
UCLA
UCLA Previously Published Works

Title
Scalable Bayesian inference for self-excitatory stochastic processes applied to big American
gunfire data

Permalink
https://escholarship.org/uc/item/9dh1n327

Journal
Statistics and Computing, 31(1)

ISSN
0960-3174

Authors
Holbrook, Andrew J
Loeffler, Charles E
Flaxman, Seth R
et al.

Publication Date
2021

DOI
10.1007/s11222-020-09980-4

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9dh1n327
https://escholarship.org/uc/item/9dh1n327#author
https://escholarship.org
http://www.cdlib.org/

Scalable Bayesian inference for self-excitatory stochastic
processes applied to big American gunfire data

Andrew J. Holbrook1, Charles E. Loeffler2, Seth R. Flaxman3, Marc A. Suchard1,4,5

1Department of Biostatistics, University of California, Los Angeles, Los Angeles, USA

2Department of Criminology, University of Pennsylvania, Philadelphia, USA

3Department of Mathematics, Imperial College London, London, UK

4Department of Biomathematics, University of California, Los Angeles, Los Angeles, USA

5Department of Human Genetics, University of California, Los Angeles, Los Angeles, USA

Abstract

The Hawkes process and its extensions effectively model self-excitatory phenomena including

earthquakes, viral pandemics, financial transactions, neural spike trains and the spread of memes

through social networks. The usefulness of these stochastic process models within a host of

economic sectors and scientific disciplines is undercut by the processes’ computational burden:

complexity of likelihood evaluations grows quadratically in the number of observations for both

the temporal and spatiotemporal Hawkes processes. We show that, with care, one may parallelize

these calculations using both central and graphics processing unit implementations to achieve over

100-fold speedups over single-core processing. Using a simple adaptive Metropolis–Hastings

scheme, we apply our high-performance computing framework to a Bayesian analysis of big

gunshot data generated in Washington D.C. between the years of 2006 and 2019, thereby

extending a past analysis of the same data from under 10,000 to over 85,000 observations. To

encourage widespread use, we provide hpHawkes, an open-source R package, and discuss high-

level implementation and program design for leveraging aspects of computational hardware that

become necessary in a big data setting.

Keywords

Massive parallelization; GPU; SIMD; Spatiotemporal Hawkes process

1 Introduction

The gun violence epidemic in the USA is associated with over 30,000 deaths each year and

over 650,000 deaths in the past twenty (Centers for Disease Control and Prevention 2020).

Although a serious problem, mass shootings only account for a small fraction of these

deaths, while gun-related homicides are most common in poor metropolitan areas

(Bjerregaard and Lizotte 1995; National Research Council 2013). In 2005, for example, the

✉Andrew J. Holbrook, aholbroo@g.ucla.edu.

HHS Public Access
Author manuscript
Stat Comput. Author manuscript; available in PMC 2022 January 01.

Published in final edited form as:
Stat Comput. 2021 January ; 31(1): . doi:10.1007/s11222-020-09980-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

highest per capita gun homicide rate in the country was 35.4 per 100,000 inhabitants in

Washington D.C. (Federal Bureau of Investigation 2005). Despite its massive scale, the

nature of gun-related violence and its impact on US public health remains poorly understood

due, in part, to a paucity in the number of researchers focused on the field. In 2013, there

were only 20 academic researchers in the USA focusing on gun violence “and most of them

[were] economists, criminologists or sociologists” (Wadman 2013). This dearth in public

health experts studying gun violence is largely due to the 1996 Dickey Amendment

prohibiting the Centers for Disease Control and Prevention (CDC) from promoting gun

control (Wadman 2013; Rubin 2016). Similarly, for researchers interested in studying gun

violence, data availability has been a persistent issue (National Research Council 2005,

2013). While jurisdictions routinely report incidents where individuals are killed using

firearms, non-fatal and near miss incidents, which vastly outweigh fatal firearm incidents,

have been much less reliably reported.

But there are two reasons for (tempered) hope that we will better understand gun violence in

the future. First, the federal budget for the 2020 fiscal year includes expenditures up to $25

million dollars to be split between the CDC and the National Institutes of Health for research

in the reduction of gun-related deaths and injuries, marking the first such expenditure since

1996 (Grisales 2019). Second, new kinds of data that may shed light on the nature of gun

violence have become publicly available within the past decade. Examples of this recent

expansion in gun violence data availability include local police department open data

portals, crowdsourced gun violence reporting systems and journalistic data initiatives. One

new source of data, acoustic gunshot locator systems (AGLS; Showen (1997)) uses a

spatially distributed network of acoustic sensors to triangulate the locations of gunshots in

space and time, thus overcoming the fact that the majority of gunshots go unreported to law

enforcement (Mares and Blackburn 2012). And so, a new challenge arises: combining the

massive scale of American gun violence with the fidelity of AGLS results in a potential

deluge of big American gunfire data, and we must develop the computational and statistical

techniques to effectively analyze them.

Analysis of gun violence in the USA has long relied on a range of modeling approaches

drawn from spatiotemporal statistics including classical Knox tests, K-functions and more

recent developments such as Gaussian processes (Ratcliffe and Rengert 2008; Flaxman

2015). Using these tests, scholars have sought to detect and study the degree of stability of

gun violence clusters, sometimes referred to as gun violence hotspots. They have also

explored whether gun violence diffuses in space and time as well as within social networks

of susceptible places and populations and whether public health and law enforcement

interventions designed to reduce the toll of gun violence are effective in diminishing its

incidence. Examples of such interventions include violence interruption programs, focused

deterrence initiatives as well as more traditional policing interventions. All of these rely on

spatiotemporal measures to generate evidence of both theoretical and policy significance.

Using these reliable methods, as they have been successfully used in other public health

domains, scholars have learned that only some types of gun violence reliably cluster and that

at least some violence can be disrupted (Park et al. 2019).

Holbrook et al. Page 2

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

At the same time, these implementations draw heavily on the availability of relatively sparse

point process data or sensibly aggregated point process data to enable both inferential and

predictive work. However, with the arrival of newer and higher resolution data sources such

as AGLS, many oft-posed research questions need to be revisited in order to test whether the

assumptions built into classical analyses hold up. Furthermore, some research questions that

have been left unanswered due to the challenge of answering them using data measured with

relatively low spatial and temporal resolution—to say nothing of missing data due to non-

reporting—can now be explored. Key unresolved questions include the exact scales at which

violence diffuses. Despite decades of research on the spatiotemporal patterns of gun

violence, it remains an incompletely understood phenomenon. Some models report high

levels of contagious diffusion of gun violence. Others report much lower levels. Similarly,

policymakers remain split on which of these models most accurately describes the realities

of gun violence in their cities. Relying on studies showing the diffusion of gun violence,

policymakers have implemented violence interruption programs designed to halt the

diffusion of gun violence. By contrast, policymakers relying on studies showing lower levels

of diffusion have emphasized the need to address underlying community risk factors.

Improving spatiotemporal models of gun violence, including gunshots, will support

refinements of both theoretical models and related policy implementations.

