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Abstract

The human urinary proteome provides an assessment of kidney injury with specific biomarkers for 

different kidney injury phenotypes. In an effort to fully map and decipher changes in the urine 

proteome and peptidome after kidney transplantation, renal allograft biopsy matched urine 

samples were collected from 396 kidney transplant recipients. Centralized and blinded histology 

data from paired graft biopsies was used to classify urine samples into diagnostic categories of 

acute rejection, chronic allograft nephropathy, BK virus nephritis, and stable graft. A total of 245 

urine samples were analyzed by liquid chromatography–mass spectrometry using isobaric Tags for 

Relative and Absolute Quantitation (iTRAQ) reagents. From a group of over 900 proteins 

identified in transplant injury, a set of 131 peptides were assessed by selected reaction monitoring 

for their significance in accurately segregating organ injury causation and pathology in an 

independent cohort of 151 urine samples. Ultimately, a minimal set of 35 proteins were identified 

for their ability to segregate the 3 major transplant injury clinical groups, - comprising the final 

panel of 11 urinary peptides for acute rejection (93% AUC), 12 urinary peptides for chronic 

allograft nephropathy (99% AUC), and 12 urinary peptides for BK virus nephritis (83% AUC). 

Thus, urinary proteome discovery and targeted validation can identify urine protein panels for 

rapid and non-invasive differentiation of different causes of kidney transplant injury, without the 

requirement of an invasive biopsy.
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INTRODUCTION

Kidney transplantation is the optimal choice of treatment for end-stage kidney disease1. 

Despite improved short-term outcomes2, long-term outcomes and graft survival rates remain 

suboptimal2, 3. Recent studies by our group and others have demonstrated that sub-clinical 

inflammation followed by tissue injury is an ongoing process in the transplanted kidney, and 

is a primary cause of graft loss4–7. This injury cannot be identified by the currently used 

clinical biomarkers-serum creatinine and increased urine protein load, or proteinuria. Both 

markers reflect non-specific and late organ injury, and cannot distinguish between causes of 

graft dysfunction that may require diametrically opposed approaches to therapy, such as 

immunosuppression intensification for graft rejection and immunosuppression reduction for 

BK viral nephritis. Both entities, if untreated, result in chronic tubulointerstitial loss and 

fibrosis2, 8.

In this study, we have continued our efforts9–13 to fully map and decipher changes in the 

urine proteome and peptidome after kidney transplantation, and to understand the 

perturbations in specific proteomic panels in the urine during biopsy-confirmed injury to the 

organ, defined by acute rejection (AR)2, BK viral nephritis (BKVN)14, and chronic allograft 

nephropathy (CAN)15 versus stable renal allograft (STA)15. In addition, we have evaluated 

the biological processes that drive these specific injuries, and assessed variances in 

perturbations of transcriptional and translational programs in graft and urine samples from 

the same patient.

RESULTS

Transplant injury-specific proteins segregate transplant injuries by proteomics using 
either iTRAQ-based or label-free LC-MS in 264 unique urine samples analyzed by different 
methodologies and in independent sample sets

Application of a 2D-LC-MS/MS strategy using iTRAQ reagents on 108 urine samples 

pooled into 6 pools/phenotype (5 independent phenotype specific samples for AR, CAN and 

STA and 3 independent urine samples for BKVN (due to limited available cases)), identified 

a total of 6379 unique peptides (false discovery rate, FDR <0.1%), spanning 958 unique 

human proteins (Supplemental Table S1A)13. Principal component analysis (PCA) of this 

data (Figure 1A) demonstrated that urine proteins generally segregate samples with injuries 

from stable grafts and also clustered sample groups into different phenotypes. Within this 

cluster of proteins, fibrinogen β and fibrinogen γ have been previously confirmed by 

independent ELISA validation to be significantly (p<0.05) elevated in AR over the other 

injury phenotypes13. This approach allowed for interrogation of the dynamic range of 

protein abundance measurements in transplant dysfunction categories prior to proceeding 

with larger numbers of individual samples to be analyzed by label-free LC-MS and SRM.

