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Multi-environment gene interactions linked to the
interplay between polysubstance dependence and
suicidality
Renato Polimanti 1,2, Daniel F. Levey 1,2, Gita A. Pathak1,2, Frank R. Wendt1,2, Yaira Z. Nunez1,2, Robert J. Ursano 3,
Ronald C. Kessler 4, Henry R. Kranzler 5,6, Murray B. Stein 7,8 and Joel Gelernter 1,2,9

Abstract
Substance dependence diagnoses (SDs) are important risk factors for suicidality. We investigated the associations of
multiple SDs with different suicidality outcomes, testing how genetic background moderates these associations. The
Yale-Penn cohort (N= 15,557) was recruited to investigate the genetics of SDs. The Army STARRS (Study to Assess Risk
and Resilience in Servicemembers) cohort (N= 11,236) was recruited to evaluate mental health risk and resilience
among Army personnel. We applied multivariate logistic regression to investigate the associations of SDs with
suicidality and, in the Yale-Penn cohort, we used the structured linear mixed model (StructLMM) to study multivariate
gene–environment interactions. In Yale-Penn, lifetime polysubstance dependence was strongly associated with
lifetime suicidality: having five SDs showed an association with suicidality, from odds ratio (OR)= 6.77 (95% confidence
interval, CI= 5.74–7.99) for suicidal ideation (SI) to OR= 3.61 (95% CI= 2.7–4.86) for suicide attempt (SA). In Army
STARRS, having multiple substance use disorders for alcohol and/or drugs was associated with increased suicidality
ranging from OR= 2.88 (95% CI= 2.6–3.19) for SI to OR= 3.92 (95% CI= 3.19–4.81) for SA. In Yale-Penn, we identified
multivariate gene–environment interactions (Bayes factors, BF > 0) of SI with respect to a gene cluster on chromosome
16 (LCAT, p= 1.82 × 10–7; TSNAXIP1, p= 2.13 × 10−7; CENPT, p= 2.32 × 10−7; PARD6A, p= 5.57 × 10−7) for opioid
dependence (BF= 12.2), cocaine dependence (BF= 12.1), nicotine dependence (BF= 9.2), and polysubstance
dependence (BF= 2.1). Comorbidity of multiple SDs is a significant associated with suicidality and heritability of
suicidality is partially moderated by multivariate gene interactions.

Introduction
Individuals with substance dependence diagnoses (SDs)

are a population with high suicide risk. Compared to the
general population, people with SDs are 10 to 14 times as
likely to die by suicide and poly-drug abusers have 17-fold
increased risk of suicide rates1. In a large study conducted
among individuals receiving Veterans Health Adminis-
tration (VHA) care (fiscal years 2005–2006, N=
4,863,086), current diagnoses of alcohol, cocaine,

cannabis, opioid, amphetamine, and sedative use dis-
orders were all associated significantly with increased risk
of suicide mortality2. Among people who report fair or
poor health on the National Survey of Drug Use and
Health (2006–2014; N= 502,467), those who had DSM-
IV (Diagnostic and Statistical Manual of Mental Dis-
orders, 4th Edition) alcohol use disorders, painkiller use
disorders, both alcohol and marijuana use disorders, and
both alcohol and cocaine use disorders were 2.72 times
(95% confidence interval, CI= 1.81–4.09), 2.25 times
(95% CI= 1.04–4.90), 2.38 times (95% CI= 1.25–4.54),
and 3.15 times (95% CI= 1.16–8.60) as likely as people
without SD to attempt suicide, respectively3. Although
these data support high comorbidity between suicidality
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and SDs, very limited information is available regarding
the underlying molecular mechanisms.
Recently, genome-wide association studies (GWAS) of

suicidality have been conducted in large cohorts, identi-
fying several risk loci and strong genetic overlap with
depression4–8. However, to our knowledge, no gene-by-
environment genome-wide interaction studies (GEWIS)
have yet been conducted to evaluate the genetic interplay
between suicidality and SDs. In the context of gene-by-
environment interaction studies, environmental risk fac-
tors can include exposures (physical, chemical, biological),
behavioral patterns, or life events9. We previously showed
that this approach is useful to identify the complex
interactive mechanisms linking genetic background with
the interplay between SDs and psychiatric and behavioral
phenotypes10–13. To explore the phenotypic association of
different SDs with the suicidality spectrum, we investi-
gated multiple SDs (testing for each SD the individual
effect independent from the other SDs; and the cumula-
tive effect of having received multiple SD diagnoses) with
respect to suicidal ideation (SI), suicide planning (SP), and
suicide attempt (SA). Subsequently, we conducted a dis-
covery GEWIS to verify whether SDs interact with the
individual genetic variability in the context of SI. Finally,
based on the high genetic overlap between suicidality
and depression observed across multiple large-scale
GWAS4,7,8, we verified whether depression genetic risk
interacts with polysubstance dependence in the context of
suicidality spectrum. Supplemental Fig. 1 provides a gra-
phical overview of the analyses conducted.

