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Abstract

The Hawkes process and its extensions effectively model self-excitatory phenomena including 

earthquakes, viral pandemics, financial transactions, neural spike trains and the spread of memes 

through social networks. The usefulness of these stochastic process models within a host of 

economic sectors and scientific disciplines is undercut by the processes’ computational burden: 

complexity of likelihood evaluations grows quadratically in the number of observations for both 

the temporal and spatiotemporal Hawkes processes. We show that, with care, one may parallelize 

these calculations using both central and graphics processing unit implementations to achieve over 

100-fold speedups over single-core processing. Using a simple adaptive Metropolis–Hastings 

scheme, we apply our high-performance computing framework to a Bayesian analysis of big 

gunshot data generated in Washington D.C. between the years of 2006 and 2019, thereby 

extending a past analysis of the same data from under 10,000 to over 85,000 observations. To 

encourage widespread use, we provide hpHawkes, an open-source R package, and discuss high-

level implementation and program design for leveraging aspects of computational hardware that 

become necessary in a big data setting.

Keywords

Massive parallelization; GPU; SIMD; Spatiotemporal Hawkes process

1 Introduction

The gun violence epidemic in the USA is associated with over 30,000 deaths each year and 

over 650,000 deaths in the past twenty (Centers for Disease Control and Prevention 2020). 

Although a serious problem, mass shootings only account for a small fraction of these 

deaths, while gun-related homicides are most common in poor metropolitan areas 

(Bjerregaard and Lizotte 1995; National Research Council 2013). In 2005, for example, the 
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highest per capita gun homicide rate in the country was 35.4 per 100,000 inhabitants in 

Washington D.C. (Federal Bureau of Investigation 2005). Despite its massive scale, the 

nature of gun-related violence and its impact on US public health remains poorly understood 

due, in part, to a paucity in the number of researchers focused on the field. In 2013, there 

were only 20 academic researchers in the USA focusing on gun violence “and most of them 

[were] economists, criminologists or sociologists” (Wadman 2013). This dearth in public 

health experts studying gun violence is largely due to the 1996 Dickey Amendment 

prohibiting the Centers for Disease Control and Prevention (CDC) from promoting gun 

control (Wadman 2013; Rubin 2016). Similarly, for researchers interested in studying gun 

violence, data availability has been a persistent issue (National Research Council 2005, 

2013). While jurisdictions routinely report incidents where individuals are killed using 

firearms, non-fatal and near miss incidents, which vastly outweigh fatal firearm incidents, 

have been much less reliably reported.

But there are two reasons for (tempered) hope that we will better understand gun violence in 

the future. First, the federal budget for the 2020 fiscal year includes expenditures up to $25 

million dollars to be split between the CDC and the National Institutes of Health for research 

in the reduction of gun-related deaths and injuries, marking the first such expenditure since 

1996 (Grisales 2019). Second, new kinds of data that may shed light on the nature of gun 

violence have become publicly available within the past decade. Examples of this recent 

expansion in gun violence data availability include local police department open data 

portals, crowdsourced gun violence reporting systems and journalistic data initiatives. One 

new source of data, acoustic gunshot locator systems (AGLS; Showen (1997)) uses a 

spatially distributed network of acoustic sensors to triangulate the locations of gunshots in 

space and time, thus overcoming the fact that the majority of gunshots go unreported to law 

enforcement (Mares and Blackburn 2012). And so, a new challenge arises: combining the 

massive scale of American gun violence with the fidelity of AGLS results in a potential 

deluge of big American gunfire data, and we must develop the computational and statistical 

techniques to effectively analyze them.

Analysis of gun violence in the USA has long relied on a range of modeling approaches 

drawn from spatiotemporal statistics including classical Knox tests, K-functions and more 

recent developments such as Gaussian processes (Ratcliffe and Rengert 2008; Flaxman 

2015). Using these tests, scholars have sought to detect and study the degree of stability of 

gun violence clusters, sometimes referred to as gun violence hotspots. They have also 

explored whether gun violence diffuses in space and time as well as within social networks 

of susceptible places and populations and whether public health and law enforcement 

interventions designed to reduce the toll of gun violence are effective in diminishing its 

incidence. Examples of such interventions include violence interruption programs, focused 

deterrence initiatives as well as more traditional policing interventions. All of these rely on 

spatiotemporal measures to generate evidence of both theoretical and policy significance. 

Using these reliable methods, as they have been successfully used in other public health 

domains, scholars have learned that only some types of gun violence reliably cluster and that 

at least some violence can be disrupted (Park et al. 2019).
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At the same time, these implementations draw heavily on the availability of relatively sparse 

point process data or sensibly aggregated point process data to enable both inferential and 

predictive work. However, with the arrival of newer and higher resolution data sources such 

as AGLS, many oft-posed research questions need to be revisited in order to test whether the 

assumptions built into classical analyses hold up. Furthermore, some research questions that 

have been left unanswered due to the challenge of answering them using data measured with 

relatively low spatial and temporal resolution—to say nothing of missing data due to non-

reporting—can now be explored. Key unresolved questions include the exact scales at which 

violence diffuses. Despite decades of research on the spatiotemporal patterns of gun 

violence, it remains an incompletely understood phenomenon. Some models report high 

levels of contagious diffusion of gun violence. Others report much lower levels. Similarly, 

policymakers remain split on which of these models most accurately describes the realities 

of gun violence in their cities. Relying on studies showing the diffusion of gun violence, 

policymakers have implemented violence interruption programs designed to halt the 

diffusion of gun violence. By contrast, policymakers relying on studies showing lower levels 

of diffusion have emphasized the need to address underlying community risk factors. 

