	10	0	4	653	609	12
11	5	0	745	791	11	3	3	2	1450	1418	26	12	0	4	659	724	12
6	6	0	642	595	12	5	3	2	899	858	-61	1	1	4	1433	1512	-63
8	6	0	478	495	15	7	3	2	1265	1080	-6	3	1	- 4	1662	1746	0
10	6	0	667	691	11	9	3	2	930	870	35	5	1	4	1757	1782	26
7	7	0	886	850	11	11	3	2	352	404	40	7	1	- 4	289	268	16
9	7	0	862	924	10	4	4	2	501	474	-37	9	1	4	299	293	12
8	8	0	1135	1165	9	6	4	2	1016	874	14	11	1	4	714	711	-1
1	ō	1	2161	2537	5	8	Å	2	933	861	15	2	2	Å	1619	1634	-22
ŝ	ň	ī	019	863	7	10	4	2	471	510	<u> </u>	7	2	4	1101	1110	24
7	0	1	1225	1100	10	10	-+ 5	2	1162	072	40	2	2	4	1101	790	29
1	0	Ţ	1000	1100	10	2	2	~	1103	9/3	40	0	2	4	903	70%	30
.,	0	1	1029	9/3	10		2	2	9//	900	42	0	2	4	020	//1	10
11	0	1	331	344	14	.9	2	2	627	634	-14	10	2	4	594	590	-1/
2	1	1	1838	1715	67	11	5	2	417	466	-15	3	3	4	780	794	-14
4	1	1	824	766	52	6	6	2	1242	1098	54	5	3	4	372	362	69
6	1	1	1395	1387	-31	8	6	2	425	432	8	7	3	- 4	1395	1205	19
8	1	1	1158	1019	7	10	6	2	579	634	-30	9	3	- 4	952	936	-5
10	1	1	793	773	46	7	7	2	399	426	26	4	4	4	464	482	-129
3	2	1	2287	2168	43	9	7	2	459	486	-17	6	4	4	1019	917	23
5	2	1	1031	973	-34	8	8	2	382	432	0	8	Å	4	1317	1274	5
7	2	1	1218	1030	-22	ĩ	õ	2	522	510	ä	10	4	4	420	432	4
à	2	ī	020	2/5	<u>~</u> // 2	2	Ň	2	1671	1706	2	5	5	7	410	554	<u> </u>
7	4	1	720	04J 1.02	43	ן ב	0	2	10/1	1207	0 2	ר ר) 2	4	1000	102/	-1/
11	4	1	401	490	48	2	U	2	2401	238/	0	/	Ş	4	1099	1034	-3
4	3	Ţ	1/03	128/	18	7	U	3	113	109	138	9	5	4	698	/09	1/
6	3	1	969	822	-31	11	0	3	929	952	10	6	6	4	1057	967	-25
8	3	1	628	569	14	2	1	3	1439	1383	7	8	6	4	462	470	11
10	3	1	588	585	53	4	1	3	2204	2177	18	10	6	4	506	553	55
5	4	1	1380	1411	9	6	1	3	811	838	-24	7	7	4	305	323	-12
7	4	1	533	470	36	10	ī	3	746	707	30	9	7	4	394	408	60
9	Å	1	217	210	33	12	ī	ર	568	645	8	8	, 8	4	234	231	67
	-7	-	/				-		200	545				-			