As a case study in the spatiotemporal analysis of big gunfire data, we consider the

Washington D.C. ShotSpotter AGLS dataset (Petho et al. 2013) consisting of over 85,000

potential gunfire events from 2006 to 2019. A previous analysis of these data (Loeffler and

Flaxman 2018) restricts itself to a relatively small subset of around 9000 events occurring in

the years 2010 through 2012. That same paper seeks to determine whether evidence exists

for gun violence being contagious in the sense of bursts of diffusions through the urban

landscape. We follow Loeffler and Flaxman (2018) and model this contagiousness using the

self-excitatory spatiotemporal Hawkes process (Reinhart 2018), the computational

complexity of which, unfortunately, scales quadratically in the number of observed events.

As a result, scaling model calculations to all 85,000 events is difficult, but we overcome this

challenge with the aid of massive parallelization and cutting-edge computational hardware.

The temporal Hawkes process (Hawkes 1971b,a, 1972) and its extensions are stochastic

point processes that effectively model phenomena that are self-excitatory in nature. Given an

earthquake, we expect to observe aftershocks soon after and close to the epicenter and a

meme that is ‘going viral’ triggers a cascade of ‘likes’ that traverses the edges connecting a

social network. Similarly, a diffusion of biological viruses across a human landscape also

exhibits self-excitatory behavior, where an infected student or coworker often results in

infected students or coworkers. Hawkes processes and extensions have successfully modeled

earthquakes (Hawkes 1973; Ogata 1988; Zhuang et al. 2004), viral memes (Yang and Zha

2013; Mei and Eisner 2017), neural activity (Linderman and Adams 2014; Truccolo 2016;

Linderman et al. 2017), viral epidemics (Kim 2011; Meyer and Held 2014; Choi et al. 2015;

Rizoiu et al. 2018; Kelly et al. 2019) and financial transactions (Embrechts et al. 2011;

Chavez-Demoulin and McGill 2012; Hardiman et al. 2013; Hawkes 2018).

Due to the wide, multi-sector use of the entire family of extended Hawkes process models,

we believe that a demonstration of their natural parallelizability will be beneficial to

Holbrook et al. Page 3

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

theoreticians and practitioners alike. Specifically, we use Bayesian inference (Rasmussen

2013; Linderman and Adams 2014) to learn posterior distributions of our spatiotemporal

Hawkes process model parameters conditioned on tens of thousands of observed events. Our

simple Markov chain Monte Carlo (MCMC; Metropolis et al. (1953); Hastings (1970))

algorithm requires repeated likelihood evaluations, each of which scales quadratically in

computational complexity. Overcoming this bottleneck in a big data setting is the chief

contribution of our work.

A robust literature exists for parallel implementations in statistical computing: Suchard and

Rambaut (2009), Suchard et al. (2010a) and Suchard et al. (2010b) perform optimization and

Bayesian inference using graphics processing units (GPUs); Lee et al. (2010) and Zhou et al.

(2010) use the same hardware for sequential Monte Carlo and statistical optimization,

respectively; and Beam et al. (2016) apply GPUs to the evaluation of the multi-nomial

likelihood and its gradient. More recently, Warne et al. (2019) explore the use of central

processing unit (CPU)-based single instruction, multiple data (SIMD) vectorization in

various tasks within Bayesian inference, and Holbrook et al. (2019) use GPUs, multi-core

CPUs and SIMD vectorization to accelerate MCMC for Bayesian multi-dimensional scaling

with millions of data points. In a similar manner, we develop a high-performance computing

framework for scalable MCMC for the spatiotemporal Hawkes process using many-core

GPU, multi-core CPU and SIMD vectorization based implementations. To increase the

impact of our work, we provide this high-performance computing framework as hpHawkes,

a rudimentary, open-source R package freely available at https://github.com/suchard-group/

hawkes.

We note that White and Porter (2014) also consider GPU parallel implementations of

Bayesian inference for a self-excitatory model and that our current work differs substantially

from the content of that paper. First and from a computational standpoint, we present three

different and practical parallelization approaches (multi-core and vectorized CPU and many-

core GPU computing). While White and Porter (2014) compare GPU performance to an

interpreted R language implementation, potentially over-estimating speedups with respect to

a compiled language, single-core CPU baseline by as much as a factor of ten, we compare

GPU performance to non-vectorized and vectorized single-core and multi-core C++

implementations to paint a richer picture of relative hardware capabilities. Further, our

model is spatiotemporal, rather than purely temporal, and does not rely on temporal binning.

We also demonstrate the application of our high-performance computing framework to

85,000+ observations, compared to the roughly 5000 observations of White and Porter

(2014). Not only do we develop tools for Bayesian inference, we also develop parallel

computing methods for post-processing of MCMC samples to obtain interpretable results for

individual events (Algorithms 4 and 5). Finally, we fully detail the inner workings of our

parallelization strategies (Algorithms 2–5) with a view to helping the reader understand the

nature of parallel computing and why it is appropriate for the broader class of self-excitatory

point processes.

Holbrook et al. Page 4

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/suchard-group/hawkes
https://github.com/suchard-group/hawkes

2 Methods

2.1 Model

The spatiotemporal Hawkes process describes the joint distribution of random variables

x, t ∈ ℝD × ℝ+ in space and time as an inhomogeneous Poisson process (Daley 2003;

Daley and Vere-Jones 2007) with intensity function

λ x, t = μ x, t + ∑
tn < t

g x − xn, t − tn

conditioned on observations (x1, t1), … , (xN, tN). In this formulation, μ(·, ·) is the

background or endemic rate, and g(·, ·) is the triggering function describing the self-

excitatory nature of the process. We follow Mohler (2014) and Loeffler and Flaxman (2018)

in the use of a triggering function that is exponential in time and Gaussian in space when

modeling crime data:

λ x, t = μ x, t + θω
ℎD ∑

tn < t
e−ω t − tn ϕ

x − xn
ℎ .

Parameters ω, h and θ are strictly positive, and we call 1/ω and h the temporal and spatial

bandwidths belonging to the conditional rate function’s self-excitatory term. We further opt

for a flexible Gaussian kernel smoother to model the background rate

μ x, t =
μ0

τxDτt
∑

n = 1

N
ϕ

x − xn
τx

⋅ ϕ
t − tn

τt

with τx and τt the spatial and temporal bandwidths corresponding to the endemic

background rate. Taken together, μ0 and θ describe the extent to which the process is self-

excitatory in nature. Denoting Θ = (μ0, τx, τt, θ, ω, h), the likelihood (Daley 2003) for data

(x1, t1), … , (xN, tN) is

ℒ Θ = exp −∫ℝD∫0
tN

λ x, t dtdx ∏
n = 1

N
λ xn, tn : = e−Λ tN ⋅ ∏

n = 1

N
λn .