Improving spatiotemporal models of gun violence, including gunshots, will support 

refinements of both theoretical models and related policy implementations.

As a case study in the spatiotemporal analysis of big gunfire data, we consider the 

Washington D.C. ShotSpotter AGLS dataset (Petho et al. 2013) consisting of over 85,000 

potential gunfire events from 2006 to 2019. A previous analysis of these data (Loeffler and 

Flaxman 2018) restricts itself to a relatively small subset of around 9000 events occurring in 

the years 2010 through 2012. That same paper seeks to determine whether evidence exists 

for gun violence being contagious in the sense of bursts of diffusions through the urban 

landscape. We follow Loeffler and Flaxman (2018) and model this contagiousness using the 

self-excitatory spatiotemporal Hawkes process (Reinhart 2018), the computational 

complexity of which, unfortunately, scales quadratically in the number of observed events. 

As a result, scaling model calculations to all 85,000 events is difficult, but we overcome this 

challenge with the aid of massive parallelization and cutting-edge computational hardware.

The temporal Hawkes process (Hawkes 1971b,a, 1972) and its extensions are stochastic 

point processes that effectively model phenomena that are self-excitatory in nature. Given an 

earthquake, we expect to observe aftershocks soon after and close to the epicenter and a 

meme that is ‘going viral’ triggers a cascade of ‘likes’ that traverses the edges connecting a 

social network. Similarly, a diffusion of biological viruses across a human landscape also 

exhibits self-excitatory behavior, where an infected student or coworker often results in 

infected students or coworkers. Hawkes processes and extensions have successfully modeled 

earthquakes (Hawkes 1973; Ogata 1988; Zhuang et al. 2004), viral memes (Yang and Zha 

2013; Mei and Eisner 2017), neural activity (Linderman and Adams 2014; Truccolo 2016; 

Linderman et al. 2017), viral epidemics (Kim 2011; Meyer and Held 2014; Choi et al. 2015; 

Rizoiu et al. 2018; Kelly et al. 2019) and financial transactions (Embrechts et al. 2011; 

Chavez-Demoulin and McGill 2012; Hardiman et al. 2013; Hawkes 2018).

Due to the wide, multi-sector use of the entire family of extended Hawkes process models, 

we believe that a demonstration of their natural parallelizability will be beneficial to 
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theoreticians and practitioners alike. Specifically, we use Bayesian inference (Rasmussen 

2013; Linderman and Adams 2014) to learn posterior distributions of our spatiotemporal 

Hawkes process model parameters conditioned on tens of thousands of observed events. Our 

simple Markov chain Monte Carlo (MCMC; Metropolis et al. (1953); Hastings (1970)) 

algorithm requires repeated likelihood evaluations, each of which scales quadratically in 

computational complexity. Overcoming this bottleneck in a big data setting is the chief 

contribution of our work.

A robust literature exists for parallel implementations in statistical computing: Suchard and 

Rambaut (2009), Suchard et al. (2010a) and Suchard et al. (2010b) perform optimization and 

Bayesian inference using graphics processing units (GPUs); Lee et al. (2010) and Zhou et al. 

(2010) use the same hardware for sequential Monte Carlo and statistical optimization, 

respectively; and Beam et al. (2016) apply GPUs to the evaluation of the multi-nomial 

likelihood and its gradient. More recently, Warne et al. (2019) explore the use of central 

processing unit (CPU)-based single instruction, multiple data (SIMD) vectorization in 

various tasks within Bayesian inference, and Holbrook et al. (2019) use GPUs, multi-core 

CPUs and SIMD vectorization to accelerate MCMC for Bayesian multi-dimensional scaling 

with millions of data points. In a similar manner, we develop a high-performance computing 

framework for scalable MCMC for the spatiotemporal Hawkes process using many-core 

GPU, multi-core CPU and SIMD vectorization based implementations. To increase the 

impact of our work, we provide this high-performance computing framework as hpHawkes, 

a rudimentary, open-source R package freely available at https://github.com/suchard-group/

hawkes.

We note that White and Porter (2014) also consider GPU parallel implementations of 

Bayesian inference for a self-excitatory model and that our current work differs substantially 

from the content of that paper. First and from a computational standpoint, we present three 

different and practical parallelization approaches (multi-core and vectorized CPU and many-

core GPU computing). While White and Porter (2014) compare GPU performance to an 

interpreted R language implementation, potentially over-estimating speedups with respect to 

a compiled language, single-core CPU baseline by as much as a factor of ten, we compare 

GPU performance to non-vectorized and vectorized single-core and multi-core C++ 

implementations to paint a richer picture of relative hardware capabilities. Further, our 

model is spatiotemporal, rather than purely temporal, and does not rely on temporal binning. 

