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I. INTRODUCTION

A. - Economic Incentives

The gas centrifuge or ultracentrifuge is a device

which sépérates the'isotopes-of.uranium by the action of

a centfifugal force field some 1Q§ times greater than gravity.

Ultfaéenffifuges of various'types ﬁere‘investigated exten-
sively ddfing the Second.wdfid War as a possible meané‘
of sepéréting urahiﬁm isotopés for nﬁclear weapons. With
ﬁhe decisibn té'employ the gaseous diffuéion process aé

the sole supplier of enriched'uraﬁium, iﬁterest in the

cen;rifuge isotope separatioh method diminished considérabiy

in_fhe United States. Because of the large investment in

the equipment-and technology of the gaseous diffusion

process,_Americaﬁ planning for future enriched uranium

requirements for nuclear reactors does not seriously consider

the gas centrifuge as a coﬁpetitqr}

' However, the rapid growth of nuclear reactor capacity

in Westérn Europe and Japan, which do not have large

"gaseous diffusion capabilities, has generated considerable

interégt in the gas centrifuge'as the principal means of

pfodﬁcihgvslightly enriched uranium for thé nuclear power

~ industry. ‘Perhaps the most attractive feature of the gas
- centrifuge pfocess to these dountries is the relatively

low electric power requirements. The three American gaseous

diffusion plants, when operated at full ioad, consume as
much power as one third of the électrical'generating capacity

of the West German Federal Republic.” Preliminary estimates



suggest that'the cést of elec;riciﬁy intfhé gas centrifuge
procesé cﬁntributes &10% to the ;ostvof separative work,
compéréd to nearly 50% in the gaseous diffusioﬁ.process.
The éost.of electriéity in Europe is higher than in the
ﬁnited-StdEes,'so that an isotope sépérétion method less
prodig#lvof electric power is highly desirable. In addition,
gaévcen;fifuge piants can be operated economicallj on a |
much gmallér scaiebthan :hé size of an'optimum gaseous
diffus’"iori facility. |

| Oﬁﬁfﬁe other_haqd, scaye—up ofia’gaé centrifuge plant
is'hqt'éimﬁly a matter of increasing“the éize of individual
sepérétiﬁg_units, sincé the performance and‘ﬁechanicél
reliaBility of é”gas centfifﬁge afe critically dependent
- upon its;size. Isdtbbe separation plants satisfying European
;demands.fdr enfiched'uraniﬁm would require very large numbers
of indiVidual céhtrifﬁges,“perhaps as many as.several million,
eaéh operating'at‘fotationa1.5peeds greater fhan 56,000 RPM.
Questidhs-of'rgliability and life-time, which significantly
affect product cost, can only be answered.by plant-scale
&emonstra;ion of the p;ocess. However, the gas qentrifuge
process is sﬁ%ficiénﬁlybpromising to have prompted fhé

British, Dutch and West Gefman governments to form a company

to bring'the process to the stage of commercial exploitation (1,2).

B. Scope of the Review

There are many aspects to the use of the gas centrifuge
for sepafating the isotopes of uranium. In the present

review, the éqonpmic and technological questions touched

>



"upoh'ébpéeiﬁili not be éxpldred fufther. Additional discussion
of tﬁe ééénomic and politicai éonSideratipns'ﬁayvbé foﬁnd
in.reféﬂ‘3—8;> Engineefing aspécts, such as fétorldesign,
méchanical sﬁaﬁility; andvmatérial éelectioh are.treatedv
in refs, §~l6. | |

Thebpresent review.i$ resfrictéd to an analysis of
the peffofmance of the gas centrifuge, based primarily
upon - the equatiéns of diffusion and hydrodynamicskwhich
governbthe bhenomena occurring_in the device.v In addition,
only a paftiéular type of'éas centrifuge wili be discussed.
During :hé Manhat;an Project, tﬁfee tyﬁes of ceﬁtringes'
were in§esﬁigatéd; the eQaporative, concurfent, and'counter;
current modifications. Only the iast of theée is seriously
considered forviarge scale applicatioﬁ, primarily beéaﬁse
the flow pattefn in this mode of operatién acts to multiply
the simplé‘process:effect ﬁany times. High separation
factoré can be achieved in a single‘unit,-or in effect,
a sing1é Egpntercurreﬁt centrifuge behaves like a miniafure
igotope ééparation cascade. |

| Distiﬁction must be made bétween two methods of establishing

the cdunﬁeréurrenfvflow in the spinning rotor or "boWl";
of theiée#trifuge. These methods are illustrated in Eigsf
1 and52< In.thevBeams.device (17) (shown in Fig. 1), the 
véquntéréﬁfrent'is established by stréams introduced at |
 oppos1té ends and different rad1al positioﬁs. ReJhux and
flow are maintained by pumps outside the device, so that
the cbuptercurrent is said to be external.

v

- Figure 2 shows the ZG3 centrifuge of Groth (9).



- In thié'édﬁfigurafiép.i¢6uht§rchrf€ﬁt‘fl&ﬁiis due to 
"thefmalvdngeétion_éét:ﬁb;b§ ﬁaintéfhiﬁg ihe top cover

of the i&tor at a'SLightly highér §eﬁ§er§tﬁ?e than the

: boftomfédﬁe:a Thiévtyﬁe of counterqurrent:céntiifuge is
called a thermaily driven or ihtérndl éoﬁntefeufrent
aevice.. The feed to the Cehtrifuge‘éhtérs-thé del from
"a small tube on the_gkis.‘»To avoid'mixing'of-streaﬁs of
differenfvéompdéitiOns (whichrié,anathema'in all isotdpe
vseparation methods), the axial location of the fééd point
is'éﬁoséﬁ éo th#t'the feed.cbmpositiOn is'thé same as the
composition in the dewice established by fﬁé combined
'.centrifugél and aiiai cirCuiatién processes. >In‘thé
thermally'driven;centtifuge, fhe.magnitﬁde of the

cifculating flqw (represented by the sum of the "up
and "dpwn" flows) can be aﬂjuSted indépehdently of the'

feel flo& rate 6r throughput. This abiiity to_select

the "réflux rafio":by‘simply adjuéting ihternal teﬁperatures
represénﬁs a degree of fl;kibility nof-évailable in the
cenﬁrifuge of Fig. 1;_where refluxing is performed by an
-ex:efnal_pﬁmp.. Only the thermally driven centrifuge is
preéently:under.considefafion'for large scale sébaration
of,uraniﬁm isotbpes, and only this type will be dis?ussed
”here.ﬁ | |
yyhé;gaévcentrifnge may be anélyzed in two distihct

steps: - (1) the hydrodynamic analysis seeks to determine

the nature and magnitude of the gas flow within the

rotor. = (2) The separative analysis determines the manner in

LN
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whigh thehcentrifugéfperfqgms as{an’isotobefseparator;
Althongh the'nepgpative prqpertieé nre_&epéndent upon

the hydfddynaniés df:the de§i¢e,‘cOnsidernble progress

can be made'by'analyzing thé separntive benavior under the

asgumptidnfthat the flow patterns are known. Such a procedure

,delinenfes‘the features of the'hydrodynamics which are essential

to the understanding of the isotope separating capability

of the céntrifuge. The hydrodynamic analyéis considers

“the behavior of a single component working gas, while the

separative analysis ekplicitly regards the fluid as a two

component isotopic mixture. In this review, the separative

‘behavior is considered in Sec. II and the hydrodynamics

in Sec. III..

C. Separative Properties of a Centrifuge

' The two parameters which are obtained from the separative

analysis aré the separation factor (or simple process

factor)vd and the separative power 68U of a single centrifuge.
These two properties aré'telated to the design featnres

of the centrifuge, the physico-chemical properties of the

'procesé'gas (uranium hexafloride), the flow pattern, and

_contrblléble variables such as the throughput and the cut.

The importance of the separation factor and the

- separative power can best be appreciated by regarding a

single centrifuge as a black box, or separating unit,

'which possesses a small number of'formal properties by

~which its efficiency as an isotope separator can be gauged.

Fig. 3 shows such a separating unit. Each nnitvreceives a
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and delivers a product stream (or heads stream) of composition

feed of'Eomppsition_x 'ahd,flow rate (or throughput) L

Xp and flow rate P and a waste (or;tails)Asfreah of composition

X

definedxby;‘

énd:flow‘rate w,' The cut of thg_aeparéting unit is

e=®/L S )

A'material ba1ance_over.the separatiﬁg unit on the desired
isotopé (the'one referred to by the designation of isotope
fracfiqn‘x) yields:

xp = oexp + (L-odxy | (2)

‘The'Separétibn_iacibr is-defined;by:

’xP/(.l-xP)'

’ f xw;(l'xw) o : | 3 '(3)

When déﬁinéd by Eq. (3),‘the sépargtion factor is'indépeﬁden;
 0£ coﬁpééition Eht”mé;*depehdgnpﬁé.ﬁhe ﬁhroughfut L and -
 £he‘cut.é. A léfgé value'of.a'is deéiraﬁie, but is not

" the oﬁly important characteristic of the separating unit.

‘For example, a pérficular deviqe may pfodﬁce a large éepa;ation
faqtorionly'at very émall throughput; In order to prodéss
abgertain amount of feed material, a large number of

Separating units may be required even thoﬁgh'a is large.
Consequently, a separating unit which exhibits a relatively
mbdest séparation fgctor_but does so at a reaéonably large

' #



flou rateimay be nore'desirable from the_point of view‘

of cascadeideaign. | | | ‘
Quantitatively, the‘dependence of the efficiency

of a. separating unit on the combined effects of throughput

and enrlchment is characterized by the separative power of

the unit. To describe this feature of the separating unit, -
the work;Which the device does on the fluid it processes
is vieWed.as increasing the “ualue".of.the.material. The

value of a unit amount'of-material‘of isotopic composition

x is denoted’by V(x), which is:termed the value function.'
The separative power of the unit is defined as'thevincrease‘
in the.vaiue of the streams leaving the unit over the feed
stream. A "value.balance”vcan.be made in a manner analogous

to a material balance. For the separating unit shown in

Fig. 3, this balance yields:
60 = 6LV(xy) + (1-8)LV(x,) - LV(xp) (4)
Both the separative power §U and the form of the

value function V(x) can be determined by a single requirement.

that U be independent of isotopic comp051tion of the

" streams entering and leaving the unit. Subsequent analysis

is‘considerably simplified (and yet remains sufficiently:

accurate for our purposes) if only "close separation"
proceééesAare considered. By close separation we mean that
the elementary effect of each separating unit is quite

small,vor'that the compositions of all streams entering



and leaving the unit differ but 1itt1e from each other.
This condition J%/fulfilled if the separation factor o
is8 close to unity. Under the close separetion restraint;
the value functiqns V(xp) and V(xw) may be»obtained from

Taylor series expansions about the feed composition:

i

dV)(x -x ) + %

d2V

dx2

(XP—XF) : (5)

V(xP) = V(x ) +

.Use of Eqs. (2) and (5) (plus the analog of Eq. (5) for

V(x D)) in Eq. (4) yields:

. . ' 2 .
Y 2{d%v
sU. 2Le(l 6)(xP X (. 5 (6)
Covdx”
In the‘clese separation case, the defining'equation for
the separation factor, Eq. (3), may be simplified by
neglecting a-1 compared to unity:
xP4xe = (a-1)x(1-%x) I (7)

W

Since the.compositionsvof all three streams entering or
leaving ‘the unit are close to'eaCh other, it is immaterial

whether‘x vor xP is used as the compoéition vafiable

F’ W’
on the right hand side of Eq. (7). It has been denoted
simply by X.

Combining the preceding two equations results in:

sU ='%e(lfe)(a-l)zL[x(lfx)]z

2 ' '
d°v]
“—E) : o (8)
<l

[« %



In order to satisfy the requirement that GUibe composition
independent we must set

a“v - - 1 - ' : _

dx” Clx(1-x)]17

Eq. (9) can be integrated directly. ‘With the auxillary

specifications V(0.5) = (dV/dx) = 0 (which are chosen

‘for convenience and do not affect the basic properties of

‘the vaiueffunction),_integration yields:

V(x) - (2x-1)2n(I%;) - : . (10)

The concentration-independent separative power of a single

separating unit is thus seen to be:

cn«: %_6_(1-6)(_0&-1_),2L _ - Can

D. The IdealVCascade

A large scale isotope separations plant consists of a

.large number of separating units arranged in the form of
'an_ideal_(or no- mixing) cascade. ~An ideal cascade is
_sketched in Fig. 4. To differentiate the'process streams

entering and leaving the cascade from those pertaining to

a single separating unit, the flow rates 1in Fig 4 are

written‘in script and the isotope fractions are denoted

.by X.

The properties of an ideal cascade (irrespective of the

nature of the separating units of which it is composed)
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are de§cfibéd in the_book.by Cohen (18).  The height of
thé cascadéi(from the ﬁaste end to'the.produéé end) is
propor;ional to the number.of'stages require& to effect
the desifed separati&n.: Provided thaf thewséparatidn
facﬁOr'is'independeﬁt(Of cbmpdsitioh and close to uﬁity ’
(ghé clo$e~sep3r§ti6n aﬁpfoxiﬁatioh), the total numberbéf

stages in the cascade is:

number - |2 en fP/(leP) . : (12)
of stages a=1 Xw7(1wa) , ' :

A‘étaée may be represented by a horiépntal iine in the
"diagram of Fig. 4. Thé width of the cascadé at‘gny stage
is a measure pf the numberiofISéparating'units at that
particular‘point. All separating units in a given stage
reéeiﬁevtﬁe same feed ahdvbroduce ﬁhe_samé‘ﬁeads aﬁd téils
streams. The total area contained ﬁ;thin the diagram of
Fig. 4 ié'propdrtiﬁnal‘ﬁb the tota1 number of separating
units’in thekcaécade} ”itbcan_be:shqwn that the total interstage
flow rate in a closé»sep#ration; ideal cascade whose separéting
units_operate at‘a_cut-é is.giveﬁvby;:

2

I L o o
~ e-D%e(-0) - ’

where, by analogy to Eq. (4), U is the separative capacity

of the entire cascade:

U = g)v(xp_) + WYX - 7v(xF) ‘ (14)

1 ‘ .
Footnotes are collected at the end.
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Division of Eq. (11) into Eq. (13) shows that J/L, which
is the number of separating units in the cascade, is:

numher of - - I S e S o
separating = J/L = U/GU o (18)
-units ' N o e
hhetueeuithem,.dbaud SU &etetmineTall of-theuptouetties
of the:cascade.i If U is regarded as ‘a design specification.
‘of the cascade, GU fixes the number of units required by
Eq. (15);--The.separation fector o determines_the number
ofbstaées'by.Eq;‘(IZ). . The tsper of the csscade"is also
vdetermiﬁeu bylthese two properties of the individusl
'.separstimg units. | |

fIt.is deSirahie that both o and 8U be large. The

1atger‘8U,‘the smaller the numher of units in the cascade,
which:is cbviousl§ advantégeous} If o is.large, the cascade.
“shown iu Fig. 4 is shortksnd squat, since the number of
stsges‘required for the overall separation is small. Each
stage_cdnsists of a large humber of sepatating units in
parallel snd much of the recyciing'between:stages which is
necessary for small-a cascades is avcideu. Problems of
cascade cperatiou are teduced to the extent that sepafating
units csn'be arranged in parallel rather than in series.
1However, minimization of the number of separating units
in-the cascade is the dcminant'consideration, and if a
choice must be made, it is preferable to design for

maximum SU rather than maximum o.
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II. SEPARATIVE PROEERTIES dF THE'GAs CENTRIFUGE
 This seétibn isléonqgine&:with ﬁhe tﬁeoreticgi

desétiptioﬁvof'ﬁﬁe Qé£ngr in which a.fhermélly dri?en

) gés Cénﬁtifugé pro&hées'é”separaﬁion‘of the components of

a bihafy“isétoﬁic gas mixture. The objgct.is to determine

.thé'sépéf4£ion factor arand>tﬁe sepa:ati?e power 8U of

‘the maéhine; with particulﬁr emphasis.éiven to the dependencé

vofvthesé~§foperties on contgolléblg'parametérs such as

internal'f10v~rate,”throughput, and the cut.

