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Pricing and Market Segmentation for Software Upgrades

Ram Bala∗ Scott Carr∗

June 30, 2005

Abstract

Upgrades are endemic in the software industry and create the possibility that customers

might either postpone purchase or buy early on and never upgrade: When will a customer

upgrade? Is it better to upgrade now or to wait for an improved version? When should we release

an improved product? How much should we charge for each version? Should we give discounts on

upgrades to existing customers? Will today’s sales be cannibalized by the anticipated improved

version?

We focus on pricing and how it is affected by the degree to which a product is improved

between versions. In particular, we are interested how the firm should price different versions of

its product and whether it should offer “upgrade discounts” to existing customers. To address

these issues, we analyze a two-period model in which a firm sells an initial version of its product

in the first period and an improved version the second. In each period, the firm (i.e., the soft-

ware supplier) selects the selling prices, and customers decide whether to purchase. Customers

may purchase the product in either or both periods and, at the firm’s discretion, are given

a discounted price if they repurchase/upgrade in the second period. We solve this model for

subgame perfect equilibrium prices and purchasing decisions and investigate how equilibrium

prices, profits, and cash flows are influenced by the degree of product improvement. We also

uncover a number of managerial insights; for example, equilibrium pricing induces all of the first

period purchasers to upgrade to the improved product in the second period.

∗UCLA Anderson School of Management, Los Angeles, CA
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1 Introduction

Upgrades are endemic in the software industry and create the possibility that customers might

either postpone purchase or buy early on and never upgrade producers and customers: When will

a customer upgrade? Is it better to upgrade now or to wait for an improved version? When should

we release an improved product? How much should we charge for each version? Should we give

discounts on upgrades to existing customers? Will today’s sales be cannibalized by the anticipated

improved version?

We focus on pricing and how it is affected by the degree to which a product is improved between

versions. In particular, we are interested how the firm should price different versions of its product

and whether it should offer “upgrade discounts” to existing customers. To address these issues,

we analyze a two-period model in which a firm sells an initial version of its product in the first

period and an improved version the second. In each period, the firm (i.e., the software supplier)

selects the selling prices, and customers decide whether to purchase. Customers may purchase the

product in either or both periods and, at the firm’s discretion, are given a discounted price if they

repurchase/upgrade in the second period. We solve this model for subgame perfect equilibrium

prices and purchasing decisions and investigate how equilibrium prices, profits, and cash flows

are influenced by the degree of product improvement. We also uncover a number of managerial

insights; for example, equilibrium pricing induces all of the first period purchasers to upgrade to

the improved product in the second period.

This article proceeds as follows: Section 2 reviews related literature. Section 3 defines the model in

detail. Sections 4 and 5 derive the equilibrium solution and provide a number of structural results.

Section 6 illustrates these results for a particular set of parameters/assumptions, and section 7

concludes the discussion. Proofs are relegated to the appendix (section 8).

2 Related Literature

While we know of no other papers that solve this problem in closed form and quantify the profit

consequences of upgrades and upgrade pricing, ours is not the first research to address the upgrade

pricing issue. One section of Dhebar(1994) touches upon upgrade pricing if only to say that “in-

tertemporal discrimination” does not exist at equilibrium when the product improves sufficiently
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rapidly. Kornish(2001) does not consider upgrade pricing but does show that this form of price

discrimination is always seen at equilibrium when upgrade pricing is disallowed. Of course, absence

of intertemporal discrimination does not imply that rapid product improvement will prove harmful

to the firm. Quite the contrary; as we establish later, for rapid product improvement the firm’s

interests are best served by pricing schemes that avoid this form of discrimination. Bhattacharya et

al(2003) considers optimal product sequencing and briefly visits the upgrade pricing issue through

an optimization program. A notable element of our work is that we allow upgrades. That is, we

assume that purchasers of the initial version of the product can upgrade to the improved version;

both Dhebar(1994) and Bhattacharya et al(2003) disallow upgrade purchases.

Fudenberg and Tirole(1998) study the upgrades and trade-ins issue by considering different infor-

mation structures that the monopolist has about individual customers. Their “semi-anonymouse”

case, in which the later period prices are bound by an arbitrage constraint, is the closest to our

model. The arbitrage constraint, which we also employ, states that the upgrade price paid by ex-

isting cutomers cannot exceed the price charged to new customers. They do not solve this problem

but conjecture that there would be a product improvement threshold over which special upgrade

pricing would not be optimal. We compute this threshold starting with some assumptions on

consumer behavior and also provide additional results relating the optimal pricing strategy to the

entire range of product improvement. Ellison and Fudenberg(2000) study the effects of upgrades

on social welfare, particularly in the context of network externality. Padmanabhan et al (1997)

investigate the positioning decision across periods given network externality effects for a fixed set

of homogeneous customers. Again, the current essay assumes heterogeneous consumers but not

network externalities.

More generally, our work is related to product development, addressed in both the marketing and

operations management literature, and durable goods problems from economics. Within the for-

mer, the topics that closely relate to this essay are new product performance, time-to-market, and

their connection with sales (and hence revenue/profits). Cohen et al(1996) analyze the relationship

between new product performance and time-to-market. They derive a minimal product improve-

ment rate given a target product performance. Product performance is related to demand rate

by means of a utility function but the demand rate is assumed and not related to pricing issues.

Norton & Bass(1987) model customer adoption of successive multiple generations of products by

extending the well-known Bass model with demand rates assumed known (i.e., pricing decisions

are not considered). Krishnan et al (1999) incorporate pricing into the Bass model but only for
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a single generation of the product. We compute demand rate by relating it to a customer utility

function that is a function of product attributes (performance) and price.

Again, the current problem is related to the durable goods monopolist problem in the economics

literature. Early work in this area is by Coase(1972) who postulates that a monopolist selling a

durable good to rational consumers cannot capture monopoly profits. Consumers will look ahead,

anticipate a decreasing price trajectory and hence postpone their purchase till price equals cost.

Stokey(1981) models this process over an infinite horizon for a non-depreciating durable good and

confirms the results. Bulow(1982) uses a two-period model with a second hand market for a durable

good and shows that while a monopolist renter can capture monopoly profits, a monopolist seller

cannot do the same. Software renting is a new business model practised by application service

providers (ASPs) and may provide greater economic benefits as compared to selling, but we pursue

that line of research elsewhere.