The label-free LC-MS datasets from 137 individual samples identified 26,462 peptides 

mapped to 2,291 proteins. Each peptide was evaluated to determine if there was adequate 

data for an Analysis of Variance or a qualitative G-test16. Outlier and contaminant data were 

filtered using the log2 robust Mahalnobis distance17. Thus, at the end of filtering and outlier 
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discovery there were 133 samples associated with 16,218 human peptides from 1,574 

proteins. PCA demonstrated that these proteins cluster to separate injuries from stable grafts, 

and also show scatter differences based on different injury phenotypes (Figure 1B).

Urine proteins uncover biological mechanisms of graft injury

A significant number (n=811) of the total proteins (n=1719) identified were impacted during 

kidney graft injury (Supplemental Table S1B and S1C). Major changes were noted for major 

molecular processes in transplant injury: the immune response (n=179 proteins; p=4.01E-23, 

response to external stimulus (n=224, p=5.68E-24), and extracellular matrix organization 

(n=118, p=2.05E-51) (Supplemental Table S1B). A total of 517 urine proteins were 

significantly dysregulated in AR; 228 were increased and 289 were decreased in AR 

compared to other clinical categories (p<0.05) (Supplemental Table S1C), and were 

uniquely enriched for regulation of cell adhesion (n=51, p=2.98E-17), wound healing (n=48, 

p=2.45E-12), regulation of body fluid levels (n=47,1.68E-11) (Supplemental Table S1D). A 

set of 186 proteins were specific to CAN (p<0.05; 99 increased and 87 decreased) when 

compared to AR, STA, and BKVN urine samples; these proteins were uniquely enriched for 

biological processes involving negative regulation of protein metabolic process (n=19, 

p=1.25E-03), innate immune response (n=20, p=2.61E-3), multi-organism process (n=33, 

6.19E-03) etc (Supplemental Table S1D). A set of 108 proteins specific to BKVN, showed 

overlapping biological processes with both AR and CAN, with unique enrichment of protein 

refolding (n=5, p=1.54E-04), regulation of response to stress (n=19, p=1.15E-03), 

xenobiotic catabolic process (n=3, p=1.73E-02) etc. (Supplemental Table S1D). Significant, 

and somewhat BKVN-specific urinary protein alterations were seen in lactotransferrin 

(TRFL), SUMO2 (SUMO2), granulins (GRN), haptoglobin related protein (HPTR), 

peptidase inhibitor 16 (PI16), alpha-1-antitrypsin (A1AT) and fibulin-1 (FBLN1).

Evaluation of transcriptomic data from matching urine and graft biopsies within patients 
shows specific overlapping and unique molecular processes in transplant injury

Out of 811 proteins that were identified as significantly changed in the urine protein dataset 

(Supplemental Table S1C), 26% (n=153) were also dysregulated at the mRNA level in the 

matching biopsies. There was a relatively high level of agreement in the tissue genes and 

urine proteins from the same patient, showing dysregulation in each specific injury group: 

50% in AR, 67% in CAN, and 42% in BKVN. These overlapping pathways, at both the gene 

level in tissue and the protein level in the effluent from the same tissue, were significantly 

involved in tissue development (n=29, p=1.14E-07), extracellular matrix organization (n=16, 

p=2.85E-07), and cell adhesion (n=36, p= 4.75E-07). Enrichment analysis for cellular and 

biological processes showed a significant enrichment of proteins involved in the immune 

response in AR (p<0.001) (Figure 2A), and enrichment of both solute/ion transporters and 

extra-cellular matrix reorganization in CAN (p<0.001) (Figure 2B/C). We then analyzed 

proteins mapping to immune cell infiltrate specific transcriptional profiles from matching 

kidney biopsies [5], profiled on microarrays with AR, CAN and STA phenotypes; similar 

patterns of immune subset cell specific enrichment was seen at the kidney mRNA and the 

urine protein level in the same patient groups. There was an overlap of similar patterns of 

immune cell infiltrates in both acute and chronic rejection, with strongest enrichment for B 

cell, dendritic cell and granulocyte activation in both AR and CAN urine samples (Figure 
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2D/E). There was additional enrichment for monocyte and T cell specific proteins only in 

AR urine, which was not significant in CAN urine.