-The'basic conservation equations in a one component
system arg.thosé of mass (overallﬂcontinuity), moﬁentum,
ahd'enéfgyu in Séc.-IIi,vthesé equations are utilized |
to'describg the fluid velocity field;in-fhe g;s contained .
" in the.péntrifuge. In the preéent-analysis, the fluid

velocity, denoted by thé,vectbr:i, is assumed-known.

A. Spécies Continuiﬁy.Eqpation

| iﬁ:f;ﬁids‘COmpdqed'of two components (in the present
case,'diffe:éﬁt-isotbﬁeS);kan'additionailconseration relation
is applicable; the "speciesrcontinuity equation'" describes |
Cdnsgriétion Qf oﬁé of the two comﬁonehts of the mixture.z

In a ﬁixture of-cbmpdﬁents A and B, the continuity equation

for species A is (19):
D A Cae

» wﬁere,CA is the molar concentration of component A(moles/cmB);

V is the gradient operator, and N, is the vector molar flux

A

i

29
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‘of'cOmponent’A in moles/cmz-sec; .EAuconsists of'two-parts:

a diffusive (or separative) term J, which describes the flux

—A

of A relative to the average velocity of the mixture and a
convective (or non-separative) term which describes the

flux of A'due simply,to»the_bulk motion of the fluid:

Ny =, +Cv . IR | (17)

where v is the vector velocity of the bulk fluid. 3

Substituting (1le6) into (17) yields.

FVCw = Vg, (18)

In the case.of the gas centrifuge,'two components of

(m)

QA'arefimportant: the contribution RN due to ordinary

(p)

molecular diffusion, and a term J,

[

describing transport
" due to a pressure gradient. The ordinary diffusion component

defines the molecular diffusion coefficient by Fick's law:
(m) -

Iy

= -CcDVx, - ) vA' a9

where D is the binary diffusion coefficient in cm /sec and

C is the total molar concentration of the mixture.

cC=¢, +C , | - o (20)
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The_moié fraction of species A 1s given by:

| xA'=‘cA/c - o S "-:_ ' (21) -

LI

B. Elementary Kinetic Theory of Molecular Diffusion

Coh;idef a binary.ﬁixtu:e in which there exists a-
conceﬁtfacioh gradient in the'Zfdirec;ion but no buik
fluid_fléw; As shpwn'in Fig;'S; the net flux of A across
.a particﬁlar plaﬁe.éer;endiﬁdlar to z may be regarded as.v
the differénce'betwéen.thg kinétic iheory fluxes from
regions'a‘heaﬁ frée path dist#nt.from the_plane.r

From kinetic theory, the rate at which molecules of
A Cross a unit ateg.anywhere'in‘the'fluid_is 1/4(5A;A),

is the‘molecular density of A and v, is the mean

where.p A

A
speed.of‘the molecules of A according to the Maxwell-

Boltzmahn distribution:

(22)

A

‘molecule of A. With respect to the above diagram, the

where k is the Boltzmann constant and m, is the mass of a

moleéu}ar flux crossing the plane in the +z direction is:

: dC
c - A

A dz A

‘where n, has been written as Avogadro's number times

the molar concentration. A i1s the mean free path of



moleéuléé of A in?theimikture, given by:

NP S P 3
Y2 me'n V2 mo®N, C ' - -

_where 0 isvthe diameter of the molecules (assumed the same

for A and B, since only isotopic mixtures are considered
here).
.Similarly, the molecular flux in the -z direction is:

dCA

dz

-1 :
\)A zN + A

av "alla

The net molecular flux etossimg the plahq at z 1s the
N | A . ,

differencg Vo = Ve

number to give the molar flux in the +z direction yields:

Dividing thisidifference by avogadro's

v + - :
s YAV 12, 9%
Az : NAv 2 AT dz

_ Comparing this equation to the z-component of Eq. (19) for
the pfésent case (C=constant) shows that:

=13
D 5 VAA

Using the kingtic«thedryuekpressions for v and A yields:

A

o 3/2. ‘ | -
cp = _%ﬁ_ L=t e ' (24)
: A N, mo : : o

15
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3'Although derived by a very simplified model Eq. (24)
bcorrectly predicts the N3/2 power dependence of D upon
'absolute temperature, and the inverse variation of D with
itotal concentration C; This latter characteristic is
”.,especially important in the gas centrifuge, where the total

concentration (or pressure) varies by a factor of nearly

‘1000 across the radius.
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C. iEQﬁiiibrium Distfibqfidn'in aicent:ifugal Force Field
J .Cdﬁsidef ﬁheﬁeégiiiﬁriuﬁ sit&ation shown in Fig. 6
of é'fiui& mixtﬁre spinning at angular velbéity Q rad/sec
9 Thereiis no bulk

fluid motion and the temperature is everywhere T, The

in a cylindrical tube of radius r

centrifugal force on a molecule of species A at radial

distance r from the axis is:

25y

where Vo is the tangehtial veldcity, ¥}, at r. The potential

energy of the particlé relative to the position on the

axis is_the inpégral of the force:

. |
B (x) = - F (x')dr' = -2 m, (e2)> | ) (26)
| ) | |

.sin§e-the physic31 system is one of thermodynamic equilibrigm

ét'é constant témperature.Td, the ratio of the probability of

findingna particle of A at a location r to the probability

of finding one on thé.axis is given by the Boltzmann

.factOf (20):

exp[-E, (r) /KT ]

' Or,'Siﬁce the probability of finding the particle at r is

propotfional to the c0hcentration of A at r, the thermo-
dynamic argument yields the equilibrium radial concentration

profile,é
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- S ' MA(rQ)Z _ :
Calx) = €4(0) exp) ~5gr— (27
whefefMA=N7 mA'is the molecular weight of species A and
‘A av. A R L ' .
,R=Na§k 18 the gaé)cbnstaht. CA(O) is the concentration
of A on the axis. Simiiarly, for species B:
e ,MB(rQ)Z . : _
_CB(r) = CB(O)exp fiiiz—” , ' (28{

The sum of (27) and (28) gives'the total concentration.
Using (27), (28)., imn: (20) and Substituting'in the definition

of the mole fraction of Eq. (21) gives the,radiai concentration

profile in mole fraction'units;

o -1 _ v
: . 1-x,0) 2.2y 7
-xA(r) =1+ | .AB. 2 T ' , (29)
A ‘xﬂ@ -
where_a2 isg:
2
2. Wymmpe IR (30)

Because of the centrifugal force field, the light

'isotope-(A) concentrates on the axis while the heavy isotope

is enriched on the periphery. The equilibrium separation

| factbr'of.the light isctope_for a centrifuge ofkouterv

‘radiQS'rz'is'given by:

%, (0)/[1-x, ()]
Lo a0/ 0]
%0 = X, () /Ti=x,(z,)]
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Or, using Eq. (29) for x,(r,):
e =e P2 (31)

| The eduiiiﬁ:ﬁhi-séﬁ&:gﬁio# féctor:fdf urénium isotopes
(MBfMAééy at afﬁéripﬁerai épeedv(Qrz) of 300 m/secrand
'3007K-ié 1.05S._ Thus, the basic éimple'process difference,
aa-l, fo£ §hé'centfifuge 18'0;055; which is more than an
order éftﬁégnftude greafer than thé simpie'pfocess difference
fof ah £&é§l diffuéion membrane,'which is a -1 = (MB/MA)I/2
0.0043. | . |

‘Tﬁe.équlibrtuﬁ séparation factor 6f Eq, (31) is not
obtaineduinwﬁn éhfﬁél“#éﬁtfifugg. - The ﬁfeyioué development
‘appliedffﬁ a éituatidn'ih which.theré was no flow. 1In
a real.@aﬁhine, thgre must be some internal flow aﬁ least
to sugply‘feed and’remove waste and product. Some aspects
of thé 1nterna1 flow.;end‘to degréde the separation
factéf,,but in the ﬁher@&l}Y*drivén‘countércurrént
machine;'fhevflow actﬁally improves the enrichment by
multip;ying the‘s;ﬁple_prpceés factor - thé real centrifuge
acﬁé liké{avlittle dascaée( ' | |

In‘qrder to describe the‘concentrafion distfibﬁtion

and énrichment in a‘réal céntrifuge; tﬁe species qonservatidp
,equation,:Eq. (18), must bévapplied‘ﬁo.the device.  To
do thié} we still need to provide a description of the
_{iP)

pfessure diffusion term, , to complete the definition -

of the flux J

A This is accomplished by considering the
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I . _
equilibrium (no flow) case just discussed.

D. 'Pressdfe-Diffusinn“Flux

The mole fraction profile established in the spinning

fluid,-Eq; (29), is a. strictly thermodynamic relation

_and 80 does ‘not depend upon the actual_mechanism by which

it was set up. -quever,.we may regard it as a balance
between thevopposingvneehanisms'of ordinary molecular diffusion
and pressure diffusion. -In the equilibrium case, this

balance tekes the form:

Az

R (m) (p) I |

where r and z refer to the radial and axial coordinates

in the spinnin.'flnid.” Since J( m) is given by the r- .

component of Eq.'(iQ):

(33)

and xA(r) is given'by'Eq. (Zﬁ), combination of Egs. (29),

(32), and (33) yields:

§§> ~CD (MM, )x, (1-x,) L (ED

Since there is no external force on the particles in the



z—dirééqithY
() . 1 ST ' |

"-Evén though:E§;:(34)vWAs derived fqt'thé case of an
equilibriﬁm BituétiOn;,it is Qgiid;éven Whgﬁ #hefe is fluid
motions; and qu. (34) and.(35)‘§r§vide.thé description
dflpfeééﬁré diffusion ﬁégded'to:apply Eq. (18) to the

gas:gentrifuge.

' E.__Fundamental Partial Differential Equation of the

:CSuntercurfent Gas Centrifugé .
' The vector fluid velocity, v, in.thé‘centrifuge of
Fig. 2 édnsiéts offradidljazimuthai and axial components
g . : y :

u,” v, and w. Aé-wiﬂ17be.shownbin‘8ec. I11I, the radial

¢ompdnentsis"iéfo;‘ﬁhe aximuthal component is approximately

éqﬁaliﬁo_tﬁe,sblid ﬁod&Itotational speed rQ, and the axiél
componéthis a function bf radial position alone.,‘Axiél
' figidvﬁdtion.is generafed inside‘thé spinning rotor by
two meanég | | o -
(3) -Thé ?op:cover plate of the cen;rifugebis made somewhat
 ho£tef (by aﬁoutkzoéci than.thé botféﬁ'plate; Thié temp-
bergtu;é difference induces a natural cirﬁélation flow _
info tﬁg:o;herﬁise'puielf rotational motion of the gas.
'AsisﬂqV§ by the arfgws in'the sketch;'the'flow iS'COunter—
currgpﬁxin.ngture; The'fluid moves'downﬁéid near the axis
and»riées along the wall‘at the periphe:y.. Except near

“the ends; this axial flow is a function 6f»radial position

20
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only, and is denoted by the function w(r) If axial distance

" is measured from the t0p end, w(r) is positive for radial

1ocations near the axis and negative near the periphery.

The magpitude of;the axial circulation is controlled by the
temperature difference'betweea'the end_piates, and the

shape to_the profile'ie determined largely by the design
of.the,rotor interaals (e.g.,.theddesign of the scoops to
remove.ptdduct and waste and internal baffles, if any).

(b) Theiprima:v thermally—induced naturai circulation

flew described in (a) is ﬁefturbed by the introduction of
feed gae.on the axis and the withdrawallof waste and product
from either end of the machine. It will be assumed that.

these external flows are but a small perturbatlon on the

internal circulation.

Accepting the above restrictions on the velocity
components; the coﬁvective term in Eq. (18) is:

. b'a i o BxA )
Y-v\_('(.!_Ag) = 37 (CAw) = Cvisz (36)
The diffusive term in Eq. (18) is:
1 [ . e 23,5
Ve, = =2 [ {s'm P Az v
_v”iA r or [r(JAv * Jar ﬂ P (37>

the radial flux compoaents

(with a partial derivative

L (m) ®)
JA; Jar ¥ Jar

are given by Eqs. (34) and (35)

in the former):

[BXA 2 ]
-CD 37 + 2a xA(l—xA)r (38)
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wbere ez is given by. Eq.- (30).

There'is no preseure diffusion in the'z—direction,‘
and the component of“the.diffusion flux in this direction
is due purely to molecular diffusion:
(m) ~ ' BxA

jAzH” Az T qu 9z

(39)

[
I

Notingfthat by'Eq. (24),'the product CDh is a constant,
-tbe.eteady state'fotm of Eq._(18) for the centrifuge

becomes:

Szx

9z

'va_% _ (cD) %r_ (r 82 + 22%x(1-0)£%1 + (cD) (40)
The subecript A on the mole fraction has been droppedvfor
clarlty.of notation. C and \ are functions of r only.

' Eq; (40) isuthe fundamentel equation:whose solution
givee tbe eonplete concentration'field in a countercurrent
‘gas. centrifuge. No exaetfsolution is obtainable, but a
very good approximate solution can be obtained by noting
that although C and W vary substantially with r,_the
'variation of x with r is very small (less than in the
equilibrium case, where x(r) is given by Eq. (29)) o v
Because of the countercurrent flow: establlshed by the
internelvcirculetion,'x varies more with z thanm with r.
Therefote, we eeek a solution for-theIredielly-averaged

mole'fréction ;(z) as ‘a function,of z.