3 The model

First, a brief description of the two-period model. In the first period, the firm selects a price p1 at

which it offers the initial version of its software. In the second period, the firm offers an improved

version at price p2; however, customers who purchased the initial version are offered a lower price

pu.

Customers may purchase the product in one or both periods. Customers who purchase the initial

version enjoy the software for both periods, and, if they choose to upgrade, they use the improved

version in the second period. Customers who only purchase in the second period enjoy only one

period of use, but it is of the improved version. Of course, some customers may choose not to buy

either version. This is thus a “game” between the firm and its potential customer base. We assume

complete information and employ the subgame perfect equilibrium concept. The remainder of this

section describes the model in detail and establishes some initial results/expressions that are useful

later.

Customers, product valuation, purchasing behavior: Customers are heterogenous with

respect to the value they ascribe to the software; each is of a particular “type” that is denoted by
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a real number θ. We use the term “customer segment” or just “segment” to mean a set of θ-values

and refer to a customer whose type is θ as a “θ-customer.” A θ-customer is assumed to value the

product as follows:

θ · U1 = utility, expressed in monetary units, from using the initial version

during the first period

θ · U2 = utility from using the improved version during the second period

θ · U12 = utility from using the initial version during the second period

δ = discount factor for translating cash flows and utilities across time

For example, a customer who purchases the product in the first period and then upgrades in the

second period enjoys utility of θ · U1 in the first period, θ · U2 in the second, and θ · (U1 + δU2)

overall (after discounting). If the customer doesn’t upgrade, second period utility is instead θ ·U12.

The manner in which customer types are spread across the real line is described by a measure

with density1 f , distribution function F , and hazard rate function hf ; thus F 0 (θ) = f (θ) and

hf (θ) =
f(θ)

1−F (θ) . For convenience, we also use F
c (θ) , 1− F (θ) .

For any customer segment2 S (i.e., a set of θ-values), the segment’s size |S| is

|S| ,
Z
S
f (θ) dθ.

When S is an interval (a, b) this revenue can be written (F (b)− F (a)), and |S| is assumed to equal
one when S is the entire real line. Under this assumption f satisfies the mathematical definition

of a probability density function. This is a matter of convenience in that it allows the application

of probability theory to these functions. Otherwise, the assumption is just scaling and is without

loss of generality. We will also use g and G to denote the pdf and cdf of an arbitrary distribution,

and we assume that all distributions herein place strictly positive mass on the positive reals.

1Expositionally, we do not differentiate between a distribution and the functions that define it. For example, f

will refer to both the distribution of customer density and the pdf of that distribution.
2We will henceforth adopt a convention of using the term “segment” and notation “S” to mean the interior of a

set of θ-values. This reduces notation and avoids ambiguities related to stong vs. weak inequalities. As a consequence

of this assumption, the term “interval” means an open interval.

This assumption does not affect optimal/equilibrium pricing because it only eliminates sets of zero measure from

the firm’s revenue calculations.
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Customers’ equilibrium criteria: With customers valuing the product in the manner stated

above, subgame perfection gives the following criteria that defines equilibrium buying behavior by

the customers:

Period 2: Customers who purchased in the first period will upgrade if the upgrade price pu is less than

θ (U2 − U12), the benefit gained over using the version that they already own. Customers who

did not buy in period 1 will now buy if the purchase price p2 is less than θU2, the utility they

would derive from using the improved version over period 2.

Period 1: Customers purchase if

θ (U1)− p1 + δmax [θ (U2 − U12)− pu, U12] ≥ δmax [θU2 − p2, 0]

where p2 and pu are equilibrium prices in the period 2 subgame. The left hand side of this

is the utility net of price that the θ-customer will derive from using the product in the first

period (θ (U1) − p1) plus the discounted period 2 utility resulting from an optimal upgrade

decision. The right-hand side is the discounted utility earned from declining to purchase in

period 1 assuming an optimal second period buying decision then follows.

All-in-all, there are four combinations of decisions available to each customer, so the customers

partition themselves into four sets. Notation, descriptions, and brief monikers for these sets are

given in the table below.

Notation Description Moniker Utility function

Sb,u buys initial version in period 1 — buy/upgrade ub,u (θ) , θ (U1 + δU2)− p1 − δpu

upgrades in period 2

Sb,∅ buys initial version, does not upgrade buy/decline ub,∅ (θ) , θ (U1 + δU12)− p1

S∅,b defers purchase until period 2 decline/buy u∅,b (θ) , θδU2 − δp2

S∅,∅ never buys decline/decline u∅,∅ (θ) , 0

Equilibrium criteria for the firm: For the firm, payoff is determined by the prices that it

selects and the number of customers attracted by these prices — if S is a segment that pays price
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pi in a period then the payoff from that segment is pi |S|. Calculation of the firm’s payoffs follows
naturally. π1 is the firm’s first period payoff, πu is the payoff in period 2 from the upgrading

segment, and π2 is the period 2 payoff from new sales:

π1 , p1
¡
|Sb,u|+

¯̄
Sb,∅

¯̄¢
, πu , pu |Sb,u| , π2 , p2

¯̄
S∅,b

¯̄
,

The firm’s overall objective is to maximize its total discounted payoff. Given the timing of decisions

in this model, the following criteria define equilibrium pricing by the firm.

Period 2: Having observed customers’ period 1 purchasing decisions, the firm chooses pu and p2 to max-

imize πu+π2 subject to pu ≤ p2. In computing these values, the firm anticipates equilibrium

period-2 purchasing by the customers.

Period 1: The firm selects a price p1 that maximizes

π1 + δmax
pu,p2

(π2 + πu) , s.t. pu ≤ p2.

1. Here, the firm assumes equilibrium purchasing by the customers, and the max indicates that

the firm anticipates selecting pu, p2 to achieve an equilibrium in the period 2 subgame.

Foundational results: Our first proposition is a pair of structural results that greatly simplifies

the later analysis. Part (i) partially characterizes customers’ optimal buying behavior, and (ii)

gives the segmentation structure that results.