Independent SRM Validation to Identify Minimal Biomarker Protein Fingerprints for Graft 
Injury

Of 296 peptides, mapping to 100 proteins selected for SRM validation based on the criteria 

provided in the methods section, SRM assays for 131 peptides mapping to 78 proteins were 

optimized. SRM validation for different injury sub-types was done across 151 samples that 

were randomly split for AR, CAN and STA into two independent sample groups: Validation 

Set 1 (22 AR, 27 STA, 31CAN; n=80) and Validation Set 2 (20 AR, 20 STA, 15 CAN, and 

16 BKVN, n=71). Due to the smaller number of BKVN samples, these were all included in a 

single sample group to retain analysis power. As seen in Figure 3A, there were overall 

differences in Validation Set 1 samples, seen across the majority of peptides sampled 

(n=100), segregating transplant injury overall from stable samples (filter of >2 fold change 

and p <0.01 for transplant injury (Supplemental Table S1E). From the subset of perturbed 

proteins in transplant injury, using AltAnalyze (www.altanalyze.org), a smaller subset of 35 

peptides from 33 proteins was identified (Table 2) to accurately differentiate the different 

types of transplant injuries (AR, CAN and BKVN) from STA samples in Validation Set 2 

(Figure 3B). 11 peptides were specific to AR, 12 peptides were specific to CAN, and 12 

peptides were specific to BKVN. Receiver operator curve (ROC) analysis for each injury 

subtype across AR-specific, BKVN-specific, and CAN-specific panels provided AUCs of 

93.9% (93.3%–94.5%) for AR (Figure 3C1), 83.2% (82.2%–84.2%) for BKVN (Figure 

3C2), and 99.5% (99.5%–99.5%) for CAN (Figure 3C3). We compared surveillance samples 

versus ‘for cause’ samples for their overall sample characteristics. Since all of the AR and 

BKVN samples were for cause, we used CAN samples for this analysis. There were 26 

survillance biopsies from 46 CAN biopsies. ROC analysis resulted in almost the same AUCs 

for surveillance (AUC=99.4%) and for cause (AUC=99.5%) compared to an overall AUC of 

99.5 %. We performed analysis that added clinical parameters at various levels. Addition of 

clinical parameters did not contribute to a better discrimination of injury from no-injury, in 

terms of AUC.

DISCUSSION

Understanding disease mechanisms and identifying clinically relevant and robust biomarkers 

for diagnostics and monitoring are critically important in organ transplantation11. Urine is 

used to monitor the status of the kidney9, 13, 18. Studying almost 400 unique, biopsy-paired 

urine samples, we report our success in identifying and validating urine proteins as 

biomarkers of specific categories of kidney transplant injury. Our study emphasizes (focuses 

on) injury phenotypes that require differing approaches for clinical patient management and 

are currently indistinguishable by any other available non-invasive assays. Previous 

studies5, 13 have shown that AR, CAN, and BKVN have many overlapping immune 

signatures that herald changes in allo- and innate immunity. Despite common injury 

cascades at the gene4, 19 and protein13 levels, AR is managed by immunosuppression 

intensification of T, BK, NK, and macrophage cell-dependent alloimmunity, whereas BKVN 

requires drastic immunosuppression reduction to allow for recovery of innate anti-viral 
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immunity. Biomarkers specific to each phenotype, which are robust, stable, and easily 

accessible by urine testing, have immense clinical value in providing critical insight for the 

advancement of transplant therapy towards customization and personalization. This will also 

aid in mitigating transplant injury and guide optimal immunosuppression dosing.