Here, we have chosen to integrate over the entirety of ℝD rather than a relevant subset. This

choice potentially leads to biased inference and should be regarded as an approximation

when measurement over ℝD is incomplete (Schoenberg 2013). Our intensity function

separates in space and time, so the integral Λ(tN) factorizes. The spatial integral is unity, and

Laub et al. (2015) (Sect. 3.2) demonstrate the closed-form solution to the self-excitatory

component’s temporal integral with exponential triggering function:

Holbrook et al. Page 5

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Λ tN = μ0 ∑
n = 1

N
Φ

tN − tn
τt

− Φ
−tn
τt

− θ ∑
n = 1

N
e−ω tN − tn − 1

= ∑
n = 1

N
μ0 Φ

tN − tn
τt

− Φ
−tn
τt

− θ e−ω tN − tn − 1

: = ∑
n = 1

N
Λn

Thus, we are able to calculate the log likelihood

l Θ = − Λ tN + ∑
n = 1

N
logλn

= ∑
n = 1

N
log ∑

n′ = 1

N μ0
τxDτt

ϕ xn − xn′
τx

⋅ ϕ tn − tn′
τt

+
θωℐ tn′ < tn

ℎD e−ω tn − tn′ ϕ xn − xn′
ℎ − Λn

: = ∑
n = 1

N
log ∑

n′ = 1

N
λnn′ − Λn : = ∑

n = 1

N
ln,

(1)

which we use for Bayesian inference in the context of a simple MCMC algorithm (Sect.

2.2). The likelihood’s double summation over indices n and n′ results in O N2

computational complexity: evaluation of the rate function for each fixed n is linear in

complexity, and the outer sum over these same n is again linear. We overcome this

computational burden by developing parallel implementations of likelihood calculations on

cutting-edge computational hardware (Sect. 2.3). We also develop parallel implementations

to compute the vector of probabilities πn that each individual event generates from self-

excitation rather than from the background process:

πn = λn − μn
λn

: = ξn
λn

, (2)

where ξn denotes the self-excitatory component of rate λn. For each n, πn is a function of all

N −1 other observations, so computing the entire vector is O N2 . Moreover, each πn is a

function of Θ, and we take the posterior distribution of each πn to be a key interpretable of

our analysis. Given an MCMC sample Θ(1), … ,Θ(S), obtaining a posterior sample πn
s for n

= 1, … , N and s = 1, … , S is O N2 , again necessitating the cutting-edge computational

hardware of Sect. 2.3.

To facilitate comparisons with Loeffler and Flaxman (2018), we follow their specification

and equip μ0 and θ with truncated normal priors with a lower bound of 0 and standard

deviations of 1 and 10, respectively. We lend truncated normal priors to ω and 1/h again with

a lower bound of 0 and with a standard deviation of 10 for both. Finally, we also follow that

paper in setting the background rate’s temporal and spatial lengthscales τt and τx to be 14

days and 1.6km. While these settings accomplish our goal of an ‘apples to apples’

Holbrook et al. Page 6

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

comparison with the results of Loeffler and Flaxman (2018), we note that such an approach

may lead to biased inference for the parameters h, θ and ω as the model overcompensates

for a misspecified background rate (Reinhart and Greenhouse 2018, Section 4.3).

Importantly, the same likelihood calculations apply for inferring τx and τt, and our

engineering and its resulting speedups therefore hold as well.

2.2 Inference

Algorithm 1 describes the simple, adaptive Metropolis–Hastings algorithm (Haario et al.

2001; Roberts and Rosenthal 2009) with random scan univariate proposals we use to

generate posterior realizations for ω, h, θ and μ0. Of the different algorithms described in the

extensive adaptive MCMC literature, some of the simplest work by tuning the proposal

distribution to obtain a target acceptance rate Roberts and Rosenthal (2009). Following

(Gelman et al. 1996), we target an acceptance rate of 0.44 (Algorithm 1, Step 6d) for each of

our four univariate proposals. We accomplish this while guaranteeing the diminishing
adaptation criterion of Roberts and Rosenthal (2007) by increasing adaptation intervals at a

super-linear rate (Algorithm 1, Step 6l). For any interesting posterior distribution

conditioned on even moderately sized data, the algorithm’s computational bottleneck is the

calculation of the likelihood function in Step 5a. For most models belonging to the Hawkes

process family, the computational complexity of this step is quadratic in the number of

observations O N2 , and for our specific model this fact arises from the double summation of

Eq. (1). In the following section, we discuss the multiple parallelization strategies we use to

overcome this rate-limiting step.

2.3 Parallelization

To parallelize the Hawkes process likelihood of Eq. (1) and circumvent its O N2

computational complexity, we take a hardware oriented approach that uses four broad rules

of thumb (Holbrook et al. 2019):

1. we design our code to assign calculations of stereotyped and ostensibly

independent terms to independent cores; as such, we target the N2 λnn′ terms of

Eq. (1) for simultaneous processing insofar as the hardware supports;

Holbrook et al. Page 7

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. we identify rate-limiting floating point calculations and perform them in parallel

across vectors of inputs, thus providing an additional level of parallelization over

and beyond the use of multiple cores; for our model, the rate-limiting floating

point calculations occur in the evaluation of exp(·) in the individual λnn′s;

3. when calculations require the use of individual data multiple times, we store

these data so as to encourage fast reuse; for example, the calculation of λn

requires the evaluation of N λnn′ terms, each of which depends on xn and tn;

Holbrook et al. Page 8

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4. we avoid costly storage of intermediate terms such as the individual λnn′ within

our calculations and only store their running sum.

Different kinds of computational hardware capitalize on and facilitate these general

strategies to different degrees. Cluster computing scales to 1000s of CPUs connected by

Ethernet or Infiniband networks, each CPU having its own random access memory (RAM).

The scale of such a cluster is undercut, however, by latency arising from communication

between cluster nodes. If one divides a computing task into two parts, the first being

parallelizable and having sequential cost c0, the second being non-parallelizable and having

cost c1, then one can accelerate compute time by sharing c0 between ν nodes. Unfortunately,

Amdahl’s law (Amdahl 1967) says that the resulting wall time c exhibits the bound

c ≥ c0/v + c1

on account of latency arising from parallel tasks finishing at different times and additional

communication between nodes. Indeed, for iterative algorithms such as MCMC, the lower

bound on c becomes worse for every increasing iteration. Such inefficiencies often result in

diminishing returns for large clusters, which can require significant financial investments

nonetheless (Suchard et al. 2010a).

Holbrook et al. Page 9

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Given the latencies arising from iterative algorithms on large distributed-computing

environments, we focus on the use of less expensive and more widely owned computing

hardware to parallelize the evaluation of ℓ(Θ), the bottleneck of our MCMC algorithm. First,

we use the multiple cores and SIMD vectorization supported by most modern CPUs that are

available in standard desktop computers. Second, we use the thousands of cores available in

contemporary general-purpose GPUs to achieve massive parallelization. Specifically, we

must use this hardware to parallelize the many transformations and reductions implied by

Eq. (1). For a fixed index n, reading xn, tn, xn′ and tn′ from global memory and evaluating

λnn′ is a transformation. Thus, we require N transformations to compute the N terms within

the inner summation of Eq. (1). Following these transformations, a reduction maps from the

individual λnn′s to their sum λn. A further transformation reads tN, xn and tn from memory,

computes Λn from them and adds log(λn) and n to obtain Λn. A final reduction sums over all

N ℓn to obtain the likelihood ℓ(Θ). Regardless of the hardware type, we attack these

transformation reductions with the same general principles: we perform rate-limiting

floating point operations such as those involved in the evaluation of λnn′ in parallel; we keep

data in fast access memory when we require reuse (notice how xn and tn appear in both

transformations); and we use running summations to avoid costly reading and writing of

intermediate values such as λnn′.