Proposition 1 For any p1, pu, p2:

(i) Each θ-customer’s equilibrium criteria are equivalent to placing the customer in segment Si,j

where3

(i, j) = argmax (i,j)∈{(b,u),(b,∅),(∅,b),(∅,∅)}
£
ub,u (θ) , ub,∅ (θ) , u∅,b (θ) , u∅,∅ (θ)

¤
. (1)

(ii) When customers purchase in this manner, the customers are partitioned as:

S∅,∅ < S∅,b < Sb,∅ < Sb,u if U2 <
1
δU1 + U12 (2)

S∅,∅ < Sb,∅ < S∅,b < Sb,u otherwise (3)

3When multiple ui,j functions “tie” for the maximum value, arbitrarily place the θ-customers into one of the Si,j

segments associated with those functions.
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The first of these cases occurs for smaller values of U2, so we refer to these as the moderate

improvement and large improvement cases respectively.

Part (i) of this proposition gives customers’ optimal responses to any pricing strategy employed

by the firm across both periods. As we will focus on solving and characterizing equilibrium in this

game, we henceforth assume that customers always purchase as specified by the proposition. Part

(ii) shows that the “segmentation scheme” that results from optimal purchasing by customers has

an appealing structure. Notably, this structure is independent of prices and also of the distribution

of customers (i.e., the order of the segments depends only on U1, U2, U12, δ). This is, essentially,

because the ordering of segments depends only on the slopes of ui,j ’s constituent functions ub,u,

ub,∅, u∅,b, u∅,∅; and these slopes depend on the degree of product improvement only.

This allows a very parsimonious representation of the segmentation scheme — all four segments can

be specified by stating just the three thresholds between them. α, β, γ will denote these these

thresholds as defined by:

moderate improvement case: S∅,∅ ≤ α ≤ S∅,b ≤ β ≤ Sb,∅ ≤ γ ≤ Sb,u

large improvement case: S∅,∅ ≤ α ≤ Sb,∅ ≤ β ≤ S∅,b ≤ γ ≤ Sb,u

The following corollary to proposition 1 follows directly from these definitions.

Corollary 1 For a moderate improvement, and assuming optimal purchasing by customers:

(i) α < β if and only if S∅,b 6= ∅, and γ > β if and only if Sb,∅ 6= ∅.

(ii) α = min
h
β, p2U2

i
and γ = max

h
β, pu

U2−U12

i
.

(iii) π1 = p1 (1− F (β)), π2 = p2 (F (β)− F (α)), and πu = pu (1− F (γ))

For a large improvement:

(iv) α < β if and only if Sb,∅ 6= ∅, and γ > β if and only if S∅,b 6= ∅.
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Figure 1: Beta distribution properties

(v) If α < β then p1 = β (U1 + δU12). If γ > β then p1 + δ (pu − p2) = βU1.

(vi) π1 = p1 (1− F (γ) + F (β)− F (α)), π2 = p2 (F (γ)− F (β)), and πu = pu (1− F (γ)).

The next section, which solves for equilibrium, uses one additional assumption and a lemma. We

assume that f is in the following class of functions: C is the class of continuous probability dis-

tributions g with positive mass on < > 0 and for which θ · hg (θ) is increasing in θ. Fortunately,

this class is very large. It includes the class of increasing hazard rate distributions that has been

widely studied in the equipment reliability literature and that includes uniform, normal, and ex-

ponential distributions. It also includes a very large number of other distributions; for example, as

illustrated by figure 1, the Beta (.25, .25) distribution is in class C — as indicated by the upward

sloping θ ·hg (θ) curve — even though neither its density g (θ) nor hazard rate hg (θ) are monotonic.
As shown in the lemma below, this class also includes truncations of all other distributions in the

class. Broadly, the function θ · hg (θ) is sometimes called a “generalized failure (or hazard) rate”
of a distribution, and, under modest regularity conditions, it is increasing in θ if and only if g is

log-concave (Lariviere 2004).

Next, for g in this class, define τg as the solution to4

τg · hg (τg) = 1. (4)

4This definition presumes a continuous hazard rate but is easily generalized without loss of generality.
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For any distribution g, let the pdf gb (and cdf Gb) denote the distribution that results from trun-

cating g above at b. That is, gb (θ) =
g(θ)
G(θ) for θ < b. Thus, fb and Fb refer to truncations of the

customer density distribution.

One final definition — for distribution g ∈ C (equivalently G ∈ C), define the function ρg by

ρg (θ) , θGc (θ) . (5)

Figure 2 illustrates this function for several distributions in class C.

To interpret the function ρg, consider the following “single-period-single-product” version of the

model. The firm offers a product to θ-customers who each derive utility θU from using the product

(there is no second period and no second version). The θ-values are distributed as per distribution

function G, and the firm’s problem is to find the price p the maximizes revenue. If customers

behave optimally, each customer will purchase the item if θU − p > 0, the firm will sell Gc
¡ p
U

¢
units and receive revenue of pGc

¡ p
U

¢
. Equivalently, the firm could set price by specifying the θ of

the “marginal customer” thereby establishing price p = θU and revenue θUGc (θ). Comparing this

with (5), we can think of ρg as the firm’s equilibrium revenue in this model after normalizing by

the value of the product.

The lemma below gives several foundational results about class C, customer distributions, and the

τg function. Part (ii) of the lemma extends the above analogy — the firm maximizes revenue when

it prices such that θ = τg for the marginal customer.
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Lemma 1 Let g (equivalently G) be a distribution in class C.

(i) Class C is closed to truncation — so gb ∈ C.

(ii) ρg (θ) is strictly quasiconcave in θ and is maximized when θ = τg.

(iii) ρg (θ) is concave at all θ ≤ τg.

(iv) If g is a uniform, beta, normal, lognormal, logistic, or exponential distribution, then ρg (θ) is

concave-convex. It has a concave region at lower values of θ followed by a (possibly empty) convex

region.

Corollary: (ii) through (iv) are inherited by the truncated distribution gb. That is, on the domain

θ ≤ b: the function ρgb (θ) equals θ
³
1− G(θ)

Gb(θ)

´
; it is strictly quasiconcave in θ, maximized when

θ = τgb , and concave for θ ≤ τgb; furthermore, ρg is concave at τgb for every b.

The “τ” values will be important when deriving optimal/equilibrium prices. In this regard, the

fact that C is closed to truncation — part (i) of the lemma and the corollary — are important when

finding the optimal p2. This importance follows from the fact that the set of customers in period

2 who will potentially pay p2 is a subset of the original customer set. Nonetheless, (i) implies that

the distribution of these customers, which is a truncation of the original distribution of customer

types, remains in class C.