Materials and methods
Study populations
Yale-Penn participants were recruited for studies of the

genetics of drug or alcohol dependence in five eastern U.S.
centers as described elsewhere14–16. Subjects gave written
informed consent as approved by the institutional review
board at each site. Subjects were evaluated with the semi-
structured assessment for drug dependence and alcohol-
ism (SSADDA) to derive diagnostic and statistical manual
of mental disorders, fourth edition (DSM-IV) lifetime SD
diagnoses, and other major psychiatric traits. In the pre-
sent study, we used information regarding DSM-IV SD
diagnoses and criterion counts related to alcohol
dependence (AD), cannabis dependence (CaD), cocaine
dependence (CoD), nicotine dependence (ND), and opioid
dependence (OD). Detailed information regarding these
phenotypic definitions is provided in our previous stu-
dies14–16. Data regarding suicidality outcomes were
derived from SSADDA items: SI “Have you ever thought
about killing yourself? [Yes/No]”; persistent SI “Did those
thoughts persist for at least 7 days in a row? [Yes/No]”; SP
“Did you have a plan? [Yes/No]”; and SA “Have you ever
tried to kill yourself? [Yes/No]”. Individuals not reporting

SI were not asked about persistent SI and SP. Accordingly,
individuals who did not endorse SI were also coded as
not having persistent SI and SP. However, regardless of
reporting SI, persistent SI, and SP, all participants were
asked if they had ever attempted suicide. This is because
SA can be an impulsive behavior with no previous idea-
tion and planning. Suicidality and polysubstance depen-
dence phenotypic information was available for 15,557
Yale-Penn participants. Full genome-wide data were
available for a subset (~10,000) of these individuals via
genotyping done with the Illumina HumanOmni1-Quad
microarray, the Illumina HumanCoreExome array, or the
Illumina Multi-Ethnic Global Array. Principal component
(PC) analysis was conducted based on each genotyping
array and for each ancestry group (African and European
ancestries) separately. Detailed information about the
quality control pipeline is available in our previous stu-
dies14–16. Briefly, Individuals and SNPs with genotype call
rates <98%, and SNPs with minor allele frequency <1%
and Hardy–Weinberg equilibrium P < 1 × 10−6 were
removed from downstream analyses. After the pre-
imputation quality control, genotype data were imputed
using Minimac317 implemented in the Michigan Impu-
tation Server (available at https://imputationserver.sph.
umich.edu/) with the 1000 Genomes Phase 3 reference
panel18. Dosage data were transformed into best-estimate
genotypes using PLINK219, considering variants with info
score ≥80% and minor allele frequency ≥1%. In the Yale-
Penn participants of African and European descent, we
investigated 4,915,647 and 4,202,333 variants, respec-
tively. The present study only considered information
regarding unrelated subjects. As previously described20,
individuals with an identity-by-descent proportion >0.125
were defined as belonging to the same family group.
Within each family group determined from genetic data, a
subject was selected prioritizing retention of participants
who reported the most extreme suicidality among those
genetically related.
The Army STARRS (Study to Assess Risk and Resilience