Biomarker discovery and validation is inherently an arduous task because of issues including 

sample selection data analysis, patient heterogeneity, and other physiological 

confounders11, 18, 20. Here, we use cutting edge technological assays, controlled study 

design, and customized bioinformatics to identify panels of proteins that may be used as 

fingerprints of AR, BKVN, and CAN injuries. The utilization of independent sample 

populations with different methodologies, inclusive of SRM, allowed for elimination of false 

positives and recruitment of the most associative proteins within each transplant injury 

cohort. Our approach to reduce injury-specific proteins to minimal sets allowed for the 

generation of a combined set of 33 proteins that encompasses differentiation of three specific 

groups of transplant injuries, and can be rapidly profiled as a non-invasive assay in the out-

patient setting, either as SRM or as ELISA-based multiplex, low-cost assays.

The inclusion of matched transcriptional profiling of biopsies allowed for an analysis of 

overlapping, functionally-relevant biological pathways in the graft and urinary ultrafiltrate. 

As seen in our previous proteomic studies 4, 13, 21, we found the immune-mediated and 

complement pathways most relevant for acute rejection injury, as well as disruption of 

tubular solute and ion transporters, extracellular matrix re-organization in the chronically 

injured graft, and innate immune responses and kinases disrupted in the SV40 infected graft. 

Interestingly, individual components of these pathways were variably regulated at the gene 

and protein level, which highlights the importance of the post-translational modifiers, 

activators, and regulators that close the gap between gene transcription and final protein 

function. Enrichment-based computational analysis of cell-specific expression data suggests 

a key role for B cells, granulocytes, and dendritic cells in alloimmune injury in the graft, 

with a more specific role for T cells in the acute phase of the rejection response. The absence 

of a T cell enrichment protein response in chronic injury may relate to the fact that most 

immunosuppressive drugs are T cell-centric, and thus result in satisfactory long-term 

suppression of the T cell response. The more recent and increasing clinical application of 

agents such as Rituximab, which selectively depletes immature B cells 22, Boretizumib that 

selectively targets late B cells and plasma cells 23, and Belatacept that possibly targets 

memory B cells 24, may result in the evolution of “escape” mechanisms seen in chronic graft 

injury. An earlier urine proteomic biomarker study published by our group used 9 a MALDI-

TOF based “peptidomic” approach of analyzing protein digestion patterns from the 

activation of various proteases in urine during acute rejection. Though this previous study 

only focused on examining very small peptides <10 kDa after selective filtration, which is 

different from our study that now interrogates a different proteomic fraction of urine that is 

>10 kDa. There is a significant overlap of proteins (87%) identified in this study and another 

recent publication by our group, which uses the same approach on a smaller sample set that 

only contains AR and STA sample analysis13. More than two thirds of the proteins and 

peptides in this latter paper overlap with the current dataset in acute rejection. In this current 

study, the analysis of additional categories of graft dysfunction allows for the discovery of 

additional markers that now more fully map major categories of graft dysfunction.
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CONCLUSIONS

In conclusion, years of carefully archiving urine samples collected with standardized 

protocols 10, 12, 25, matched with graft biopsies, and read by centralized histology 26, as well 

as a “back to basics” approach of whole proteome discovery using unbiased methods, 

resulted in biologically relevant information on graft injury. The bird’s eye view picture 

confirms our basic understanding of immune injury mechanisms, but a more granular view 

now provides details on critical players in these pathways that deserve closer attention. The 

limitations of the study mainly reside in the high cost and restricted availability of mass 

spectromery instrumentation. Given the experiment costs, we used a pooling strategy 

approach for the iTRAQ discovery to reduce the number of experiments, while retaining a 

larger sample analyte cohort. This could have potentially eliminated underlying disease 