We also demonstrate the application of our high-performance computing framework to 

85,000+ observations, compared to the roughly 5000 observations of White and Porter 

(2014). Not only do we develop tools for Bayesian inference, we also develop parallel 

computing methods for post-processing of MCMC samples to obtain interpretable results for 

individual events (Algorithms 4 and 5). Finally, we fully detail the inner workings of our 

parallelization strategies (Algorithms 2–5) with a view to helping the reader understand the 

nature of parallel computing and why it is appropriate for the broader class of self-excitatory 

point processes.
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2 Methods

2.1 Model

The spatiotemporal Hawkes process describes the joint distribution of random variables 

x, t ∈ ℝD × ℝ+ in space and time as an inhomogeneous Poisson process (Daley 2003; 

Daley and Vere-Jones 2007) with intensity function

λ x, t = μ x, t + ∑
tn < t

g x − xn, t − tn

conditioned on observations (x1, t1), … , (xN, tN). In this formulation, μ(·, ·) is the 

background or endemic rate, and g(·, ·) is the triggering function describing the self-

excitatory nature of the process. We follow Mohler (2014) and Loeffler and Flaxman (2018) 

in the use of a triggering function that is exponential in time and Gaussian in space when 

modeling crime data:

λ x, t = μ x, t + θω
ℎD ∑

tn < t
e−ω t − tn ϕ

x − xn
ℎ .

Parameters ω, h and θ are strictly positive, and we call 1/ω and h the temporal and spatial 

bandwidths belonging to the conditional rate function’s self-excitatory term. We further opt 

for a flexible Gaussian kernel smoother to model the background rate

μ x, t =
μ0

τxDτt
∑

n = 1

N
ϕ

x − xn
τx

⋅ ϕ
t − tn

τt

with τx and τt the spatial and temporal bandwidths corresponding to the endemic 

background rate. Taken together, μ0 and θ describe the extent to which the process is self-

excitatory in nature. Denoting Θ = (μ0, τx, τt, θ, ω, h), the likelihood (Daley 2003) for data 

(x1, t1), … , (xN, tN) is

ℒ Θ = exp −∫ℝD∫0
tN

λ x, t dtdx ∏
n = 1

N
λ xn, tn : = e−Λ tN ⋅ ∏

n = 1

N
λn .

Here, we have chosen to integrate over the entirety of ℝD rather than a relevant subset. This 

choice potentially leads to biased inference and should be regarded as an approximation 

when measurement over ℝD is incomplete (Schoenberg 2013). Our intensity function 

separates in space and time, so the integral Λ(tN) factorizes. The spatial integral is unity, and 

Laub et al. (2015) (Sect. 3.2) demonstrate the closed-form solution to the self-excitatory 

component’s temporal integral with exponential triggering function:
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Λ tN = μ0 ∑
n = 1

N
Φ

tN − tn
τt

− Φ
−tn
τt

− θ ∑
n = 1

N
e−ω tN − tn − 1

= ∑
n = 1

N
μ0 Φ

tN − tn
τt

− Φ
−tn
τt

− θ e−ω tN − tn − 1

: = ∑
n = 1

N
Λn

Thus, we are able to calculate the log likelihood

l Θ = − Λ tN + ∑
n = 1

N
logλn

= ∑
n = 1

N
log ∑

n′ = 1

N μ0
τxDτt

ϕ xn − xn′
τx

⋅ ϕ tn − tn′
τt

+
θωℐ tn′ < tn

ℎD e−ω tn − tn′ ϕ xn − xn′
ℎ − Λn

: = ∑
n = 1

N
log ∑

n′ = 1

N
λnn′ − Λn : = ∑

n = 1

N
ln,

(1)

which we use for Bayesian inference in the context of a simple MCMC algorithm (Sect. 

2.2). The likelihood’s double summation over indices n and n′ results in O N2

computational complexity: evaluation of the rate function for each fixed n is linear in 

complexity, and the outer sum over these same n is again linear. We overcome this 

computational burden by developing parallel implementations of likelihood calculations on 

cutting-edge computational hardware (Sect. 2.3). We also develop parallel implementations 

to compute the vector of probabilities πn that each individual event generates from self-

excitation rather than from the background process:

πn = λn − μn
λn

: = ξn
λn

, (2)

where ξn denotes the self-excitatory component of rate λn. For each n, πn is a function of all 

N −1 other observations, so computing the entire vector is O N2 . Moreover, each πn is a 

function of Θ, and we take the posterior distribution of each πn to be a key interpretable of 

our analysis. Given an MCMC sample Θ(1), … ,Θ(S), obtaining a posterior sample πn
s  for n 

= 1, … , N and s = 1, … , S is O N2 , again necessitating the cutting-edge computational 

hardware of Sect. 2.3.

To facilitate comparisons with Loeffler and Flaxman (2018), we follow their specification 

and equip μ0 and θ with truncated normal priors with a lower bound of 0 and standard 

deviations of 1 and 10, respectively. We lend truncated normal priors to ω and 1/h again with 

a lower bound of 0 and with a standard deviation of 10 for both. Finally, we also follow that 

paper in setting the background rate’s temporal and spatial lengthscales τt and τx to be 14 

days and 1.6km. While these settings accomplish our goal of an ‘apples to apples’ 
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comparison with the results of Loeffler and Flaxman (2018), we note that such an approach 

may lead to biased inference for the parameters h, θ and ω as the model overcompensates 

for a misspecified background rate (Reinhart and Greenhouse 2018, Section 4.3). 

