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Abstract 
The novel 2019 coronavirus disease (COVID-19), resulting from severe acute respiratory syndrome 
coronarvirus-2 (SARS-CoV-2) infection, typically leads to respiratory failure in severe cases; however, 
cardiovascular injury is reported to contribute to a substantial proportion of COVID-19 deaths. 
Preexisting cardiovascular disease (CVD) is among the most common risk factors for hospitalization and 
death in COVID-19 patients, and the pathogenic mechanisms of COVID-19 disease progression itself may 
promote the development of cardiovascular injury, increasing risk of in-hospital death. Sex differences in 
COVID-19 are becoming more apparent as mounting data indicate that males seem to be 
disproportionately at risk of severe COVID-19 outcome due to preexisting CVD and COVID-19-related 
cardiovascular injury. In this review, we will provide a basic science perspective on current clinical 
observations in this rapidly evolving field and discuss the interplay sex differences, preexisting CVD and 
COVID-19-related cardiac injury. 
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1. Introduction 
 
The novel 2019 coronavirus disease (COVID-19) results from severe acute respiratory syndrome 
coronarvirus-2 (SARS-CoV-2) infection and typically afflicts the lungs, with severe cases leading to acute 
respiratory distress syndrome[1]. Although the respiratory system is the major organ system affected by 
SARS-CoV-2, cardiovascular complications should not be overlooked by healthcare workers and basic 
scientists. In particular, acute myocardial injury, cardiac arrhythmias and microvascular dysfunction and 
thrombosis are reported to contribute to a large proportion of COVID-19 deaths[2–7]. 
 
Patients with pre-existing cardiovascular disease (CVD) do not appear to be more prone to SARS-CoV-2 
infection since the prevalence of CVD in COVID-19 cases is consistent with the high prevalence in the 
general population[5,6,8,9]. However, pre-existing CVD is among the most common risk factors 
associated with hospitalizations, elevated cardiac injury biomarkers and death of COVID-19 
patients[4,10,11]. As such, it is plausible that pre-existing CVD may exacerbate the course of disease and 
mortality in COVID-19 patients by promoting cardiovascular injury including myocardial damage, 
arrhythmias and microvascular dysfunction and thrombosis. Additionally, the pathogenic mechanisms of 
COVID-19 disease progression itself may be associated with the development of cardiovascular injury, 
which increases the risk of in-hospital death[12,13].  
 
While there is a robust body of evidence elucidating sex differences in CVD, sex disparities in COVID-19 
are becoming more apparent as well[14]. Interestingly, mounting data also indicate that individuals with 
higher risk of severe COVID-19 outcome due to preexisting CVD and COVID-19-related cardiovascular 
injury include a disproportionate number of males.  In this review, we will discuss sex differences in the 
interplay between preexisting CVD, COVID-19 severity, and COVID-19-related cardiac injury by providing 
a basic science perspective based on the current literature in this rapidly evolving field. 
 

2. Sex differences in preexisting cardiovascular disease, risk factors and COVID-19 
 
As the clinical data surrounding COVID-19 infection and mortality rates continues to become more 
robust, a staggering trend is becoming apparent: COVID-19 positive males suffer worse disease 
progression and have a higher rate of mortality than females despite having a similar rate of 
infection[15]. The first published study investigating sex differences in the COVID-19 cases in China 
reports that men are more likely to experience serious illness and are 2.4 times more likely to die from 
COVID-19 while the average age of mortality and rate of infection remains the same for both 
sexes[15,16].  
 
Sex differences in COVID-19 result from a complicated interplay between biological and societal 
influences, including preexisting CVD. Hypertension and history of CVD, both already known to increase 
COVID-19 severity and mortality[17], display strong sex differences with males exhibiting a higher 
prevalence of disease compared to age-matched women, prior to menopausal years[18,19]. On the 
other hand, women experience relatively worse outcomes of ischemic heart disease compared with 
men[20]. In HF, the overall lifetime risk is similar between men and women, there are marked sex 
differences in the variations of this condition, with males being predisposed to HF with reduced ejection 
fraction (HFrEF) and females to HF with preserved ejection fraction (HFpEF)[21]. In cardiac arrhythmias, 
the age-adjusted incidence of atrial fibrillation and Brugada syndrome is lower in women compared with 
that in men, whereas atrioventricular reentry tachycardia and cardiac events in long QT syndrome are 
more prevalent in adult females compared to males[22]. Lastly, male sex is an independent risk factor 
for various thrombotic events such as myocardial infarction, venous thromboembolism and thrombotic 
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stroke[23]. In this section, we highlight sex differences in preexisting CVD and how they may contribute 
to the striking sex differences found in COVID-19 mortality.  
 