OBSERVED AND CALCULATED STRUCTURE FACTORS OF UCL4(DIARS)2 COMPLEX

.... PAGE 2

		10 X	10 X	PHASE		•		10 X	10 X	PHASE				10 X	10 X	PHASE
н	K	L FOBS	FCAL	ANGLE	н	K	L	FOBS	FCAL	ANGLE		HF	L I	FOBS	FCAL	ANGLE
1	0	5 1156	1397	7	9	5	6	282	299	41		6 F	8	885	849	59
2	ň	5 1320	1353	7	6	6	6	766	715	-38		8 6	้ ด	501	580	10
5	ň	5 1107	1130	, 8	8	6	. 6	510	516	30		7 7	, 0 , 9	668	650	18
7	0	5 750	1130	10	10	4	2	601	6 5 2	7		<u> </u>	, 0	601	550	
1	U	5 / 50	040	12	10	0	0	501	710	49		9 1		491	550	-3
9	0	5 603	489	15	1	/	0	724	/19	-10		8 8	8 8	557	608	.9
11	0	5 469	448	15	9	7	6	665	742	38		1 () 9	270	290	24
2	1	5 2016	2204	-51	8	8	6	703	777	24		3 () 9	1378	1647	7
4	1	5 1386	1420	24	1	0	7	1810	2225	7	•	5 () 9	1244	1009	11
6	1	5 1419	1163	46	5	0	7	236	215	160		2 1	. 9	1165	1300	38
8	1	5 611	529	26	2	1	7	886	998	5		4 1	. 9	1182	1305	21
10	1	5 612	596	-25	4	1	7	569	598	99		6 1	. 9	1041	875	-39
3	2	5 1504	1579	-25	6	1	7	1191	979	-24		8 1	9	549	485	15
5	2	5 1464	1496	58	8	1	7	1436	1291	5	1	0 1	ģ	691	650	50
7	2	5 1044	895	46	10	1	7	575	556	35	-	3	, q	1067	1198	64
á	2	5 676	646	-20	3	2	7	077	020	20		5		1237	1008	-25
11	2	5 501	510	-20	5	2	'	1010	1026			7 7		001	1050	_20
11	2	5 760	774	-30	5	2	'	1212	1024	-0		0 1		001	004	-30
4	3	5 /60	//0	-2	/	2		900	/83	-14		9	. 9	817	806	22
6	3	5 1435	1214	61	9	2		607	580	27	1	1 2	. 9	497	520	32
8	3	5 818	769	15	11	2	7	420	451	19		4 3	5 9	613	519	1
10	3	5 644	636	-37	4	3	7	1589	1785	0		6 3	9	1073	950	-16
5	4	5 862	735	16	6	3	7	985	863	-8		8 3	59	745	679	25
7	4	5 888	805	27	10	3	7	484	505	19	1	0 3	9	583	623	37
9	4	5 564	576	-9	5	4	7	1824	1582	-3		5 4	F 9	490	382	14
11	4	5 418	456	27	7	4	7	188	159	68		7 4	F 9	969	920	29
6	5	5 931	859	-26	6	5	7	581	549	30		9 4	i 9	735	745	9
8	5	5 600	607	-3	10	5	7	477	497	8		6 9	5 9	1018	945	57
10	5	5 611	661	51	-*	6	7	481	497	1		8 9	5 9	812	838	14
7	6	5 840	808	_38	, 0	ő	, 7	520	537	16	1	0 '		363	388	-26
,	4	5 704	7/0	- 30	,	7	''''	901	901	14	-	7 4		700	723	36
7	7	J /00	747 540	22	0	<i>'</i>	0	1001	1/04	14				200	123	-21
0	~	5 520	249	29	0	0	0	1239	1400	9		9 0	10	2333	433	-21
U	U	0 20/1	2954		2	0	8	1339	1380					938	1040	1/8
2	0	6 781	908	11	4	0	8	542	560	11		2 (108/	1284	/
4	0	6 429	471	172	1	1	8	1411	1665	22		4 () 10	2370	2052	8
10	0	6 703	617	11	3	1	8	1268	1358	50		6 (0 10	590	473	17
1	1	6 1661	1942	-34	5	1	8	917	785	-28		1 1	. 10	237	251	-9
3	1	6 526	525	-23	7	1	8	1171	1006	-26		3 1	. 10	1407	1625	14
5	1	6 809	824	71	9	1	8	818	768	48		5 1	10	1347	1134	9
7	1	6 1409	1181	16	11	1	8	315	337	50		7]	10	367	326	-20
9	1	6 1123	1001	5	2	2	8	1321	1449	51		9 1	. 10	359	321	41
11	1	6 327	332	-23	4	2	8	968	1052	26		2 2	2 10	750	813	34
2	2	6 1503	1574	-52	6	2	8	1545	1311	-44		4 2	2 10	917	801	16
4	2	6 1044	1116	33	8	2	8	502	463	18		6	2 10	901	795	-8
6	2	6 1387	1123	42	10	2	Ř	771	764	62		8		532	466	15
8	2	6 810	722	20		2	ğ	1108	1261	35	. 1	ň	2 10	571	504	18
10	· 2	6 610	612	_20	5	2		1520	1230	-21		3 3	10	263	227	05
10	2	6 1200	1275	- 22	ر ۲	2	0	1323	1330	-21		5 5	0 10	203	237	9.J
2	2	0 1390	13/3	-11	/	3	0	428	410	-12) (273	490	-5
2	3	0 1083	1460	27		3	8	462	4/0	53				9/2	020	2
1	3	6 798	/27	58	11	3	8	501	534	29		9	5 10	/78	811	14
9	3	6 385	395	-35	4	4	8	1486	1301	-6		4 4	+ 10	312	302	-149
11	3	6 586	628	-1	6	4	8	751	659	27		6 4	10	735	677	19
4	4	6 1701	1889	0	8	4	8	264	266	33		8 4	10	1165	1173	10
6	4	6 993	854	33	10	4	8	461	503	. 8	1	0 4	10	394	399	7
10	4	6 440	453	3	5	5	8	940	809	48		5 !	5 10	201	175	57
5	5	6 1396	1224	Ó	7	5	8	674	665	52		7	5 10	994	991	14
7	5	6 372	344	-25	9	5	8	505	523	-15		9	5 10	660	684	5
•	-				,	-	-									-