Importantly, the same likelihood calculations apply for inferring τx and τt, and our 

engineering and its resulting speedups therefore hold as well.

2.2 Inference

Algorithm 1 describes the simple, adaptive Metropolis–Hastings algorithm (Haario et al. 

2001; Roberts and Rosenthal 2009) with random scan univariate proposals we use to 

generate posterior realizations for ω, h, θ and μ0. Of the different algorithms described in the 

extensive adaptive MCMC literature, some of the simplest work by tuning the proposal 

distribution to obtain a target acceptance rate Roberts and Rosenthal (2009). Following 

(Gelman et al. 1996), we target an acceptance rate of 0.44 (Algorithm 1, Step 6d) for each of 

our four univariate proposals. We accomplish this while guaranteeing the diminishing 
adaptation criterion of Roberts and Rosenthal (2007) by increasing adaptation intervals at a 

super-linear rate (Algorithm 1, Step 6l). For any interesting posterior distribution 

conditioned on even moderately sized data, the algorithm’s computational bottleneck is the 

calculation of the likelihood function in Step 5a. For most models belonging to the Hawkes 

process family, the computational complexity of this step is quadratic in the number of 

observations O N2 , and for our specific model this fact arises from the double summation of 

Eq. (1). In the following section, we discuss the multiple parallelization strategies we use to 

overcome this rate-limiting step.

2.3 Parallelization

To parallelize the Hawkes process likelihood of Eq. (1) and circumvent its O N2

computational complexity, we take a hardware oriented approach that uses four broad rules 

of thumb (Holbrook et al. 2019):

1. we design our code to assign calculations of stereotyped and ostensibly 

independent terms to independent cores; as such, we target the N2 λnn′ terms of 

Eq. (1) for simultaneous processing insofar as the hardware supports;
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2. we identify rate-limiting floating point calculations and perform them in parallel 

across vectors of inputs, thus providing an additional level of parallelization over 

and beyond the use of multiple cores; for our model, the rate-limiting floating 

point calculations occur in the evaluation of exp(·) in the individual λnn′s;

3. when calculations require the use of individual data multiple times, we store 

these data so as to encourage fast reuse; for example, the calculation of λn 

requires the evaluation of N λnn′ terms, each of which depends on xn and tn;
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4. we avoid costly storage of intermediate terms such as the individual λnn′ within 

our calculations and only store their running sum.

Different kinds of computational hardware capitalize on and facilitate these general 

strategies to different degrees. Cluster computing scales to 1000s of CPUs connected by 

Ethernet or Infiniband networks, each CPU having its own random access memory (RAM). 

The scale of such a cluster is undercut, however, by latency arising from communication 

between cluster nodes. If one divides a computing task into two parts, the first being 

parallelizable and having sequential cost c0, the second being non-parallelizable and having 

cost c1, then one can accelerate compute time by sharing c0 between ν nodes. Unfortunately, 

Amdahl’s law (Amdahl 1967) says that the resulting wall time c exhibits the bound

c ≥ c0/v + c1

on account of latency arising from parallel tasks finishing at different times and additional 

communication between nodes. Indeed, for iterative algorithms such as MCMC, the lower 

bound on c becomes worse for every increasing iteration. Such inefficiencies often result in 

diminishing returns for large clusters, which can require significant financial investments 

nonetheless (Suchard et al. 2010a).
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Given the latencies arising from iterative algorithms on large distributed-computing 

environments, we focus on the use of less expensive and more widely owned computing 

hardware to parallelize the evaluation of ℓ(Θ), the bottleneck of our MCMC algorithm. First, 

we use the multiple cores and SIMD vectorization supported by most modern CPUs that are 

available in standard desktop computers. Second, we use the thousands of cores available in 

contemporary general-purpose GPUs to achieve massive parallelization. Specifically, we 

must use this hardware to parallelize the many transformations and reductions implied by 

Eq. (1). For a fixed index n, reading xn, tn, xn′ and tn′ from global memory and evaluating 

λnn′ is a transformation. Thus, we require N transformations to compute the N terms within 

the inner summation of Eq. (1). Following these transformations, a reduction maps from the 

individual λnn′s to their sum λn. A further transformation reads tN, xn and tn from memory, 

computes Λn from them and adds log(λn) and n to obtain Λn. A final reduction sums over all 

N ℓn to obtain the likelihood ℓ(Θ). Regardless of the hardware type, we attack these 

transformation reductions with the same general principles: we perform rate-limiting 

floating point operations such as those involved in the evaluation of λnn′ in parallel; we keep 

data in fast access memory when we require reuse (notice how xn and tn appear in both 

transformations); and we use running summations to avoid costly reading and writing of 

intermediate values such as λnn′.
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2.3.1 Multi-core CPUs—Contemporary desktops and servers have sockets for as many 

as 8 CPU chips. These CPU chips contain 1 to 72 independent processing units called cores, 

each of which can perform different operations in parallel, and each chip contains three (or 

more) levels of memory cache, L1, L2 and L3, that balance the rate of data transfer or 

memory bandwidth with the amount of data storage available. Typically, each core has its 

own L1 and L2 cache, where L1 has higher memory bandwidth but less storage than L2. 