CE. Axial Enrichment Equations“

We have alluded to the fact that the centrifuge acts
like.eusneil cascade; sndfanalysis‘of therdevice nust
reflectpthis'feeture. iThe treatment here differs in this
respectifrom‘that preeented by Cohen'(18j,ibut is quite
'nsimilar'to the‘studies of:hos (21)'and.Kanegawa and Oyama

22). o | |

In-fig. 7, the centrifuge has ‘been divided at the feed
point into a stripping ‘section and an enriching section.
Just as in the analysis of a. cascade, we take material
'balances'on the desired isotope and on both isotopes in
each section. |

The'net flux of.the-desiredliSOtOpe across a cross
section of the entire centtifuge in the enriching section

(z _z=Z) must be equal .to .the rate at ‘which this isotope
leaves the device in the product, which. is Xp P:

r,2 ’ .
x P = 27 N_(r)rdr - _ 3 - (41)

iwhere.Nz is the flux of the desired isotope in the +z
direction, given by a combination of Eqs. (17) and (19)
for the”perticular restrictions;of the centrifuge:

N = -cp X

z 3-;-+-wa - B | ) _ (42)

23
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Insérting (42).intoh(ﬁl);'there_rgsulté: '

R S r
xpP T CE S,
2155—'= -(CD) | Fusz dr + :wardr (43)

The iﬂt’égfal : is integrated by parts:

_ .‘1’.‘ - e , r r v
2. R T2 gy
= ~.Cwxrdr = x(r,) Cwrdr -~ - = Cwr'dr' dr
. o _ 2 . .| 9r o
rp o : .ro. X, - ro
_We”noﬁ aéfiﬁe_a floW'fﬁngtioh,.f(r), by:
ff(r)_é1J' cwr'dr' e | (44)
- ro
so that the intégral.() is:
- () E(r) P rery 4 - (45)
. ) _ .

0
The radial con#entfation:gradient in the last term

of‘Eq.g(bs) m@stvbe estimated. It will always be smaller
thén'fhebgradient in -the equiiibrium case;.which from
 Eq. (29) is:

- ax S a2 . -

| (E?) —.-Za g(l-x)r | | - (46)

, eq

In the actual case, 3x/9r is obtained directly from the .

fundamental equation, Eq. (40), by carefully examining the



rorder ofzmegnitude ofithelvariouoltermé; The variation of
X withﬁhoth’r'undiz'ie'smell,:butlit io smeller in.the r
direotionuthan in the z directiou. If_8x/Bt is small,

then a?x/azz is smaller still and the last term in‘Eq. (40)
may be neglected in the estimation of ax/ar. (Berman (23)
.haa performed the analysia without this simplificatlon)
Similarly; ‘the verietion of 3x/93z Vithvradial position is

of slightiimportanceloompared to the variation of Cw with

r in the,léft hamo‘oide:of Eq; (40);f Therefore, 0x/9z is

approximated by d;/dt, whith,by defimition, is'indepeudent

of r. Thus, for the purpose of eétimetiug;pxlar, Eq. (40)

- 'becomes:
- d% _ (cD) B 9% |, o 2=, = 2
C?fdz - ar,[r a: +j2e‘x(1.x)r_] | (47)

In a eimiler spirit;-theimole fractions appearing in the
last term of (47) have been taken as the radially
averaged values.‘ Eq;.(47)_is multiplied by rdr and inte-
.. grated from ro to. rt' At r= ro, .
in Eq. (47), which is- proportioual to the radiel flux,

the bracketed quantity

is zero. Solving for the radial gradient:

dx _ _, 2=, = 1 £(r) (gg o |

.The‘flow funotion'of Eq. (44) has been used to obtain
Eq. (48). The first term on the right of Eq. (48) is the

equilibrium redial concentration gradient, given by Eq. (46)
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The last term represents a degradatlon of the gradient

due to the internal flow in the device.
\ .
' (48) 1is now subetituted into Eq. (45) to give:

1 {dx
(cD) |dz :

- r
o 2

'.= ;f(r'z'),v-l-f 2e2;(1-;)v J rf(r)dr -
- S o Ty 'v'.

r. o '
72 2 » _
‘{ z—ézl'dr (49)
where k(rz)'ih Eq. (45) has been'appfoximated by the average

concehtrafibn, X. _
In the C) integral of Eq; (43). leaz is approximated

by dx/dz and removed from the integral'
(50)

G - L 2dx
‘, =2 27
Using Eqs. (49) and (50) for the @ and

: . i-nt_egrais R

(43) becomes:

Eq.
| 5u1,r2 S v o
CXf(r,) + | 2a% fE(r)dr| X(1-%) - —aee -
2 . - (CD)
r 0 ’
- Y= x P '
X ' dx , P ,
K Dy & * 7 6w

N———————
L2 ]
. N
h
. N
-
) o
~
o

which'is an ordinary differential equation describing the
X, with

variation of the raﬂially-avereged mole fraction,



. ‘J}-

wherei ..

t.fandﬂi'

5"axial position z._ It may be written in a more compact
| ,tform by collecting the bracketed coefficients as constantsf'

'and omitting the bar over x:

1%325-= x(l x) - YP(x -x) ';3}”_5_xvifi o ,(52)'

27

H~Qﬁf?o?7irf Tiotftf%T?_if 57.5f1.ie”%iff::7 . - ,(sé)i

L

ifgia‘?"

f'fi' o
[F(c)] —5
0 C

(2wCDr y (Z/r )

L (ZﬂCDr ) +

‘the flow function integrals in (56) and (55) have been

awrittedgioftermogofrtﬁe.dimeneioniese_rediaippositioﬁg}}o

(55)

and g 18 xplrye

N | -

" The total product flow rate, P, is related to the,

'Q'in?ﬁermpfofZCi(épd'ﬁultiplieoibyQzﬁjﬁ'the'flq@gfuhctibn-is:' _
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“flow function by the following argument. .Material balances
formulated for the other isotOpe are similar to.Eqs. (41)

and (42)-except that x ’is.replaced by 1-x_, and x by 1l-x.

P
Adding the equations for the two isotopes yields

P

O [*2
P =27 | Cwrdr

or, in terms of the -flow function:
P.= F(1) o - | | - (58)

Eo}.(58i waseuSed in transformlnngq. (51) to Eq. (525

vK;H(SZ) is the basic radially averaged differential
,equationvfor the concentration variation in the enriching
section of the eentrifuge (z =z Z or nF <l) "In the
stripbing section (02n: nF),_a similar derivation produces
- the equetion: . |

X0 S ymeexy (59)

g*

’a19,
=1

ahere'xw and W are the vaste conposition and flow rate,
respectively. The:eoefflcients g* and Y* are of the'Same
form as Eqs. (54) and (55) except that the flow function
‘therein is based upon the axial velocity profile in the
stripplng_section: A
* = 94 2 ' e | Ny - . . » |
F*(L) = 2mr, | Cwkz'dr' o (60)
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The wésté:flow rate is given by:
W= -Fx(1) S (61)

The‘fioﬁ functi9n f*(§); and hence the coefficients
g* and y*;tdiffér froﬁ thé énalagous parameters in the
enriching sebtion because of'the'differenée in the axial
veloéitva(r) in'fhe“tWOISeqtions. Theée two are slightly
differeﬁ# for the reasoné described in (b) of Sec. IIE.

If there were no feéd'6r withdrawal from the centrifuge
(i.e,,.tbtgl reflux); a flow profile_vTR(r) would be
.establisﬁed by the tempgfaﬁure'difference between the
cover plétes. As éhoﬁn'in Fig. 2, the feed is introduced
on the axis_sbmewhere in betwegh the ends of the centrifuge.
The feed joins the dOwnwéfd flow in the core.. Part of the
flow gadéd.at the feed point is removéd at the product end,
butvthe.réét remains ﬁith:the éifculatofy flow andvﬁoves
ﬁpward.tpwﬁrd the.w;sté end. ‘The last vestige of feed gas
 is reméyéd at the top and the ﬁaih circulating flow moves
dpwn'to'the feed point‘to-ag#in,piCk up feed. The perfurbation
of thé”axial velocity pfofile and the flow function due,to- |
- the féé&‘ére shown in Fig. 8. (w is zero at r=r, and.ré
beéaqae of the soiid bbundaries, where we have assumed the
"o slipﬁ'conditioﬁ to apply.)
| ».As,suggesfed by F1g.,8, we assume that the pertufbation
;n the total reflux pfofiie, wtr(r) is 'slight. It cannot
be vanishingly small, however, for the flow function of

Eq. (57) at Z=1 must be equal to P in the enriching section

f
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(Ed.h(Sb))iand -W in-the stripping section.}-HOWever,

encept atL§=l, we do not need to carry the distinction
betweemfwTR and w or wTR'and w* In particular the flow ' '.
function“ch)'in Eds (54) and (55) can be adequately

calculated from y of the velocity profiles in the sketch

without altering the values of the integrals appreciably.

The net effect of this approximation is that the coefficients

g and Y in the enriching section are the same as the

coefficients g¥ and Y* in the stripping section, or the
asterisks in Eq. (59) may be omitted.

| The approximation “just discussed is valid provided
that the external flow rates P and W are small compared to

the magnitude of the internal flow. The magnitude of the

;internal £low is’ measured by the integral of the axial

velocity. profile without regard to the sign of w(r),

or a flow rate M is defined by:
1.
M = 2nr, | clwlzdaz . , . (62)

which 'is the sum of the concentrationeweighted,areas'of

" the positive and negatiye portionaof the w(r) curve of Fig. 8.

M is:controlled_solely_byithe_temperature difference
between the cover plates. If L is the throughput (feed)
of thefcentrifuge, then the'requirement that the external

flow exert'a negligible influence on the thermal circulation

is equivalent to requiring that the reflux ratio,,L/M,

be much smaller than unity. Berman (23) and Ouwerkerk

fnd'LOS'(24) have included the effect ofhnon-negligible‘
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feed rate in the centrifuge calcﬁlétioﬂs..fthe net effect
is a reduction in separétivé»poﬁer.
The;iétérhal_flow rate M'haé_another useful application.

It serves as a sCale.fac;df for the integrals in Eqs. (54)

and (55). The"fiow pattern efficiency is defined by:

2

b I F(g)zdg)
E = S — (63)
Jran? &
o
and a flow number is defined by:
N, = — . | o (64)
o (ex 1/2 .
4 J[F(;)]Z.-gﬁ |

Because 6£_the-écaling-by thevintefhal flow magnitude,

M, the ﬁacﬁors E and Nf:are>1ndependent of both the throughput
L and thé internal flow magnitude, M. In terms of these
factors, fhe coefficients»g and vy of Eqs. (54) and (55)

may be written as:

o . ang{E‘ | : : . - B .
aerVE"fﬁ
o2 4 1E ]
4N ('{" M
Uf {Tal

v _ 2
S 1 1 ' M
_ 2[2nCDr2] + TE[E?EB?_] E—

(66)
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G. Ehfiﬁﬁment at Total Reflux

Whén‘;heré_is no feed‘added‘#o or waste and pfoduct'
withdra§h from the cenﬁrifuge, tﬁe last terms in Egs. (52)
and (59) ;anish. If, in addition, we COnfiné attention
to the case of low enfiéhﬁent,,xg<1 (which'ﬁéfely'simplifies
the matﬁemaficszﬁht:does ﬁot affect the main features of
thé_finalvfesﬁltS); thé enrichﬁent equations for both sections

are identical and may7be’wfitteﬁ.és:

—ex | (67)

'n1m-, o
ol
o -

‘which is”vglid from n=0 to néi.' Integration of (67) over

these limits yields:

Now, ﬁhe ééparaﬁiﬁn‘facﬁorvof,qﬁy séparéfipg gnif is defined
byvthéffgtib of the‘pradﬁcf éﬁabwéste abun&ance.fétiés
acéqrdiﬁglto Eq.v(})f In the case of x<<1 Coﬂsid€re6 here,
u=xP/xﬁ;‘$o.thaﬁ'ﬁq. (68) is thevsepargtién'faéﬁor at‘total

réflux:~

fSinge the ratio g is g.fupction only of<the'internal

 f1ow:r#té M (by Eq.:(66), aTR §afies with M in tﬁg manner

sket¢h§d in Fig. 9. | | |
 _As'M+0, g+0 and the left hand_term in'the déﬁominator.

5

- . -
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iof Eq. (66) is dominant.; This term, if it is followed
3back through the derivation, represents axial molecular

Hfdiffusion. -The limit‘a +1 as- M+0 simply states that

‘IR

h_if no. internal circulation is established no axial
frenrichment can be attained. At small M, axial enrichment

- is severaly restricted by back diffusion in the z direction. S

= Similarly, g+0-as M+oo and the rightvhand term 1n_the

'denominator
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of Eq;.(Géfiis mueh'latget tnan the axiai'diffusion term.

vIn this limit,'thewaxiel-entichnent is reduced by the

very large circulation currents which are implied by large

M. In the'limit, the strong_circulatory flow simply

uniferniy.miXeseup the entire contents of the centrifuge.
iThe;naximum-enrichment at total refiux:eccure at

an internal flow rate given by:

1
i

uo fpg/i(zncnrz)nf (70)
(this optimun M is obtained by setting %ﬁ”= 0).
When,M=M°, Eqs; (66) an& (69) give:
S 2 “10,2,2 z ||
éTR,Opt = exp /E(a rz)/f (rz) _ . o ‘71)

This is a very instructive equation.' Compare it to
the - equilibrium separation factor of Eq. (31). Whereas

the equilibrium case represents an enrichment in the _
radigl.directipn (r=0 compared’to r=r2), Eq. (71) is an
enriehment factor for the axial difection (z=0 compered
te-z=Z}; nBy'tne establishment of the internal eirculation,
theidifection of largest enrichment has‘been changed

from tedial to axial. Neturally; in an ectual centfifuge,
the preduct and waste are withdrawn from the ends of the
macﬁine;rather than frem the akis and pefipnery. Meteovef,

ethe axial enrichment is larger than the equilibrium enrichment.
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2

separation difference, a -1. The flow pattern efficiency

The fermfazrzjin theféxponeﬁt'pf.EqJ'(71)‘is the equilibrium
term.(/§) represents a &egfédation of enriéhment due to

the floﬁfin.thé déviég - it must have a'Qélue iess than
unity.  ihe.las£ term, the length—;o-radius ratio, ;epresents
the augmentation pf,thévénrichmént'due to ﬁhe'countercurreﬁt
 f1ow in'thé cénfrifugé.

.Ifjthé ﬁollbwiﬁg.values arg_aésumedw(all are typical

:of.actual centrifuges)::

a‘ry = 9.055
E =0.7
Z/r2_= 7

we oﬁ;éin.aTRbopt~§'i.253'which_represgntS.a simple process
diffeféhcévNSO_times greater than can be achieved in the
gaseous:difquioﬁlbrocéés. HOVevgr, this.;ery 1arge
enrichment has oniY-beéﬁ oﬁtaihédiwith no throughput,

which is ébviously not a practigal way of operating an
isotopg‘separgting unit.ﬁ We must now investigate how a
non—Zerbvthroughputtreduces the separation factor, and

develop a means of optimizing the performance of the

centrifuge.