heterogeneity of individual samples and “smoothened” out some biologically important 

signals that could track with disease severity in each classification class. Though this 

pooling approach can reduce the statisitcal power for discovery and limit extrapolation of 

data, the inclusion of individual samples, without pooling, in the validation cohort, allowed 

for very stringent analysis of a more restricted and smaller set of biomarkers. In addition, the 

deliverable of an SRM based panel to quantitatively measure the level of peptides to direct 

physicians to make decisions on transplant injury, impose the necessity of an available mass 

spectrometer in a clinical lab or hospital testing site, though these machines are now 

becoming increasingly availabile at lower costs. We propose to work on developing ELISA 

based assays for these targets to make the evaluation of this urine protein panel more cost 

effective. The strength of this study is access to large sample numbers, through the support 

of multicenter clinical trials, which allowed for the use of independent validation sets of 

samples with variable demographics for fine tuning a 33-protein biomarker panel in urine 

that provides an identification card for each transplant injury subset by a simple urine 

analysis27. The development of this highly selective urine protein panel for “at event” injury 

diagnosis, sets the stage for developing a urine biomarker panel to predict the onset of 

specific injuries, when histological injury is still in its most incipient stage and not detected 

by other clinical parameter change in function, such as a drift in the serum creatinine, 

proteinuria, or change in ultrasound-based Doppler resistive indices 28. Application of a 

protein panel-based, serial, and out-patient urine analysis approach carries the promise of 

predictive precision medicine for the renal transplant recipient.

BRIEF METHODS

Patient population and study samples

The study samples were selected from a biorepository of 2016 banked urine samples of 

which 770 were biopsy matched. A total of 396 unique and appropriate urine samples 

(sample selection flowchart in Figure 4A) were evaluated from kidney transplant patients 

with matched biopsies. They were read by a central pathologist and scored by the Banff and 

Chronic Allograft Damage Index (CADI)29–32 as acute cellular or humoral rejection with 

clinical graft dysfunction and tubulitis and/or vasculitis on histology (AR; n=112) 2, stable 

with no histological or clinical graft injury (STA; n=117), chronic allograft nephropathy 

with clinical graft dysfunction and chronic tubule-interstitial injury on histology (CAN; 
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n=116) 15, and BK viral nephritis with SV40 staining on histology, with/without clinical 

graft dysfunction (BKVN; n=51). “Graft injury” in this study was defined as a greater than 

20% increase in serum creatinine from its previous steady-state baseline value and an 

associated biopsy that was pathological. Acute rejection (AR) was defined at minimum, as 

per Banff Schema, a tubulitis score ≥ 1 accompanied with an interstitial inflammation score 

≥1. Chronic allograft nephropathy (CAN) was defined at minimum as a tubular atrophy 

score ≥1 accompanied by an interstitial fibrosis score ≥1. BKVN was defined as positivity of 

polyomavirus PCR in peripheral blood, together with a positive SV40 stain in the 

concomitant renal allograft biopsy. Normal (STA) allografts were defined by an absence of 

significant injury pathology as defined by Banff schema. All samples were collected from 

pediatric and young adult recipients transplanted between 2000–2011 at Lucile Packard 

Children’s Hospital of Stanford University, under IRB approved protocols. The study was 

also approved by The Human Research Protection Program (HRPP) of the University of 

California, San Francisco to allow analysis of biobanked samples. The overall study design 

is summarized in Figure 4B.

Urine collection, processing, and storage

We optimized our urine collection, processing, and storage protocols for proteomic studies 

from multiple clinical sites in our large biobank of urine samples33,11, 13. Second morning 

void midstream urine samples were collected and centrifuged at room temperature. All the 

urine samples in this study were collected prior to the biopsies. The detailed method is 

available in Supplemental Methods.