OBSERVED AND CALCULATED STRUCTURE FACTORS OF UCL4(DIARS)2 COMPLEX

			10 X	10 8	PHASE					10 X	10 X	DUASE					10 Y	10 Y	DUACE
Н	K	L	FOBS	FCAL	ANGLE		H	K	L	FOBS	FCAL	ANGLE		H	K	L	FOBS	FCAL	ANGLE
												•							
6	6	10	671	652	16		2	1	13	1106	1061	-5		4	2	16	614	597	-3
8	6	10	492	51/	10		6	1	13	745	661	43		6	2	16	593	616	-25
1	1	10	279	281	25		8	1	13	928	900	9,	,	8	2	16	317	364	17
1	0	11	126	132	135		3	2	13	/24	645	-19		3	3	16	545	531	55
3	0	11	21/3	1925	6		2	2	13	9/8	905	31		2	3	16	464	453	-18
	0	11	309	3/0	13		/	2	13	270	019	40		'.	3	10	543	281	-12
2	1	11	1002	1125	-27		<i>y</i>	2	13	3/9	391	-21		4	4	16	263	244	58
4	1	11	1620	1452	9 ()		4	3	13	1430	1332	10		0	4	10	440	485	3
0	1	11	905	838	43		0	3	13	010	/08	29		Š	Š	10	345	401	48
10	1	11	200	212	2/		2	4 5	13	1247	1100	11		2	0	17	1002	1100	10
10	2	11	4/0	403	-10		0	5	12	270	400	-11		2	1	17	700	1190	27
5	2	11	1204	1117	-27		7	2	12	202	200	22		2	1	17	1115	049	27
7	2	11	1204	4/2	20		/ 0	0	1.5	402	1265	12		4	1	17	1112	540	27
0 0	2	11	513	525	-16		2	0	14	00%	124J 912	10		2	2	17	591	572	10
, ,	2	11	210	186	-10		2	ň	14	204	106	168		5	2	17	564	522	12
4	2	11	962	874	24		1	1	14	1278	1201	34		7	2	17	304	443	23
8	2	11	745	752	12	÷	2	1	14	468	300	55		6	2	17	732	445	11
10	2	11	550	588	_14		5	1	14	314	283	-23		6	5	17	400	450	10
5	4	11	256	225	30		7	1	14	1028	938	8		ñ	ő	18	237	209	21
7	4	11	896	874	10		à	ī	14	677	671	13		2	ŏ	18	651	569	13
ģ	4	11	752	778	ŝ		ź	2	14	777	806	58		ĩ	ĩ	18	410	399	-7
6	5	11	558	538	-25		4	2	14	699	640	13		3	ī	18	904	857	-17
8	5	11	894	929	4		6	2	14	813	753	-3		5	ī	18	713	718	29
7	6	11	678	663	-14		8	2	14	420	421	7		2	2	18	767	784	-32
8	7	11	148	143	50		3	3	14	1006	981	32		4	2	18	538	511	-1
Ō	Ó	12	697	761	13		5	3	14	1193	1131	4		6	2	18	729	741	62
2	Ō	12	1314	1133	8		7	3	14	202	219	-13		3	3	18	396	409	-27
4	0	12	648	560	14		9	3	14	256	264	47		5	3	18	461	453	61
1	1	12	1193	1033	-28		4	4	14	1465	1396	19		4	4	18	275	295	67
3	1	12	1240	1124	-29		6	4	14	466	478	8		6	4	18	365	399	4
5	1	12	810	748	52		5	5	14	678	658	32		5	5	18	293	351	-11
7	1	12	884	840	42		7	5	14	287	307	47		1	0	19	849	730	11
2	2	12	1456	1355	-57		6	6	14	482	516	55		2	1	19	592	568	-22
4	2	12	814	754	2		1	0	15	858	741	12		4	1	19	293	282	-4
6	2	12	1270	1174	54		3	0	15	720	647	11		6	1	19	638	663	54
8	2	12	399	408	23		2	1	15	1193	1084	54		3	2	19	669	656	-31
10	2	12	605	619	-33		4	1	15	522	513	-14		5	2	19	588	586	54
3	3	12	821	764	-44		6	1	15	680	644	-20		4	3	19	612	636	23
5	3	12	1140	1081	32		8	1	15	623	631	9		5	4	19	558	615	20
7 1	3	12	585	592	48		3	2	15	706	712	52		0	0	20	1458	1233	9
9	3	12	444	452	-25		5	2	15	954	911	-33		2	0	20	523	437	16
4	4	12	964	865	9		7	2	15	559	584	-20		1	1	20	961	846	13
6	4	12	563	533	5		4	3	15	814	762	5		5	1	20	225	248	20
8	4	12	442	445	3		6	3	15	759	775	-30		2	2	20	553	553	-1
5	5	12	620	612	-28		8	3	15	253	272	21		4	2	20	462	446	2
7	5	12	654	632	-27		5	4	15	611	602	5		3	3	20	762	804	5
9	5	12	426	454	40		7	4	15	309	333	0		1	0	21	1021	923	10
6	6	12	776	732	-46		6	5	15	469	495	49		2	1	21	645	593	40
8	6	12	469	506	8		2	0	16	1008	845	9		4	Ţ	21	179	1/3	2
1	7	12	479	494	-14		1	1	16	917	816	54		3	Z	21	562	587	15
7	0	12	1930	1088	8		5	Ţ	10	1043	996	24		U	U	22	52/	523	12
ک	U	13	5/6	409	10		2	Ţ	10	/82	/60	-12		2	0	22	511	290	42
7	11	1 3	377	/64	104		1	7	in	1710	1174	38		1	1	11	741	31/	48

^{....} PAGE 3

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

2

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720