Part (ii) of the lemma gives the two important properties of class C. First is quasiconcavity of the

normalized payoff function ρg when g is in this class; this guarantees that first order optimality

conditions are sufficient for optimizing ρg. Second is that τg, easily found via (4), solves this

optimization. Additionally notable is that τg, the optimizer of ρg, depends only on the distribution

of customers — it is independent of the value of the product. (iii) and (iv) show that ρg has a

couple of other appealing structural properties for g ∈ C. Generally, it is concave up to at least

the optimizer τg (part (iii)), and, for several commonly used distributions, this concave region may

only be followed by a single convex region. Several related properties are also useful to note:

1. Via an application of the implicit function theorem to equation (4), the derivative of τgb with

10
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respect to the truncation point b can be written as

d

db
τgb =

g (b)

2f (τgb) + τgbf
0 (τgb)

.

2. Furthermore, 0 < d
dbτgb < 1, and one implication of this is that τgb < τg for g ∈ class C.

3. The inclusion of distribution functions for which closed form expressions do not exist disallows

solving for the τ variables in closed form. We will consequently give equilibrium results and

solutions in less convenient, albeit concise, implicit forms.

With these results in place we turn to the actual derivation and characterization of equilibria. The

next section considers cases of moderate improvements to the product and section 5 addresses cases

of large improvements.

4 Equilibrium for moderate improvements
¡
U2 <

1
δU1 + U12

¢
We now derive conditions that define an equilibrium for cases of moderate improvements to the

product. Using the typical backward recursion approach, we establish period 2 results first and

then move to period 1.

4.1 Equilibrium in the period 2 subgame

The firm’s problem in this subgame is to find p2 and pu that maximize πu + π2. By the first

corollary, equilibrium is achieved when the firm selects pu and p2 to solve

max
pu,p2

[pu (1− F (γ)) + p2 (F (β)− F (α))] s.t. pu ≤ p2. (6)

Since β separates the period 1 buyers from non-buyers, it is known in period 2 when the firm chooses

pu and p2. When solving for equilibrium in the period 2 subgame, we take period 1 decisions as

given, so β in (6) is treated as a constant. In contrast, α and γ are determined by customers’

reactions to pu and pu and so are endogenous to period 2. Next, define p∗2 and p∗u by

p∗2 , argmaxp2
[π2] = argmax

p2
[p2 (F (β)− F (α))] (7)

p∗u , argmaxpu
[πu] = argmax

pu
[pu (1− F (γ))] . (8)
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(p∗2 and p∗u can be thought of as functions of β, but we suppress this dependence to minimize

notation.) Given β, α is independent of pu, and γ is independent of p2. Thus p∗2 and p∗u jointly

optimize (6) whenever its pricing constraint is non-binding (i.e., whenever p∗u ≥ p∗2).

We can thus distinguish the upgrade discounting case from the shared price case as follows. When

p∗u < p∗2, we have the upgrade discounting case, and it is immediate that p
∗
u and p∗2 are the equi-

librium prices. The shared price case results when this inequality is reversed. In the shared price

case, the pricing constraint is binding at equilibrium, so the firm selects a shared price ps that is

offered to all customers. We now consider these cases separately.

The upgrade discounting case: A first observation is that it would be suboptimal to set p2 so

high that α equals β because that would drive π2 to 0. It would also be suboptimal to set pu any

lower than the price at which γ = β; doing so would unnecessarily lower the upgrade price without

an attendant increase in the number of upgrading customers. Thus,

p∗2 = α · U2 and p∗u = γ (U2 − U12) . (9)

πu = γ (U2 − U12) (1− F (γ)) = (U2 − U12) ρf (γ) , and (10)

π2 = α · U2 (F (β)− F (α)) = U2F (β)α

µ
1− F (α)

F (β)

¶
= U2F (β) ρfβ (α) . (11)

Here, (9) is implied by the above observations together with part (i) of proposition 1’s corollary.

Substituting these prices and then the definition of ρ into part (iii) of that corollary then gives

(10) and (11) .

By lemma 1(ii), maximizing ρf (γ) is equivalent to pricing such that γ = τf . Inspecting (10) and

noting that (U2 − U12) is a positive constant, this is also equivalent to maximizing πu. Modifying

this slightly to guarantee feasiblity gives γ = max (β, τf ) at equilibrium. Similarly, maximizing π2

is equivalent to pricing such that α = τfβ .
5 Applying (9) then solves for the equilibrium prices6

p∗2 = τfβU2 and p∗u = (U2 − U12)max (β, τf ) = (U2 − U12)β. (12)

This also gives a condition that determines whether this case is active — if

τfβ > β

µ
1− U12

U2

¶
then p∗u < p∗2

5Also important is that the class C is closed to truncation (lemma 1(i)); this ensures that fβ ∈ C.
6The last equality in (12) comes from the fact that equilibrium pricing in period 1 will always induce β > τf . This

is established a later.
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and upgrades are discounted. Otherwise, the shared price case is active.

The shared-price case: In this case the firm selects a common or shared price ps that is offered to

all customers regardless of whether they purchased the first version of the product. The breakpoints

α ≤ β ≤ γ are defined as before except that ps substitutes for both pu and p2, so

α = min

∙
β,

ps
U2

¸
and γ = max

∙
β,

ps
U2 − U12

¸
. (13)

With a shared price, the firm’s period 2 pricing problem is

max
ps
[πu + π2] = max

ps
[ps (1− F (γ) + F (β)− F (α))] . (14)

Also, we assume that p∗2 < p∗u (otherwise, the upgrade discounting case is active), and we restrict

attention to cases of β > τf , a condition which must hold at equilibrium (this is verified later). The

next lemma characterizes and solves the period 2 equilibrium for this case.

Lemma 2 At equilibrium in the shared price case:

(i) p∗2 < ps < p∗u (iii) ps = β (U2 − U12).

(ii) Sb,∅ is empty; S∅,b is not empty. (iv) α = β
³
1− U12

U2

´
.