Cores on the same chip usually share L3 cache, which has even less memory bandwidth and 

even more storage than L2. A memory bus connects on-chip cache to RAM, the bandwidth 

of which is significantly smaller than the total rate of numerical operations across cores. In a 

big data setting, memory bandwidth becomes a bottleneck for even the most numerically 

intensive tasks.

Many programming languages contain software libraries that enable the computational 

statistician to communicate with a computer’s operating system and coordinate the behavior 

of multiple cores in the performance of independent tasks. We use Threading Building 

Blocks (TBB) (Reinders 2007), an open-source and cross-platform C++ library, for multi-

core parallelization, and the R package RcppParallel makes TBB available to R developers 

(Allaire et al. 2016). These packages help to parallelize the transformation reductions of Eq. 

(1) by partitioning the task into T threads, for T less than or equal to the total number of 

cores of the multi-core environment. Each thread is limited in the rate at which it performs 

the rate-limiting floating point operations but has fast and unimpeded access to L1 and L2 

caches. Specifically, we use TBB to assign calculation of elements λnn′, n′ = 1, … , N to the 

same thread, so that a thread loads xn and tn to an on-chip register for reuse N times. The 

same thread obtains λn with a running summation of the λnn′ that avoids storage of 

intermediate values. After computing λn, the exact same thread computes a partial sum from 
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a subset of the ℓns and writes the partial sum to RAM. Finally, a single thread sums the T 
partial sums in a fast serial reduction. Algorithm 2 combines this multi-core implementation 

with within-core vectorization. Algorithm 4 is similar to Algorithm 2 and computes the 

vector of self-excitatory probabilities πn.

2.3.2 Within-core vectorization—One can further accelerate multi-core CPU 

processing with the aid of vector or SIMD processing (Warne et al. 2019; Holbrook et al. 

2019), in which the CPU simultaneously applies a single set of instructions to data stored 

consecutively in an extended-length register. For Intel x86 hardware, streaming SIMD 

extensions (SSE), advance vector extensions (AVX) and AVX-512 support vector operations 

on 128, 256 and 512 bit extended registers, respectively. For floating point operations in 64 

bit double precision, this amounts to 2-fold, 4-fold and 8-fold theoretical speedups for SSE, 

AVX and AVX-512, although such performance gains rarely manifest in practice. Whereas 

many computational statisticians know about multi-core processing, there is little mention of 

SIMD parallelization in the literature. That said, some R wrapper packages such as 

RcppXsimd and RcppNT2 (Ushey and Falcou 2016) are becoming available and making it 

possible for R developers to employ SIMD intrinsics.

We leverage SIMD parallelization by vectorizing or unrolling loops within each thread and 

applying the entire loop body to an entire SIMD extended register at each iteration. For AVX 

computing in double precision, each iteration of the unrolled loop corresponds to 4 iterations 

of the original loop. This strategy benefits from efficient reading from and writing to 

consecutive memory locations and simultaneous evaluation of rate-limiting floating point 

operations. The use of an instruction-level program profiler reveals that the rate-limiting step 

in our likelihood calculations is the evaluation of exp(·) within the inner summation of Eq. 

(1). Using AVX, for example, one evaluates exp(·) over four doubles simultaneously and 

achieves a greater than 2-fold speedup. With less impact on compute performance, we also 

vectorize the distance calculations between all pairs of location vectors xn and xn′ (Holbrook 

et al. 2019).

2.3.3 Many-core GPUs—GPUs contain hundreds to thousands of cores, but, unlike the 

independent cores of a CPU, small workgroups of GPU cores must execute the same 

instruction sets simultaneously though on different data. In this respect, GPU-based 

parallelization may be thought of as SIMD on a massive scale, leading Nvidia to coin the 

term SIMT (single instruction, multiple threads) (Lindholm et al. 2008). In this setup, 

communication between threads within the same workgroup happens extremely quickly via 

shared on-chip memory, and scheduling a massive number of threads actually hides latencies 

arising from off-chip memory transactions because of the dynamic and simultaneous loading 

and off-loading of the many tasks. In part, this is because of the GPU’s massively parallel 

architecture. In part, this is because contemporary general-purpose GPUs have small 

memory cache but high memory bandwidth, making them ideal tools for performing a 

massive number of short-lived, cooperative threads.

The likelihood evaluation first involves N independent transformation-reductions, one to 

obtain each λn. We generate T = N × B threads on the GPU and use work groups of B 
threads to compute each of the N λn. Each thread uses a while-loop across indices n′ to 
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compute N/B λnn′s and keeps a running partial sum. After the threads obtain B partial sums, 

they work together in a final binary reduction to obtain λn. The binary reduction is fast, with 

O logB  complexity and represents an additional speedup beyond massive parallelization. 