Holbrook et al. Page 10

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Holbrook et al. Page 11

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.3.1 Multi-core CPUs—Contemporary desktops and servers have sockets for as many

as 8 CPU chips. These CPU chips contain 1 to 72 independent processing units called cores,

each of which can perform different operations in parallel, and each chip contains three (or

more) levels of memory cache, L1, L2 and L3, that balance the rate of data transfer or

memory bandwidth with the amount of data storage available. Typically, each core has its

own L1 and L2 cache, where L1 has higher memory bandwidth but less storage than L2.

Cores on the same chip usually share L3 cache, which has even less memory bandwidth and

even more storage than L2. A memory bus connects on-chip cache to RAM, the bandwidth

of which is significantly smaller than the total rate of numerical operations across cores. In a

big data setting, memory bandwidth becomes a bottleneck for even the most numerically

intensive tasks.

Many programming languages contain software libraries that enable the computational

statistician to communicate with a computer’s operating system and coordinate the behavior

of multiple cores in the performance of independent tasks. We use Threading Building

Blocks (TBB) (Reinders 2007), an open-source and cross-platform C++ library, for multi-

core parallelization, and the R package RcppParallel makes TBB available to R developers

(Allaire et al. 2016). These packages help to parallelize the transformation reductions of Eq.

(1) by partitioning the task into T threads, for T less than or equal to the total number of

cores of the multi-core environment. Each thread is limited in the rate at which it performs

the rate-limiting floating point operations but has fast and unimpeded access to L1 and L2

caches. Specifically, we use TBB to assign calculation of elements λnn′, n′ = 1, … , N to the

same thread, so that a thread loads xn and tn to an on-chip register for reuse N times. The

same thread obtains λn with a running summation of the λnn′ that avoids storage of

intermediate values. After computing λn, the exact same thread computes a partial sum from

Holbrook et al. Page 12

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a subset of the ℓns and writes the partial sum to RAM. Finally, a single thread sums the T
partial sums in a fast serial reduction. Algorithm 2 combines this multi-core implementation

with within-core vectorization. Algorithm 4 is similar to Algorithm 2 and computes the

vector of self-excitatory probabilities πn.

2.3.2 Within-core vectorization—One can further accelerate multi-core CPU

processing with the aid of vector or SIMD processing (Warne et al. 2019; Holbrook et al.

2019), in which the CPU simultaneously applies a single set of instructions to data stored

consecutively in an extended-length register. For Intel x86 hardware, streaming SIMD

extensions (SSE), advance vector extensions (AVX) and AVX-512 support vector operations

on 128, 256 and 512 bit extended registers, respectively. For floating point operations in 64

bit double precision, this amounts to 2-fold, 4-fold and 8-fold theoretical speedups for SSE,

AVX and AVX-512, although such performance gains rarely manifest in practice. Whereas

many computational statisticians know about multi-core processing, there is little mention of

SIMD parallelization in the literature. That said, some R wrapper packages such as

RcppXsimd and RcppNT2 (Ushey and Falcou 2016) are becoming available and making it

possible for R developers to employ SIMD intrinsics.

We leverage SIMD parallelization by vectorizing or unrolling loops within each thread and

applying the entire loop body to an entire SIMD extended register at each iteration. For AVX

computing in double precision, each iteration of the unrolled loop corresponds to 4 iterations

of the original loop. This strategy benefits from efficient reading from and writing to

consecutive memory locations and simultaneous evaluation of rate-limiting floating point

operations. The use of an instruction-level program profiler reveals that the rate-limiting step

in our likelihood calculations is the evaluation of exp(·) within the inner summation of Eq.

(1). Using AVX, for example, one evaluates exp(·) over four doubles simultaneously and

achieves a greater than 2-fold speedup. With less impact on compute performance, we also

vectorize the distance calculations between all pairs of location vectors xn and xn′ (Holbrook

et al. 2019).

2.3.3 Many-core GPUs—GPUs contain hundreds to thousands of cores, but, unlike the

independent cores of a CPU, small workgroups of GPU cores must execute the same

instruction sets simultaneously though on different data. In this respect, GPU-based

parallelization may be thought of as SIMD on a massive scale, leading Nvidia to coin the

term SIMT (single instruction, multiple threads) (Lindholm et al. 2008). In this setup,

communication between threads within the same workgroup happens extremely quickly via

shared on-chip memory, and scheduling a massive number of threads actually hides latencies

arising from off-chip memory transactions because of the dynamic and simultaneous loading

and off-loading of the many tasks. In part, this is because of the GPU’s massively parallel

architecture. In part, this is because contemporary general-purpose GPUs have small

memory cache but high memory bandwidth, making them ideal tools for performing a

massive number of short-lived, cooperative threads.

The likelihood evaluation first involves N independent transformation-reductions, one to

obtain each λn. We generate T = N × B threads on the GPU and use work groups of B
threads to compute each of the N λn. Each thread uses a while-loop across indices n′ to

Holbrook et al. Page 13

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

compute N/B λnn′s and keeps a running partial sum. After the threads obtain B partial sums,

they work together in a final binary reduction to obtain λn. The binary reduction is fast, with

O logB complexity and represents an additional speedup beyond massive parallelization.

After computing all N λns, a summation proceeds in the exact same manner. The GPU uses

massive parallelization to avoid the cost of the rate-limiting floating point computation in

exp(·). High memory bandwidth allows for fast transfer to and from each working group,

and, in turn, each work group shares its own fast access memory that facilitates rapid

communication between member threads. We use the Open Computing Language (OpenCL)

to write our GPU code. In OpenCL, write functions called kernels, and the library assigns

them to each work group separately for parallel execution. To evaluate the likelihood, we

write one kernel for the work groups that compute the ℓns and one kernel for those that sum

the N ℓns. These details culminate in Algorithm 3. Algorithm 5 is similar to Algorithm 3 and

computes the vector of self-excitatory probabilities πn.

2.4 Software availability

In writing this paper, we have developed hpHawkes https://github.com/suchard-group/

hawkes, an open-source R package that enables massively parallel implementations of

spatiotemporal Hawkes processes in a big data setting. We have archived a static release of

hpHawkes at http://doi.org/10.5281/zenodo.4012745 to aid those who would like to replicate

our work. Currently, hpHawkes supports MCMC (Algorithms 1, 2 and 3) for the model

described here with the additional capabilities of inferring locations x and background

parameters τx and τt. In addition to MCMC, hpHawkes supports post-processing of Markov

chains to obtain the individual self-excitatory probabilities described in Eq. (2) using

Algorithms 4 and 5. This package relies on Rcpp (Eddelbuettel and François 2011) to build

and interface with a C++ library that uses OpenCL and TBB frameworks for parallelization

on GPUs and CPUs, respectively. We choose to develop with OpenCL because it is both an

open-source standard, conforming to our personal support of Open Science (Woelfle et al.

2011), and demonstrates greater portability across devices over its competitors, e.g., CUDA.

In making this decision, we have potentially forgone performance gains (Fang et al. 2011),

meaning that similar code written in CUDA and based on Algorithms 2–5 could deliver even

greater performance increases than those documented below. To enable within-core

vectorization, hpHawkes accesses SIMD intrinsics via RcppXsimd (Holbrook et al. 2019),

an R package that itself uses Rcpp to access the C++ library Xsimd.