2.1. Sex hormones and chromosomes in CVD  
Males exhibit increased risk of CVD compared to age-matched women, prior to menopausal 
years[18,19]. These data indicate that individuals more at risk of severe COVID-19 outcome due to pre-
existing CVD include a disproportionate number of males.  
 
The increased prevalence of CVD in males is multifactorial and well-studied with biological variables 
including sex hormones and their receptors as well as sex chromosomes. As detailed in a previous 
review from our group, the protective effects of estrogen have been well documented over the past few 
decades and may help explain why females of premenopausal age have lower incidence of CVD when 
compared to males[24,25]. Exerting its effects through both genomic and non-genomic pathways, 
estrogen has been shown to ward off CVD through its effects on vasculature, cardiomyocytes and 
cardiac fibroblasts to promote vasodilation, angiogenesis, and cardiomyocyte survival while reducing 
cardiac fibrosis and oxidative stress[24]. More recently, the role of sex chromosomes has been 
implicated in the sex differences found in CVD as well[26]. Sex chromosomes, which differ between 
males (XY) and females (XX), can impart sex differences in disease through altered expression of genes 
encoded by the X and Y chromosomes[27]. Strikingly, studies that examined the effects of sex 
chromosome complement (XX or XY) in the absence of sex hormones reveal that XX chromosome 
complement increases the risk of developing CV complications including hypertension, atherosclerosis 
and ischemic injury[26,28–30]. A handful of genes encoded by the X chromosome that escape 
inactivation on the second X chromosome in females are implicated as females have elevated 
expression of these genes compared to male, many of which are epigenetic modifiers. Taken together, 
premenopausal females seem to be protected against CVD when compared to males; however, with 
reduced levels of estrogen, post-menopausal women have an elevated risk of CVD complications. This 
increased risk could potentially prime older females with COVID-19 for more severe cardiac outcome, 
although more data is needed to parse apart the influence of menopause on COVID-19-related CVD 
complications. 
 

2.2. ACE2 in CVD and COVID-19 
Angiotensin-converting enzyme 2 (ACE2) is the functional receptor for SARS coronaviruses including the 
novel SARS-CoV-2 that causes COVID-19[31,32]. ACE-2, a carboxypeptidase transmembrane protein 
expressed in various cell types, regulates the activity of the renin-angiotensin system (RAS) by 
hydrolyzing angiotensin I (AngI) into Ang 1-9 and angiotensin II (AngII) into Ang 1-7[33].  While ACE2 is 
homologous to ACE, the enzyme that converts AngI to the vasoconstrictive, pro-inflammatory, pro-
hypertrophic and pro-fibrotic AngII, ACE2 counterbalances the detrimental effects of ACE[34]. ACE2 
confers cardioprotection by enhancing vasodilation and preventing cardiac hypertrophy, fibrosis and 
oxidative stress.[34] ACE2-deficient mice exhibit elevated AngII levels, increased cardiac hypertrophy 
and fibrosis, and severe diastolic and systolic dysfunction, which is rescued by recombinant human ACE2 
therapy[35,36].  
 
While animal models and analysis of human hearts at the whole tissue level do not provide conclusive 
results regarding the directionality of cardiac ACE2 expression in CVD[37–40], CVD does augment ACE2 
expression in cardiomyocytes. ACE2 expression is increased in cardiomyocytes of patients suffering from 
dilated and hypertrophic cardiomyopathy, aortic stenosis and HFrEF compared to control donor 
hearts[37,41,42]. Interestingly, cardiac pericytes, fibroblasts and vascular smooth muscle cells from 
these patients exhibited lower ACE2 expression compared to control donor hearts[37,41]. Altered 
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cardiac ACE2 expression profiles in CVD have been proposed as a mechanism underlying the more 
severe course of disease in COVID-19 patients with pre-existing CVD, since elevated cardiac ACE2 could 
mediate SARS-CoV-2 infection. 