in Servicemembers) participants included individuals
recruited from two different groups: The New Soldier
Study and The Pre-Post Deployment Study. All subjects
gave written informed consent to participate. These pro-
cedures were approved by the Human Subjects
Committees of all collaborating institutions. Detailed
information about the design and conduct of the Army
STARRS is available in a previous report21. Every indivi-
dual was diagnosed using a self-administered ques-
tionnaire, which included the adapted versions of the
Composite International Diagnostic Interview Screening
Scales (CIDI-SC). As previously described22, the CIDI‐SC
assessment was used to determine lifetime prevalence of
12 common lifetime DSM-IV mental disorders, including
substance use disorder (substance dependence and abuse)
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for alcohol and/or drugs combined (i.e., SUDcombined).
Suicidality was assessed using a modified version of the
Columbia–Suicide Severity Rating Scale, which assesses
the lifetime occurrence of SI (“Did you ever in your life
have thoughts of killing yourself? [Yes/No]” OR “Did you
ever wish you were dead or would go to sleep and never
wake up? [Yes/No]”), SP (“Did you ever have any intention
to act [on these thoughts/on that wish]? [Yes/No]” AND, if
so, (“Did you ever think about how you might kill yourself
[e.g., taking pills, shooting yourself] OR work out a plan of
how to kill yourself? [Yes/No]”)), and SA (“Did you ever
make a suicide attempt [i.e., purposefully hurt yourself
with at least some intention to die]? [Yes/No]”). All
respondents who reported ideation (regardless of intent/
plan) were asked if they had ever attempted suicide. SA
was considered present if respondents endorsed ever
purposefully hurting themselves with at least some
intention to die. Army STARRS participants were geno-
typed using the Illumina OmniExpress and Exome array
or the Illumina PsychChip array. Methods for quality
control, imputation, ancestry assignment and PC analysis
were described previously23. Briefly, the quality control
parameters applied included SNP missingness <0.05,
subject missingness <0.02; autosomal heterozygosity
deviation; SNP missingness of <0.02; and deviation from
Hardy–Weinberg equilibrium P < 1 × 10−6. Genotyped
data were pre-phased using SHAPEIT24 and imputed
using IMPUTE225 and the 1000 Genomes Project refer-
ence panel26. Unrelated individuals were identified con-
sidering an identity-by-descent proportion <0.125.
Table 1 reports the characteristics of the Yale-Penn and

Army STARRS participants investigated in the present
study. Although Yale-Penn and Army STARRS present
different assessments and characteristics, the data from
these cohorts were successfully used to replicate genetic
associations identified in studies of SDs and suicidality8,11.

Data analysis
Phenotypic associations
We used multivariate logistic regression models to test

the association of SDs with suicidality outcomes (i.e., SI,
SP, and SA). In the Yale-Penn cohort, this analysis was
conducted in the full sample (N= 15,557), which included
genotyped and non-genotyped individuals. Accordingly,
the following covariates were considered: age, sex, and
self-reported racial/ethnic groups. In the Army STARRS
cohort, the logistic regression models were applied to a
fully genotyped sample of participants of European des-
cent (N= 11,235) and covariates considered were: age,
sex, and the top 10 genetic PCs for population stratifica-
tion adjustment. The different approaches used in

Table 1 Characteristics of the Yale–Penn and Army
STARRS participants investigated in the present study.

Yale-Penn, n= 15,557

Age, mean (SD) 40 (11.8)

Sex, Women (%) 7187 (46)

Self-reported Racial/Ethnic Group, n (%)

Native American/American Indian 1327 (9)

Asian 101 (1)

Pacific Islander 20 (<1)

African-American/Black, not of Hispanic origin 6027 (39)

African-American/Black, of Hispanic origin 350 (2)

Caucasian/White, not of Hispanic origin 6060 (39)

Caucasian/White, of Hispanic origin 811 (5)

Other 861 (6)

DSM-IV diagnosis, n (%)

Alcohol Dependence 7481 (48)

Cannabis Dependence 3897 (25)

Cocaine Dependence 8662 (56)

Nicotine Dependence 8219 (52)

Opioid Dependence 4379 (28)

Polysubstance dependence, n (%)

One DSM-IV SD diagnosis 2023 (13)

Two DSM-IV SD diagnoses 2942 (22)

Three DSM-IV SD diagnoses 3345 (22)

Four DSM-IV SD diagnoses 2419 (16)

Five DSM-IV SD diagnoses 1004 (6)

Suicidality, n (%)

Ideation 6112 (39)

Persistent Ideation 1450 (9)

Planning 2491 (16)

Attempt 1965 (13)

Army STARRS, n= 11,235

Age, mean (SD) 21 (5.2)

Sex, Women (%) 1163 (10)

SUDcombined, n (%) 2848 (22)

Suicidality, n (%)

Ideation 2299 (20)

Planning 446 (4)

Attempt 389 (3)
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Yale-Penn and Army STARRS cohorts are due to the
sample characteristics and the data availability. The Yale-
Penn cohort includes more than 15,000 participants but,
to date, ~10,000 individuals have genome-wide data
available. Approximately 80% of Yale–Penn participants
report being Caucasian/White or African-American/Black
not of Hispanic origin (Table 1). To avoid excluding
individuals without genotype information or belonging to
a racial/ethnic group not large to be analyzed separately,
we decided to analyze Yale-Penn combining the full
sample and correcting for self-reported racial/ethnic
groups. The characteristics of the Yale–Penn participants
stratified by the inclusion in the genetic analyses are
reported in Supplemental Table 1.