After computing all N λns, a summation proceeds in the exact same manner. The GPU uses 

massive parallelization to avoid the cost of the rate-limiting floating point computation in 

exp(·). High memory bandwidth allows for fast transfer to and from each working group, 

and, in turn, each work group shares its own fast access memory that facilitates rapid 

communication between member threads. We use the Open Computing Language (OpenCL) 

to write our GPU code. In OpenCL, write functions called kernels, and the library assigns 

them to each work group separately for parallel execution. To evaluate the likelihood, we 

write one kernel for the work groups that compute the ℓns and one kernel for those that sum 

the N ℓns. These details culminate in Algorithm 3. Algorithm 5 is similar to Algorithm 3 and 

computes the vector of self-excitatory probabilities πn.

2.4 Software availability

In writing this paper, we have developed hpHawkes https://github.com/suchard-group/

hawkes, an open-source R package that enables massively parallel implementations of 

spatiotemporal Hawkes processes in a big data setting. We have archived a static release of 

hpHawkes at http://doi.org/10.5281/zenodo.4012745 to aid those who would like to replicate 

our work. Currently, hpHawkes supports MCMC (Algorithms 1, 2 and 3) for the model 

described here with the additional capabilities of inferring locations x and background 

parameters τx and τt. In addition to MCMC, hpHawkes supports post-processing of Markov 

chains to obtain the individual self-excitatory probabilities described in Eq. (2) using 

Algorithms 4 and 5. This package relies on Rcpp (Eddelbuettel and François 2011) to build 

and interface with a C++ library that uses OpenCL and TBB frameworks for parallelization 

on GPUs and CPUs, respectively. We choose to develop with OpenCL because it is both an 

open-source standard, conforming to our personal support of Open Science (Woelfle et al. 

2011), and demonstrates greater portability across devices over its competitors, e.g., CUDA. 

In making this decision, we have potentially forgone performance gains (Fang et al. 2011), 

meaning that similar code written in CUDA and based on Algorithms 2–5 could deliver even 

greater performance increases than those documented below. To enable within-core 

vectorization, hpHawkes accesses SIMD intrinsics via RcppXsimd (Holbrook et al. 2019), 

an R package that itself uses Rcpp to access the C++ library Xsimd.

3 Demonstration

In addition to the software we have developed for the purposes of this paper (Sect. 2.4), we 

have used the R programming language (R Core Team 2019) and the R graphics package 

ggplot2 (Wickham 2016) to produce the figures and results in the following. The 95% 

credible intervals we present are highest posterior density intervals that we obtain using the 

R package coda (Plummer et al. 2006).

3.1 Parallelization

For CPU results, we use a Linux machine with a 10-core Intel Xeon W-2155 processor (3.3 

GHz). Each core supports 2 independent threads or logical cores, so the machine reaches a 
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peak performance of 264 gigaflops with double-precision floating point enhanced with AVX 

vectorization (double that for fused operations such as fused multiply–add). The processor 

comes with 32 GB DDR4 memory (2667 MHz), 640 KB L1 cache, 10 MB L2 cache and 13 

MB L3 cache. For the GPU results, we use an Nvidia Titan V with 5120 CUDA cores (1.2 

GHz), achieving 3.1 teraflops peak double-precision floating point performance (again, 

double this for fused operations). The Titan V comes with 12 GB HBM2 memory, and its 

5120 CUDA cores divide into 80 separate streaming multi-processors (SM), each consisting 

of 64 CUDA cores and its own 96 KB L1 cache. Together, all 80 SMs share a single 4.5 MB 

L2 cache.

Figure 1 and Table 1 show GPU, single-core, multi-core and vectorized processing 

performances for spatiotemporal Hawkes process likelihood evaluations. On the left, we 

randomly generate N = 75,000 data points and observe relative speedups over single-

threaded AVX processing (77.19 s). The GPU implementation (0.73 s) is 105× faster, and 

the 18 thread AVX implementation (6.93 s) is 10.4× faster. The roughly 10-fold speedup of 

the GPU implementation over the 18 thread AVX implementation accords with the former’s 

3.1 teraflop peak performance relative to the latter’s 0.3 teraflop peak performance. On the 

other hand, the single-threaded AVX implementation is 1.26× and 1.52× faster than the SSE 

(96.94 s) and non-vectorized (117.16 s) implementations, respectively. Finally, the GPU 

implementation is 160× the speed of the single-threaded non-vectorized implementation. On 

the right, we observe the number of seconds required to perform a single likelihood 

evaluation for our different implementations as a function of the number of observations, 

which we let scale from 10,000 data points to 90,000 data points. We compare GPU 

performance to single- and multi-threaded AVX processing. As expected, all 

implementations appear to take on a quadratic curve, although one might imagine that the 

GPU performance has a significantly smaller leading constant.

3.2 Gunshots in Washington, DC

We apply our inference framework to AGLS data generated in Washington D.C. between the 

years 2006 and 2019 to ascertain the nature of gun violence as a collective phenomenon. 