 
2.3. Sex differences in ACE2 

ACE2 is encoded by the X chromosome and is located in a region of the X chromosome that escapes X-
inactivation in females[43]. Since females have two copies of the X chromosome compared to one copy 
in males, most X-escapee genes are found to have higher expression in females[44,45]. ACE2, however, 
displays an uncharacteristically heterogeneous pattern across various tissues exhibiting increased mRNA 
expression in certain male tissues[44]. It is hypothesized that gene-hormone interactions accounts for 
this uncharacteristic pattern of expression as ACE2 activity has been demonstrated to be sex hormone 
dependent[46,47].  
 
In the left ventricle (LV), hypertensive male rats (both spontaneously hypertensive and mRen2 strains) 
experience higher levels of ACE2 activity and hypertrophy when compared to females.[48,49] 
Gonadectomy in males resulted in decreased ACE2 expression and reduced cardiac hypertrophy, 
whereas ovariectomy in females resulted in increased LV ACE2 activity and cardiac hypertrophy coupled 
with reduced hemodynamic function of the heart[49]. In contrast, studies using normotensive Lewis rats 
and MF1 mice did not demonstrate sexually dimorphic cardiac ACE2 activity[48,50]. These studies, 
however, demonstrated that estrogen altered the expression and activity of ACE2 in other tissues 
including plasma, adipose tissue, and kidneys, while the effect of estrogen was varied. A study 
investigating the role of sex chromosomes in ACE2 activity revealed that while estrogen influenced ACE2 
activity in the kidney of MF1 mice, sex chromosomes complement (XX or XY) had no effect[50].  
 
While ACE2 is encoded by the X chromosome, more highly expressed in certain male tissues than female 
tissues, and is influenced by estrogen, it is still unclear whether sexual dimorphisms in ACE2 directly 
contribute to the sex differences seen in COVID-19 severity and mortality. Even so, testing the use of 
short-term exogenous estrogen treatment as a therapy for COVID-19 patients is now underway in a 
Phase II clinical trial that includes both sexes (ID: NCT04359329)[51]. 
 

2.4. Sex differences, drugs and ACE2 in COVID-19 
Since AngII plays a central role in CVD pathophysiology, drugs that inhibit the activity of ACE (ACEi) or 
block AngII receptors (ARBs) are commonly prescribed as a first-line treatment.  Sex differences exist in 
the cardiovascular efficacy and outcome of ARB and ACEi use, indicating differences in drug absorption, 
distribution, metabolism, and excretion between males and females[52–54]. Various ACEi and ARB have 
been shown to enhance expression and activity of cardiac ACE2 in experimental animal models.[55,56] 
More recently, single-cell RNA sequencing (scRNAseq) revealed that hypertrophic cardiomyopathy 
patients taking ACEi trended towards elevated ACE2 expression in cardiomyocytes, fibroblasts, 
pericytes, and vascular smooth muscle cells[37]. Similarly, cardiomyocytes from ACEi-treated aortic 
stenosis and HFrEF patients exhibited enhanced ACE2 levels and unfavorable ACE/ACE2 ratios[41]. Since 
ACE2 is the main receptor of SARS-CoV-2, these studies led to initial concerns of enhanced susceptibility 
of SARS-CoV-2 infection; however, there is currently no proof that this outweighs their protective role in 
modulating RAS activity[41,57]. In two recent studies, including a large observational study of 8910 
COVID-19 patients, no association was found between the use of ACEi and ARB and increased likelihood 
of a positive SARS-CoV-2 test nor with increased risk of COVID-19 complications when corrected for sex, 
amongst others[58].  As such, effects of sex-specific efficacy of ARB and ACEi on COVID-19 progression 
and outcome seem unlikely. 
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2.5. Sex differences in obesity 
Obesity is a major risk factor for developing CVD and emerging evidence shows that obesity is also risk 
factor of developing severe COVID-19 outcome and mortality.[59–64] Sex differences in obesity are well 
established[65]. Obesity prevalence is significantly associated with sex and pathophysiological 
mechanisms of obesity are modulated by both sex hormones and chromosomes[65,66]. Whether sex 
differences exist in the prevalence of obesity in COVID-19 patients is thus far not fully elucidated, but 
allude to higher prevalence of obese male COVID-19 patients than female. A study of 200 COVID-19 
patients in New York City found no difference in proportion of males and females when COVID-19 
patients were stratified by BMI[60]. However, studies of 383 Chinese and 92 Italian COVID-19 patients 
reported that the proportion of men was significantly higher in the overweight and obese BMI 
groups[61,63]. 
 