Genome-wide Gene-by-SD interaction analysis of SI
In the Yale–Penn cohort, we conducted a multivariate

GEWIS considering unrelated participants with complete
genotype information (4,044 African-Americans and
3,407 European-Americans). The analysis was conducted
using the recently-developed StructLMM, a linear mixed-
model approach to identify and characterize loci that
interact with one or more environments efficiently27. This
method extends the conventional linear mixed models
used to test persistent genetic effects (i.e., associations
with constant genetic effect sizes across individuals in the
population), permitting the investigator to model the
heterogeneity in effect sizes due to gene-by-environment
interactions. The multi-environment StructLMM model
can be used to conduct an interaction test and an asso-
ciation test27. The interaction test is defined where per-
sistent genetic and additive environment effects are
accounted for in the null model. Conversely, the
StructLMM association test analyzes the main effects
while accounting for the possibility of heterogeneous
genetic effects due to G × E.
We used the StructLMM approach to analyze whether

DSM-IV criterion counts of AD, CaD, CoD, OD, and ND
and the co-occurrence of multiple DSM-IV SD diagnoses
interact at the same loci with respect to SI. We limited the
genetic analysis to SI, because of the relatively low pre-
valence of the other suicidality outcomes in the Yale-Penn
cohort (Table 1). From the StructLMM framework, we
obtained evidence of: (i) loci with significant SD-related
interaction effects and (ii) genetic association accounting
for the possibility of heterogeneous effect sizes due to
multivariate SD–gene interactions. P values were used to
verify the statistical significance of the association and
interaction tests in each locus. Once we identified the loci
surviving multiple-testing correction, StructLMM per-
mitted us to calculate Bayes factors (BF) to interpret
evidence for environment relevance, including potential
for positive and negative BFs supporting the alternate vs.
null models, respectively. Specifically, the BFs were

calculated between the full model and models with
environmental variables removed to identify which SD-
related traits are most relevant for the gene interactions
observed. Additionally, we also estimated the fraction
of genetic variance explained by multivariate SD-gene
interactions. These analyses were conducted separately in
each major genetically-determined ancestry group
(i.e., African-Americans and European-Americans). We
focused our analysis on ancestry-specific analyses only,
because the trans-ancestry meta-analysis did not provide
findings surviving multiple testing correction due to the
fact that the limited sample size of the cohorts investi-
gated was not powerful enough to overcome the hetero-
geneity due to the different genetic structure (i.e., allele
frequency and linkage disequilibrium, LD) of the ancestry
groups investigated. The information regarding SI was
adjusted for age, sex, genotyping array, and the top 10
PCs, and the residuals obtained were entered as pheno-
typic outcomes into StructLMM.
To increase the discovery power of the analysis con-

ducted in the Yale-Penn cohort, we used the single-
variant results obtained from the StructLMM interaction
and association tests to conduct genome-wide gene-
based analyses considering interactive and main effects,
respectively. We applied the Multi-marker Analysis of
GenoMic Annotation (MAGMA) gene-based approach28

and a Bonferroni multiple testing correction. Gene-based
tests are generally more powerful than single-variant
association analysis28, because they combine single-variant
signals within genic regions reducing the multiple testing
correction burden. We performed a functional annotation
of the variants identified using data from combined anno-
tation dependent depletion (CADD)29, RegulomeDB30, and
15-core chromatin state information across multiple brain
tissues. Using genotype-tissue expression (GTEx) V831, we
tested the effect of the variants identified on the tissue-
specific transcriptomic profiles of the surrounding genes
(±1Mb of the gene transcription starting site), considering
a false discovery rate at 5% for the genome-wide multiple
testing correction. To investigate the loci identified further,
we performed single-variant and gene-based phenome-
wide scans leveraging the GWAS Atlas (available at https://
atlas.ctglab.nl/)32.

Replication analysis
The Army STARRS cohort (11,235 participants of

genetically-confirmed European descent; see Study Popu-
lations) was investigated to replicate the Yale–Penn finding
on chromosome 16 (i.e., rs8052287). Due to the unavail-
ability of information about multiple SDs among the par-
ticipants, we tested the gene interaction of SUDcombined

(i.e., a single composite variable combining substance use
disorders for alcohol and/or drugs) with respect to SI. This
analysis was conducted using the interaction test available
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in PLINK 1.919, which compares the difference between SI
regression coefficients in subjects with SUDcombined vs.
those without SUDcombined. Age, sex, and the top 10 PCs
were entered as covariates.

