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ON DAMAGE PROPAGATION IN A SOFT

LOW-PERMEABILITY FORMATION

D. SILIN, T. PATZEK, AND G. I. BARENBLATT

Introduction

In this presentation, we develop a mathematical model of fluid flow with
changing formation properties. The modification of formation permeability
is caused by development of a connected system of fractures. As the fluids
are injected or withdrawn from the reservoir, the balance between the pore
pressure and the geostatic formation stresses is destroyed. If the strength of
the rock is not sufficient to accommodate such an imbalance, the cementing
bonds between the rock grains become broken. Such a process is called dam-
age propagation. The micromechanics and the basic mathematical model
of damage propagation have been studied in [7]. The theory was further
developed in [3], where new nonlocal damage propagation model has been
studied. In [2] this theory has been enhanced by incorporation of the cou-
pling between damage propagation and fluid flow. As it has been described
above, the forced fluid flow causes changes in the rock properties including
formation permeability. At the same time, changing permeability facilitates
fluid flow and, therefore, enhances damage propagation.
One of the principle concepts introduced in [3] and [2] is the characteri-

zation of damage by a dimensionless ratio of the number of broken bonds to
the number of bonds in pristine rock per unit volume. It turns out, that the
resulting mathematical model consist of a system of two nonlinear parabolic
equations.
As it has been shown in [6] using modeling of micromechanical properties

of sedimentary rocks, at increasing stress the broken bonds coalesce into a
system of cracks surrounding practically intact matrix blocks. These blocks
have some characteristic size and a regular geometry. The initial microcracks
expand, interact with each other, coalesce and form bigger fractures, etc.
Therefore, as the damage is accumulated, the growing system of connected
fractures determines the permeability of the reservoir rock.
Significant oil deposits are stored in low-permeability soft rock reservoirs

such as shales, chalks and diatomites [9, 10]. The permeability of the pris-
tine formation matrix in such reservoirs is so low that oil production was
impossible until hydraulic fracturing was applied. For development of cor-
rect production policy, it is very significant to adequately understand and
predict how fast and to what extend the initial damage induced by drilling
and hydrofracturing will propagate into the reservoir.
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The importance of fractures for rock flow properties is a well-established
and recognized fact [4, 9, 5]. Different conceptual models have been de-
veloped [8]. In this study, we propose a damage propagation model based
on a combination of the model of double-porosity and double-permeability
medium [4] and a modification of the model of damage propagation devel-
oped in [2].

The Model

One of the basic assumptions of the dual porosity model proposed in [4],
see also [1], states that the pore space in many natural rocks can be put into
two categories. The first category consists of the “classical” pore matrix,
where the pores are the openings between the grains. Bigger pores, pore
bodies, are connected by narrow channels, pore throats. The geometry
and the sizes of pores determine the porosity and the permeability of the
rock. The whole rock consists of matrix blocks surrounded by fractures.
Fractures are the regions where the bonds between the grains are broken
and the broken links coalesce into two-dimensional structures. The length
scales of fractures can vary in a wide range. However, due to small apertures,
the total volume of the fractures is small in comparison with the volume of
matrix pores. At the same time, the geometry of fractures is simpler than
that of matrix pore channels, therefore, if a pressure gradient is applied, the
fractures transport the fluids much easier than the matrix. Consequently,
the fluid in the matrix blocks first flow into the surrounding fractures, after
what it can be transported away through the connected system of fractures.
Thus, the matrix blocks support the fluid storage capability of the rock,
whereas the system of fissures determines the permeability.
Often, the fracture permeability is an anisotropic parameter, i.e., the

Darcy velocity is not necessary co-directed with the pressure gradient [9,
10]. For simplicity, in this study we assume that the difference between
the eigenvalues of the permeability tensor can be neglected and the fracture
permeability coefficient kf is a scalar quantity.
Further, we assume that both the matrix blocks and the connected frac-

tures are intertangled in a representative elementary volume. Therefore, at
each point of the rock both conducive fractures and matrix are present si-
multaneously. The fluid pressures in the matrix blocks, pm, can be different
from fluid pressures in the fractures, pf . At every point of this dual medium
the difference between two pressures defines the rate of the cross-flow be-
tween the media, q. Using dimensional considerations, it has been obtained
in [4] that

(1) q = α
pm − pf

µ

where µ is the fluid viscosity. Dimensionless coefficient α depends on the
characteristic length L associated with the matrix blocks, on the perme-
ability of the matrix km and on the geometric structure of matrix-fractures
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configuration. In a homogeneous reservoir elastic-drive equation for fluid
pressure in the fractures, pf , has the following form [4]