H. Effect of Througﬁput on Enrichment
Thé-enrichment attainaﬁie'by a cehttifuge when the
external flows L, P, and W are not zero is governed by

Eqs. (52) and (59) (with the primes removed in the latter

1 . 1



relation).  For fhe 1Qw concentration cése‘(x<<1), these

equatidﬁs'can be integrated fo'yiéld:

e ='L1+Y2)expi3£l+YP)(1—n)] | | G
x 1+ yPexp[g(1+yP)(1-n)] ,

for,nFénél (enriching section), and:

x
W

. exp[g(l-YW)n}-YW o ’
T Iw | o (73)
for Oénédé (stripping sgétidﬁ). i
’ It is convenient to express the total intefnal fiow
réte,iﬁ,'in terms of its optimumvvélue at total reflux
.By;the rétio:

mo= M/M_ o L o (74)
where M6-is_givenvby Eq. (70). .
In terms of the(feduced internal.flowiparaméter,

the coefficients g and Y become:

11 .22 | S |
3 @R, B
1 2.2 Z 2m 76
g = — (a r')/f(—— > | (76)
S \T2 1 142 '
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Both y and g are functions of the expérimentally controllable

1n£etnal flow rate via the parameter m, but are independent
of the‘throughput, which appears in Eqs; (72) and (73)

as‘the quantities P and W.
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Wefnqwfjbin thefgnriche:Aandtstripper'equations ((72)

and (73)) at the feed point by inserting x=x_ at 0= np

F
in béth'relatiohs. In order to avoid mixing.of fluids of
differént:Ebmpositipn,_the feed is introduced at the axial
locatibn_wﬁere ;he common.congent:ation iﬁ‘thé stripper and
éhrichet'étsfhé:feed point ié eQualv;o.tHé feed concentration.
Instea& of7éxpfésaingvthe e#ternél_fiows as P'and.W, it is

more cqhQéﬁieht to d§e the‘thtdughput (or.feed rate) L

- and the éut 0. Ihe'ratiq.xP/xF which appears on the left

of Eq. (72)_at n=ﬁF, méy 5e ré§rittén by use of Eqs. (2) and (3)
Ep X, ,= o | o 77y

:xF fij6v+ xw(l-e? _1_+'(af1)6.

Mo

The.seQQnd‘EQuality.fsva }esﬁlt of'identifyiﬁg xP/xw
with the sepafatipn factor'q. In terms'of.thé cut, YP

-may be written as GYL;'so thét_at the feed point, Eq. (72)

becomes:

o ’(1+9YL)§#p{g(l-nf)(1+67L)}

T+ (a8 - T+ (oyD)explg(i-ng) (AF67LIT - 78)
~ Similarly, Eq. (73) is:
o explang1-(1-0)YLI} - (1-0)YL -
1 + (a¢-1)8 = — ' » : (79)

.1 - (1-8)yL

. In principal, the.parameter-nF ¢an'béielimihated between
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'Eqé;.(78):énd (79), an@.thesé]twd'équatidns ﬁay be regarded
as a singiéﬁrelation pbe;ding the'separatioﬁ factor.d

as a funcﬁibn 6f thé parameters‘6;>yL; and g. Once the
centrifuge.is,dééignéd and the'rotétionalvspged and the
géseoﬁsffeéd sbecifigd (i.e;, UF6)’ thé following barameters 

are fixed:

azrgug =»eqpilibrigﬁ.éepafatiénidifféfence
-~ E . = flqw pgt;érn éfficiéncy

Z/ré ?vgéoﬁet;ic facﬁor

v[iﬂCDr2] = molgéularfdiffuéion factor

The.fitéﬁ'three'bf these factors are dipensionless. The
diffﬁsion'factbr'has the units of flow ra;e, and may be
éxpresséd.in moleS/sec or kg/yr. |
Henéé, g'anderare functions only.of the internai

- flow pér;hefer m and Eqs.  (78) éﬁd (79) are equivaleﬁt
to the felation a(6,L,m). These three indéfendent variables
are‘controllable parémetets of the cent#ifﬁge, 0. and L
are coﬁfrolled-by-valveévbn the e#ternal-flow lines and
m is adjuséedvby ﬁhéiteﬁpérature difference between the end
piatés Of.the ﬁachine;

| The behavior of o with @'for the limiting case:L=O
"was deSCribed_in éaction.iIG, Iﬁ the general
case,.for a'fi§éd cut, fhe vafiatiqn of « with‘m exhibits

a maximum for each value of L, as sket¢hed in Fig. 10.
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-The optimum value: of m is. unity at L=0, but moves to 1arger
m as Lris.increased. The maxima in the above curves describe

aéétvas aefunction'of L, whichpare plotted in Fig. 11.

I. Close- Separation Approximation for o in the Case

of Non Zero Througﬁput

The graphs in the preceding section show that as t
increasee, ‘the maximum attainable- separation factor o
decreasee and occurs at increasingly 1arger values of m. A
practical centrifuge is'operated in e'region where m is

A

significantly greater than’unity (i.e., 2 or 3) so that

The product of the remaining factors im Eq. (76)
:are also less than unity (in the ekample,in'Sec. IIG;
this product was O. 23), so that we can seek a solution

'of Eqs. (78) and (79) in the limit as
g0 | N T (s0y
However, if this limit is directly applied to Eqs. (78)

_and (79); only the trivial solution a=l-fesu1ts. 'Therefore,_

'we must also require that:

‘'gYL is not vanishihgly'smeil »I , (81)1

evenithough g is very small. This combination is satisfied

if

v YL is lerge : , - ' ' o o (825.'



Siﬁce throughput rates greafer'than zero reduce a
below its value at total reflux, the close separation
approximation can be applied to the left hand side of
Eq. (78); which becomes:

a .

I¥(acDye = oli-(a-1)8] = [14(a-1)1[1-(a=1)8] =

1+ (a—1)(1-e),v” o - (83)

Applyihg_conditions'(SO) and (82) toithe’right hand side
of Eq;f(78), we obtain:
(1 + §7IJQXP[8(1’HF)9YL] Ly 1 - exp[-g(1-n;)6YyL)
1 _ . : B ' 8YL

(84)

the right'hand side of (84) follows by aséﬁming BYL>>1.

Eduating (83) and (84) yields:

1 - exp[—g(l-nF)GYL]. o -
e | (85)

(a-1)(1-8) =

Apﬁlying‘identical arguménts to’Eq. (79)'produces:

1 - expl-gng(1-8)yL]

(a—l)e =

Examination of these two equations shows that for
both to be valid, the arguments in.the exponential terms

must be equal; this can occur only if

(1“9)YL o o 11- - .(86)

39
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 n - o o (87)

: fwhich,fif;@ée&viﬁ eithér'(85) or (86)»résu1ts in:

5 : i - exp[-gy(1-6)6L] o ,
a=1 = = . — : : 88
LS T ey (T-eeLT 88
Ed;'(88) gives a qhite_satisfadtoty deécription of
the enrichment capébiiity of a cehtrifuge under the COnditions.'"
m>1, L>Q; a-lvsméll. Eq. (87) also shows that the point
- at whichwfhe feed'is'inCroduCEd into the machine is specified

by the desired cut.

J. Optimum Sepafativé Pdker of a Centrifuge

It has been indic#tgd.inléather loose terms that
"céntfifﬁéés are_usualiy opera£éd'with relatively 1afge
Q;lﬁesf§f m, ﬁitﬁ Liof @bdrée gréﬁter than zero, ahd»
withra:simple:p:ocess differenée‘appréciébif Smaller than
6btéinablé at total‘reflux.ﬁxln this seéfion, these
coﬂditiéns are‘madé ﬁuan;ifgtiye; Tﬁgvméin queépion which
varise§ i$-Qhat cri;éria should‘be:applied to seléétvdptimum
yalueé_df'm,'L, and 6. This queétion is answered by ﬁhé |
cénsidgrétiéns ofvSe¢@'ID. | |
v Ac§ofdingv£o Ed. (15),-thé number of geparating gnits
in a céséade of spécified total separative capacity U
is minimized if the'séparatiQe powér.éf each unit isﬁ'
ﬁéxigizéd}' Consequeﬁﬁly, wevdetermiﬁé values of L, m
and 0 which'maxiﬁize'éb; This optimiiation procedure is

. different from that discussed in Sec. IIH. 1In the latter,
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6 and L were fixed and m was cﬁoaen to”marimize'a. In the
present caae, we shall fix 23 and choose e and L to maximlze sU.
Optimization of the controllable variables to give the largest
.separative‘powervis‘more important than adjustments to achieve
the largeet.seperation'factefil 8U determines the k
}number of centrifuges required in a cascade, whereas a
merely determines how the fixed number of units is to be
arranged in the ideal cascade.

With the restriction of close separation (which has
already been incorporated into the analysis of - a),vthe
'eeparatiVe power of any separating unit'is given by Eq.'(ll).

If Ed.“(88)bis inserted into Eq. (ll), there results:

: : 12 _
R T S @9
eln the 1imiting case ef close separation, both a
and,GU'depend-only-updn two contrdllable parameters - tne
preductfe(l-e)i»and m (which governs g andvy). If we
‘ regard m (and hence g and Y) as fixed,:the.maximum | |
separative power occurs nhen the right.handvside of Eq. (89)

"is armaximum, or‘when:
[gY(1-0)0L] = 1.256¢3/208 ; (90}

' at‘nhich'pbintﬁ

1, el | g |
'GUcp:,=e§‘9'tl)($) - | oD
v

 HoTR 6 4ITTE -
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Insertinghthe expressions for g and y from Eqs. (75) and

'(75)“1n;oth, (91):
. BI45 A% 7552

1 ) 2 2 o2 |
U = 0.81E (a r ) (ZﬂCD ) _— —3 o (92)
The quantity in the curiy brackets of'Eq. (92) is
shown in the Appendix to be the maximum possible separatiVe

power of"any type of centrifuge,idUmax. It isvthus a

-.standard:against which the performance of the thermally

driven countercurrent variety can. be compared.

The overail efficiency is defined-by:

i Y L2 )
-overall - _ ““opt _ o. 81E| (93)
efficiency oU 2

. == “max 1+m i

The overall efficiency contains three terms, each.of which
is less than unity.r

The constant 81% efficiency contribution in Eq. (93)
stems'. from the nature of the thermally driven countercurrent
in the centrifuge considered here. Los (21, 24) has shown
fthat this loss of separative power is due to the fact
that the direction of fluid flow changes from axial in ‘the
middle of the bowl to radial at the ends of the centrifuge,
where the internal flow changes direction by 180°. The.
net effect is a reduction in the effective length of the
bowl. This factor is not present inlthe externaily driven
centrifuge of Fig. 1, where the flow is in the axial

direction throughout the entire unit.
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The second factor in Eq. (93), ,‘repfesentSIa
~degradation of efficiency due to the deviation of the
bgattern.of the'axial velocity profile from the'optimum
 shape. This factor will be considered in more detail
in'Sec. III.
| Ihe last factofiin»Eq.‘(93>vref1ects the effect of
the magﬁitude'of the.internal'flow.upon separative performahce.

The separatioh factor under conditions that produce |

the maximum separative power is obtained from Eqs. (88)

and (90): ]
B | S '.55@33G2%aa'fﬂ
e ld_ Pt 25 - '
Copt.~ 1 = 835 = 0.578
or
“§-£ -1 = %(ofsl)(azr )/’( —32? (94)
°P R T2/ \14m

Similerly,'the optimum throughput 18 obtained from Eq. (90)

as: L GRBAIT Lok

ﬁ
. 0.63(2mCDr,)
Lopr T TI- SLIE (sm®)

(95)

_fIhe.valde of the internallflow parameter which
1maximieee the;sebatative powet is seed from Eq. (92)
to be m=®, Obviousiy; this is a practically‘unattainable
limit, eince the separation factor would be unity by Eq. (94).

and the throughput rate would be infinite according to
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Eq. (93)} AvﬁractiCal coﬁp:omise iS'tO'dpefate'in'the‘

neighbofhood of m=3, at which point,

m
= 0.9
1+m2 '
andL'
sz_; _
2__.— Oo6

1+n®

At m=3, thé‘sepgr#tive pohef 151902 of the maximum value,
yet thé_éﬁ;ichmept'pér.sfgge is étiil.GOX'Sf its méximﬁm;.
It:wiilbbe_récailed.ffom'the diséuésion of Sec. IIF
thafﬁdﬁ; bf fhetréquiréments of fhe analysis was that the
reflux3ﬁ§§io, L/M, be mﬁch léssvthén.unipy. This restriction
' ensured'§ha§ the-fhtoughbﬁf.did;npt ;pp;eCiably alter thé
_interhai fiow.estabiish§d bf'ﬁhe-naturél convection process.
If this is not ttue, thé.Qver311 éff1ciency>is‘smallér‘;han
théf given by Eq. (éé), whéréinnfhe first factor is'léss
vthaq 0.81-(24). The teflux_rétio uhder'éptimumbconditions

is obtained f:om Eq. (92) with_the use of Eq. (70):

2.

'In order to minimize the reflux ratio at the optimum .

L 2

1.25 [ 14m
2/2(1-6)6(2/x,)N, 2m

opt
M .
o

(96). -

1.
_m

separa;ivé power, the céntrifuge should Bé_long (large
Z/r2) and the éut should be % (which maximizes 0(1-6)).

‘Since the cut enters only in the reflux ratio (and not
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in 68U vorja' ), minimization of the reflux ratio is
opt ~ " Topt’’ "7V : ST T ) o

the only criterion for fixing the cut at %. This statement

is valid only in the close sepafetion.limit, where the

app:Oximations used'in}Sec, IIQI result in combining the

variableeze and L into the single barameter 8(1-06)L.

Bulang et‘et (25) have shown that'tne optimum cut is ‘less

than %_in the general_caee;'

K. Summary
A SUnmary of.the esaumptions conteined in the preceding

analysis is given below:

‘(a) x<<1 (d.e., x<n0.03)

(b) -1 small (i.e., <0.1)
(e) m large in order'to_satisfy.conditions‘(84)—

.(82); (ﬁ=3_is large enough)
(d)'”refiux ratio <<1
(e) the feed_isginttoduéed at the position where the -
concentration of the feed point is equalvto the

feed composition.

Assumptions (a)- (c) have been 1ntroduced ‘solely for
calcnlational convenience and can readily be removed..
‘Analysesisimilar to that presented here but without assnmption o
(d) hane been reported‘by Ouwerkerk ane Los (24) and Berman

(23). Point (e) is more of a specification than an



"aséumpﬁidﬁg.;t‘Shd@la néY§tvbéﬁréiaxéd.ﬂ
,VTYpidalﬂpétpmétéfSEGf'a éésf§ehtrifugé‘ufilizing.

uranium heXafiqridg gsfa'ﬁtoééés'gas atész6wﬁ'in Table 1.




TABLE 1

TYPICALvPARAMETERS OF A GAS CENTRIFUGE (UF.)