Specifically, we wish to determine the extent to which gunfire in D.C. is contagious or 

diffusionary in nature. We build on, and compare our results to, the analysis of Loeffler and 

Flaxman (2018), which uses a similar model to that specified in Sect. 2.1. That analysis 

obtained results from 9000+ data points collected in the years 2010, 2011 and 2012, and the 

data we use differ from that data two ways. First, we combine datasets located at 

justicetechlab.org/shotspotterdata (Carr and Doleac 2016, 2018) and https://opendata.dc.gov/

datasets to obtain data from 2006 to 2013 and from 2014 to 2019, respectively. Second, 

these data include the exact second of each event and so have greater temporal precision 

than that of the previous analysis, which considered data points within the same minute and 

100m radius to be duplicates. In this way, the current dataset is larger because of both 

greater temporal breadth and greater temporal precision. Like the previous analysis, we 

consider two datasets, one with all days of the year and one with New Year’s Eve, July 4 and 

surrounding days removed on account of false positives from fireworks and celebratory 

gunfire. The former (‘full+holidays’) consists of 85,000+ observations, the latter (‘full’) 

55,000+ observations.
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We use Algorithm 1 to generate 4 Markov chains of 10,000 states each and discard the first 

1000 states of each chain. Using our GPU and Algorithm 3 to calculate the likelihood within 

the accept–reject step, total compute time lasts about 4h for the full analysis and 10h for the 

full+holidays analysis. Effective sample sizes are greater than 1700 for all parameters. The 

top row of Fig. 2 compares posterior inference for lengthscale parameters 1/ω, the temporal 

lengthscale, and h, the spatial lengthscale, between the ‘limited’ analysis of Loeffler and 

Flaxman (2018) and our full analysis. We obtain posterior means of 69.5m (95% CI 68.5, 

70.8) and 1.0min (95% CI 0.98, 1.04) for the two lengthscales, compared to 126m (95% CI 

121, 134) and 10min (95% CI 9.5, 11) for the limited analysis. Both of these results may be 

expected because the limited analysis removed events within the same minute and 100m to 

obtain a thinned dataset about 95% of the original size. As a result, we estimate retaliatory 

gunfire to occur much sooner after, and closer to, a previous gunshot. To verify this trend, 

we perform a sensitivity test and remove 8% of the full dataset by considering events within 

a minute and 100m from each other to be duplicates. This sensitivity test results in posterior 

means of 262.4m (95% CI 253.3, 270.7) and 46.2min (95% CI 43.6, 48.7) for the two 

lengthscales. Further sensitivity tests based on 15% and 20% thinned datasets revealed even 

larger lengthscales. Returning to the full analysis, the posterior variances arising from the 

full analysis are significantly smaller. This makes sense for two reasons: first, the data 

conditioned upon are over 5× larger; second, we are considering positive random variables, 

the variance of which scales with the mean.

In the second row of Fig. 2, we compare posterior densities for parameter θ, which 

represents the relative weight of the background intensity or the general proportion of events 

that are self-excitatory in nature. Here, the posterior mean of θ conditioned on the full 

dataset is 0.153 (95% CI 0.150, 0.156) and larger than the 0.13 (95% CI 0.12, 0.13) of the 

limited analysis. Again, we attribute this to the lack of data thinning in the full dataset and 

the resulting greater temporal proximity of gunshots, but we note that both posterior 

densities nest well within the estimated range of 10–19% for retaliatory homicides of 

Metropolitan Police Department (2006). On the other hand, the posterior mean of the full

+holidays analysis is artificially inflated to 0.344 (95% CI 0.340, 0.348) by cascades of 

fireworks and celebratory gunfire encompassing over one-third of that dataset.

The second half of our analysis considers posterior distributions for the probabilities πn of 

each individual gunshot event arising from self-excitation (i.e., being retaliatory) as opposed 

to the background process. We use our GPU to apply Algorithm 5 to—for storage reasons—

a thinned sample of 1000 Θ(s)s to produce 1000 vectors π(s) each of length 55,000. In Fig. 3, 

we visualize the distribution of the posterior means in space and time. On the left, red self-

excitatory events distribute fairly evenly among blue background events in Washington D.C., 

while yellow neutral events barely exist. As a sanity check, the proportion of self-excitatory 

events seems to roughly coincide with the estimated 0.15 posterior mean of θ. On the right, 

we smooth posterior self-excitatory probabilities for each event through time, from 2006 to 

2009, and compare to the overall gunshot density. In general, the trend in self-excitatory 

events hits a peak in 2013 of about 20%. This peak coincides with a small dip in the total 

gunshots for the year 2013, indicating fewer and more closely connected gunfire clusters. 

Censoring issues make it difficult to interpret relations in these trends near 2006 and 2019. 

Finally, Fig. 4 presents posterior distributions of probabilities πn that 7 individual events are 
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self-excitatory in nature. As may be inferred from Fig. 3‘s few yellow points, most events 

cluster close to 0 or 1, resembling a point mass. But many events do provide significant 

uncertainty, and, as expected, those with posterior mean closer to 0.5 have much greater 

variability. We believe that figures like Fig. 4 may be useful for crime investigations in 

determining the retaliatory nature of specific acts of gun violence and quantifying 

uncertainty in this regard.

R code, data and posterior samples related to the above analysis are available at https://

github.com/andrewjholbrook/shot_spotter. To further support replicability, we have archived 

a static release of the repository at http://doi.org/10.5281/zenodo.4012725. We point out that 

spatial and temporal censoring bias our results, and we consider corrections for, and 

modeling of, such bias in a big data context to be a fascinating next step in this line of 

research.