Discovery of urine proteomic repertoires by quantitative iTRAQ proteomics with a novel 
pooled sample approach and independent validation of phenotype specific proteins by 
shotgun proteomics using LC-MS/MS

To identify the repertoire and abundance range of proteins that were perturbed after 

transplantation of an HLA mismatched kidney, as well as their further alterations during 

immunological injury from innate (viral) or alloimmunity, we used a novel pooling approach 

for each distinct injury phenotype, with multiple samples/pool to control for pool 

heterogeneity 13. We prepared 6 unique pools for each phenotype and each pool contained 5 

unique samples of the same injury phenotype/pool, with a sum total of 30 unique samples/

clinical phenotypes except for BKVN, which contained 3 samples per pool. The pool 

diagnoses were similar to our target groups of interest: AR, BKVN, STA and CAN. Detailed 

mass spectrometric method is available in Supplemental Methods. For liquid 

chromatography–mass spectrometry/mass spectrometry (LC-MS/MS analysis), we used a 

Thermo Fisher Scientific LTQ Orbitrap Velos MS outfitted with a custom electrospray 

ionization (ESI) interface assembled in-house. We used 40 AR, 40 STA, 40 CAN, and 17 

urine samples for LC-MS/MS validation. The LC-MS/MS analyses for individual samples 

were performed on the same LC-MS platform (Orbitrap Velos MS) with similar parameters 

as the iTRAQ samples, except that top 10 collision-induced dissociation was used at a 

normalized collision energy of 40%. The raw data has been deposited into the MassIVE 

repository, with accession MSV000079262. It was also shared with ProteomeXchange, and 

assigned accession PXD002761.
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Peptide selection, SRM assay configuration, and customized LC-SRM assays

Peptide selection for SRM is summarized in Supplemental Figure S1 provided in 

Supplemental Methods. Briefly, we used data generated from this study, as well as the data 

from the pooled study with iTRAQ reagents, to initiate the peptide selection. The detailed 

peptide selection method is provided in Supplemental Methods. Based on the selection 

criteria, crude synthetic peptides labeled with either C-terminal heavy lysine ([13C6, 15N2]-

lysine) or C-terminal heavy arginine ([13C6, 15N4]-arginine) were purchased from Thermo 

Fisher Scientific (San Jose, CA). All cysteines were modified by carbamidomethylation 

(CAM). The details of the SRM assay is provided in Supplemental Methods.

Independent validation of most informative phenotype specific peptides by customized 
LC-SRM assays

Data analyses—Peptides from iTRAQ-based assay were identified based on tandem 

MS/MS spectra using the Sequest search algorithm against a human protein database 

(UniprotKB, released 2010-05). Details of peptide identification criteria for all LC-MS-

based assays is available in the Supplemental Methods.

Data analysis for LC-SRM data—The data was analyzed with Skyline software 34. The 

best transition, highest in intensity and lowest in noises, was selected and used for 

quantification. The ratio of endogenous to heavy isotope-labeled internal standard was 

normalized with protein load and urine creatinine to achieve relative abundance of the 

peptide in the urine. All data analysis was performed under R 3.1.2 (http://www.r-

project.org/). Data were log(2) transformed and quantile normalized. The batch effect was 

adjusted by empirical Bayes methods 35. Clustering heatmaps were drawn by computing 

correlation similarity metric and average linkage distance 36. Confounder analysis was done 

to eliminate any association between injury phenotypes and demographic parameters. 

Recipient age was significantly associated with patients’ phenotypes with a p-value < 0.001. 