Peripheral velocity,,ﬂrz =v300m/sec'

Zv% 66cma

Cr, = 9.3co®

2. _

a’r? = 0.055
2

E =0.7 |

CD = 2.2x10 gm/qm—sec @ 300°K

, = 400kg‘UF6/yr

ZHCDr

m=3  (assumed)
C

° 3

g=0.14

1/y = 40kg/yr

aUﬁax = Z,Ikg/yr

~Overall Efficiency = (0.81)(0.7)(0.9) = 0.51

SUopt = 1.1lkg/yr

Lopt 1490kg/yr

aopti 1.08

PRef. 9

Ref. 23
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III. HYDRODYNAMICS

A. Featﬁres of.the'?Iov°ﬁeéded eruthéESeparative Analzg;s
Tﬁe pérf6rmdnce qf.a therﬁgli} driven.cdunﬁercurrent
éentrifuge whichvhas bgen optimized for-maximum\éeparativg
power 1S”governed by Eés. (92), (94); and (95); All
_parametérs'in thé§é eqﬁa£ions are kﬂowd_excépt-those which
depend g?on the ﬁiial_vgloéity.p?qfilé.
The-diﬁenéioniess‘intqrhal flow'pa:ameter, m,.dependé
_upon both the sﬁaééxand ﬁagnitﬁde of.ﬁhe internal flow,
.m is given by combinéfion of'Eqs. (74), (70), and (645 a§6:
{ZJIIF(C)JZ %5}1’2

g

e (2mpDr,) (o7
The flow pattern.efficiency, E of Eq. (63), dependé
only uﬁbﬁ:the shape of théAfIOW'funétion; but not upon its

magnitudé;

i 2
4 J F(g)zdg|{™
E = g : (63)
| -,j (F(z)1° g5
where f(c).ié-giveh by.Eq.‘(57). The flow funcﬁion is
subject'fd‘the.festtaint:_
F(o) =0 - I - (98)

ThrbdghOut ﬁhis review, wé:have assumed that the internal



circulatioﬁ‘eStablished'Bj“nétgral;convéction'ishbut
ﬁegligibly'Pefturbéd b7ﬁ£ﬁé introéﬁctionbof feed‘aﬁd with-
drawél'of product and(waétef vasq, the properties of the
internal'flow areu;hdse'ét tota1 rgf1ﬁx; Qﬁiéh‘sﬁpplies

another restraint on the flow function:

Thefe are two levels of gndefstaﬁding_rééuired of the
ﬁjdrodynamidé iﬁ the 6entfifuge:' kﬁow1edge of the axiai
velocity,to within an undetermined multipiicative constént
is‘suffiéient to fix Ej; if in'addition, fhe internal
circulation parameter m is desired, the mﬁlfiplicatiVe
factor’must be détérmined.

B. The Optimal Flow Function

The optimal flow function is the one which produces
a flow pattern efficiency, E, of unity. It can be deduced

without considering the fluid mechanics of the centrifuge.

(1) Mathematical Apprdach
We first transform Eq. (63) by introducing the

quantity:

PR(Z) = F(R)/EE ,_ o (100)

and changing the radial variable to:

49

x=ct C on
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Using Eqs. (100) and (101) in Eq. (63) yields:

1 - 2
F* (X)dX

- (102)
[F*(X)] dx ) '

’fo\——ﬂ o—o

" We have aISO'assumed that 04<<l'”so that the lower limit
on the 1ntegrals is replaced by zero.

The Schwarz inequality (26) states that for two
functions f(X) and g(X) defined over the interval 0=X<1

. N | 2
f-f(x)g(x)dx g 'J [£(x)]7dX j [g(x) ] dX (103)
“0 - 4t 0 | |

where thefequality’holde only if f and g are proportional.
If we take_f(x) = F*(X) and g(X) = constant, Eq. (103)

becomes: -
(1 e B .2 . o o
j F*(X)dX _E.J [F*(X)]°ax o (104)

and the eeuality'helde thy If,E*(X)_is-aled a eenétant.
(sinCehlteﬁust he;ptefettional to g(x) which is a constant).
Applyingiﬁq; (164) to Eq. (102) shows that E must always

be less than or equal to unity, the equality occuring only
1f F*(X) is a constant. If this is true, Eq. (100)erequires

that:

F pt(c) = constant x cz; Afor E=1 ' _ (105)
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(2);-Physica1 Approach

'Los and Kistemaker (27) and Bock (28) have derived
~the optimal flow function by the following physical argument.
The optimal velocity profile ‘is the one which maximizes

the separative power of the centrifuge. 'In-the Appendix,'

it is shbnn that.maxlmun separative power is'attained when
the radial concentration gradient, ax/Br, is one half‘of
the’equilibriunwvalue (see Eq. (A-20)). The actual radial

, concentration profile_in the centrifuge is given by Eq. 48).
if Eq."(AL19)Uis.ineerted into the left’hand‘side of Eq. (48),
we gsee that under optimal conditions, f(r) v r2, which is
eQuivalentdto Eq;‘(ldS). -

(3) Implications of the Optimal Flow Function

In terms of the definition of the flow function

by'Eq.f(57), Eq. (105) is obtained only if:
pow = constant : : - '(106)
For a single component gas of molecular weight M, Eq. (27)

shows that the total concentration varies with radial

position according to:

. 2,2 v T . o
A : ,
p(5) = p(0)e™ & - N O aon
nhere:"
; ' . "
‘ 2 . &ﬁgt‘g - (8222) i B‘ . )
S % S ' | (108)
2RT 2RT )1/2
—9
M
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is'the:analogfdf the grbﬁp.(gzrgj used in‘fhe separative

- anaiysis;‘.Tﬁe éeéond e§ﬁ$1i£y in Eq. (108)‘sﬁows ;hat‘A

is the rééio éf the peripheral speed to the most pfobable.v

ﬁoleculé:'épeea'Of the Maxﬁell—qutzmann diétributionf'
Comﬁining Eqs. (198) énd (107) shows fhat the‘optimal

ielqciﬁ&_pfofile ié; |

PEK %2 |

wopt(;) é‘copstgpt.x.e. _ (109)
Thi§ axia1 veldtity pfpfilé‘is‘#nattaiﬁable.in'practice

bepauSeiif is 6f the saﬁe”sigﬁigc éli rédial bo;itions;

AQ skgtqﬁgd.in:Fig;V8,.the:axia1 ve1oéity must change sign

at some'poiﬁt“within the ceﬁtrifugé, becagéé of.the counter-

cﬁrren;"ﬁggure.df.thg flow. Violation of this physiéal

feqdiremgnt.ié equivalent fo the fact fhat.the:optimal flow

’funcfibnﬁbf Eq; (105)}d6esvﬁot~éatisfy the;resﬁraintvof

Eq. (99); impqsed bi the condifion of‘totél reflux.
Eﬁ.u(lOQ)"shbws the tyﬁe of ?el&city Pféfile most °

advantageous to the separative pérforhantg §f a gas cehﬁrifuge.

Ih the‘fémaindgr of this section, the écﬁuai‘hydrodypamics |

rof the denérifuge'axé analyzed. in érdér cb»de£ermine ﬁow

closely the.qptima1.f1ow battern cén be approached. In 

édditibn;,theoretiéai studieéfwhiEh seék;fb détermine thé

magnitude - of the ihﬁernal flow are also reviewed.

C. Eqﬁations df Motion

(1) Geheral-Forh

. The compléte velocity field inside the spinning
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rotor of‘ﬁhéjg33 gent£i£uge.(assumiﬁg the 1fuid to be a

siﬁgie;cémﬁonent idéal gaé)'is determined by the equations
of motiog;. These are shown in full on pp. 83, 85, and 319
._af Ref.'I9.:vIn'cy11nd;ical coordinates witﬁ axial symmetry

and at steady state, they are:

»ovefall mhss,continuity:

3

19, o0, o
Ta e v vy =0 a0
radial momentﬁm:_v
5 - N
: v vV, v - '
_r __8 I - _ %P 4y} |13
p‘Vr or “'r”.+ Vz 9z |- or M| Br[ ( v J *
i l32Vr
5 —5 (111)
9z

angular momentum:

AV, V.V gy
: 6 .r 8 0. 9 1 9.
PV 5t T ,_+ vz aé " u{;r[? 5?(?V6

|

= (112)
3z
'axial moméntum:;
IR avz "avz - "'32 {1 3 | V_avz o
PV ar * Vo9 ] T "5z P ¥ T e |t 3T ) *
azvz
3 |t pg. 0 (113)
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where{Vf;.Ve, and'vz af; thg éompohents of tﬁe fluid Qelocity
in‘the ra&ial,faéimuthai;.iﬁa éxiai direcfions. p and W

are the'mésé.density and viscosity of the gas respectiVely;
and g ié tﬁe acceleration of g;aQity (assﬁﬁed to Se in the

+z diregtion). The ga§'ptessure is depoted By p. The

term Vé/r'in the.fédiél”momepfum equationvand the term
Vrve/r iﬁ’Eq. (112) tgprgsent ;he.centrifugaiband Cori?lis
forces,”reépgctivély. These forces arise solely from the
spiﬁning_ﬁbtion“of the fiuid and are abseﬁt in the momentum .
equétidﬁsfin tecténgular coordinates.

Thé energy'eqdatipn 1s:

: - o oV
99v Vrar v V2 5 +‘TV8T p[r r (V) R }
o [a a.'v ar) - az-i | ' :
K = 5;(r 3T 'f 322]- : _ : (114)

where Cv and.K'are §he spgcific.hgaf at constant vélumé
_and the;thermal conduCtivity.éf the gas, reépectively.”
.Theréecoﬁd‘térm op;the:leff:hand side of Eq. (114) reﬁresents
fhe re§eréib1e work donelon thé fiuid‘due';b compression
or'eranéion.v-Viscbué'diééipatiOﬁ'has been neglected. .

The equation of state of the ideélvgas is
. pM = pORT o » ‘ : - ' ';'ﬂ (115)

where R is the gas éqnétant and M is the molecular weight.
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‘(2)- The Equilibrium Solution

In the equilibrium case considered in- Sec.-IIC

'.reducesto1”

<
I _
] S ;

:ahdfﬂi‘eﬁxz;_,"- v T R R 'it (116)

- (The gravitatlonal term may be neglected since it is quite

»small compared to the centrifugal force )"

P

eq ' RT eq

'lntegration‘ofaEq.r(llB):Yielde{

.2

or

»peq(r).

there is no internal circulation and the veloc1ty components C

L(117) d

1(22) R R S ¢ £ 128

‘.(1205
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where*b(ﬁ)»énd.p(O).afe:the préssurg’and'dedSity on the axis,

respectively. Equatibhv(IZO)‘is identical to Eq. (107).

(3) vLinearIZed:Equafions,of'MOtion

. The quantities in the gquationé-of motion are
‘recast in terms of the perturbations of the equilibrium

values dué‘to_the internalvflow By the transformations:

<
1
o
+
o

L]
"
2]
+ .
<

(121)

<
o

o
<+
]

' where u,vv;,and ﬁ‘arg»the radial, éngular; and axial

componehfs of the perturbation‘velocity, and

p=p,_ +0p

Te=T_+T | (122)

wheré §,'E, énd ;'repreaent the'pérthbatidn of the sta;é
of the.gaé due to thg ingernal ci:ctlation.

Eqé; (121) and (122) aré substituted into the-éomﬁiete
equatiQ#s;of motion and_anyvtérms which contain.the ﬁrodgét
of twp:;f:more perturbation pafameters’are’ﬁeglected.. This"

linearigation procedure is adequate because the perturbations
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due to the internal circulation are small. )
ThefiinéAIiied'edgapionb.bf ﬁotion:are;
overall ﬁass continuity:
Teq

S N TSR S P .
% 3; (PgqTu) + 37 (Dqu) —‘0-,' N (123)'

radial mdmentum:'”

_—. 2v_  v A ;‘_ EE ol 13 9 u
PERT = 20gqfV = i Y {;r[ (ruﬂ el

angular momentum:

<

N

o Lo 9 {1 9 '
2°eq““ - u{3r[r ar(r J +*az R (125)

axial moméntumﬁ

-}
]

_._) +

r'3;§r 3; ) (126)

N

=p. Qru - K[; '5—1;(1‘3;) + 2] . . 3 (127)

v Equation of'St#te;

l”' |

_H

(e awm

DiSCstion of the boundéry-conditibns on Eqs. (123) -

(127) will be postponed untii_particﬁiar’solutﬁbn_methods are
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described.‘;séme solutions dovnotbéonsider the presence of
the central feéd tuﬁe while others:do..vAt‘total reflUx;
ofvcourée,'the central feed tubg is not essentiél to‘the
opetatibn of fhe centrifuge.

‘iﬁ_additidn to . the iinéarization.assumpfion, another
feature'which'is commdn to all.séluﬁions‘is.tﬁe neglect
of the gravitational term (i.e., fhe last ferm iﬁ Eq. (113)).
This may af_first seem rather odd, siﬁcé.wé_have referréd
to the ihternal circulation ind@céd by uﬁequal plate temp-
eraturéé aé'é fyée of natural convection. In thermal
natufal‘convection ﬁroblems in ordiﬁéry_flow.situétions,
the acééleration of gravity is a_éfucial featurg of the fluid

behaviot}  In the centrifuge, however, the expansion-

JcompreéSiOn work tefm‘on thé left 6f'Eq. (127) replaces

the gfavitationél tefmvas the mechanism by which small

‘temperature ineQualities are transformed into fluid motion

(see Sec. iIfE.l).
Ngglect-of‘the té:m:pg'in_the axial,éqpation has an

interesting consequence.' The system of equations (123) -

- (127) -is invariant to a change in the direction of the z-

.codrdinaté.' Replacement of z by -z and w by -w does mot

change the sign of any of the terms in these equations

(if a gravitational term were retained in Eq. (126), it

would éhéﬁge sign under such a transformation). ' Thus the

systeﬁ‘is symmetrical about the midplane at z=Z/2; and it

should ﬁéke no difference whether the top plate is‘héated
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and thg bottom plate is quled’(as'ih_Fig; 2) ér vice ﬁersé.'
This_expectation has been cphfirmediby the_ékperimgnts

of'Groth.(9).

D. »LOng'Bwa'Solutidns

If ﬁhé 1éngthfdf the rotor, Z, is 1argeicompared,to'
the radiﬁé, the veiodify'figld over a iaiée'pérfioﬂ of the
ceﬁtrifuge will be nearly independent of z: Consequently,
a class of-solu;ions in which,u, v, and w are either'functions
of radial foSition oﬁly or vary in?é'simple, prescribed
manner Vitﬁ z ha&e_begn‘sogght.’ By losing'contact with
»;he spégific éonditionslat the‘end blates offthe aevice,
.the resulting soiutipns can only p;bvide a quantity proportional
Eo the'éxiél velocity prdfilé, w(r).  Coﬁséquently, long
bowl solutions provide éuffiéiénﬁ informafién to determine’
the flqw pattern effitiency, E, bu; not enough to compute
m. We first discuss the solution,methds employed by_various
'invegtigatéts in the long bowl approximation and summarize
the results at the»end of this éection.

(1) Steenbeck (29) and Parker and Majo (30)

The computational erk of Parker and co—workérs
at the Uﬁive:sity.of Virginia is quite similar in aﬁproach
to ﬁh;,éarliér investigation of Steenbeck (30).' Parkér's
analysis.retaiﬂgd terms in the equétions of motion which |
Steenbeﬁk had neglected and introduced:the‘enefgy eduation

to prpperly account fér noh—isothermaiif&.: Soiutions

obtained by the two studies agree at low peripheral speeds



60

but»diffef at high speeds. Only the Univérﬁity of Viréiﬁia
ﬁork wiil bé Qﬁtlinéd@ | ; 7 '

| "Stgeﬁﬁéck,and Pérker‘éééume that a}l of the perturbation
'.qﬁéntiéiééfin Eqé..(izo) and (121) are éepéfable in r and z.

i

iﬁ'fi(r;2)5qenot¢é any of.theée parameters, they take:
L Cikz ’ . o
f.(r,z) = g (r)e ™ - - (129)

whére.gi(fjvis £he,r~depend§nf partzbf the perturbatioﬁ
‘property;.ahd k is the common eigéﬁvalue'(the lowest only),

to be determined. After elimination of p by use of Eq. (128),
substitution of Eq. -(129) into Egs. (122)'-.(127)'yie1ds a

set of five coupled otdinary'différentiél equations for the
radiél portions of‘the pgftﬁtbatidh paraﬁgteré‘(i.e.; the

gy (1) ofvK. (129)), which were solved hﬁméfically. 'Tﬁe

boundary conditions were:

at r=0: u =

|
|
|

(130)

at r=t2: u=v=w=20, T=T

(the feéd tube was assumed absent).. The setvof differential
equationé éontainé the Qndetermined eigenValue k, which'ﬁasv
also déterhined in the course of the numerical solution.