(2)
∂pf

∂t
−A

∂

∂t

(

1

α
∇ · (kf (α)∇pf )

)

= B∇ · (kf (α)∇pf )

where

(3) A =
βmm + β

βmm + β − βfm

and

(4) B =
1

φmµ(βmm + β − βfm)

Here the coefficient βfm characterizes the decrease of matrix porosity when
the pressure in the surrounding fractures increases and coefficient βmm char-
acterizes the pore space expansion at increasing pore pressure in the matrix.
Finally, β is the fluid compressibility. A smilar equation can be obtained for
the matrix pressure pm. One can show that the two pressures are related
by the following equation:

(5)

pm = e−
B

A

∫

t

0
αdτ

[

pm|t=0 −

(

1−
1

A

)

pf |t=0

]

+

(

1−
1

A

)

pf +
B

A2

∫ t

0

e−
B

A

∫

t

τ
αdξαpfdτ

In particular, if initially both fluid pressures were equal to the reservoir
pressure pr, then

(6) pm =
1

A
e−

B

A

∫

t

0
αdτpr +

(

1−
1

A

)

pf +
B

A2

∫ t

0

e−
B

A

∫

t

τ
αdξαpfdτ

The damage accumulation is increase in the number of broken bonds
between rock grains. To quantify the damage, it was proposed in [3] to use
the ratio of the number of broken bonds and the number of bonds in pristine
rock, ω. Since the flow properties of the rock are determined by a connected
system of fractures, it is natural to replace the parameters ω with coefficient
α introduced in Eq. (1). In fact, the coefficient α is a function of ω. By
virtue of Eq. (1), the increase of the coefficient α results in a faster fracture
and matrix pressures equilibration.
Further weakening of the skeleton due to the damage accumulation may

result in a significant rearrangement and collapse of the matrix blocks that
may lead even more significant permeability changes. In this study, we con-
sider the stage where such a collapse does not occur and both coefficients
of fracture permeability kf and matrix-fracture cross-flow α remain mono-
tonically increasing functions of the damage parameter ω. Therefore, we
assume a one-to-one correspondence between the two and parameter ω can
be eliminated. In other words, the coefficients kf and α are the damage
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parameters. We select α as the basic damage parameter and express the
fracture permeability as the dependent variable:

(7) kf = kf (α)

We remark that the parameter ω is not available for direct measurement,
whereas both coefficients α and kf can be determined, for instance, from
a well test. Using the one-to-one correspondence between ω and α, the
damage accumulation model [3] can be reformulated in terms of parameter
α. Therefore, we obtain:

(8)
∂α

∂t
= G(α)∇ · (Dα(ω, pm)∇α) + Fα(α, pm)

Here

(9) G(α) =
1

ω′(α)

Function G characterizes the how the increasing number of broken bonds
affects the cross-flow coefficient α. Function D characterizes the spacial cor-
relation between local damage accumulation at different locations. Finally,
function F determines the rate of damage accumulation at changing pore
pressure. All three functions have to be determined from experiments.
To make the model complete, the differential equations must be comple-

mented by initial and boundary conditions. To formulate these conditions,
we need to analyze the dependence of the fracture permeability on the cross-
flow factor α.
Let us start with initial conditions by assuming that the permeability of

pristine rock is practically zero. If the rock is intact, the matrix blocks are
large and the coefficient α is close to zero. At the same time, both the
density and connectedness of the fracture system are scarce and therefore
we can assume that

(10) kf (0) ≈ 0

Moreover, at steady-state conditions, the pressures do not change, therefore,
the pressures pm and pf are equal. Hence, we obtain the following initial
condition

(11) pf |t=0
= pm|t=0 = pr

where pr it the initial reservoir pressure.
Inasmuch as the pristine formation has a sparse system of fractures, the

initial condition for the damage parameter can be formulated in the following
way

(12) α|t=0 = α∗
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Now, let us proceed with the boundary conditions. At infinity, the reser-
voir is intact:

lim
x2+y2

→∞

pf = lim
x2+y2

→∞

pm = pr(13)

lim
x2+y2

→∞

α = α∗(14)

It is known [1], that if initially the damage is localized in a finite zone,
say, near a wellbore or a hydrofracture, then in many cases the solutions to
quasi-linear parabolic equations like Eqs. (2) and (8) has a finite speed of
propagation. The model can be formulated as a free-boundary problem.
Equations (2) and (8) are coupled. The structure of the solution needs to

be determined from further analysis and numerical simulations.
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