We evaluated correlation of potential biomarker (log-transformed) and recipients’ age, 

however there was no significant association found (p=0.187–0.403). Based on this, we did 

not control for recipient age for the three potential biomarkers. There were significant 

associations between three potential biomarker proteins and initial infiltration amount at 

95% confidence level. The correlations between biomarkers and mononuclear cell interstitial 

inflammation (i-score) were positive (pearson correlation range = 0.33–0.41). After this 

analysis, a panel of minimal peptides was selected by shrinking all peptides through 

minimizing the usual sum of squared errors of peptides, and using penalized maximum 

likelihood for linear regression models, with an algorithm called LASSO and its extension 

elasticnet 37, 38. The coefficients of selected peptides were derived from the linear regression 

model. Discrimination accuracy was calculated by cross validation, in which each group was 

randomly sampled 1000 times. Each time, 90% of random samples were used as a training 

data set and the remaining 10% as a test set. The prediction results from this approach, 

performed 1000 times, were pooled together and then bootstrapped 100 times on the pooled 

results to generate receiver operating characteristic (ROC) curves and the area under the 

curve (AUC).
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Enrichment of functional protein groups in transplant injuries overlapping in 
between urine protein and gene expression of kidney biopsy by microarrays—
Proteins were functionally characterized into groups for those central to the immune 

response (n=30), regulating solute/ion transport in the renal tubule (n=5), and critical for 

matrix and tissue remodeling (n=10). These proteins were further evaluated for their 

alterations in each functional category, across the clinical transplant phenotypes by 

hypergeometric enrichment analysis (double sided p value<0.05).

Enrichment analyses of within patient, matched biopsy mRNA/urine protein 
measurements—Human biopsy microarray data on a subset of the same patients, profiled 

by urine proteomics, was downloaded from GEO (GSE25902; 4), and immune cell enriched 

gene lists were examined, as provided in our previous publication 4, for B cell proliferation, 

T cell proliferation, NK cell activation, granulocyte migration, dendritic cell migration, mast 

cell activation, and macrophage activation. Enrichment significance of each immune cell 

type (e.g. B cell and T cell) was examined by using the geometric means of significant genes 

for each phenotype by Fisher’s exact test, using a significance threshold of p<0.05.

Intra-patient variances in tissue mRNA versus urine protein levels in 
transplant injury—Gene expression data for AR, CAN, and BKVN specific genes from 

kidney biopsy data (GEO GSE75693), were used to map 811 proteins that were identified as 

significantly altered in injury phenotypes AR, CAN, and BKVN, utilizing microarray data 

from matching biopsies from the same patient at the same time-point. The functional 

enrichment analysis was performed by using STRING database (http://string-db.org)39. The 

p value were false discovery rate (fdr) adjusted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Table 1

Demographic information for 396 kidney transplant patients in the study

1A: 108 patients enrolled in the iTRAQ based LC-MS pooled sample analysis

Phenotype AR STA CAN BKV

Number of Patients 30 30 30 18

Steroid-free/Steroid-based (%Steroid Free) 57 50 50 33

Recipient Gender (%male) 53.3 50.0 60.0 66.6

Recipient Age* 13.8 ± 4.7 15.9 ± 4.2 12.1 ± 5.6 15.7 ± 3.4

Donor Age* 24.8 ± 11.5 30.6 ± 9.7 30.3 ± 9.3 29.1 ± 10.0

post-txp (mo) 24.4± 29.4 26.6± 37.1 13.6± 17.0 8.6± 5.6

1B: 137 patients enrolled in the label-free LC-MS individual sample analysis

Phenotype AR STA CAN BKV

Number of Patients 40 40 40 17

Steroid-free/Steroid-based 58% 50% 55% 45%

Recipient Gender (%male) 55.8 56.9 77.1 70.6

Recipient Age* 15.7± 4.9 16.5±4.4 11.4± 6.0 16.7 ± 3.5

Donor Age* 28.2 ± 11.7 30.7 ± 10.5 30.2 ± 8.6 28.3 ± 9.0

post-txp (mo) 72.9±77.5 24.1± 28.6 24.9± 27.3 9.8± 8.2

1C: 151 patients enrolled in the label-free LC-SRM analysis

Phenotype AR STA CAN BKV

Number of Patients 42 47 46 16

Steroid-free/Steroid-based 50% 45% 57% 25%

Recipient Gender (%male) 65 55 76 69

Recipient Age* 16.4± 3.9 16.4±4.6 11.7± 6.0 17.1 ± 3.1

Donor Age* 27.1 ± 11.0 30.7 ± 10.5 30.0 ± 8.8 28.1 ± 9.3

post-txp (mo) 82.7±82.7 24.2± 29.8 24.9± 27.9 10.1± 8.4

*
Recipient/Donor Age: mean ± stdev
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Table 2