The pertu;bation Velocity components, u, v, and w, andvthe

fractional departure from isothermality, T/TO, were computed

Ll



‘for valués»of'Az'frqm élto 25. Only reiatiVe'vélues of
Vthe #elo£i£y perturbatioﬁs.coqid be computéd. bit was
found thét tﬁefanguiar'and axialbpéfturbation velocity.
cdmponénfs (v and w) were of théiéame.order of magnitude.
Other pefturbafion quantitiesv(u?vs, and T/To) were several
'Io:dérs dfumagnitude sﬁaller than v ahd w. The decay length
in thevaXial direttion (i.g., the rgciprocal of the first
eigenﬁalug, or'k—l) Qa:iéd from'SOQOrzbto BQrz over the
range of A2 values investigated. |

Thé numericai soiu;ion method becamé»incré#singly
difficult as largerrvﬁlges of’A2 ﬁére at;émpted5 Cingv
(31) has developed aq‘aBYmptétic éolu;i;n_which évdids
this difficulty'and.agreés well’withvthe numerical solution

at A% = 25.

(2) 'Soubbaramayer‘(BZ)

 The fitéfzstudy 6f.Soubbarémayer also ignores
the details of the effeéts at the end ﬁiates of the centri-
fuge and assumes that the velocity pertgrbations u, v, and
w arevfunctions,of ribnly. .The presquré perturbation, ;,
is elihiﬁgted fidm'thewlinearized eduatibns of motion by
takiﬁg ;he_partial dgriva;ive of Egq. (123)'with respgct_ﬁ§
z'and_ofvK. (125) with respect to r. The 3p/dz term
appearing in the fOrmef as a result of differentiation;
witﬁ réspect to z iszbbtained from Eq. (127). Expressed
in'terms of the dimensionless radial cpofdinate g = r/rz;

the resulting equation is:
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a2l d o, dw .l o o ATE 1d 14, dw ;
?4 [E ag (& d@% B T- [c dc(; dc)] (131)

where Az isvgiven:by Eq. (108)Hand B is a scale factor with

units of vélocity:»

4.2 :
o MT 9z o R o

" The axiglitemperaturé-gradignt,va/Bz;'was assumed constant
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(iﬁdepéndent'df both r and 2} §6~that'the paraméter B is also

a consfant. By diﬁiding Eq. (131) by B, the problem is
reducéd}tb'a third_drdet brdinary.differential equation

involviﬁg the dimensionless axiél velocity

W(Z) = w()/B o (133)

Since B is‘unknown (and ééﬁnot béIAéfefmihed at this level

ofvapﬁfbkimation), the sqlution_gives thé axial velocity.

profile to within an uqdetermihea multiplicative factor;
Thé third ordér.diffé;enfialiequatipﬁ'is supplied with

the following boundary conditions

W(l) =0 ‘ . (by the no-slip condition)
S (134)”
i%‘ = 0 - (by symmetry, since the

o L |

feed tube was not considered)
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and anvintégraljrostriction sopplied'by the restraintoon
the flow function expréssed.by.Eq;_(99):
1
a2 2 _ v ' . _
1 e® % w(g)gar = 0 - | (135)
Eq. (131) can'bg,integrated directly (although details
ofvthe infegration wé:e not’given) ﬁo yiéid W(C). " The axial

velocity profile is pafametric'in'Az,

.(3)” Befﬁah'(1;1 
o Bermoﬁfs treatment of cénfrifuge hydrodynamics is

an'atfoﬁpt to obtain theﬁshape of_the oxial velooity orofile.
withouf-rosorting fo_fhe.extenéive numefioal computations
‘employed Bvaarker (30). 1In keeping with'the long bowl
model, oxial Velocify is takén to be a fonction of radial
positions only; The~radialjand angular components u and v
are éésuﬁed zéro. | | | |

VIn orderjto.sustain an.oxial yelooity profiio'bylﬁorman'o
method, a radial temperature gfadienf is imposed upoovthe.
sys;em. ”ihe féed‘tube at r=r, is taken:to be somewhat.
‘hotterlohon the rotof wall at r=r,. 'Becaose of';his specificétion,
. the variation of T with =z 15 neglooted. Thié constitutes
a significant departufe from Soubbaramayef's approach, in
which the axial temperature gradient could oot be set oqual='
'to.2ero;

Bermaolapplies these simpiificatioos to the oompleto_

set of equations of motion and not to the linearized versions.
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Thé govgrﬁiﬁg eqﬁatiénS'reduce to:
radiai momentum{
, %% gvérgz ;,%?'prgz 1;  .  Ai . | ;(136)

.axial momentum:

BN I S N I VS, ,
“[r 3 Br] -3 * s . - asn
epérgy:

19, 9T, . : |

-The,extérnél'fofce pafaﬁeﬁer, g* in'Eq; (137), does
not rgpfeéént gravify, -Réther.it is an adjustable driving
force for providing the counteréur:ent fldw.‘ In effect,
it coméensates for the features éf the fiow lost in the
simplifié#fion_of EQs. (110) - (114) to fhe forﬁs shown
above; ) | B

Sincé the témpe:atufe is assumed tq ﬁé a function of
r only, Eq. (136) éhowg Ehgt: |

3 (13p, . dmp _ 3 3%np, _ | 139)
3z (5 3c) T ~£) =0 - (139)

or the quantity

G.s,EEBR = 1.3p . S (140)
p 9oz .
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 is a function of z only.  Using Eq. (140) and the ideal

»gaS'laﬁ, Eq. (137) can be written as:
u[r.ar (x Br] . P(G f'RT ) . ‘ ‘ (141).
where both G and g* are considered as constants.

In order toisolvg'Eq..(l4l), p is obtained by integration

of Eq. (136)

a 2 (5, - |
() = pGpen - | gy et e
N

and T in,Eqs;'(141)jand (142) is determined by direct
integration of Eq. (138), which yiélds:

T(r)' 1 +

T
[o]

‘T =T fn(r/r,)
o 2}~ __2 (143)

T 4no
o

whgre‘?o and.T2 are_thg speéified‘temperatures'at the feed
tube an& ;he'rotor wall, respectively. The ratio ¥0/r2‘

is denofed by 0. Eq. (l141) 1is thus é second order ordinary
_ differential equation_éontainiﬁg:two unspecified.;onstants,
G énd'g*. Comﬁininngqs. (141) and (142) yiélds:v

%g{(€+v) %%] = Bexp a%(1-0%) J:TTY%$77?2 1 +-Ez%77?o‘

0
(L44)



66

Radialfpdéition is expressed by the quantity:

2 . .

To . | , -

2 D . | (145)

0
B is thé_vélbcity scale factot;

r2(1-0%)6p(0)

BTy (146

‘and € is' a éombination of the constants g* and G:

e'—'RTO A | | | ST (147)

In térms of £, the témperaturevvariation with radial

boéitiOn is given by:

. |lT . -7 V‘Qﬁ(éil) .
T(E) o T2 -V :
7. - 1% L )' 2 - (148)

-znc”

where Vv = 02/(1-02);

>Soiu£ion of Eq;_<144) yields only'thefdimensionlesg
axiallveldcity W(E} =”ﬁ(£)/B,»§H1ch is anélagous,td Eq.f(i33).
The boundary'cbnditions feflecﬁing‘no—SIip at the feed:

tube énd_fotor wall are:
W(0) = W(1) =0

The intggral constraint of Eq. (99) is also'used. It is:
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| expia®(1-0%) J T | W(E)E = 0 (149)

Whetéés thé‘Soubbgramayér anélyéis requires two boundary
coﬁditiqns ;nd the:integral‘constraint>5é§éuse the differential
equation:is third order; Berman's differential.equation is
dﬁly second order. fhe.integral constraint of Eq. (149)
is used}fo'eliminate the undetermined paraméper € in Eq. (1l44).

| Berm;n shoﬁs théﬁkthebsolution of Eq;'(144)vcan be

reduced to qﬁadrature form; that is, to én equation giving
w(g) expliéitiy in terms of integraié ovér‘the functioﬁs
of £ appeafing in Eqs.'(144) and (149)} -Thése integralé
are complex enough to wérrant'evaluatiqn by computér, for
which a program was written (34)f Even though numerical
computation is still required, the calculétions are considerably
simplethhan the'more éomplete treatment §f Pa;ker (30).

| ‘EXamination.of Eds. (144) and'(149) indicates that the
soluti;nIW(E) shogld depend upon the.pargmeters A2, (TO—TZ)/TO,
and 0. -In fact, however, the profiles are completely in-
'sensitiVE'to the iasi two parameters, provided that they are
considetably_émailer»ghan unify. This behavior had to occur
fot.aArgasonable solution, for the pafameter (TO—TZ)/To
wés iﬁposed upon thé_problem solely to generate a counter-
curré£t fioﬁ.,,In an actual centrifuge, no:éttempt'is made
to»régulate feed tube and rotor wall temperatures. In

‘the next section, it will be shown that the artifice of an
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imposedlradial temperaturefgradient'can be dispensed with,
'thus permitting a rather simple hand calculation of the
velocity profile, the flow'function, and the flow pattern

efficiency.

‘(4)' Simplified Berman Calculation

| o The sole reason for specifying a radial temperature
gradient in Berman 8. analysis was to provide a differentiall
equation with enough undetermined parameters to accomodate
the two boundary conditions ‘and the integral constraint.

If T(E)/To were set equal to unity in Eq._(lbh), one of -
the parameters'would be lost (the‘lastibracketed term in
(144) would become 1+€, and'the'product.B(lte)_would
become the velocity scale factor) Thus, the functiOn of
the temperature ratio in-the last term on the right in Eq. (144)
is simply to provide a’ radial dependence to this term.
.The radial variation need not be of the particular form
given by‘T(E)/T of Eq. (148), but can_be chosen in an
arbitrary fashion.

Therefore, we begin by: (l) setting ‘the temperature
ratio in the exponential term in Eq. (144) equal to unity,
(2) assuming 02<<1 in the_same term, and (3) replacing
TO/T(E) in the 1ast term’on'the right by & itself‘(any,

» function of & would do; & is theisimplest), In terms:of
the dimensionless axial velocity ﬁéw/B,.Eq.v(144) reduces

to:'



subject to the same boundary conditions as in Berman's.

case. Tﬁéiunknqwh constant,e is fixed by the restraint:
e’ "W(E)dE = 0 _ (151)

(150) may be integrated difectly to yield:

» o Ei[A (E;+\)I)] - Ei(a’ V) + y( a%e_ 1y o (gﬂ)
COW(E) = e R Trv) (152)
Ei[A (1+v)] - Ei(A v) + Y(e - =1) 2“(

additibnai.g-independent factors thch appeéred in the course
‘bof thé,integrations wére-incorporétéd,into the velocity
scale féétor B,'whichléann6t>be obtained by this method
in any:casé.
Ei(x) 18 the exponential iﬁtegral:
' x t .. 7 o :
Ei(x)-=-I 2. dt : ‘ o '(153)

t

- 00

The ekpopéntial.intggral 1s.tabulaﬁea by Jahnke and Ende

(35), but convenient asymptotic forms are:

Ei(x) = 0.577 + 1lnx + ... bfor'sﬁall x ~(154)
and : o
Ei(x) = —= |1 + —=—— + ...| for large x (155)
v x-1 a2
- (x-1) .
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The paraﬁéﬁef_Y in.Eq;_KlSi) is:

BTG e R
Y =T 5 S ' _ (156)
' Azle - sz -1 o S

which is another constant, and shall be defe:mined instead

of € bylsubstitution of Eq. (152):into Eq} (151). For

A2>W10 kwhich COrresponds to a peripheral speéd of 5375 m/sec)

and v = 02/(1-62) between 10—'4 and 10_2

(which corresponds
to O;Olsro/rZSOII), fhe.parameter Y is giien to a very good.

approximation by:

yie S
j'2A2+1

(157)

The‘asymﬁtétic éxpansioh,df the exponeﬂtial_intégral for
,1arge x'w;s used in 6btaihing‘Eq.'(157).

As.it stands, Eq.:(iSZ)_depends upon A? and the geo-
metricai factof_uw 1Since oﬁly the shape of the axial velocity
for €>0;5_is importhnt in deferﬁining the flow function,

Y can‘be eliminated by the'folloﬁing coﬁsiderations: If

10" %<v<i072

, then E1[a?(£+v)] = E1(a%E). 1f A%E>n5, the
éxponéhtial-intggral_can.be‘appfOXimated‘by Eq. (155), and
eA2§>>1, For the fangg of v indicéted~abbve; Ei(A2v> may be-
'neglected~compafedvfo-the other termé in Eq. (152) and tﬁe
ratio of tﬁé logarithms in -the right hand term of Eq,*(i52)

may be approximated by unity. Using these approximations,

Eq. (152) becomes:
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2

) _ g L a2 oy
we) =[5t r2af@-g + 1374 408
ATE-1
1 4" (2A 1y

2afa-n + nawle-n? | o

7 -1 (158)

1 (2A 12 :
(A -1)?

For even larger A2,_the following very simple form results:
' 11 1242 (1-) 2% (1-5)
wee) = (g)rea?a-gy + 1374 70 (159)

In terms of the_radial variable £ used 'in this and in
‘the precéding section; £he flow function; to within a constant

factor, is:

N |
2., , |
F(E) = [ h uegnae o (160)

0

and thé flow pattern efficiency (neglecting 02 compared
vto unity) is:
J F(E)dE
'?' : o (161)
-J SO |
0 ,

The reQuiéite infegfations.are readily accomplishéd,

(5)"Compar180n'of:the Various Long Bowl Solutions

In this section, we compare the results of the four
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lohg.howl.soldtions just'discussed.

| Fig.-12 shows the density—weighted axial veloc1ty
.profiles for A2=l6 and 25. The ordinate is the 1ntegrand
of the flow.functioh (see Eq..(160>). The solid circles
_represent'the results of the simplified Berman'method,
compoted from'Eq.-(159)i Agreement between all three solution
methods‘is qhite good |

Fig. 13 shows the radial position: at which the velocxty
lprofiles of Fig. 12 cross zero. All of the simplified
models agree wellﬂwith Parker s results. 'In general, as
the periphetsl speed is iscreased;‘the zero velocity point
aPéroeches-the.fotor wall,vwhich means that the return
upflow_is concenttated ihda thin layer near the periphery.

Fié._14.shows_a typicel.flow:function.for A2=10 as
csleuleted,ftom ﬁq. (158).ofvthelsimplified Berman model.
Note that this‘cdrve‘is.qoite diffetent from the form
‘F(E)%Efreqsited by Eq. (105) for_maximhm~flow_pattern
efficiency;' ”

'The_flow pattern'efficiencies are olotted on;Fig,hlS
for the various long bowl models (the two dashed curves
result . from calculations which will be discussed ‘in the next
section).‘ The spot calculations on the simplified long "
bowl methods agree satisfactorily with the Parker calculation.
- The 1atter shows a maximum value of E=O 81 at A2—5 4.

