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Introduction

The global aim of this project is to increase our

understanding of the diverse microbial community that

inhabits the gastrointestinal (GI) tract.  These microbes

play essential roles in health, including a significant

contribution to the digestive process, promotion of gut

maturation, and integrity and modulation of the immune

system (Berg, 1996).

Bacteria living in complex natural communities, such

as the GI microbiota, produce antimicrobial compounds

involved in intra- and interspecific competition. The GI

microbial community is likely to be a major reservoir of

antibiotic resistance genes; GI bacteria are frequently

challenged by antibacterial compounds produced by GI

community members, by incoming bacteria, and by

medically prescribed antibiotics.

Moreover, GI microbes interact with pathogenic

agents in several complex ways.  On one hand, resident

bacteria exert a protective barrier effect against

enteropathogens (Hudault et al., 2001); but on the other,

they have the potential to enrich the arsenal of incoming

pathogens through horizontal transmission of genes

involved in host-microbe interaction or antibiotic resistance.

Elucidating the composition and coding capabilities of the

GI microbiota is therefore crucial for a comprehensive

analysis of infectious disease.

Clostridium difficile is a spore forming bacteria which can be part of the normal intestinal flora in as many as 50% of

children under age two, and less frequently in individuals over two years of age. C. difficile is the major cause of

pseudomembranous colitis and antibiotic associated diarrhea.

Preparation of high molecular weight GI

bacterial DNA from fecal samples

Human fecal samples from two healthy anonymous

volunteers (mother and infant) were collected at the

University of Arizona in collaboration with the laboratory of

Howard Ochman.  High molecular weight DNA for large

insert library construction was prepared from these

samples using several filtration and centrifugation steps to

eliminate particulate matter and larger eukaryotic cells.

Inspection of cells under the microscope revealed a large

variety of bacterial types and no traces of eukaryotic cells.

Moreover, PCR and Southern hybridization with primers

and probes directed to human genes did not produce

positive results, indicating that our preparations were free

of human DNA contamination.

Characterization of fosmid metagenomic libraries

Estimation of Biodiversity

From the GI bacterial DNA preparations, we have produced 2 fosmid libraries, from

adult and infant (1 month old), each containing 50,000 to 70,000 clones (40 kb insert size).

We are currently in the process of characterizing the biodiversity of these libraries. Our

initial approach will include the production of 16s rRNA PCR libraries from pooled fosmids.

In addition, we have also prepared 16s PCR libraries from the DNA agarose plugs from

which the fosmid libraries were prepared in order to evaluate any potential biases in fosmid

library construction (Figs. 1 and 3).

Genetic Screening

With the aim of phylogenetically typing a large number of fosmid clones, we have

initiated screenings of the fosmid libraries with 16s rRNA primers as well as a set of 11

primer sets directed towards universally conserved bacterial proteins (Santos and

Ochman, 2004). Screening our libraries for 16S rRNA genes will render our analysis

directly comparable to previous studies that have characterized the GI microbiota by

sequencing PCR-amplified and cloned copies of this gene.

We will be further characterizing these libraries by screening for different types of

genes involved in microbe-host interactions.  We will target representatives of the following

functions: capsular polysaccharide biosynthesis, porins, fimbrial adhesins, secreted

proteases, cytotoxins and type III secretion systems. We have overcome our first major

technical hurdle by optimizing our PCR-based screening strategy to avoid amplification of

the host E. coli genes (Fig. 2).

   1       2      3       4      5       6      7      8       9 Fig. 2  Lane 1: 1kb plus ladder.

Lane 2: PCR product generated using universal 16S primers. Fosmid clones from 5 plates (384 wells)

were pooled and then prepped using Qiagen’s Qiafilter 96 plates, followed by an overnight incubation
with Epicentre’s Plasmid-Safe™ ATP-Dependent DNase. Two clones in this pool are known to

contain the 16S sequence.

Lane 3:  Same as Lane 2, but the pool of fosmid clones was incubated with Induction Solution before

being prepped.

Lanes 4 and 5: No PCR product is generated when the template is a prepped fosmid clone from a

Stalk-Eyed Fly (Diopsid) library that is know to NOT contain any 16S sequence.
Lanes 6 and 7: No PCR product is generated using primers designed for the Diopsid clone with the

pooled bacterial fosmid clones.Lanes 8 and 9: PCR product generated using the diopsid primers with

the diopsid fosmid used as template.
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Fig. 1  96 clones were

sequenced from each
library. These clones were

processed using the 16S

pipeline created for the JGI

by Ed Kirton, which

assembles paired ends,

BLASTs high-quality
contigs to confirm that they

are in fact 16S rRNA, and

checks for chimeric clones

using the Bellerophon

software (Huber et al.,

2004). From the infant
library, 72 clones were

passed by the pipeline, and

44 adult clones were

passed. The diversity

recovered (at the generic

level), determined by the
“Classify” tool at

greengenes. lbl.gov is

depicted here.

0.1 0Fig. 3  A maximum likelihood tree reconstructed from an alignment of 16S sequences in our PCR library in addition to selected

sequences from the 84218 aligned 16S rDNA records >1250nt maintained at http://greengenes.lbl.gov. The 72 infant

sequences are shown in green, and the 44 adult sequences are shown in red. Despite the

16S rRNA tree

Future Work

Genes cloned in fosmid vectors can be heterologously expressed in E. coli, allowing for further characterization of their function (Blodgett et al., 2005).

Therefore, genes conferring important capabilities in the GI ecosystem, such as antibiotic production and resistance, can be phenotypically detected. We will screen

our fosmid libraries for antibiotic production phenotypes by overlaying agar plates containing arrayed clones with top agar seeded with exponentially growing bacterial

cultures and looking for growth inhibition halos. We will also screen for resistance to several classes of antibiotics, with different modes of action, by replicating our

libraries on plates containing appropriate concentrations of each antibiotic.

We also have plans to study succession and development of the gut microbiota of the new born infant as a collaborative effort with a research institution

in India. To clarify the initial acquisition and subsequent colonization of bacteria in an infant within the first few months after birth, phylogenetic analysis will be

performed using 16S rRNA sequences amplified from DNA isolated from the feces at various stages of succession. In addition, fosmid libraries will be constructed

from these DNA samples, and comparative analyses will be performed between the American and Indian microbial succession data.
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SEM of Clostridium difficile adhering to the microvilli of the gut
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