3 Demonstration

In addition to the software we have developed for the purposes of this paper (Sect. 2.4), we

have used the R programming language (R Core Team 2019) and the R graphics package

ggplot2 (Wickham 2016) to produce the figures and results in the following. The 95%

credible intervals we present are highest posterior density intervals that we obtain using the

R package coda (Plummer et al. 2006).

3.1 Parallelization

For CPU results, we use a Linux machine with a 10-core Intel Xeon W-2155 processor (3.3

GHz). Each core supports 2 independent threads or logical cores, so the machine reaches a

Holbrook et al. Page 14

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/suchard-group/hawkes
https://github.com/suchard-group/hawkes

peak performance of 264 gigaflops with double-precision floating point enhanced with AVX

vectorization (double that for fused operations such as fused multiply–add). The processor

comes with 32 GB DDR4 memory (2667 MHz), 640 KB L1 cache, 10 MB L2 cache and 13

MB L3 cache. For the GPU results, we use an Nvidia Titan V with 5120 CUDA cores (1.2

GHz), achieving 3.1 teraflops peak double-precision floating point performance (again,

double this for fused operations). The Titan V comes with 12 GB HBM2 memory, and its

5120 CUDA cores divide into 80 separate streaming multi-processors (SM), each consisting

of 64 CUDA cores and its own 96 KB L1 cache. Together, all 80 SMs share a single 4.5 MB

L2 cache.

Figure 1 and Table 1 show GPU, single-core, multi-core and vectorized processing

performances for spatiotemporal Hawkes process likelihood evaluations. On the left, we

randomly generate N = 75,000 data points and observe relative speedups over single-

threaded AVX processing (77.19 s). The GPU implementation (0.73 s) is 105× faster, and

the 18 thread AVX implementation (6.93 s) is 10.4× faster. The roughly 10-fold speedup of

the GPU implementation over the 18 thread AVX implementation accords with the former’s

3.1 teraflop peak performance relative to the latter’s 0.3 teraflop peak performance. On the

other hand, the single-threaded AVX implementation is 1.26× and 1.52× faster than the SSE

(96.94 s) and non-vectorized (117.16 s) implementations, respectively. Finally, the GPU

implementation is 160× the speed of the single-threaded non-vectorized implementation. On

the right, we observe the number of seconds required to perform a single likelihood

evaluation for our different implementations as a function of the number of observations,

which we let scale from 10,000 data points to 90,000 data points. We compare GPU

performance to single- and multi-threaded AVX processing. As expected, all

implementations appear to take on a quadratic curve, although one might imagine that the

GPU performance has a significantly smaller leading constant.

3.2 Gunshots in Washington, DC

We apply our inference framework to AGLS data generated in Washington D.C. between the

years 2006 and 2019 to ascertain the nature of gun violence as a collective phenomenon.

Specifically, we wish to determine the extent to which gunfire in D.C. is contagious or

diffusionary in nature. We build on, and compare our results to, the analysis of Loeffler and

Flaxman (2018), which uses a similar model to that specified in Sect. 2.1. That analysis

obtained results from 9000+ data points collected in the years 2010, 2011 and 2012, and the

data we use differ from that data two ways. First, we combine datasets located at

justicetechlab.org/shotspotterdata (Carr and Doleac 2016, 2018) and https://opendata.dc.gov/

datasets to obtain data from 2006 to 2013 and from 2014 to 2019, respectively. Second,

these data include the exact second of each event and so have greater temporal precision

than that of the previous analysis, which considered data points within the same minute and

100m radius to be duplicates. In this way, the current dataset is larger because of both

greater temporal breadth and greater temporal precision. Like the previous analysis, we

consider two datasets, one with all days of the year and one with New Year’s Eve, July 4 and

surrounding days removed on account of false positives from fireworks and celebratory

gunfire. The former (‘full+holidays’) consists of 85,000+ observations, the latter (‘full’)

55,000+ observations.

Holbrook et al. Page 15

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://justicetechlab.org/shotspotterdata
https://opendata.dc.gov/datasets
https://opendata.dc.gov/datasets

We use Algorithm 1 to generate 4 Markov chains of 10,000 states each and discard the first

1000 states of each chain. Using our GPU and Algorithm 3 to calculate the likelihood within

the accept–reject step, total compute time lasts about 4h for the full analysis and 10h for the

full+holidays analysis. Effective sample sizes are greater than 1700 for all parameters. The

top row of Fig. 2 compares posterior inference for lengthscale parameters 1/ω, the temporal

lengthscale, and h, the spatial lengthscale, between the ‘limited’ analysis of Loeffler and

Flaxman (2018) and our full analysis. We obtain posterior means of 69.5m (95% CI 68.5,

70.8) and 1.0min (95% CI 0.98, 1.04) for the two lengthscales, compared to 126m (95% CI

121, 134) and 10min (95% CI 9.5, 11) for the limited analysis. Both of these results may be

expected because the limited analysis removed events within the same minute and 100m to

obtain a thinned dataset about 95% of the original size. As a result, we estimate retaliatory

gunfire to occur much sooner after, and closer to, a previous gunshot. To verify this trend,

we perform a sensitivity test and remove 8% of the full dataset by considering events within

a minute and 100m from each other to be duplicates. This sensitivity test results in posterior

means of 262.4m (95% CI 253.3, 270.7) and 46.2min (95% CI 43.6, 48.7) for the two

lengthscales. Further sensitivity tests based on 15% and 20% thinned datasets revealed even

larger lengthscales. Returning to the full analysis, the posterior variances arising from the

full analysis are significantly smaller. This makes sense for two reasons: first, the data

conditioned upon are over 5× larger; second, we are considering positive random variables,

the variance of which scales with the mean.

In the second row of Fig. 2, we compare posterior densities for parameter θ, which

represents the relative weight of the background intensity or the general proportion of events

that are self-excitatory in nature. Here, the posterior mean of θ conditioned on the full

dataset is 0.153 (95% CI 0.150, 0.156) and larger than the 0.13 (95% CI 0.12, 0.13) of the

limited analysis. Again, we attribute this to the lack of data thinning in the full dataset and

the resulting greater temporal proximity of gunshots, but we note that both posterior

densities nest well within the estimated range of 10–19% for retaliatory homicides of

Metropolitan Police Department (2006). On the other hand, the posterior mean of the full

+holidays analysis is artificially inflated to 0.344 (95% CI 0.340, 0.348) by cascades of

fireworks and celebratory gunfire encompassing over one-third of that dataset.

The second half of our analysis considers posterior distributions for the probabilities πn of

each individual gunshot event arising from self-excitation (i.e., being retaliatory) as opposed

to the background process. We use our GPU to apply Algorithm 5 to—for storage reasons—

a thinned sample of 1000 Θ(s)s to produce 1000 vectors π(s) each of length 55,000. In Fig. 3,

we visualize the distribution of the posterior means in space and time. On the left, red self-

excitatory events distribute fairly evenly among blue background events in Washington D.C.,

while yellow neutral events barely exist. As a sanity check, the proportion of self-excitatory

events seems to roughly coincide with the estimated 0.15 posterior mean of θ. On the right,

we smooth posterior self-excitatory probabilities for each event through time, from 2006 to

2009, and compare to the overall gunshot density. In general, the trend in self-excitatory

events hits a peak in 2013 of about 20%. This peak coincides with a small dip in the total

gunshots for the year 2013, indicating fewer and more closely connected gunfire clusters.