Interestingly, it is hypothesized that RAS dysregulation may link obesity to COVID-19[67]. In line with this 
notion, an experimental mouse study reported that sex hormones contribute to tissue-specific ACE2 
expression in the development of obesity-induced hypertension[47]. Here, high-fat diet fed females did 
not develop obesity-hypertension or elevated Ang 1-7 levels while males did. This effect was abolished 
upon ovariectomy and estrogen increased ACE2 levels. Considering the central role ACE2 and 
dysregulated RAS are thought to play in COVID-19, ACE2 may link sex differences, obesity, CVD and 
COVID-19. 
 

2.6. Sex differences in smoking 
In addition to biological factors, societal factors, including smoking, may also contribute to the sex 
differences present in COVID-19[68]. Reports from 2015 reveal 52.1% of Chinese males smoke 
compared to just 2.7% of females[69]. Sex differences in smoking prevalence also exist in other 
populations, although to a much lesser degree (Italy: 26% Males, 17.2% Females[70]; United States: 
17.5% Males: 13.5% Females[71]). According to a meta-analysis, history of smoking is one of the most 
prevalent preexisting factors associated with patients hospitalized for COVID-19 infection[17]. Studies 
show smoking is also a risk factor for the development of chronic obstructive pulmonary disease, 
hypertension, and CVD[72], which are comorbidities positively associated with COVID-19 
hospitalizations[17]. Single-cell RNAseq studies recently revealed an upregulation of the SARS-CoV-2 
receptor, ACE2, in the lungs of smokers compared to never-smokers, which could influence the risk and 
severity of COVID-19 in smokers[73]. Taken together, the sex differences found among the smoking 
population may contribute to the sex differences in COVID-19 hospitalizations and morbidity. Smoking, 
which is largely more common in male populations, is associated with COVID hospitalization, can lead to 
cardio-pulmonary comorbidities, and upregulates the expression of ACE2 within the lung.  
 

 

 
3. Sex differences in COVID-19-related cardiovascular injury 

 
Cardiovascular injury in COVID-19 is mainly observed in the form of acute cardiac injury, microvascular 
injury and thrombosis. Various pathophysiological mechanisms may contribute to the development 
COVID-19-related cardiovascular injury including direct cardiotropic and endothelial viral infection, 
secondary systemic toxicity of the hyperinflammatory state, cardiovascular stress due to SARS-CoV-2-
induced respiratory failure, or a combination of all three factors[74,75]. Sex disparities underlie some of 
these factors leading to COVID-19-related cardiovascular injury. 
 

3.1. Sex differences in clinical cardiac injury in COVID-19 
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Cardiac involvement is a prominent feature in COVID-19 pathophysiology. Acute myocardial damage in 
COVID-19 patients may be inferred from elevated circulating biomarkers, electrocardiographic changes, 
and imaging studies revealing features of impaired cardiac function[76]. Acute cardiac injury, based on 
circulating biomarkers, is more frequent in severe compared to non-severe COVID-19 cases[10,77,78] 
and circulating biomarker concentration is associated with disease severity and fatality[10,78–80]. 
Altogether, up to 36% of COVID-19 patients were reported to suffer from acute cardiac injury based on 
elevated cardiac biomarkers[6,10,77,80]. 
 