Given that p∗2 < p∗u defines the shared price case, it is intuitive that the equilibrium ps is between

p∗2 and p∗u — part (i) of the lemma formalizes this. (ii) establishes that all eligible customers

will upgrade to the improved version. (iii) gives the equilibrium price, and (iv) establishes that

the previous case, in which the firm differentiates its pricing based on whether the customers are

upgraders or new purchasers, yield a larger number of buyers across both periods. The shared price

case results in fewer total customers than in the discounted upgrades case. 7

Synthesizing the two cases: The two cases considered here are very different with regard to

the analysis used — for example, the proof of the previous lemma is very different than the analysis

of the upgrade discounting case — yet the price expressions are very similar. For example, upgrading

customers are charged the same price in both cases. The next proposition synthesizes the results

of this section; it follows directly from earlier results, so it is given without additional proof.
7 (this is because: (1) the number of total customers is F c (α) in both cases, (2) α equals τfβ in the discounted

upgrades case, and (3) α in the shared-price case is > τfβ ).
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Proposition 2 For a moderate product improvement, at equilibrium in the period two subgame:

(i) All eligible customers upgrade. That is, Sb,∅ = ∅; equivalently, γ = β

(ii) α = max
h
β
³
1− U12

U2

´
, τfβ

i
. This is less than β, and S∅,b is thus non-empty — i.e., period 2

always sees some first-time buyers.

(iii) pu = β (U2 − U12) and p2 = U2α.

(iv) There exists a threshold β below which upgrade discounting is used and above which a shared

price is used.

(v) πu + π2 is increasing in β.

4.2 Equilibrium in the complete game (for moderate improvements):

Having fully solved the second period subgame, we now move to period 1. The firm’s problem in

this initial period, is to find p1 to maximize total discounted profits assuming equilibrium behavior

in the period 2 subgame. First is to establish the following relationship between the equilibrium β

and the (previously defined) τf .

Proposition 3 For moderate improvements, at equilibrium β > τf .

Combining this with earlier results gives us that α < τf < β = γ under equilibrium pricing.

The fact that eligible customers always upgrade (because β = γ) has some obvious managerial

implications, and it also has an important analytical implication — the buy/decline segment is

empty at equilibrium, and this implies that a β-customer is indifferent between buy/upgrade and

decline/buy. Setting ub,u (β) equal to u∅,b (β) and simplifying gives

p1 = β (U1 + δU12 − δU2) + δαU2. (15)

Equation (15) together with proposition 2(iii) provides a reformulation of the firm’s first period

strategy. Rather than selecting the optimal price p1, the firm can equivalently select the threshold

14
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β that maximizes

π1 + δ (π2 + πu) = U1βF
c (β) + δU2αF

c (α) s.t. β ≥ τf (16)

= U1ρf (β) + δU2ρf (α)

with α = max

∙
β

µ
1− U12

U2

¶
, τfβ

¸
.

Then, with β and α known, the equilibrium p1 is given by (15) , and the equilibrium pu and p2 are

given by proposition 2(iii). Upgrading customers are given a discount when α equals τfβ , and a

shared price is used otherwise. The first derivative of ρf is ρ0f (θ) = −θf (θ) + F c (θ) — applying

this, critical β-values occur when

U1 (−βf (β) + F c (β)) + δU2
dα

dβ
(−αf (α) + F c (α)) = 0. (17)

with
dα

dβ
=

⎧⎨⎩ f (α) / (2f (α) + αf 0 (α)) if α = τfβ

1− U12/U2 if α < τfβ

This is the standard (necessary) first order condition for optimality, and ρ’s characteristics, estab-

lished in lemma 1, can be used to show that this always has a solution that identifies a (local)

maximum of (16). While the analysis herein does not eliminate the possibility of multiple solu-

tions, we have been unable to find an example with multiple critical points let alone multiple local

maximums. However, should one encounter a particular distribution and parameters for which

multiple local maximums exist, it is a simple matter to compute their values numerically and select

the one delivering the highest profit to the firm. Next is to consider the case of a large product

improvement.

5 Equilibrium for large improvements
¡
U2 >

1
δU1 + U12

¢
As shown in proposition 1 and its corollary, the ordering of the decline/buy and buy/decline

segments is reversed from the previous section and the thresholds α, β, γ are redefined. Specifically,

we now have

S∅,∅ ≤ α ≤ Sb,∅ ≤ β ≤ S∅,b ≤ γ ≤ Sb,u. (18)

It is not immediately obvious, but the analysis of this case is simpler than for moderate improve-

ments. The solution is also simpler; it is given in the next proposition.

15



Pricing for Software Upgrades Bala and Carr

Proposition 4 With large improvements, at equilibrium:

(i) All eligible customers upgrade.

(ii) Nobody purchases afresh in period 2.

(iii) α = β = γ = τf .

(iv) Equilibrium prices are: p1 = τf (U1 + δU12)

p2 = τfU2 or any higher price

pu = τf (U2 − U12) .

(v) Total discounted profits increase with U2.

As in the previous section, it remains true that all period 1 buyers upgrade to the improved version

(part (i) of the proposition). What does change (part (ii)) is that period 2 sees no new buyers;

all period 2 revenue comes from the upgrading customers. Intuition might suggest that this is

suboptimal because it results in π2 = 0. However, analysis (not presented here) has shown that

setting p2 low enough to attract some new customers results in some of the buy/upgrade customers

defecting to the decline/buy, and the revenue generated by the new sales is overshadowed by the

revenue lost by these defections.

Another change from the moderate improvement cases is part (iii). As discussed earlier, τf can

be interpreted as the purchasing threshold in a single-product/single-period analog of our model —

i.e., all/only customers with θ > τf purchase at equilibrium in the simpler model. For moderate

improvements, the equilibrium number of period 1 buyers is smaller and the number of total buyers

larger than in the single-period/single-product model. With a large improvement in the product,

(iii) tells us that exactly the same number buy in period 1 as in the simpler model, and, because

nobody buys afresh in period 2, this also equals the number of total buyers.

To extend this analogy, for large improvements, the equilibrium price structure is “myopic” in the

sense that it exactly duplicates the following problem. A firm offers two different products, each

for a single period, to two different sets of consumers (with the distribution f applying to each set

independently of the other). The first product has quality U1 (1 + δ) and the second has quality

(U2 − U12), and the model is otherwise as described herein. The equilibrium prices for these two

16
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problems are respectively p1 and pu as given in the previous proposition and the quantities sold are

also the the same (1−F (τf )) . In other words, the extreme case is myopic in that it can be solved

by solving the two periods as unrelated problems.