Censoring issues make it difficult to interpret relations in these trends near 2006 and 2019.

Finally, Fig. 4 presents posterior distributions of probabilities πn that 7 individual events are

Holbrook et al. Page 16

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

self-excitatory in nature. As may be inferred from Fig. 3‘s few yellow points, most events

cluster close to 0 or 1, resembling a point mass. But many events do provide significant

uncertainty, and, as expected, those with posterior mean closer to 0.5 have much greater

variability. We believe that figures like Fig. 4 may be useful for crime investigations in

determining the retaliatory nature of specific acts of gun violence and quantifying

uncertainty in this regard.

R code, data and posterior samples related to the above analysis are available at https://

github.com/andrewjholbrook/shot_spotter. To further support replicability, we have archived

a static release of the repository at http://doi.org/10.5281/zenodo.4012725. We point out that

spatial and temporal censoring bias our results, and we consider corrections for, and

modeling of, such bias in a big data context to be a fascinating next step in this line of

research.

4 Discussion

Self-excitatory stochastic process models are useful for modeling complex diffusionary and

cascading phenomena in multiple scientific disciplines and industrial sectors, but the

computational complexity of statistical inference for these models has barred them from

applications involving big data. In this paper, we have developed a high-performance

statistical computing framework for Hawkes process models that leverages contemporary

computational hardware and scales Bayesian inference to more than 85,000 observations. To

accomplish this, we have created software for both vectorized multi-core CPU and many-

core GPU architecture implementations and made this open-source software freely available

online. As a demonstration of the usefulness of this approach, we have applied a

spatiotemporal Hawkes process model to the analysis of emerging acoustic gunshot locator

systems data recorded in the neighborhoods of Washington D.C. between the years of 2006

and 2019. In this context, Bayesian inference facilitated by our framework provided point

estimation and uncertainty quantification of the nature of gun violence as a contagion in

American communities. To this end, we have created an additional massively parallel post-

processing pipeline to compute probabilities that individual events result from self-excitation

based on posterior samples arising from MCMC. These posterior probabilities have proven

useful for creating spatial and temporal visualizations that relate self-excitatory gun violence

to the Washington D.C. landscape and for quantifying our uncertainty whether individual

events are retaliatory in origin. We hope this analysis brings attention to big, complex and

emerging AGLS data, the analysis of which might improve scientific understanding of the

great American gun violence epidemic.

In the context of this poorly understood epidemic in which many complex models might be

posited, fast inference is all the more necessary to facilitate quick candidate model

comparison. For example, it is highly doubtful that all self-excitatory action is purely

retaliatory in nature: shooting events may consist of multiple shots by the same individual or

group. On the other hand, retaliatory shootings may plausibly occur days, weeks or even

months after a precipitating event. Thus, it seems that a mixture model employing multiple

triggering functions would be appropriate to combine a very short time frame with a slightly

longer one or with, perhaps, a much larger time variation (days to months). The reality of

Holbrook et al. Page 17

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/andrewjholbrook/shot_spotter
https://github.com/andrewjholbrook/shot_spotter

multi-shot shooting events, very short-term gun-fights and longer term retaliation occurring

minutes, hours, days or even months later suggests that additional models to capture these

different processes operating over multiple spatial and temporal scales will be needed. This

only reinforces the need for fast computation, which will support selection between more

complex models as well as comparisons to the simpler ones already in the literature.

We will also extend our high-performance computing framework to other generalizations of

the Hawkes process such as marked Hawkes processes and mutually exciting point

processes. The former have been effective for modeling Earthquakes (here, the mark is the

tremor’s score on the Richter scale), the latter for modeling dependencies between neurons.

For these efforts to succeed and enjoy maximal impact, we must scale Bayesian inference

for such point process models to millions of observations, and we believe that computational

tools that accomplish fine-grained parallelization (e.g., tensor processing units and bigger,

faster GPUs) will accomplish more than multi-processor approaches that fail to overcome

inherent latency and communication bottlenecks. Nonetheless, we are also interested in

developing inference frameworks that share computational resources between both CPU and

GPU simultaneously. For scalable Bayesian inference, all computing tools and

computational hardware must be on the table. After all, Washington D.C. is only one city of

at least 40 for which AGLS data have come available in the last decade: American gunfire

data are big data, indeed.

Acknowledgements

The research leading to these results has received funding through National Institutes of Health Grant U19
AI135995 and National Science Foundation Grant DMS1264153. AJH is supported by NIH Grant K25AI153816.
We gratefully acknowledge support from Nvidia Corporation with the donation of parallel computing resources
used for this research.

References

Allaire J, Francois R, Ushey K, Vandenbrouck G, Geelnard M: Intel: RcppParallel: Parallel
Programming Tools for ‘Rcpp’. R package version 4.319 (2016)

Amdahl GM: Validity of the single processor approach to achieving large scale computing capabilities.
In: Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, pp. 483–485 (1967)

Beam AL, Ghosh SK, Doyle J: Fast Hamiltonian Monte Carlo using GPU computing. J. Comput.
Graph. Stat 25, 536–548 (2016)

Bjerregaard B, Lizotte AJ: Gun ownership and gang membership. J. Crim. L. Criminol 86, 37 (1995)

Carr J, Doleac JL: The geography, incidence, and underreporting of gun violence: new evidence using
shotspotter data. In: Incidence, and Underreporting of Gun Violence: New Evidence Using
Shotspotter Data (2016)

Carr JB, Doleac JL: Keep the kids inside? Juvenile curfews and urban gun violence. Rev. Econ. Stat
100, 609–618 (2018)

Centers for Disease Control and Prevention: Centers for Disease Control and Prevention, National
Center for Health Statistics. Underlying Cause of Death 1999–2018 on CDC WONDER Online
Database, released in 2020. Data are from the Multiple Cause of Death Files, 1999–2018, as
compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics
Cooperative Program (2020). Accessed wonder.cdc.gov/ucd-icd10.html

Chavez-Demoulin V, McGill J: High-frequency financial data modeling using Hawkes processes. J.
Bank. Finance 36, 3415–3426 (2012)

Holbrook et al. Page 18

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://wonder.cdc.gov/ucd-icd10.html

Choi E, Du N, Chen R, Song L, Sun J: Constructing disease network and temporal progression model
via context-sensitive Hawkes process. In: 2015 IEEE International Conference on Data Mining, pp.
721–726. IEEE (2015)

Daley DJ: An Introduction to the Theory of Point Processes: Elementary Theory of Point Processes.
Springer, Berlin (2003)

Daley DJ, Vere-Jones D: An Introduction to the Theory of Point Processes: Volume II: General Theory
and Structure. Springer, Berlin (2007)

Eddelbuettel D, François R: Rcpp: Seamless R and C++ integration. J. Stat. Softw 40, 1–18 (2011)

Embrechts P, Liniger T, Lin L: Multivariate Hawkes processes: an application to financial data. J.
Appl. Probab 48, 367–378 (2011)

Fang J, Varbanescu AL, Sips H: A comprehensive performance comparison of cuda and opencl. In:
2011 International Conference on Parallel Processing, pp. 216–225. IEEE (2011)