While data is still emerging, some sex disparities seem to exist in COVID-19-related cardiac injury. A 
study of 112 Chinese COVID-19 patients has shown a trend towards more men being diagnosed with 
possible myocarditis than women[11]. Similarly, two studies of Chinese COVID-19 patients showed that 
women account for more of the mild cases which also exhibited lower levels of troponin I, creatine 
kinase–myocardial band fraction, myoglobin, and N-terminal B-type brain natriuretic peptide[79,81]. In 
a study of 1557 COVID-19-positive individuals in New Haven, more males presented with abnormally 
elevated troponin T[16]. A larger study of 2736 COVID-19 patients in New York City, however, reported 
no significant sex differences when COVID-19 patients were stratified by troponin T levels[80]. In a study 
of 1557 COVID-19-positive individuals in New Haven, more males presented with abnormally elevated 
troponin T than females[16]. Interestingly, in this patient population, a model of combined risk factors 
including, age, hypertension and body mass index, showed that prostatic disease increased the odds of 
COVID-19 patients having elevated troponin T levels, independently of the other risk factors[16]. 
Together these data indicate that individuals more at risk of severe COVID-19 progression and outcome 
due to cardiac injury may include a disproportionate number of males. 
 

3.2. Sex differences in clinical cardiac arrhythmia in COVID-19 
The clinical burden of cardiac arrhythmias in COVID-19 patients is becoming increasingly clear. Various 
forms of cardiac atrial and ventricular rhythm disorders have been reported in COVID-19 patients 
including atrial fibrillation, sinus tachycardia and bradycardia, complete conduction block and cardiac 
arrest[82]. Arrhythmia may associate with sudden cardiac death, which is a pathologic outcome also 
observed in COVID-19 patients[83–85]. Arrhythmia in COVID-19 patients is associated with myocardial 
injury and is thought to reflect the severity of illness[81,86,87]. Indeed, ICU admission is associated with 
arrhythmia, with up to 44% of COVID-19 patients in the ICU suffering from arrhythmia[5,88]. While the 
association of arrhythmias and in-hospital mortality in COVID-19 patients is inconclusive, it has been 
reported that the prevalence of arrhythmia is 60% in fatal COVID-19 cases[89].  

 
Sex differences exist in cardiac electrophysiological characteristics as female sex is a known risk factor 
for drug-induced QT prolongation and torsade des pointes arrhythmia[90]. Whether sex differences 
exist in arrhythmia in COVID-19 patients remains under-reported. Since arrhythmia is associated with 
myocardial damage and elevated cardiac biomarkers are more prevalent in male COVID-19 patients, it is 
plausible that arrhythmia may also be more prevalent in male COVID-19 patients. However, a Chinese 
study of 234 COVID-19 patients shows no differences between the proportion of male and female 
COVID-19 patients with or without arrhythmia[86]. Future studies will be imperative to shed light on sex 
disparities in arrhythmia occurrence in COVID-19 patients. 

 
 

3.3. Sex differences in clinical microvascular injury and thrombosis in COVID-19 
Mounting reports on microvascular dysfunction and thrombosis in COVID-19 patients suggest that 
endothelial dysfunction and coagulation imbalances may contribute to COVID-19 pathophysiology. 
Elevated levels of fibrinogen and D-dimer levels have been reported in COVID-19 patients, indicating 
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elevated clot formation and fibrinolysis.[91] Elevated D-dimers were found to be associated with poor 
prognosis and increased risk of death.[4,92] Histology on post-mortem lungs and skin from COVID-19 
patients revealed thrombogenic vasculopathy[93,94]. Moreover, thromboembolisms have been 
observed in several organs in COVID-19 patients[95–97]. Overall, 20-30% of COVID-19 patients in the 
ICU have been reported to suffer from thrombosis and major thromboembolic sequelae[7]. 
 
While data on sex differences in microvascular injury and thrombosis in COVID-19 is still sparse, sex 
disparities do not seem to be observed. A study of 248 Chinese COVID-19 patients shows that there is no 
significant difference in proportion of male and females in normal and high D-dimer groups.[98] 
Accordingly, a meta-analysis reported that elevated D-dimer in severe COVID-19 cases and non-survivors 
do not seem to associate with sex[99]. Interestingly however, an Italian study of 100 COVID-19 patients 
reported that fibrinogen levels in female COVID-19 patients were significantly higher compared to 
female controls, while this increase was not  significant in males[100]. 
 