As a corollary to this proposition, the firm does use upgrade discounting, but it is moot in the

sense that no customers actually pay the non-discounted price p2. Interestingly, this is nonetheless

important — equilibrium requires a p2 that is sufficiently high that none of the customers prefer to

delay purchase beyond the first period.

6 Extended Example: Customer density ∼ Uniform (0, 1)

In this section, we assume that customers’ θs are uniformly distributed over the (0, 1) interval, and

we: (1) provide an extended example of our results, (2) demonstrates how equilibrium profits and

cash flows are affected by the degree of improvement in the product, (3) co

nsider costs associated with developing the improved product, and (4) extend the model by treating

U2 as a strategic variable. For the Uniform (0, 1) distribution

f (θ) = 1 F (θ) = θ

θ · hf (θ) = θ
1−θ

τf =
1
2 τfb =

b
2

Moderate improvement cases are solved by proposition 2 and expression (17). Large improvment

cases are solved by τf =
1
2 (for the Uniform(0, 1) distribution) together with proposition 4. The

next two tables summarize these results.

17
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Moderate Improvements

updgrade discounting shared price

occurs when U2 < 2U12 2U12 ≤ U2 < 1 +
U1
δU12

p1
(2U1+2δU12−δU2)(2U1+δU2)

8U1+2δU2

U21U2+δU1U2(U2−U12)
2U1U2+2δ(U2−U12)2

pu (U2 − U12)
³
1− 2U1

4U1+δU2

´
U2(U2−U12)(U1+δ(U2−U12))

2U1U2+2δ(U2−U12)2

p2 U2

³
1
2 −

U1
4U1+δU2

´
same as pu

α 1
2 −

U1
4U1+δU2

1
2 −

U1U12
2U1U2+2δ(U2−U12)2

β 1− 2U1
4U1+δU2

U2(U1+δ(U2−U12))
2U1U2+2δ(U2−U12)2

upgrade discounts used? Yes No

period 1 sales 1− β

period 2 upgrades 1− β

period 2 new sales β − α

Large Improvements

occurs when
³
1 + U1

δU12
≤ U2

´
p1 =

1
2 (U1 + δU12) α = β = γ = 1

2

pu =
1
2 (U2 − U12) period 1 sales = upgrades = 1

2

p2 =
U2
2 (or any larger value) period 2 new sales = 0

6.1 Financial Implications

We now illustrate the financial implications of product improvement. We maintain the assumption

that customer types are uniformly distributed over (0, 1), and we assume that U1 and U12 are

equal. As a basis for comparison, the graphs below include cases in which upgrade discounting is

disallowed or infeasible.8

Of primary interest is how the firm’s total discounted revenue changes with the degree of improve-

ment of the product. This is illustrated in figure 39; the solid line illustrates the equilibrium payoff

earned by the firm as U2 varies. The dashed line is for comparison, it gives the equilibrium payoffs

for cases in which upgrade discounting is not used.

8These “no updgrade discounting” cases were solved using analysis similar to that already presented.
9U1 and δ are respectively 1.0 and 0.75 in all figures.
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Figure 3: Equilibrium payoff

Two observations are immediate. First, revenue unambiguously increases with U2. Second, for

most U2 values, disallowing the discounting of upgrades reduces the firm’s revenue. Of course, the

rate that payoff increases with U2 depends on the pricing structure at equilibrium, and this differs

depending on whether the upgrade is moderate or large and whether upgrade discounting is used.

Also recall the sequence of the buy/decline and decline/buy segments changes at the transition to

large improvements; this causes the continuity in the figure.

Next we consider product improvement costs and ask, “What is the maximum acceptable cost to im-

prove the product from U1 to U2?” To answer this, we will first write π
eq
(U1, U2) to denote the firm’s

equilibrium payoff from offering the “product pair” (U1, U2) and define π
eq , limU2→U1 π

eq

1 (U1, U2) .

Now, π
eq

1 (U1, U2)−π
eq
is the maximum development cost that the firm currently offering quality

U1 would willingly pay to improve the product to quality level U2. Analogously defined, let π
sh
and

π
sh
be the equilibrium payoff and its limit as U2 → U1 when upgrade pricing is disallowed (i.e., the

“shared pricing” is enforced for all U2); so, without upgrade pricing, the maximum development

cost the firm would be willing to bear is π
sh
(U1, U2)−π

sh
.

These values are plotted in figure 4 (dashed line is with upgrade pricing disallowed). Interestingly,

(as indicated by the fact that the dashed line is above the solid line) a firm that cannot offer upgrade

discounts would be more willing to pay product improvement costs.

Cash flow is another ubiquitous concern to managers; the individual periods’ cash flows are shown

19



Pricing for Software Upgrades Bala and Carr

1 1.5 2 2.5 3
U2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

elbatpecc
A

tne
mpoleved

tsoc

moderate improvements large improvements

updgrade
discounting

case

shared
price
case

Figure 4: Acceptable development cost

in figure 5. An important observation is that, relative to the baseline of U2 = U1, offering the

improved product together with upgrade pricing requires additional cash in the first period for

but provides positive cash flow for large improvements. This is of course in addition to any cash

requirements of developing the improved product.

Figure 5 tells another interesting story. We have thus far assumed that U2 represents the product

that is actually released by the firm in the second period. But, suppose instead the actual product

released by the firm is modelled as a strategic decision that is made at the beginning of period

2; the firm’s period 2 decision how has three dimensions: pu and p2 as before, and now U2 which

is from a range
¡
U1, U2

¢
. That is, the firm’s choice U2 is constrained below by its first period

offering and above by U2 which represents the most advanced version of the product that the firm

is able to product.10 When selecting which U2 to actually offer, the firm is trying to maximize its

second period revenues. This implies, as can be seen in figure 5, that there is a range of U2 values

in the large improvement region that the firm will never select. Specifically, the subgame perfect

equilibrium will never have the firm offering a product with U2 in the interval
¡
U1
¡
1 + 1

δ

¢
,U2
¢
with

U2 given by the expression

U2 =

¡
1− δ2

¢
[δ (U1 − 1)− 1] [δ (U1 − 1)− U1 − 1]

h
U1 + 1 + δ (U1 − 1)2

i
δ
h
1 + U1 + δ (U1 − 2) + (U1 − 1)2 δ2

i2 .