Transplant injury specific peptide-panels for AR, BKVN, and CAN discovered by LC-MS and validated by 

SRM

AR-specific Peptide ID logFC adj.P.Val

1 COMP_HUMAN_ELQETNAALQDVR 3.0 3.84E-12

2 EGF_HUMAN_IESSSLQGLGR 2.9 3.84E-12

3 PGCB_HUMAN_ALHPEEDPEGR 2.9 1.67E-10

4 ZA2G_Human_EIPAWVPFDPAAQITK 2.7 3.84E-12

5 FIBA_Human_NSLFEYQK 2.6 9.80E-13

6 H2B1B_HUMAN_LLLPGELAK 2.6 1.68E-12

7 K2C75_HUMAN_NLDLDSIIAEVK 2.4 9.80E-13

8 K1C15_HUMAN_ALEEANADLEVK 2.1 3.84E-12

9 DAG1_HUMAN_VTIPTDLIASSGDIIK 2.0 1.02E-11

10 HV305_HUMAN_EVQLVESGGGLVQPGGSLR 1.9 1.83E-12

11 HPT_Human_VGYVSGWGR 1.8 2.22E-13

BK-specific Peptide ID logFC adj.P.Val

1 HV303_HUMAN_AEDTAVYYCAK 2.6 6.84E-08

2 LMAN2_HUMAN_NCIDITGVR 2.1 1.36E-06

3 ENOA_HUMAN_GNPTVEVDLFTSK 2.1 3.04E-07

4 HV102_HUMAN_DTSTSTVYMELSSLR 2.0 2.06E-05

5 CFAB_Human_EAGIPEFYDYDVALIK 2.0 2.29E-04

6 APOH_HUMAN_FICPLTGLWPINTLK 1.8 1.39E-05

7 GRP78_Human_ITPSYVAFTPEGER 1.7 5.97E-04

8 DEF1_HUMAN_IPACIAGER 1.5 2.84E-03

9 CATG_Human_NVNPVALPR 1.4 2.84E-03

10 TRFL_HUMAN_NLLFNDNTECLAR 1.3 2.84E-03

11 CPXM1_Human_LLPQTWLQGGAPCLR 1.2 5.68E-03

12 ANXA2_HUMAN_GLGTDEDSLIEIICSR 1.2 5.68E-03

CAN-specific Peptide ID logFC adj.P.Val

1 HV305_HUMAN_NTLYLNMNSLR 6.3 4.99E-27

2 RL18_HUMAN_ILTFDQLALDSPK 4.8 1.03E-25

3 F151A_HUMAN_AVGPSLDLLR 2.7 2.41E-13

4 TGFR2_HUMAN_LTAQCVAER 2.6 4.21E-10

5 LYAM1_HUMAN_AEIEYLEK 2.5 1.61E-12

6 PLGB_Human_AFQYHSK 2.5 7.26E-13

7 F151A_HUMAN_TYTQAMVEK 2.4 4.50E-10

8 K2C8_HUMAN_LSELEAALQR 2.4 5.26E-13

9 K1C19_HUMAN_ILGATIENSR 2.3 1.38E-10

10 IBP7_HUMAN_GTCEQGPSIVTPPK 2.3 7.50E-11

11 DSRAD_Human_YLNTNPVGGLLEYAR 2.2 4.83E-10
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AR-specific Peptide ID logFC adj.P.Val

12 LV102_HUMAN_WYQQLPGTAPK 2.2 3.94E-10
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