3.4. Sex differences in SARS-CoV-2 cardiotropic infection  
Cardiac samples from patients who succumbed to the previous SARS coronavirus in 2003 provides 
insight into the cardiotropic potential of coronaviruses. SARS-CoV, which also binds to the ACE2 
receptor, was detected in 35% of hearts[101] and present in cardiomyocytes that displayed vacuolar 
degeneration, atrophy and cytoplasmic lysis[102]. While SARS-CoV-2 has been detected in hearts of 
COVID-19 patients, no reports yet have shown conclusive evidence of direct SARS-CoV-2 infection in 
non-inflammatory myocardial cells in COVID-19 patients[103–106]. Several cell cardiac cell types express 
ACE2, including cardiomyocytes[107]. Recently, it was demonstrated that SARS-CoV-2 was able to infect 
human inducible pluripotent stem cell-derived cardiomyocytes in vitro, suggesting the potential for 
SARS-CoV-2 cardiotropic potential[108].  
 
While data on sex differences in cardiotropic SARS-CoV-2 is yet unavailable, sex disparities do exist in 
the epidemiology and pathophysiology of viral myocarditis induced by various viruses, and this may also 
be the case for SARS-CoV-2[109–111].  Expression of the SARS-CoV-2 receptor ACE2 is regulated by sex 
hormones in opposite directions in male and female mice[49]. A recent study reported that androgen 
signaling may regulate ACE2 expression and subsequent SARS-CoV-2 infection in human cardiac cells 
since treatment with the 5 alpha reductase inhibitor dutasteride and androgen receptor modulator 
spironolactone augmented ACE2 levels and internalization of SARS-CoV-2 recombinant spike receptor 
binding domain in human embryonic stem cell-derived cardiac cells[16]. As such, sex hormones may 
underlie possible sex differences in cardiotropic SARS-CoV-2 infection by regulating ACE2 expression. 
 

3.5 Sex differences in endothelial dysfunction  
Microvascular injury and thrombosis in COVID-19 are thought to be caused by endothelial dysfunction 
since activated and injured endothelial cells recruit inflammatory cells and activate the coagulation 
cascade[112]. Histology on post-mortem from COVID-19 patients revealed that SARS-CoV-2 is able to 
directly infect endothelial cells concomitant with endothelialitis and apoptosis in several organs[113]. 
Accordingly, SARS-CoV-2 was shown to be able to directly infect human blood vessel organoids in 
vitro[114].  
 
Sex differences in endothelial dysfunction are well-established[115]. For instance, estrogen promotes 
proper endothelial cell function by enhancing endothelial nitric oxide synthase (eNOS) expression while 
testosterone has opposite effects[24]. A hallmark of endothelial dysfunction is dampened eNOS 
expression with NO deficiency[116]. Decreased NO levels in injured endothelial cells contribute to 
thrombus formation[112]. Recently it was proposed that eNOS deficiency could be a pathophysiological 
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mechanism in COVID-19[116]. As such, sex hormones may affect endothelial dysfunction in COVID-19. 
However, also in the absence of sex hormones, sex differences exist in barrier integrity and survival 
between male XY and female XX microvascular endothelial cells[117,118]. Although sex-differences in 
COVID-19-related microvascular injury and thrombosis in the clinic do not seem apparent thus far, it is 
plausible that sex-differences play a pathophysiological role in COVID-19 endothelial dysfunction. 

3.6 Sex differences in soluble ACE2  
Upon binding to ACE2 on the cell surface, SARS-CoV-2 is endocytosed leading to downregulated ACE2 
cell surface expression[119]. As such, the protective effects of ACE2 are likely blunted. Loss of 
membrane-bound ACE2 is hypothesized to be a critical step in the cardiac injury pathology in COVID-19. 
This notion is supported by experimental animal models wherein ACE2-deficient mice exhibit 
hypertrophy, fibrosis, HF and enhanced inflammation[35,36,120]. Autopsy material from the SARS 
epidemic revealed SARS-CoV infection in 35% of cardiac specimens concomitant with decreased 
membrane ACE2 levels, cardiac hypertrophy, inflammation, and fibrosis[120], indicating that loss of 
membrane-bound ACE2 indeed may be a pathogenic mechanism in SARS-CoV-induced cardiac injury. 
Similarly, ACE2 expression and activation in endothelial protects against endothelial dysfunction in 
atherosclerosis, hypertension and thrombosis[121–123]. It has been shown that ACE2 is released into 
the circulation which advances several CVD pathologies, and levels of soluble ACE2 in plasma correlate 
with worsened disease severity and prognosis in HF patients[34,124]. To date, no reports are available 
on levels of cardiac membrane-bound ACE2 or circulating levels of soluble ACE2 in COVID-19 patients. 
However, it seems that men, who are at increased risk of more severe COVID-19 progression, present 
with higher soluble ACE2 levels than women as was observed in both healthy subjects and two 
independent cohorts of HF patients[125,126]. 