Generally, and disregarding any development costs, the firm’s equilibrium decision is to offer the
10As a technical point, we now assume that U2 is common knowledge in period 1. The actual U2 is selected by the

firm at the beginning of period 2, so it is common knowledge at the customers’ period 2 purchasing epoch.
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Figure 5: Cash flows by period

largest possible U2 unless it falls within this interval; in that case, the firm will offer U2 = U1
¡
1 + 1

δ

¢
.

In any event, the equilibrium prices will be as given previously albeit using the equilibrium U2 in

the second period. This discussion does not hold if upgrade pricing is disallowed. In that case,

period two revenues strictly increase with U2 and the firm’s equilibrium decision is to release the

largest possible U2.

7 Conclusions

Upgrades are endemic to any industry with rapid technological innovation. But firms would benefit

from an understanding of market reaction to their technological choices. This is particularly true for

software upgrades that may vary only slightly from older versions. Intuition suggests that customer

look ahead is a bigger problem when new versions do not differ much from the old ones. Indeed,

this implies that firms should keep different versions far apart in order to minimize this problem.

However, modest upgrades provide firms with the opportunity to price discriminate in the future by

offering old customers special upgrade prices and this optimal pricing strategy mitigates customer

balking. While our results seem to provide an explanation for the adoption of such strategies by

software producers, they also seem to indicate that in reality firms might be pricing upgrades higher

than what consumers perceive to be optimal.

21



Pricing for Software Upgrades Bala and Carr

As the degree of product improvement increases, it becomes important that software producers

are (usually) unable to charge upgrading customers more than new purchasers. This induces the

firm to offer a common second period price to all customers. When the improvement reaches the

“large” range (as per the definitions herein), the equilibrium behavior for both firms and consumers

is myopic in nature, and the problem decouples into two single period problems. Even though the

different levels of product improvement result in different prices and in different segmentation

patterns, it remains true that all eligible customers choose to upgrade to the improved product.

These results are quite robust to different distributions of customer types, but, as always, our results

are restricted by the reality of our assumptions. As topics for future research, we believe that the

maximum new mileage will be achieved by generalizing the information structure available to the

customer in terms of product improvement, future prices, and perhaps additional generations of

product improvement. This research will also explore interesting questions about the mechanisms

that firms and customers will use to convey and acquire such information.
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8 Appendix

Proof of proposition 1 (p. 6): (i) By construction, the four ui,j functions are the utility values

to a customer from each of the four combinations: buy/upgrade, buy/decline, decline/buy, and

decline/decline.

Suppose a θ-customer is placed into Sb,u meaning ub,u came out of the maximum in (1). The

proposition states that this customer’s optimal response to the firm’s prices is to buy the product

in period 1 and then upgrade in period 2. This is verified as follows:

(1) Assuming that a θ-customer bought in period 1, we require that the optimal period 2 decision

is to upgrade. θ · (U2 − U12) is the marginal value the customer ascribes to the upgrade and pu is

the price to be paid. Upgrading is thus optimal if θ · (U2 − U12) − pu > 0. This inequality does

indeed hold after applying simple algebra to fact that ub,u > ub,∅ (which comes from the fact that

ub,u is the maximizer of (1)).

(2)Moving to period 1, we require that the customer’s optimal decision is to buy the initial version.

The previous item establishes that the customer would follow up a purchase in this period with an

upgrade in period 2, so we know that a buy decision now would translate into an overall strategy

of buy/upgrade. This strategy is preferable to decline/buy because ub,u > u∅,b and is preferable to

decline/decline because ub,u > u∅,∅.

Placing the customer into the buy/upgrade segment thus fulfills the customer’s optimality conditions

in both of the periods. Verification of the other cases is nearly identical and is omitted.

(ii) The objective function in (1) is the max of linear increasing functions, so it is continuous,

piecewise linear, increasing, and convex in θ. This then implies that the sets Sb,u, Sb,∅, S∅,b, S∅,∅

are ordered by the slope, but not the intercept, of ub,u, ub,∅, u∅,b, u∅,∅. For instance, Sb,∅ < S∅,b

if and only if
dub,∅
dθ <

du∅,b
dθ . The actual orderings given in (2) and (3) follow immediately after

extracting the slopes of the four associated functions.QED

Proof of lemma 1(p. 10): In this proof, G(a,b) is a truncation of a distribution G ∈ class C; a is

the lower truncation point, and b is the upper truncation point. g(a,b) is the pdf of this distribution.

Thus, part (i)

23



Pricing for Software Upgrades Bala and Carr

(i) The claim here is that C is closed to truncation; that is, G(a,b) ∈ class C. We first show that

θhg(a,b) (θ) is increasing in θ.

θhg(a,b) (θ) =
θg(a,b) (θ)

1−G(a,b) (θ)
(19a)

=
θg (θ) 1

G(b)−G(a)

1−G (θ) 1
G(b)−G(a)

=
θg (θ)

G (b)−G (a)−G (θ)
(19b)

= θ
g (θ)

1−G (θ)
· 1−G (θ)

G (b)−G (a)−G (θ)
= θ · hg (θ) ·

1−G (θ)

G (b)−G (a)−G (θ)
(19c)

[Here, (19a) is expanding the hazard rate hg(a,b) (θ), (19b) is from the definition of g(a,b), and

(19c)is from the definition of hg and algebraic manipulation.]
1−G(θ)

G(b)−G(a)−G(θ) and θ ·hg (θ) are both
increasing in θ, the latter because g ∈ Class C, so expression (19c) is increasing in θ. All that

remains is to show continuity of θ · hg(a,b) , and this is inherited from hg; thus, g(a,b) is in class C.

(ii) We first show that ρg (θ) has a unique critical point defined by

θ · hg (θ) = 1. (20)

By definition, G (θ) ,
R θ
−∞ g (x) dx. Substituting this into ρg (θ) and differentiating via Leibnitz’s

rule gives
d

dθ
ρg (θ) = −u θ g (θ) + u (1−G (θ)) .

Setting this equal to zero, solving, and then applying the definition of hg verifies that d
dθρg (θ) = 0

iff (20) holds, so (20) defines critical points of ρu (θ).