E. Solutions Which Give AbsolutefFlow'Rates

The solutions discussed in the previous section

concentrate on the flow pattern near the midplane of the
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céntrifugé aﬁd disregaf&-the detailed'flpwveffects on the

end plates( {As a rgsult of this approximétion, the shape
6f.thevax131_flow.a§ a function of radius could be accurately
destriﬁeé, but ﬁhé ﬁagnitude of the flow,'&hich depends

upon what.is'happening at the heated and cooled ends,

‘could notvbé‘determinéd. |

(1) Mart_in (36)

- The calculafibns_presented by Martin treat the

flow field in the ﬁeighborhood~of the end platesvbut igﬂore
.fhe preseﬁce_of the rotor wall. However} because the -
convective currénts’a:e‘génefated'at the'eﬁd platéé;
knowledge of the hydrddynamics here permits the absolute
magnitude of thé flowvfunction af all axial positions to
be‘computed. |

A ékgtch of thé cppntércurrént flow‘in the centrifuge
is shownfin Fig._16; The flow near the end plates is primarily
radiai in direction and is :estrictéd to a thin "boundary
layer" .on the pl&tes. As the fiﬁid moves in over the top
plate, some is turﬁed by 90° and provides the axial flow
which was'considered in the previous section. A similar
phenomenon, but reversed in direction, occurs on the cooled
bottom plate. - |

ﬁa;tin‘s analysis starts from'thé Iinéarizedﬁéquétions
of motien. Since the flow is primarily'rédial in'nétﬁre,
the.peitﬁ;bation componéﬁts.v and w are assumed zero.

Since thgbbbundary layer on the plate is assumed to be very
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thin, the radial component véries much mofé'fapidly with

akiai disgancéfz théﬁjwith»f. Thus, Marﬁin éssumgs_tﬁat

in the éqﬁationg of motion, only terms which'depend upon

the variétibn of ﬁ with z are important-
_Thé,éertufbationvquaptitigs §f Eq.,(122) are restricted

as follows:

0 -

p=p S . ae2)
T = T(z)

Applying the simplifications described_gbove to the radial

momeﬁtum'équation, Eq; (124) yields:

Y = -pro? I - (163)

Thé”éngular ﬁoﬁentum equation is hot“conéidered iﬁ
‘Martin's treatmenﬁ,'wﬁich ;mmediétely introduces an
incbnsisténéy. .If the anguiar perturbatiqn.velocity component,
v,_is ngg1e¢ted,/gq;.(125) indic;tes that the term Zbeqﬁu
(which:arises.from fhe.Coriolis force) is also negligibie,-
even~tﬁbugh this term is of comparable magniﬁude to the

right hand side of Eq. (163). |

The energy conservation equation, Eq. (127), becomes: .-

2—

(164)
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_Ed;v(164) éhows'thattthe'expahsion¥cbmp;essionAwork

‘term (thg:léft hand’side)'is fundamental to the generation

of the'flow'in-the'deviée.
Since ; has been neglected, the linearized equation

of statégiqu (128);’becdmes:

Peq

T=-=2]p o | S (165)

_Thése equationsrare combined:torgiVe.a sidgle diffetential
equation for the velocity component u as follows: .Eq;_(163)
is»diffefentiated twice"vith,respeét,to z. The dZB/dz2

2

term which resuits,ié proportional to-dzT/dz by Eq. (165).

Finally, dZT/d'z2 is eliminated by use of'Eq; (164). The

;esulting:fourth order differential equation is:

d4u

24 4gtu =0 . ©(166)
dz - . - S
where:
: - N2
4 (%peqrﬂz) ,
o = - uKT .(167)
: (o]
Thelgeneral_solutioﬁ to Eq. (166) is:
u = Cie¢zcos¢zv+ Cze—¢zcos¢z +‘C3e¢z%in¢z
-¢z | . » . : Y .
-+ C,e singz _ (168)

4 .
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Sintere are dealing with a boundary layer type of flow
on the;enddplates, u and all of'its deriVatives'must vanish
at larée.z._ Therefore,'C1 and Cé are zero. At z=0, the
no slip condition requires that u(0)= 0, so that C,=0 as
well.

Thgflast boundary condition is somewhat less obvious.
In the centrifnge;fthe end plates are held at temperatures
which are'ZAT,different'from eaeh other (see Fig. 16).

The gas‘far from either_end'plate'is assumed to be at a
constant temperature LY Therefdre, at z=0, T=AT. Using

this cdndition in Eq. (165) and then in Eq. (163), provides

the fourth’ boundary condition as:

aZgy e AT - S
dup . ___eq | (169)

which;”nhen substituted'into;Eq.v(l68),_permits C4-to'Be
ealculated, | |
The radial velocity profile in the boundary layer on
either end plate is thus given by:
u = - —————ﬂ—f e " 7sin¢& S , - (170)
2¢ uT ® ) _

, Theeprdfileirepresented by Eq. (170) isia damped
sinusoid as. illustrated in Fig. 17. (The axial distance

over which it differs from zero has been greatly expanded

‘for the purpose of illustration ) The "thickness'" of the



»
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boundary layer may be,taken:as_thefwidth of the first

lobe of the functibn,_wh£CHvisbﬂ/¢ (the‘fémaining oscillatioans
are rapidly damped odt). The maximum radial velocity'occurs
at z%n74¢.' Expféssing:peé as a function of r by Eq. (120)

and usiﬁg the perfect gas law, Eq.r(l67) may be rearranged

to give§ :
b - o2 -at@a-t? 2 Py
¢ = [A"ze 17 = (171)
. . :quKTo,

where pé‘ié the pfessﬁfg at the périphery, A2 is given by
Eq. (108);and ;=r/r2.r‘To>avoi§ condensation of the solid
phase éf_ﬁF6; p2 must bevless'than:&l atﬁ. Taking pé=l atm,
r,=9.3 _c'm,"u=1.8x1(j'-4 poiée,'n=1.7x10'5 cal/cm-sec-°K,
T§=300°K,‘énd‘A2=6.5 (corresponding to a peripheral épeed

of 300 m/éec), ¢ is found to be 20cm-1 at a radiél position

half way;bétween the axis and the periphery. The boundary

layer'thidkness here is thus m/20=0.16 cm, which is far

smaller';han any of the other dimemsions of the centrifuge.

The flqw'on the end piétes is clearly of the bouhdary layer

type.
Eq. (170) and Fig. 17 show that at the heated end

plate (AT positive), the radial flow is inward and on the

 cooled end plate (AT negative), the flow is outward._'The

solution obviously begins to break down near the corners
of the<¢entrifuge where the end plates join the'cyiindrical
wall oftthe rotor. Here u begins to change significantly

with r and gradients of u with r in the equation of motion

o
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cannot be ﬁeglected. ~The comfigte‘negleég of the axial
velocity c;mponent w also cauéeé:difficuities; At radial
positidﬁs'lgrger than the zero veiocity pbinfs shown in
Figs; 12 énd 13, the boundary.la§¢riié fed by the upflow
vportionibffﬁhe countercurrent. In thé core, the boundg:y
1ayér is,aépléted'éf f1§1d by the downflow in the device.
' Thus w is not Zerdmih'§ﬁ§.regiéh;bf the boundary 1ajer.
The Mértin;solution ié-also in érrofvbeéaﬁsé of neglect
of the vélbcity cémbonent v, whibh Pafkéf's aﬁalysis (30)
shohed.to:be significant.

".The fiow:fﬁn¢£ion f(g); maj bé comppted-directly from
the:radiél'vélécity pfofiié qf Eq. (170). Cdnside; a
cylindriéai-suffacg of radius r,;ttached to the upper
(heéted) ﬁlate.. frbm Fig..16; i;'éanvbé seen that all of
-thevinflqw acr6ss ﬁhi§ surface ultiﬁafely appears as down-
floﬁ at'éxialfpositiqﬁé-far»frqm the end; Tﬁeifotal downflow
contained which a radidé r is, by tﬁe defining equafion
Eq. (575,'equal't§_£hgvflow_fuﬁction.A Thus:

[+ -]

B - oamee, 0 iz S am

Sinée thé density’variatiqn in the axial direction"is.quite
small, p = peq + Bv has been épprcximated by_ped. Sihce
the integrél dfve-¢zsin¢z_from zero to infinity is 1/2¢,

ihsertion‘of_Eq. (170) into Eq. (172) yields:
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F(g) = KbTV/Z e 0 o S @113)
where:
M - 2 2
Q rszTO

 7Because the rotbr wa1l does:not‘appeaf explicitly imn
Martin'éfanalysis, th¢ flbﬁ function of Eﬁ. (173), like the
optimum.flow‘fgnc;ioﬁ-pf Eq._(lOS), does ﬁot sétisfy the
rgstraiht1§f Eq. (99),5 However, the flow battern effiéienéy
may be c@ﬁbuted_by subéﬁifutiég Eq. (173) into Eq. (63):

1,2,2 2

T = |
oy I c3/2e2 ar
s o

=TT 1 2.2
. J AT gy
0

which is a function of A.2 only. -The pattern efficiencies
bésed”upon_the1Martin profile are plottéd'in Fig. 15.

The strength of the internal cixcuiatioh may also be
determined from the Martin theory by using Eq. (173) in
Eq. (97)a . .

- o 2.2 71/2
K, AT ZJTeA & dZ;:} o
M . _
. 0 :

2'rrpD‘r-_2

- (176)

» (2) ‘Soubbaramayer (37)
Soubbaramayer's second approach to the centrifuge

pveblen hepfaa with the Iineartized equations of motion,

(175)



Eqs. (123) - (127), in which

néglecfedzv'

- Iy

M %; ;2%; (rv% “in Eq.
‘_..2 7 . .

H 3'3. in Eq.
b‘ inu and

eq - ,

19 oT |- o ;

K[;.s; r 5;} invK.

In terms of the radial variable

axial variable
s = z/_r2

the equétions of motion become:

ovérall continuity (after using Eq.

ow
98

2w

BT

+-(% +2afu + 22 o

(124)

(125) -

(126)

(127)

Z;=r/r2
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the following_terms are

‘and thevdimensionless

_(120):

radial and axial momentum (after-eliminatihglg):

- C2 2. _
Qrz_ ?i ) eA (1-T7) ‘2A2 _1__3__ .3_
2T 9s Re z ac\g 3T
) 3
3
' .]; a_. g L ..]; " u }+ .];
z 93¢ oL 4 as3J '

(177)
(178)
13
T 3T
%f (179)
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wheré Ré_is_a type'of_Reyholds number :

N -;ZPeq(:z)Qrz“.
. Re = = "

(180)

(note that Eq. (179) reduces to'Ed. (131) 1£ u and v are
assumed independent of‘s,’és'ih Soubbaramayer's long bowl
analysis.)'rr

angular momentum:

2 2, o .2 |
o -AfQ-zt) 1 3%y |
. e U T Re R 2. _ ‘ (181)
Re
énergy:
2= | ~ |
3T _ o - ‘ (182)
7 ‘

ds '

The boundary cdnditioné are (by symmetry, only the top'half

of thevcentrifuge is cOnsidered):
‘at z=0: u=v=w=0, T=AT(Z) o  (183a)

AT (Z) is a Specif;ed_teﬁpErature'profile along the end plate.

2:

at z=2/2: u=v=3w/3z=T=0 A _.‘  '(183b)‘
~at r=0: u=v=3w/3r=0 Lo E - | l(l84a)
‘at r=r u=v=w=0. 5 R A (184b)
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Note that the v boundary condition dt r=0 is not the same
as Parkér'éu(Eq. (130))..

A triél function.of thg following form is selected:
u = (Qr,)g(C)e ¥Eainys | (185)

where'w_ié a.function of C;only and is given by:
- 2, 2172 I |
Y = {% Re e'A.(l’;‘)} : . (186)

‘The‘p:ofile of Eq. (185) is ofvthe same‘déﬁped sihusoidal

form as.wéé'obtained by‘Martiﬁ, Althoﬁgh the cpefficient

Y .is not equivalent to Mértin's_¢ (Eq. (171)). |
.The_frial function given by Eq. (185) is substituted

for u in Eﬁs. (178) and (181). Since | is very large

(because Re is large), tefms—cqntaining e-?s are neglected

and one obtains:

= —(@ s | - oy
Y ";.‘sz)gcc’[l (z/zrz)],»‘ e asn
@ F [y o | = -
: 2°1d 1 2 14d
o lm 3] s

The tempérétufé_perturbatioﬁ'is 6htainedfby direct integration
of Eq. (182):

T = AT(Z) [1-— 7;73;—;] , A (189)
SR 2 - -
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In their full form (i.e., e-ws terms included), gs. (187)
"and (188) satisfy. the 2=0 Boundary conditions of Eq. (183a).
-yYs

Ignoring;terms eontaining e restricts the.solution to‘
regions fat frOm the ends. in particuiat;'the axial velocitpv
of Eq. (188) is independent of s (or z), and hence w is a
long bowl type of solution. Howeyer, Souhbaramayer’eleims
that by keeping the solution genetal enough to satisfy the
z boundst;;eondition.up to this,point, the end effects ere
not neglectedﬁés.in.thertrue long bowl methods. Indeed, the
soiution‘ptesented.b& Souhbatemajer does permit ahsolutea
magnitudes of the axial veloc1ty to be computed

The function g(c) is obtained as the solution to the
differential equation which results from substituting Egs. (187)-
-(189) into Eq} (179) (the s~ dependence in the last two terms
of Eq;f(i79) cencel provided that the.form of Eq. (187)
hwhieh.inciudes'eiwshis utilized). Oniy the highestvorder
derivatiVe with respect to ﬁ is retained'in‘the first and
.second,tefms_on the tiéht of Eq.‘(17§); _The resulting fourth

korder diffetential'equation for g(g) is:

e @l b R
.c-A%‘Q+zg<.C'>,+z‘ b - a9

:o Sl B , - dge.

_'subjectgto'the-boundaryfoonditione:'

(191)
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Eq. (l90),wés sblved‘numericallyrfot the set of conditiqns:

Py 30 cm Hg

AT' =‘10°C.(¢onstant with radius)

Qr, = 300 m/sec
rzf.=’ll.5 cm

Z =140 cm

T =_340‘K

o . -

(these éoﬁditions correspond to A2:5;6).

The'akial velocity profi1é>1s shown in fig. 18. Two
aspects of.this cur#e ére‘éignificanﬁ. 'First; the zero .
velocity point occﬁfs at'C§0;97, which falls far from the
curve Of:Fig. 13vrepreaehﬁing the true.long bowl solutions.
Second; the ﬁaximum Axial veipcify is:mlo cm/séc, whibh
is indeed émall cohparéd to thE'pefiphetal_speed of 30,000 cm/sec.