3.7 Sex differences in systemic inflammation in COVID-19 
SARS-CoV-2 infection is characterized by a robust cascade of inflammatory and immune events. In the 
early stages of infection, COVID-19 patients present progressive lymphocytopenia; however, patients 
were reported to eventually develop elevated white blood cell and neutrophil counts[2,5,127]. In the 
hyperinflammatory phase, driven by the host immune response, inflammatory markers become 
elevated and secondary organ damage may occur in what is deemed the cytokine storm. Systemic 
cytokine elevation is known to be cardiotoxic with the potential to induce profound myocardial injury, as 
reported in patients treated with chimeric antigen receptor T-cells who develop cytokine release 
syndrome[76,128,129]. Furthermore, cytokine storms may directly mediate ventricular electrical 

remodeling and significant QT interval prolongation, predisposing for ventricular arrhythmias[130]. 
Additionally, proinflammatory cytokines are known to promote coagulation and thrombosis by 
enhancing expression of tissue factor on endothelial cells, activating coagulation factors and inhibiting 
fibrinolysis, as is observed in severe cases of sepsis[131]. 
 
While the rate of SARS-CoV-2 infection seems to be similar between males and females[15], the ability 
to mount an immune response to protect against COVID-19 may contribute to sex differences seen in 
COVID-19 mortality and cardiac injury. Through a combination of sex biasing factors, females have a 
greater ability to detect virial infection and generally experience a more robust response to viral 
infection which could contribute to their protection against COVID-19 when compared to males[132–
135]. Both sex hormones and sex chromosomes influence sex differences in immunity[134,136]. Sex 
hormones have been shown to bind to receptors on immune cell surfaces to alter their gene expression 
and activity[134]. Additionally, the X chromosome encodes a high density of immune-related genes and 
microRNAs which, despite inactivation of the second X chromosome in females, remain overly expressed 
in females compared to males, contributing to the heightened immune response in females[136–138]. 
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The male-specific Y chromosome, which encodes substantially less genes than its X chromosome 
counterpart, has also been found to influence immune function as Y chromosome genes are expressed 
in various immune cell types and have been shown to alter immune function[139,140].   
 
Notably, similar sex differences were also observed in the previous coronaviruses SARS and Middle East 
respiratory syndrome (MERS). In both SARS and MERS outbreaks, males had higher mortality rates than 
females[15,141,142]. Mouse studies investigating SARS, which also infects the airways and lungs 
through the ACE2 receptor, revealed that infected male and female mice had a unique immune 
signature compared to males, and estrogen protected against SARS severity partially through mediating 
this immune response[141]. While the data is still sparse, reports show a sex-specific immune signature 
may be present in SARS-CoV-2 infection as well. One study found male COVID-19 patients exhibit 
elevated circulating white blood cells and neutrophils when compared to female patients[15]. Another 
study revealed male COVID-19 patients exhibit a lower lymphocyte count and elevated levels of IL-10, 
TNF-α, and CRP compared to females[143]. It remains to be elucidated to which extent the sex 
differences observed in systemic inflammation in COVID-19 patients translate to differences in 
inflammation-induced cardiac injury, arrhythmia and microvascular dysfunction and thrombosis. 
 

3.8 Sex differences in COVID-19 drug-induced cardiac arrhythmia 
Arrhythmias in COVID-19 patients may result from biological factors in the pathophysiology of COVID-19 
or may be induced by drugs used for treating COVID-19[144]. While the clinical efficacy of these drugs is 
still relatively unknown, the antimalarial drugs chloroquine and hydroxychloroquine were shown to have 
antiviral properties against SARS-CoV-2 in vitro by increasing endosomal pH and interfering with ACE2 
glycosylation[145,146]. Administration of chloroquine and hydroxychloroquine with or without 
adjunctive azithromycin has been reported to significantly prolong the QT interval in COVID-19 
patients[147–151]. The risk of developing torsade des pointes ventricular arrhythmia and arrhythmic 
death in COVID-19 patients treated with hydroxychloroquine/chloroquine/azithromycin however does 
not seem to increase[147–152]. 
 