Federal Bureau of Investigation: Crime in the u.s (2005). Accessed www2.fbi.gov/ucr/05cius/data/
table_05.html

Flaxman SR: Machine Learning in Space and Time. Ph.D. thesis, Carnegie Mellon University (2015)

Gelman A, Roberts GO, Gilks WR, et al.: Efficient metropolis jumping rules. Bayesian Stat. 5, 42
(1996)

Grisales C: From Border Security to Tobacco Age, Both Parties Tout Key Wins in Spending Deal.
NPR. Accessed (2019). www.npr.org/2019/12/16/788506571/border-wall-to-tobacco-age-both-
parties-tout-key-wins-in-spending-deal

Haario H, Saksman E, Tamminen J, et al.: An adaptive metropolis algorithm. Bernoulli 7, 223–242
(2001)

Hardiman SJ, Bercot N, Bouchaud J-P: Critical reflexivity in financial markets: a Hawkes process
analysis. Eur. Phys. J. B 86, 442 (2013)

Hastings WK: Monte Carlo sampling methods using Markov chains and their applications. Biometrika
57, 97–109 (1970)

Hawkes AG: Point spectra of some mutually exciting point processes. J. R. Stat. Soc. Ser. B Methodol
33, 438–443 (1971a)

Hawkes AG: Spectra of some self-exciting and mutually exciting point processes. Biometrika 58, 83–
90 (1971b)

Hawkes A: Spectra of some mutually exciting point processes with associated variables. Stoch. Point
Process 261–271 (1972)

Hawkes A: Cluster models for earthquakes-regional comparisons. Bull. Int. Stat. Inst 45, 454–461
(1973)

Hawkes AG: Hawkes processes and their applications to finance: a review. Quant. Finance 18, 193–
198 (2018)

Holbrook A, Lemey P, Baele G, Dellicour S, Brockmann D, Rambaut A, Suchard M: Massive
parallelization boosts big Bayesian multidimensional scaling. arXiv preprint arXiv:1905.04582
(2019)

Kelly JD, Park J, Harrigan RJ, Hoff NA, Lee SD, Wannier R, Selo B, Mossoko M, Njoloko B,
Okitolonda-Wemakoy E, et al.: Real-time predictions of the 2018–2019 ebola virus disease
outbreak in the democratic republic of the congo using hawkes point process models. Epidemics
28, 100354 (2019) [PubMed: 31395373]

Kim H: Spatio-temporal Point Process Models for the Spread of Avian Influenza Virus (H5N1). Ph.D.
thesis UC Berkeley (2011)

Laub PJ, Taimre T, Pollett PK: Hawkes processes. arXiv preprint arXiv:1507.02822 (2015)

Lee A, Yau C, Giles MB, Doucet A, Holmes CC: On the utility of graphics cards to perform massively
parallel simulation of advanced Monte Carlo methods. J. Comput. Graph. Stat 19, 769–789 (2010)
[PubMed: 22003276]

Linderman S, Adams R: Discovering latent network structure in point process data. In: International
Conference on Machine Learning, pp. 1413–1421 (2014)

Linderman SW, Wang Y, Blei DM: Bayesian inference for latent Hawkes processes. Adv. Neural Inf.
Process. Syst (2017)

Holbrook et al. Page 19

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www2.fbi.gov/ucr/05cius/data/table_05.html
http://www2.fbi.gov/ucr/05cius/data/table_05.html
http://www.npr.org/2019/12/16/788506571/border-wall-to-tobacco-age-both-parties-tout-key-wins-in-spending-deal
http://www.npr.org/2019/12/16/788506571/border-wall-to-tobacco-age-both-parties-tout-key-wins-in-spending-deal

Lindholm E, Nickolls J, Oberman S, Montrym J: Nvidia tesla: a unified graphics and computing
architecture. IEEE Micro 28, 39–55 (2008)

Loeffler C, Flaxman S: Is gun violence contagious? A spatiotemporal test. J. Quant. Criminol 34, 999–
1017 (2018)

Mares D, Blackburn E: Evaluating the effectiveness of an acoustic gunshot location system in St.
Louis, MO. Polic. J. Policy Pract 6, 26–42 (2012)

Mei H, Eisner JM: The neural Hawkes process: A neurally self-modulating multivariate point process.
In: Advances in Neural Information Processing Systems, pp. 6754–6764 (2017)

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E: Equation of state calculations by
fast computing machines. J. Chem. Phys 21, 1087–1092 (1953)

Metropolitan Police Department: Juvenile and Adult Homicide in the District of Columbia—2001–
2005 (2006)

Meyer S, Held L, et al.: Power-law models for infectious disease spread. Ann. Appl. Stat 8, 1612–1639
(2014)

Mohler G: Marked point process hotspot maps for homicide and gun crime prediction in Chicago. Int.
J. Forecast 30, 491–497 (2014)

National Research Council: Firearms and Violence: A Critical Review. National Academies Press
(2005)

National Research Council: Priorities for Research to Reduce the Threat of Firearm-Related Violence.
National Academies Press (2013)

Ogata Y: Statistical models for earthquake occurrences and residual analysis for point processes. J.
Am. Stat. Assoc 83, 9–27 (1988)

Park J, Schoenberg FP, Bertozzi AL, Brantingham PJ: Investigating Clustering and Violence
Interruption in Gang-Related Violent Crime Data Using Spatial–Temporal Point Processes with
Covariates (2019)

Petho A, Fallis D, Keating D: Shotspotter Detection System Documents 39,000 Shooting Incidents in
the District. Washington Post (2013). Accessed www.washingtonpost.com/investigations/

Plummer M, Best N, Cowles K, Vines K: Coda: convergence diagnosis and output analysis for
MCMC. R News 6, 7–11 (2006)

R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing Vienna, Austria (2019)

Rasmussen JG: Bayesian inference for Hawkes processes. Methodol. Comput. Appl. Probab 15, 623–
642 (2013)

Ratcliffe JH, Rengert GF: Near-repeat patterns in Philadelphia shootings. Secur. J 21, 58–76 (2008)

Reinders J: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates Inc, Sebastopol (2007)

Reinhart A, Greenhouse J: Self-exciting point processes with spatial covariates: modelling the
dynamics of crime. J. R. Stat. Soc. Ser. C 67, 1305–1329 (2018)

Reinhart A, et al.: A review of self-exciting spatio-temporal point processes and their applications.
Stat. Sci 33, 299–318 (2018)

Rizoiu M-A, Mishra S, Kong Q, Carman M, Xie L: Sir–Hawkes: linking epidemic models and Hawkes
processes to model diffusions in finite populations. In: Proceedings of the 2018 World Wide Web
Conference on World Wide Web International World Wide Web Conferences Steering Committee,
pp. 419–428 (2018)

Roberts GO, Rosenthal JS: Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms.
J. Appl. Probab 44, 458–475 (2007)

Roberts GO, Rosenthal JS: Examples of adaptive MCMC. J. Comput. Graph. Stat 18, 349–367 (2009)

Rubin R: Tale of 2 agencies: CDC avoids gun violence research but NIH funds it. JAMA 315, 1689–
1692 (2016) [PubMed: 27050067]