Polygenic risk score analysis
We leveraged the Psychiatric Genomic Consortium

(PGC) GWAS of major depression (MD)33 to generate
polygenic risk scores (PRS) in Yale-Penn participants of
European descent (N= 3,407). We focused our attention
on MD because of the consistent genetic overlap of this
trait with suicidality4,7,8. Due to the data sharing restric-
tions of the 23andMe personal genomics and bio-
technology company (a contributor to the PGC MD
cohort), GWAS data were publicly available only for a
sample subset (59,851 MD cases and 113,154 controls).
This analysis was restricted to the participants of geneti-
cally confirmed European descent due to known biases of
cross-ancestry PRS analysis34. The MD PRS was calcu-
lated using PLINK 1.919, considering multiple association
P-value thresholds (PT < 5 × 10−8, 10−7, 10−6, 10−5, 10−4,
0.001, 0.05, 0.1, 0.3, 0.5, 1) for SNP inclusion to identify
the best-fit for each target phenotype tested. The PRS
were calculated after using P-value-informed clumping
with a LD cut-off of R2= 0.3 within a 500 kb window and
excluding the major histocompatibility complex region of
the genome because of its complex LD structure. The
individual PRS generated were standardized and entered
into a logistic regression model that included the main
effect (PRS) and the effect of the interaction term (i.e., the
product of PRS and the covariate for interaction). A false
discovery rate (FDR q < 0.05) was applied to correct the PRS
results for the number of thresholds and phenotypes tested.

Results
Phenotypic associations
To identify effects accounting for the comorbidity

among the SDs tested in the Yale-Penn cohort, AD, CaD,
CoD, ND, and OD were entered as terms in the same
logistic regression model (Fig. 1, left panel). We observed
a consistent effect of AD and ND across all suicide traits
tested, ranging from AD OR= 2.11 (95% CI= 1.91–2.33)
and ND OR= 1.42 (95% CI= 1.29–1.57) for SI; to AD
OR= 1.66 (95% CI= 1.4–1.96) and ND OR= 1.29 (95%
CI= 1.1–1.51) for SA. Increased odds were observed with
respect to CoD for SI (OR= 1.69; 95% CI= 1.52–1.88),
SP (OR= 1.26; 95% CI= 1.08–1.48), and SA (OR= 1.51;
95% CI= 1.27–1.79), but not for persistent SI. CaD
showed opposite effect directions for these traits; positive
association with SI (OR= 1.62; 95% CI= 1.47–1.80) and
negative association with SA (OR= 0.84; 95% CI=
0.72–0.97). An additional regression analysis was con-
ducted to investigate the association of the severity of
polysubstance dependence (i.e., the number of SD

diagnoses) with suicidality (Fig. 1, right panel). Con-
sidering the most extreme cases (i.e., all 5 SDs), we
observed the largest effects: OR= 6.77 (95% CI=
5.74–7.99) for SI; OR= 2.01 (95% CI= 1.51–2.68) for
persistent SI; OR= 2.62 (95% CI= 2.04–3.39) for SP;
OR= 3.61 (95% CI= 2.7–4.86) for SA. The Yale-Penn
cohort includes individuals reporting different racial/
ethnic groups (Table 1). We observed that self-reported
racial/ethnic groups were associated with suicidality out-
comes when adjusted for age, sex, and polysubstance
dependence (Supplemental Tables 2 and 3). In the Army
STARRS participants (N= 11,236), we observed similar
effects of SUDcombined: OR= 2.88 (95% CI= 2.6–3.19) for
SI; OR= 3.88 (95% CI= 2.79–4.10) for SP; OR= 3.92
(95% CI= 3.19–4.81) for SA.

Multivariate SD–gene interaction analysis in participants of
european descent
Among Yale-Penn participants of European descent,