Next observe that

ρu (0) = 0 = lim
θ→∞

ρu (θ) . (21)

This guarantees that at least one critical point exists (by Rolle’s theorem). Uniqueness then follows

from the fact that θ · hg (θ) is increasing in θ (because g is in class C) implying (20) cannot have

multiple solutions. Next observe that (21)together with the fact that ρu (θ) ≥ 0 for all θ > 0 implies
that the critical point must be a maximum rather than a minimum. The claim of quasiconcavity

then follows directly — a continuous function whose only critical point is a maximum is quasiconcave.

(iii) Straightforward differentiation and algebraic manipulation of θhg (θ) shows that it is increasing

in θ if and only if

θg0 (θ) > −g (θ) (1− θhg (θ)) .
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Twice differentiating ρg and applying this inequality

∂2ρg
∂θ2

= (−1)
¡
2g (θ) + θg0 (θ)

¢
< −g (θ) (1− θhg (θ)) . (22)

By inspection of this θhg (θ) < 1 implies concave ρg. Since θhg (θ) = 1 defines τg and θhg (θ) is

increasing in θ (by g’s membership in class C), the function ρ is concave for all θ < τg.

(iv) From part (iii), ρg is concave for θ < τg. This concave region may be followed by a convex

region, but a second concave region must be disallowed. A sufficient condition to rule out a second

concave region is to show that ρg cannot have more than one inflexion point on the region θ > τg.

From (22), an inflexion point is defined by

θ
g0 (θ)

g (θ)
= −2. (23)

· If g has a uniform distribution then g0 (θ) = 0 and ρg has no inflexion points.

· If g ∼ Exponential (λ) then θ g
0(θ)
g(θ) = −θλ and ρg has exactly one inflexion point.

· If g ∼ Normal
¡
µ, σ2

¢
then θ g

0(θ)
g(θ) =

θ(µ−θ)
σ2 and is monotonically decreasing in θ for θ > µ

2 . It can

be shown that τg > µ for normally distributed g, so this monotonicity implies at most 1 solution

to (23) and at most 1 inflexion point.

· If g ∼ Beta with shape parameters s1 and s2, then d
dθ

³
θ g

0(θ)
g(θ)

´
= 1−b

(1−θ)2 . This is monotone in θ

for every β implying at most one inflexion point.

· If g ∼ LogNormal then d
dθ

³
θ g

0(θ)
g(θ)

´
= −1

θ < 0. If g ∼ Logistic (µ, s) then d
dθ

³
θ g

0(θ)
g(θ)

´
= − θ+sinh(θ)

1+cosh(θ) <

0. For both of these, monotonicity again implies at most one inflexion point.QED

Proof of lemma 2 (p. 13): (i) follows directly from the fact πu and π2 are quasiconcave with

optimums occurring p∗u and p∗2 respectively and because p
∗
2 < p∗u (by the definition of the shared

price case).

(ii) We first show by contradiction that γ = β, so assume that γ > β. Then,
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γ = max
h
β, ps

U2−U12

i
(expression (13))

= ps
U2−U12 (because γ > β)

< p∗u
U2−U12 (because ps < p∗u in the shared case)

γ < β (because p∗u = β (U2 − U12) by (12))

This contradicts the original assumption, so it must be that γ ≤ β. The definition of γ and β

precludes γ < β however, and thus γ = β at equilibrium. Equivalently, Sb,∅ is empty.

Next is to show that S∅,b is not empty by showing that α < β at equilibrium. The fact that ps > p∗2

(from part (i)) implies that α < τfβ and the result then follows because τfβ < β.

(iii) follows immediately from γ = ps
U2−U12 and γ = β as established in part (ii).

(iv) α = min
h
β, psU2

i
(from (13))

= min
h
β, β

U2
(U2 − U12)

i
(because ps = β (U2 − U12) from (iii))

= β
³
1− U12

U2

´
(after simplifying).QED

Proof of proposition 3 (p. 14): Equilibrium payoffs πu + π2 in the period 2 subgame strictly

increase with β. Thus, equilibrium pricing in period 1 must place β at a point at which π1 is

decreasing in β. Otherwise, the aggregate payoffs π1 + δ (π2 + πu) will be decreasing in β and

(thus) increasing in p1, and this implies suboptimality. Therefore β must be > τf at equilibrium

because this is the region over which π1 is decreasing in β.QED

Proof of proposition 4 (p. 16): Since the α, β, γ define boundaries between segments, they

are points of indifference between the segments that they abut and this gives the following three

conditions that must hold at equilibrium:

0 = α (U1 + δU12)− p1, β (U1 + δU12)− p1 = βδU2 − p2 (24)

and γδU2 − p2 = γ (U1 + δU2)− p1 − δpu

The second period equilibrium criteria give two more conditions:

βU2 = peq2 and γ (U2 − U21) = pequ . (25)
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If the first of these did not hold, either: customers in S∅,b would defect in period 2 from decline/buy

to decline/decline or the firm could raise p2 without losing any second period demand. If the second

constraint did not hold, either customers in Sb,u would defect from buy/upgrade to buy/decline or

the firm could raise pu without losing any upgrade demand. Any of these possibilities violates

the equilibrium criteria of either the customers, if defection occurs, or of the firm (raising price

without losing demand would increase profits thereby violating the presumption that pu and p2 are

equilibrium prices in subgame 3).

The equations of (24) and (25) simultaneously solve to

α = β = γ =
p1

U1 + δU12
, pu = p1

U2 − U1
U1 + δU12

, p2 = p1
U2

U1 + δU12
; (26)

and the fact that α = β = γ implies parts (i) and (ii) of the proposition.

Part (iii): For the large-upgrade case

π = (p1 + δpu) (1− F (γ)) + δp2 (F (γ)− F (β)) + δpu (F (β)− F (α)) .

Substituting from (26), this simplifies to

π = (U1 + δU2) ρf (β) (27)

which, by lemma (1ii), is maximized when β = τf ; together with α = β = γ, this verifies part (iii)

of the proposition.

Part (iv): Substituting β = τf into (26) and solving gives

p1 = (U1 + δU12) τf , pu = (U1 − U12) τf , and p2 = U2τf .

Part (v): From β = τf together with (27), the firm’s payoff π at equilibrium is

π = (U1 + δU2) ρf (τf ) .

This is strictly increasing in U2 after noting that ρf (τf ) is independent of U2. QED
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