The flow function éo;responding to the velocity profile
of'Fig. 18 is depic;ed in Fig; 19 along with the - Martin
'flowrfﬁnction (Eq.ﬁ(173)).fof the éame condifions (i.e.,

KM'= 2;50 kg/hr). The two flOW'functions disagree by
nearly;twd orders of magnitude. However, the Soubbaramayer
ﬁlowrfﬁnctibn is zero at the periphery, as requiréd by,thei
;;estfaint of Eq. (99)._ -
.'Because the coefficient of the fourth order dérivative

in Eq. (190) 1is very amall, the last term in Eq. (190)
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is negligible except fqrbrggiéns &ery near :d'ﬁhé'wall.
Thetefore; intégrals-of the‘flbw funcfion.reéﬁired‘forv
the pa;fetn efficiency E and the ihterhal,flow ﬁagnitude
péraﬁetéf»m‘&an be aécurately»éompgted ﬁSing the approx-
imation: .

AT()

g(g) = - %‘ i o | | ' (192)
v . o ’

from which the axial veloqity"may‘bélobtained with the aid
of Eq. (188).

To this approximation, the flow pattern efficiency for
AT=c0nS£aﬁt?is given by:

- [ T L ]2'
32 (32 "De” 41

E = - e

T (AT-1)e” +1

(193)

5

whiéh,‘invcbmmoﬁ with thevlong bowl SOIu;ions discﬁsséd
in Se¢. iiID,,dépeﬁdé only upon-Azf 'Eq.‘(1935 is graphed
on Fig.‘ls; IIt does not agfee Vith either thé Martin or
the true long bowl results.v | |
Ihé interna1»cifculation parameter'of Eq. (97) caﬁ

also be determined from the‘results. For AT=constant, it is:

- 172 ¢ - P 1/2 v.; .;N, .
, AT [ P2 . | | ,
= -. (g._n)- T, (n_u) - o (194)

(the'ngup.u/pD is the Schmidt number, which is approkimétely
0.75 féf-UF6).»_Eq. (194) and the Martin result, Eq; (176),

are in significant disagreement, both in form and in magnitude.



86

IV.  CONCLUSTON

.Theiseparatiye analysis ofltheathermallyrdriVen oounter—
curreﬁtfgas centrifuge is well understood.-‘Thevphysical |
.propertie350f the uraniuﬁ hekafloride”process gas -are reasonably
wellvknoﬁn.' Siaple'analytic forms'formulae for the optimum
'separative!poper; separation factor and thfdughput are
available.ifThese,results'are valid up to peripheral speeds
of %300.m/sec,'wherevtﬁe elose separationrapproximatiohs
to the separation factor (Sec. II-I) and the separative
. power (Eq._(ll)) begin to fail. At high peripheral speeds,
tﬁe”separation factor bedomes significantlyflarger than
dnity.7 lh this case, the analysis becomes more complicated
but in principal poses no difficulties. The separative
-fpower at,largeva has'been discussed by Cohen (18), Ouwerkerk
anayLbs.(24), ahd'ﬁalaag et al‘(ZS).

._ The simplelanalxsis”gssumesvthat the throughput is
small éompared toﬂthe'ihternal Circuiation; but this
restriction may also be relaxed (24 23)

The separative properties of the centrifuge depend. upon
two fluid mechanical characteristics of ‘the device, the
'flow,pattern efficiency E and the internal circulation
.Paraméter_mr Both ofbthese Parameters_depend.upon double
integralszof the akial velocity profile. The-efficiency E
requires knowledge of the sﬁape of thelvelocitybprofile.

In addition, calculation of m is possible;only if the

magnitude and shape of the axial velocity profile are known.
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The long béwl analyses (Sec. IIID) provide a satisfactory

(althoﬁghihdt_yet experimentally verified) predictiom.of E,

which depends on1y”upon the'baramgter'Az. Parke:'s analysis

(30) appears to be the soundest. The two known attempts

to obtéiﬂ'complete'velocity'profiles'are in substantial

disagféement,'and'fhis problem'needs further study.'

Experimental investigation of the flow inside a centrifuge

is essehtially>impossible, bebause of the extreme difficulty

of_ihétailing'and extractingyinformation4from measuring
devices inside the épinniﬂg fotor. Hydrodynamic studies

will uhdbubiedly continue to be the¢reticai. A major theoret-

- ical obstécie is encounteréd in the hydrodynamic analysis

of cen;rifuges operating at high peripherai speeds. Because:

6

at room temperature, high speeds will result in very low

UF, remains gasebﬁsvdnly at pressures léss than one atm

pfessuxes on thévaxis;.'The axial préséure may be‘so low
that thé gaé Heré ig in thé'freé molecule flow regime.: If
éo, the'ﬁydrodynémic énalysis'must_treat:an extraordinarily
difficulfvproblem involving rarefied gas dyhamics in the

core coupled to coﬁtinuuﬁ‘fluid mechanics near the periphery.
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' APPENDIX S
HYDRODYNAMIC DERIVATION OF THE MAXIMUM SEPARATIVE POWER

OF A CENTRIFUGE

The maximum possible separative power of any centrifuge'
has.been presented_by Cohen (ref. 18,'pp, 20-21, 109- 110)
Here we’derive the same quantity by a.sogeohatedifferent
method,.bot one whioh‘is more in‘keeping.with the hydro-
oynamiolspirit in which the-other processes ooeuring ih:
the centrifuge are treated. M

THe "value" may'be regarded as a-local property of
the fluid, in the:same sense as thermodynamic rariables
such as entropy or internal ehergf. Theiﬁalue of the fluid
at a particular point,ihowever, is depenoent only opont
isotopicﬁoomposition by Eq. (10). As for local thermo-
dymamic properties, it 15 possible to write a conservation
statement for the value in the moving fluid. The "valoe
transport equation" so obtained is very'similar to the
entropy_transport equation thoh plays a fuodamental role
in noneqoilibriuﬁ thermodynamics.

A general conservation equation cao be derived for
any intensive property of a moving fluid (ref 38, P 9).
When applied to the property we have called the - value, it

takes the form:

+ VN =R, R ¢ CE D)
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In Eﬁ. (Ahi), C is the‘total;conéentfationvdf the fluid,

V is £he y41ue of a unit éﬁqunt éf fluid and N is the
vector flux of value. " The rate of production of vaiue per
~unit volume of fluid 13 denoted by Ry This quantity

is reiatéd to the_sépgratiVe power of the ﬁnit by:

Su = | 2mrdr | dzr, S (A-2)

qui(A—l)Ais gntiteiy analqgous fq ﬁhe.gommon speciésv
vconsefvéﬁiéh'feléinh;‘Eg, (16); gkcépt that there is no.
pfoducéioh térm in the iatter (at 1éast ﬁot in the case
éf the_céntrifuge)g

Jﬁgtfas in thé‘tréngport of matter, ﬁhe transport of
IValue:caﬁ be_btoken'ué into a diffuéive tgfm Jy and a

convectiﬁe term:
Ny = J, + CyV o | o (A-3)

which. 1is the Value-analog of Eq. (17).
Inserting Eq. (A-3) into Eq. (A-1) yields:
Oyt Cg-vv;+ Vedy =Ry o (A=4)

"_whefe_the overall mass continuity equation:

R ] o ce o , - )
VE.*V‘(CX)_O'_- . N ‘ (A-5)
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has_beén.uSed (we have assumed that the'average molecular
weight'of the fluid is evérywﬁére unifOrm,lso that total
mass deﬁsity o} and'totél molar density‘C.érevfelated byvv
the édnSﬁantvavefége molecul#r weight). Eq. (A—A) is the
vélue analog of Eq..(IS). | | | |

We noﬁvneed to develop an expression for the diffusive

component of the value flux, J The prOpérty called value

v
doeS'ndt "diffuse" in the same sense that molecules diffuse
(according to Fick'é.lawj.or heat‘diffuses (according to
Fourief‘s'law).‘ Rather, Qalue is transportéd due té the
interdiffugion ofithe two isotOpic,speciéé_in the gaé, which

are denoted by A and B. 'The value flux due to molecular

transport by diffusion may be expressed by:

J. = J. V. + IV R (A-5)

B
fluxes>és*employed in Sec. IIA. By analogy to eﬁergy transport

where J, and J are the diffusive components of the matter

A

by interdiffusion in multicomponent systems (ref. 19, p.
566) and entropy transport in a moving fluid (ref. 38,

Eq} (3;32», the quahtitieé VA and VB are identified with

partial molal values (in the fransport of'energy, VA and

'VB.are replaced in Eq. (A-5) by-thévpartial.molal enthalpiés‘of A and -
B; in the transport of entropy, VA and VB become péftial |

molal entropies). The partial molal value is defined as

follows ‘Consider a volume of fluid containing n, moles

A

of A and np moles of B. The total value of this region

of fluid isz:
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_7 (€‘

'where V is the value function of Eq. (10) and x is-theo

vmole fraction of component A'”vSu

ey

Like any other partial molal quantity, the partial molal

~value of components A and B are given by

v
Al

<|
i

e

T
|

a9

-vanserc;nngqS5,<A¢6) #ndi(4f7)‘ioﬁo,Eqs,a(A—S)'ahd (A§9)

yields:

[} .

‘;:V‘#;);+.<i%?;)ééyzogéjifgﬂio;;; oHi :;;'é-'t.;CAin)‘:' 

-1
||

- V(x ) (dV/dx ) S e e a1y

- Substituting Eqs. (A-10) and (A-11) into Eq. (A-5) results

TG

| ”(A;izj
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where we have used the fact that J,+J_ = 0 (ref. 19; p.

, =ATSB
SOl;vref,.38l Eq. (1-11).)f The divergence df'iveis:
3= ve[g, &Y av | . Lyl dv
Vedy = ¥ [iA ax, ] ax, | VIt Iy (a-13)

Since the value'function depende 6n1y upon composition xA;

the gradient of V or its derivative may be expressed by:'

dv » - . ,
W e VR o - (A-14)
CNTTAL T :
av | _ (a%y | , R o
VS~ | = (——— Vx, . , (A-15)
dx 2]17%A . .
A dxA‘. _ , .

 Substitutipg Egs. (A-iZ) - (A-14) into Eq. (A-4) yields:

2 ox.

: . {da“vl . A . S oo, dv g
Ry = iA;VxA(__§)<+ Cag + Cyu'Vx, + V-J, | 3% (A-16)
' dxA A

If Eq. (18) is expanded and use made of the overall continuity -

equaticn, Eq. (A 5), the bracketed coefficient of dV/dx in
q;'(e-l6) is ‘seen to be.identically zero. ,Compu;ing the
seCondvderivatiQe:cf the_value fcﬁction from‘Eq. (¥0)

and omittiﬁg the 3cb8cript A on the moie,fraction symbol,

Eq. (Af16) reduces to:

. R, . (A-17)
e ke
4 .

which ig the desaired forw of the value transport equation

¥
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in a moving fluid. E  (A-17) 1is equivalent to the formula
given by Cohen (Eq. 6.21 of ref 18) and is identical to

the formula used by Bock (28)

S

The value transport equation can be. spec1alized for
the centrifuge (any centrifuge, not just the counter current.

type) by ihserting'the”appropriate expression for iA'

Using Eqs. (38) and (39) fcr the redielvand axial components

of J, iﬁ_Eq. (A-16) and rearranging yields:

Rolx(1-x)] :
. R {fza x(1- x)r] + %5}(%5 ox

2
+ ——)  (A-18)

dz

We ncw regard the‘gradience 9x/9r and 9x/9z as variables
.and'the term 2a2x(l~x)r ee a-cdnetent; 'The'left hand eide
of Eq;.(A-IS) is ﬁaxiﬁized with respecc to both Bx/Br and
v3x/az. 'The maximum occu#e at: |

(ax/az) (A-19)

It
o

max R

’(éxlar)max R

—ay(1-x)r -  (A-20)

The radial concentration gradient which maximizes the
separative powec per unit volume (Eq. (A-20) is thus onme
half of the equilibrium gradient (Eq. (46)).
Inserting Eqs. (A-19) and (A-20) into Eq. (A-17) yields:
42

(R = cba'r® Ca e o (A-21)
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If this value production rate is sustained at all
points in the centrifuge,»Eq..(A 20) may be used in. Eq._~

',(A 2) and . the latter integrated over the entlre centrlfuge,

rwhlch yields i
dqmex~';4 "4:22)
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'FOOTNOTES

lThevstages{must be intefcdnnédted to,avoid.miXing of,streams‘
of_difféfent compositions. For éxample,_for 6=1/3, the
heads streams_musc be brought forward two stages instead of

to the next stage as in a cut -1/2 cascade.

2A'species”conservétiOn‘equa;ion may be writfen for both
compdnenté of a'bipary mixtdre. However, the sum of the two
specieé conservation equations is equal td'the‘overall
continuity equation. . Thus, only»one of the two species
éontinuity equations_in a binary mixture is independent.

3Because of>the proximity of the moleculaf weights of the

species~U235F6”and“U238F6, we need not worfy about -the

distinction between the '"mass average" and "mole average"
ivelocities_(19).‘ The momentum equations, being statements
of Néwtén's second‘law, provide the mass average velocity
of the fluid. Usé of molar units'ih Eq. (17) implies thaf
v in thié équation is the mole.average vélbcity. We do

not correct for this minor effect.

4Another common .example of thé'distribution of molecular
sﬁecieﬁ'in'a force field is.the va:iation of'den$iﬁy of air
wichaltitudebabove the earth. 1In this\casé, the force is
—hg and the poténtial eﬁe:gy is mgz, ﬁheré z is the height,
aboyé_grbund. Since the Boltzmann factor is pr0portidnal
to the:density; p(z) = p(O)eXp(—Mgz/kT), which is the "law

of atmospheres".
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L 5This is analagous to the situation concerning the fundamental

h?thermodynamic formula dU = TdS -+ pdV, which,_although derived

viby considering a reversible prOcess, is~val1d for 1rreversibleg-

Processes as wellw

6Throughout this section, the totai concentration C. will
dbe replaced by the total mass density p(p MC) The flow
vvfunction of Eq. (57) and the diffu81on factor in the de—

,-nominator of Eq. (97) have units of mass per unit time.

7In simplifying the expansion-compression work term in

een“made of overall continuity and the »

al”gas,_(ap/aT) = p/T.~
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 FIGURE CAPTIONS
Ges eentrifgge with;e#tefnally maintained coﬁntere
curreﬁt.. Beams (17);>ﬁodified:fot enricher eperation.
Thermally driven countercurrent centrifuge. Groth (9)
A single separating unit
An ideal cascade

Simplified picture of molecular transport in a gas

Particle in a spinning fluid

Schematic of a thermally driven gas centrifuge
Perturbation of the'axialﬁﬁeiocity ﬁrofile set up by
natural convection due to introduction of feed and

withdrawal of productvand'waeteA

_Vafiation of'the-separatien factor at total reflux

with the strength of iﬁternel‘circulation

Effect of internal circulation on the-seperetion‘factor
for different feed:flow rates. (evfixed}

Effect of throughput'on the separation factor at the
oétimum internal circulation'rate. 7(8 fixed)
Deneity—weighted axial veloeity profiles

Dimehsionleés radial position at.which W=0
Tﬁe'fiowaunctionbfor A2=10

Dependence of the flow pattern efficiency on the

parameter A2 for various_solutidn methods

Schematic of streamlines in a thermally driven gaS'

. centrifuge, showing regions where the long bowl and

the Martin solutions apply T
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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