several genes on chromosome 16 survived multiple testing
correction for both association and interactive effects
(Fig. 2): LCAT (passociation= 3.73 × 10−7; pinteraction=
1.82 × 10−7); TSNAXIP1 (passociation= 2.08 × 10−7;
pinteraction= 2.13 × 10−7), CENPT (passociation= 2.39 ×
10−7; pinteraction= 2.32 × 10−7), and PARD6A (passociation=
7.17 × 10−7; pinteraction= 5.57 × 10−7). The association of
this gene cluster is driven by the effect of a single variant,
rs8052287 (passociation= 2.15 × 10−7; pinteraction= 7 × 10−8;
Fig. 3). Within this locus, 98% of the variance is explained
by multivariate SD-gene interactions. We calculated the
Bayes factors (BF) between the full model and models
including the individual environmental exposures
removed to explore which environmental variables are
most relevant for the gene-environment signals of
rs8052287. We observed putative gene-environment
effects in rs8052287 (BF > 0) for OD criterion counts
(BF= 12.2), CoD criterion counts (BF= 12.1), ND criter-
ion counts (BF= 9.2), and co-occurrence of multiple SD
diagnoses (BF= 2.1). We found that rs8052287 was asso-
ciated with the transcriptomic regulation of 26 genes in 30
different tissues (Supplemental Table 4). Considering
brain tissues, we observed that rs8052287 is associated
with RANBP10 in the cerebellum (p= 6.2 × 10−18), cortex
(p= 4.3 × 10−12), frontal cortex (BA9; p= 4.9 × 10−9),
cerebellar hemisphere (p= 8.9 × 10−9), caudate (p= 4.8 ×
10−7), and nucleus accumbens (p= 2.5 × 10−5).
Rs8052287 is also a splicing quantitative trait locus for
CARMIL2 in the frontal cortex (BA9; p= 1.2 × 10−6).
Considering data available from the GWAS atlas, we
observed 20 significant associations that survived phenome-
wide multiple testing correction (Supplemental Table 5),
including anthropometric traits (e.g., height p= 8.30 ×
10−22), male hair loss pattern (p= 1.11 × 10−10), hypo-
thyroidism (p= 5.97 × 10−7), and several hematological
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parameters (e.g., mean corpuscular hemoglobin p= 4.74 ×
10−7). The same associations were also observed in the
gene-based phenome-wide scans conducted for LCAT,
TSNAXIP1, CENPT, and PARD6A (Supplemental Table 6).
We also observed that rs8052287 regulates the expression
of 9 genes in thyroid tissue: LRRC36 (p= 1.6 × 10−16),
ZDHHC1 (p= 3.9 × 10−15), RANBP10 (p= 3.7 × 10−14),
HSD11B2 (p= 5.7 × 10−9), C16orf86 (p= 3.2 × 10−8),
KCTD19 (p= 8.3 × 10−8), DUS2 (p= 6.1 × 10−6), ACD
(p= 9.7 × 10−5), FHOD1 (p= 2.8 × 10−4). In addition to its
effect on transcriptomic regulation, rs8052287 is in high LD
(r2= 0.81) with rs62620177, a coding variant with a CADD
score of 25.3, which indicates pathogenicity in the top 1% of
all SNPs in the human genome29.
Due to the limited phenotypic information available in

the Army STARRS cohort, which consisted only of a
single composite SD variable (SUDcombined), we could not
apply the StructLMM approach. Testing SUDcombined as a
single factor, no interaction of rs8052287 was observed
with respect to SI outcome (p > 0.05).

Multivariate SD–gene interaction analysis in participants of
african descent
In the Yale-Penn participants of African descent, we

observed the HGF gene survived Bonferroni multiple
testing correction for the StructLMM interaction test
(p= 1.08 × 10−6) and approached significance in the

association test (p= 3.39 × 10−6). Within the HGF gene
region, we did not observe a driving single-variant asso-
ciation/interaction (all p > 10−5). Although the phenome-
wide scan did not show any association surviving multiple
testing correction (p= 1.05 × 10−5), the strongest HGF
association was with one of the traumatic events assessed
in the UK Biobank35, Data-Field 20526: “Been in serious
accident believed to be life-threatening” (p= 1.21 × 10−5).

Major depression polygenic risk score analysis
To follow up the consistent genetic overlap identified

previously4–8, we focused our attention on MD PRS from
a large-scale MD GWAS conducted by PGC investiga-
tors33. In the Yale-Penn cohort, the MD PRS was posi-
tively associated with suicidality (Supplemental Table 7):
persistent SI (Yale-Penn OR= 1.26, 95% CI= 1.09–1.46,
FDR q= 0.011), SP (Yale-Penn OR= 1.28, 95% CI=
1.13–1.47, FDR q= 0.005), and SA (Yale-Penn OR= 1.26,
95% CI= 1.09–1.45, FDR q= 0.011). However, there was
no interaction between MD PRS and SD-related traits
with respect to suicidality phenotypes (Supplemental
Table 8).

Discussion
Phenotypic associations
Leveraging the deep phenotypic assessment available in