4 Discussion

Self-excitatory stochastic process models are useful for modeling complex diffusionary and 

cascading phenomena in multiple scientific disciplines and industrial sectors, but the 

computational complexity of statistical inference for these models has barred them from 

applications involving big data. In this paper, we have developed a high-performance 

statistical computing framework for Hawkes process models that leverages contemporary 

computational hardware and scales Bayesian inference to more than 85,000 observations. To 

accomplish this, we have created software for both vectorized multi-core CPU and many-

core GPU architecture implementations and made this open-source software freely available 

online. As a demonstration of the usefulness of this approach, we have applied a 

spatiotemporal Hawkes process model to the analysis of emerging acoustic gunshot locator 

systems data recorded in the neighborhoods of Washington D.C. between the years of 2006 

and 2019. In this context, Bayesian inference facilitated by our framework provided point 

estimation and uncertainty quantification of the nature of gun violence as a contagion in 

American communities. To this end, we have created an additional massively parallel post-

processing pipeline to compute probabilities that individual events result from self-excitation 

based on posterior samples arising from MCMC. These posterior probabilities have proven 

useful for creating spatial and temporal visualizations that relate self-excitatory gun violence 

to the Washington D.C. landscape and for quantifying our uncertainty whether individual 

events are retaliatory in origin. We hope this analysis brings attention to big, complex and 

emerging AGLS data, the analysis of which might improve scientific understanding of the 

great American gun violence epidemic.

In the context of this poorly understood epidemic in which many complex models might be 

posited, fast inference is all the more necessary to facilitate quick candidate model 

comparison. For example, it is highly doubtful that all self-excitatory action is purely 

retaliatory in nature: shooting events may consist of multiple shots by the same individual or 

group. On the other hand, retaliatory shootings may plausibly occur days, weeks or even 

months after a precipitating event. Thus, it seems that a mixture model employing multiple 

triggering functions would be appropriate to combine a very short time frame with a slightly 

longer one or with, perhaps, a much larger time variation (days to months). The reality of 
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multi-shot shooting events, very short-term gun-fights and longer term retaliation occurring 

minutes, hours, days or even months later suggests that additional models to capture these 

different processes operating over multiple spatial and temporal scales will be needed. This 

only reinforces the need for fast computation, which will support selection between more 

complex models as well as comparisons to the simpler ones already in the literature.

We will also extend our high-performance computing framework to other generalizations of 

the Hawkes process such as marked Hawkes processes and mutually exciting point 

processes. The former have been effective for modeling Earthquakes (here, the mark is the 

tremor’s score on the Richter scale), the latter for modeling dependencies between neurons. 

For these efforts to succeed and enjoy maximal impact, we must scale Bayesian inference 

for such point process models to millions of observations, and we believe that computational 

tools that accomplish fine-grained parallelization (e.g., tensor processing units and bigger, 

faster GPUs) will accomplish more than multi-processor approaches that fail to overcome 

inherent latency and communication bottlenecks. Nonetheless, we are also interested in 

developing inference frameworks that share computational resources between both CPU and 

GPU simultaneously. For scalable Bayesian inference, all computing tools and 

computational hardware must be on the table. After all, Washington D.C. is only one city of 

at least 40 for which AGLS data have come available in the last decade: American gunfire 

data are big data, indeed.
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Fig. 1. 
Spatiotemporal Hawkes process likelihood evaluations. (Left) Speedup of graphics 

processing unit (GPU) and multi-core advanced vector extensions (AVX) computations 

relative to single-core AVX computing, all using 75,000 randomly generated observations. 

Single-core implementations without single instruction, multiple data (SIMD) and with 

streaming SIMD extensions (SSE) occupy the bottom left corner. (Right) Seconds to 

compute for both GPU and multi-core AVX processing as a function of data quantity
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Fig. 2. 
Posterior distributions of model parameters conditioned on different datasets: ‘limited’ 

indicates the 2010 to 2012 analysis of Loeffler and Flaxman (2018) (9000+ observations); 

‘full’ indicates the 2006 to 2019 analysis without New Years and July 4 (55,000+ 

observations); ‘full+holidays’ indicates a 2006 to 2019 analysis including New Years and 

July 4 (85,000+ observations). Larger lengthscales for the limited analysis likely result from 

thinning of events within the same minute and 100m range. Both full and limited proportion 

of events self-excitatory (θ) are within the previously estimated range of 10–18%, whereas 

that of full+holidays is nowhere near previously estimated ranges
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Fig. 3. 
Posterior means for self-excitatory probabilities πn (Eq. (2)) in relation to spatial and 

temporal allocations. (Left) Red indicates a high posterior probability of a gunshot being 

self-excitatory in nature; blue indicates a low posterior probability. Few yellow points 

suggests concentration towards values 0 and 1. (Right) We compare smoothing of posterior 

means for self-excitatory probabilities as a function of time with empirical gunshot trends. A 

peak in the former around 2013 appears to correspond to a nadir for the latter
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Fig. 4. 
Posterior distributions for 7 individual probabilities πn that each gunshot event results from 

self-excitation. Such distributions may be useful for ascertaining whether specific instances 

of gun violence are retaliatory in nature. As expected, probabilities close to 0 and 1 vary 

less. The majority of πn (not visualized here) resemble point masses extremely close to 0 or 

1
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