Schoenberg FP: Facilitated estimation of etas. Bull. Seismol. Soc. Am 103, 601–605 (2013)

Showen R: Operational gunshot location system. In: Surveillance and Assessment Technologies for
Law Enforcement, Vol. 2935 International Society for Optics and Photonics, pp. 130–139 (1997)

Suchard M, Rambaut A: Many-core algorithms for statistical phylogenetics. Bioinformatics 25, 1370–
1376 (2009) [PubMed: 19369496]

Holbrook et al. Page 20

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.washingtonpost.com/investigations/

Suchard M, Wang Q, Chan C, Frelinger J, Cron A, West M: Understanding GPU programming for
statistical computation: studies in massively parallel massive mixtures. J. Comput. Graph. Stat 19,
419–438 (2010a) [PubMed: 20877443]

Suchard MA, Holmes C, West M: Some of the what?, why?, how?, who? and where? of graphics
processing unit computing for Bayesian analysis. Bull. Int. Soc. Bayesian Anal 17, 12–16 (2010b)

Truccolo W: From point process observations to collective neural dynamics: nonlinear Hawkes process
glms, low-dimensional dynamics and coarse graining. J. Physiol. Paris 110, 336–347 (2016)
[PubMed: 28336305]

Ushey K, Falcou J: RcppNT2: ‘Rcpp’ Integration for the ‘NT2’ Scientific Computing Library. R
package version 0.1.0 (2016)

Wadman M: Firearms research: the gun fighter. Nat. News 496, 412 (2013)

Warne DJ, Sisson SA, Drovandi C: Acceleration of expensive computations in Bayesian statistics
using vector operations (2019). arXiv preprint arXiv:1902.09046

White G, Porter MD: GPU accelerated MCMC for modeling terrorist activity. Comput. Stat. Data Anal
71, 643–651 (2014)

Wickham H: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2016)

Woelfle M, Olliaro P, Todd MH: Open science is a research accelerator. Nat. Chem 3, 745–748 (2011)
[PubMed: 21941234]

Yang S-H, Zha H: Mixture of mutually exciting processes for viral diffusion. In: International
Conference on Machine Learning, pp. 1–9 (2013)

Zhou H, Lange K, Suchard M: Graphics processing units and high-dimensional optimization. Stat. Sci
25, 311–324 (2010) [PubMed: 21847315]

Zhuang J, Ogata Y, Vere-Jones D: Analyzing earthquake clustering features by using stochastic
reconstruction. J. Geophys. Res. Solid Earth (2004). 10.1029/2003JB002879

Holbrook et al. Page 21

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Spatiotemporal Hawkes process likelihood evaluations. (Left) Speedup of graphics

processing unit (GPU) and multi-core advanced vector extensions (AVX) computations

relative to single-core AVX computing, all using 75,000 randomly generated observations.

Single-core implementations without single instruction, multiple data (SIMD) and with

streaming SIMD extensions (SSE) occupy the bottom left corner. (Right) Seconds to

compute for both GPU and multi-core AVX processing as a function of data quantity

Holbrook et al. Page 22

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Posterior distributions of model parameters conditioned on different datasets: ‘limited’

indicates the 2010 to 2012 analysis of Loeffler and Flaxman (2018) (9000+ observations);

‘full’ indicates the 2006 to 2019 analysis without New Years and July 4 (55,000+

observations); ‘full+holidays’ indicates a 2006 to 2019 analysis including New Years and

July 4 (85,000+ observations). Larger lengthscales for the limited analysis likely result from

thinning of events within the same minute and 100m range. Both full and limited proportion

of events self-excitatory (θ) are within the previously estimated range of 10–18%, whereas

that of full+holidays is nowhere near previously estimated ranges

Holbrook et al. Page 23

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Posterior means for self-excitatory probabilities πn (Eq. (2)) in relation to spatial and

temporal allocations. (Left) Red indicates a high posterior probability of a gunshot being

self-excitatory in nature; blue indicates a low posterior probability. Few yellow points

suggests concentration towards values 0 and 1. (Right) We compare smoothing of posterior

means for self-excitatory probabilities as a function of time with empirical gunshot trends. A

peak in the former around 2013 appears to correspond to a nadir for the latter

Holbrook et al. Page 24

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Posterior distributions for 7 individual probabilities πn that each gunshot event results from

self-excitation. Such distributions may be useful for ascertaining whether specific instances

of gun violence are retaliatory in nature. As expected, probabilities close to 0 and 1 vary

less. The majority of πn (not visualized here) resemble point masses extremely close to 0 or

1

Holbrook et al. Page 25

Stat Comput. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Holbrook et al. Page 26

Ta
b

le
 1

A
bs

ol
ut

e
du

ra
tio

ns
 a

nd
 r

el
at

iv
e

sp
ee

du
ps

 o
f

lik
el

ih
oo

d
ev

al
ua

tio
ns

 f
or

 g
ra

ph
ic

s
pr

oc
es

si
ng

 u
ni

t (
G

PU
)

an
d

m
ul

ti-
co

re
 a

dv
an

ce
d

ve
ct

or
 e

xt
en

si
on

s
(A

V
X

)

co
m

pu
tin

g
re

la
tiv

e
to

 s
in

gl
e-

co
re

 A
V

X
 c

om
pu

tin
g

ap
pl

ie
d

to
 7

5,
00

0
ra

nd
om

ly
 g

en
er

at
ed

 o
bs

er
va

tio
ns

C
or

es
 v

ec
to

ri
za

ti
on

1
A

V
X

G
P

U

N
on

e
SS

E
2

4
6

8
10

12
14

16
18

D
ur

at
io

n
(s

)
11

7.
16

96
.9

4
77

.1
9

40
.6

5
20

.7
3

13
.9

0
10

.5
3

8.
59

8.
09

7.
67

7.
28

6.
93

0.
73

Sp
ee

du
p

0.
66

0.
80

1
1.

90
3.

72
5.

55
7.

33
8.

99
9.

54
10

.0
7

10
.6

1
11

.1
4

10
5.

54

Si
ng

le
-c

or
e

im
pl

em
en

ta
tio

ns
 w

ith
ou

t s
in

gl
e

in
st

ru
ct

io
n,

 m
ul

tip
le

 d
at

a
(S

IM
D

)
an

d
w

ith
 s

tr
ea

m
in

g
SI

M
D

 e
xt

en
si

on
s

(S
SE

)
oc

cu
py

 th
e

bo
tto

m
 le

ft
 c

or
ne

r.
O

n
ou

r
de

vi
ce

, n
on

-v
ec

to
ri

ze
d,

 s
in

gl
e-

co
re

pr

oc
es

si
ng

 r
el

ia
bl

y
ac

hi
ev

es
 b

et
w

ee
n

5-
fo

ld
 a

nd
 1

0-
fo

ld
 s

pe
ed

up
s

ov
er

 a
n

R
-b

as
ed

 im
pl

em
en

ta
tio

n
of

 th
e

m
od

el
 a

t h
an

d

Stat Comput. Author manuscript; available in PMC 2022 January 01.

	Abstract
	Introduction
	Methods
	Model
	Inference
	Parallelization
	Multi-core CPUs
	Within-core vectorization
	Many-core GPUs

	Software availability

	Demonstration
	Parallelization
	Gunshots in Washington, DC

	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1