the Yale-Penn cohort, we investigated the effects of

Fig. 1 Substance dependence (SD) and suicidality in Yale-Penn participants. Association of DSM-IV SD diagnoses (left panel) or polysubstance
dependence severity (i.e., number of comorbid DSM-IV SD diagnosis; right panel) with suicidal ideation, persistent ideation, planning, and attempt.
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different SDs on suicidality. AD and ND were positively
associated with all suicidality outcomes tested in line with
previous studies and meta-analyses36,37. In contrast, the
other SDs investigated appear not to have the same effect
across suicidality spectrum but rather specifically affect
certain outcomes. The most intriguing results are related
to CaD, which was associated positively with SI, negatively
with SA, and a null effect was observed with respect to
persistent SI and SP. A meta-analysis of studies on can-
nabis use and suicidality showed a positive association of
cannabis use with SI, SA, and death by suicide38. Our
analysis was based on a comprehensive assessment of
multiple SDs including CaD, and, for that specific trait,
the results are controlled for the effect of other SDs on
suicidality. These methodological differences could
explain the inconsistency between our findings and those
of the previous meta-analysis. Further, the previous meta-
analysis focused on varying degrees of cannabis use (any,
chronic, and heavy cannabis use), while our analysis
investigated CaD. The genetic basis of substance use,
substance abuse, and SDs appears to be partially dis-
tinct39–42 and these differences may affect their associa-
tions with suicidality. With respect to this issue, an
interesting approach for future investigations would be to

investigate the association of SD and SUD diagnostic
criteria with suicidality.
We also observed that individuals with increasing

number of SD diagnoses had a larger effect on suicidality
than that observed with respect to single SDs. The
strongest associations were observed for SI (individuals
with all five SD diagnoses showed a 6.77-fold increase in
SI odds) and SA (individuals with all five SD diagnoses
showed a 3.61-fold increase in SA odds) and relatively
weaker associations were present for persistent SI (indi-
viduals with all five SD diagnoses showed a 2.01-fold
increase in persistent-SI odds) and SP (individuals with all
five SD diagnoses showed a 2.62-fold increase in SP odds).
Our analysis in the Army STARRS participants also
showed that SUDcombined is positively associated with
suicidality (SI OR= 2.88; SP OR= 3.38; SA OR= 3.92).

Genetic findings
We conducted a multivariate gene-based GEWIS of SI,

testing the interactive effect of SD-related traits. In parti-
cipants of European descent, we identified multiple genes
within the same region of chromosome 16 that showed
both significant SD-related interaction effects and a sig-
nificant association with SI accounting for the possibility

Fig. 2 Gene-based Manhattan plots generated from the multivariate GEWIS of suicide ideation. Bottom panel: interactive effects where
persistent genetic and additive environment effects are accounted for in the null model; Top panel: association effects accounting for the
heterogeneous effect size due to the interactive effects). Red dashed line represents the significance threshold accounting for the gene-based
Bonferroni multiple testing correction.
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of heterogeneous effect sizes due to multivariate SD–gene
interactions. Investigating the index variant, rs8052287, we
characterized the signal and observed that the multivariate

interactions were related to DSM-IV OD, CoD, and ND
criterion counts and the severity of polysubstance
dependence (i.e., the number of SD diagnoses). These

Fig. 3 Regional Manhattan plot of the lead variant rs8052287. This was identified in the gene-based multivariate GEWIS of suicide ideation (Yale-
Penn participants of European descent) Functional annotation derived from CADD (Combined Annotation Dependent Depletion) and RegulomeDB
scores and 15-core chromatin state information across 13 brain tissues is included below. CADD scores > 20 corresponds to top-1% of pathogenicity
across the human genome. RegulomeDB Score= 1 (f to a) corresponds to variants located within a transcription factor binding that shows eQTL activity.
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gene-environment interactions account for 98% of the
genetic variance within this locus. This is in line with the
expected statistical power of the StructLMM method,
which has greater power to detect loci with a high fraction
of the genetic variance explained by gene-environment
interactions27. We could not apply the StructLMMmethod
to the Army STARRS data because of the lack of high-
dimensional data on polysubstance dependence. Applying
a standard gene-environment test, we did not observe an
interaction between rs8052287 and SUDcombined with
respect to SI. This may be due to the reduction in the
statistical power of standard gene-environment tests
compared to the StructLMM approach27.
To validate our findings, we investigated the phenome-