Interestingly, an in silico modeling study using mathematical models of ion currents from human 
ventricular cardiomyocytes and clinically therapeutic drug doses has shown that females with 
preexisting cardiovascular disease may especially be susceptible to antimalarial drug-induced QT 
prolongation compared to males with cardiovascular disease or healthy individuals of either sex[153]. 
Indeed, sex differences in cardiovascular drug responses have been reported and female sex is a known 
risk factor for drug-induced QT prolongation and torsade des pointes which may be caused by female 
sex hormones affecting cardiomyocyte ion currents[90,154]. However, thus far no sex differences have 
been reported inthe prevalence of QT interval prolongation in COVID-19 patients treated with 
hydroxychloroquine/chloroquine with or without azithromycin[147,148,150].  
 

4. Concluding remarks 
Preexisting CVD and cardiovascular injury seem to be a prominent feature of COVID-19 severity and 
outcome. Research in the COVID-19 field is rapidly evolving; however, the thus-far observed sex 
disparities already emphasize the need to understand the pathophysiological role of sex hormones and 
chromosomes in COVID-19 disease progression and COVID-19-related cardiovascular injury. Clinically, 
studies show that males with preexisting CVD are particularly prone to more severe COVID-19 disease 
and COVID-19-related cardiovascular injury. As such, sex hormone and chromosome COVID-19 
interactions will be a promising field of study to elucidate novel protective mechanisms and therapies 
for the treatment of COVID-19. Additionally, sex differences in ACE2 expression, inflammation and drug 
absorption, metabolism and tolerance make it imperative to study sex-specific disparities within COVID-
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19 treatment efficacy.[155,156] Considering that sex differences in cardiovascular drug responses have 
been reported, sex differences will be of special interest for treating COVID-19-related cardiovascular 
injury[154,157,158]. Lastly, cardiac abnormalities including myocarditis, fibrosis, edema and left and 
right ventricular dysfunction have been reported in recovered COVID-19 patients[159–161]. Although as 
of yet no sex differences were found in recovered COVID-19 patients, it has been reported previously 
that males and females exhibit different functional outcome and long-term mortality after myocarditis, 
cardiac arrest and thrombotic events[109,159,162,163]. Longitudinal follow-up studies will therefore be 
imperative to gain more insight into the long-term cardiovascular effects and recovery in male and 
female COVID-19 patients. 
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Figure legend 
 
Fig. 1. Factors underlying preexisting CVD, risk of COVID-19 severity, and COVID-19 related 
cardiovascular injury in males and females. Preexisting CVD is modulated by sex chromosomes and 
hormones, ACE2 expression, drug interactions, obesity and smoking, which may predispose males and 
females differently to COVID-19 severity. CVD, obesity and smoking are risk factors with a higher burden 
in male vs. female COVID-19 patients (shown with red icons in males). COVID-19 pathogenic 
mechanisms also contribute to cardiovascular injury. Males exhibit higher burden of cardiac injury than 
females, while no sex disparities in arrhythmia and microvascular injury and thrombosis have been 
reported thus far. COVID-19-induced cardiovascular injury is thought to be modulated by sex hormones, 
ACE2 expression and systemic inflammation, with the latter being more pronounced in males. 
Altogether, these factors may explain why male COVID-19 patients seem to be at higher risk for severe 
disease progression and cardiovascular injury compared to females. Red icons reflect sex differences in 
factors observed in COVID-19 patients, gray icons reflect factors wherein no sex difference has been 
found in COVID-19 patients or is yet unknown. 
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Highlights 

 Cardiovascular complications are prominent in COVID-19  

 Preexisting cardiovascular disease is a risk factor for COVID-19 severity  

 Cardiovascular disease, smoking and obesity burden more male COVID-19 patients  

 Cardiac injury and systemic inflammation are pronounced in male COVID-19 patients  

 No sex disparities were observed in arrhythmia and thrombosis in COVID-19 patients 
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