wide spectrum associated with this locus and the reg-
ulatory effect of rs8052287 (i.e., the index variant) on the
tissue-specific transcriptomic profile of the genes located
in this region. Gene-based and single-variant phenome-
wide scans showed a similar pattern of associations rela-
ted to physical health and characteristics. These included
hypothyroidism, anthropometric traits, male hair loss, and
hematological parameters. These phenotypic associations
can be linked to altered thyroid function43. Tissue-specific
transcriptomic analysis confirmed that rs8052287 actively
regulates multiple genes in thyroid tissues. Due to the
high gene density in the locus identified (rs8052287 reg-
ulates the transcriptomic profile of 26 genes), it is hard to
pinpoint the gene(s) responsible for the interaction with
polysubstance dependence. However, the evidence lead-
ing to altered thyroid function supports an intriguing
hypothesis. Previous studies highlighted the potential role
of thyroid dysfunction in suicide risk, especially among
psychiatric patients44. This is in line with the known effect
of altered thyroid function on mental health43. In a recent
genome-wide analysis, we observed that hypothyroidism
is genetically correlated with several behavioral traits
including fatigue, anxiety, depression, loneliness, and
mood swings45. Based on these findings, we hypothesize
that the region identified may affect suicide risk via its role
in regulating thyroid function. Additionally, the three
substances (cocaine, nicotine, and opioids) that showed an
interactive effect with rs8052287 on SI have been inves-
tigated previously with respect to thyroid homeostasis.
Cigarette smoking appears to affect thyroid function with
a dose-related effect linking cotinine levels to thyroid
function and thyroid autoimmunity46. Cocaine abuse has
been linked to the disruptions in the hypothalamic-
pituitary-thyroid axis47 and cocaine use has been sug-
gested as a possible trigger for thyroid storm48. There is a
growing literature on the effect of opioids on the endo-
crine system and opioid-induced endocrinopathies49.
Acute administration of various opioids has been shown
to alter thyroid-stimulating hormone and thyrotropin-
releasing hormone consistenly49. However, conflicting

results were obtained by studies investigating thyroid
function in long-term opioid users and controls49.
Although the exact pathway by which the combination of
CoD, ND, and OD interacts with rs8052287 in the context
of SI is unclear, our “thyroid” hypothesis provides a
potential pathogenetic mechanism linking polysubstance
dependence, genetic liability to hypothyroidism, and SI.
Further studies are needed to test this hypothesis, which
has some obvious potential therapeutic implications.
In the Yale-Penn participants of African descent, we

identified the HGF gene as an interactive locus with
polysubstance dependence in the context of SI. Although
we could only conduct limited follow-up analyses due to
the weakness of the statistical evidence, we found nom-
inally significant association of HGF gene with the expo-
sure to life-threatening traumatic events in UK Biobank.
A recent GEWIS analysis in UK Biobank tested the
interaction between traumatic experiences and genetic
variation with respect to suicidality, identifying loci
involved in brain extracellular matrix biology and synaptic
plasticity50. The identification of the HGF locus appears to
be in line with these independent results. Indeed, the
protein product of the HGF gene is a neurotrophic growth
factor that exerts pleiotropic effects on the central ner-
vous system51. Further studies will be needed to under-
stand the role of the HGF locus in gene-by-environment
interactions related to suicidality.
In line with previous studies4,7,8, our PRS analysis

confirmed the genetic overlap of MD with outcomes
related to suicidality spectrum. However, we did not find
any interactive effect between MD PRS and polysubstance
dependence in the context of SI. This could be due to the
fact that the genetic variance of GWAS-identified loci
appears to be minimally explained by gene-by-
environment interactions50. This scenario would support
the need of GEWIS to identify alleles responsible to
moderate the effect of environmental risk factors.

Limitations
Although the present study provided novel information

regarding the phenotypic and molecular links of poly-
substance dependence to suicidality, several limitations
should be taken into account while evaluating the novelty
of the results presented. Our phenotypic associations
highlighted that polysubstance dependence and certain
SDs are associated with specific suicidality patterns.
Although we accounted for polysubstance comorbidity in
our analysis, we did not include covariates related to other
psychiatric traits associated with SDs and suicidality (i.e.,
MD and anxiety). Accordingly, future studies will be
needed to understand the effect of psychiatric comor-
bidities on SD-suicidality associations. We combined
genetic and phenotypic data from two large cohorts, but
the sample size investigated is not large enough to
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investigate the polygenic architecture of complex traits
like polysubstance dependence and suicidality. To date,
there is limited availability of large cohorts informative to
investigate SD genetics, especially when considering ille-
gal drugs39,41. Although information from Yale-Penn and
Army STARRS cohorts were previously combined to
replicate genetic associations related to SD and suicid-
ality8,11, the limited availability of information regarding
polysubstance dependence in Army STARRS participants
likely prevented us from replicating the findings observed
in the Yale-Penn participants. Additionally, the differ-
ences in the demographic characteristics of the two
cohorts may also have contributed to reducing the power
of our replication analysis. Accordingly, the findings
presented will need to be replicated in independent
samples that are adequately powered. Finally, accounting
for heritable covariates in association tests can lead to
spurious associations due to collider bias52. Although the
StructLMM interaction test is robust to this confounding
effect27, gene-exposure associations may alter the inter-
pretation of interactions, reflecting epistatic relationships
between genetic factors. The loci identified in the present
study were not previously identified as associated with
substance use, abuse, and dependence. This supports that
the interactions identified are not due to epistatic effects.
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