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Abstract

Although the gut and brain are separate organs, they communicate with each other via trillions of 

intestinal bacteria that collectively make up one’s gut microbiome. Findings from both humans 

and animals support a critical role of gut microbes in regulating brain function, mood, and 

behavior. Gut bacteria influence neural circuits that are notably affected in addiction-related 

behaviors. These include circuits involved in stress, reward, and motivation, with substance use 

influencing gut microbial abnormalities, suggesting significant gut-brain interactions in drug 

addiction. Given the overwhelming rates of opioid overdose deaths driven by abuse and addiction, 

it is essential to characterize mechanisms mediating the abuse potential of opioids. We discuss in 

this review the role of gut microbiota in factors that influence opioid addiction, including incentive 

salience, reward, tolerance, withdrawal, stress, and compromised executive function. We present 

clinical and preclinical evidence supporting a bidirectional relationship between gut microbiota 

and opioid-related behaviors by highlighting the effects of opioid use on gut bacteria, and the 

effects of gut bacteria on behavioral responses to opioids. Further, we discuss possible 

mechanisms of this gut-brain communication influencing opioid use. By clarifying the relationship 

between the gut microbiome and opioid-related behaviors, we improve understanding on 

mechanisms mediating reward-, motivation-, and stress-related behaviors and disorders, which 

may contribute to the development of effective, targeted therapeutic interventions in opioid 

dependence and addiction.
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Introduction

A growing field in human health is the gut-brain connection, a notion that our gut health is 

directly related to our emotional health. Although the gut and brain are separate organs, they 

are connected physically via the vagus nerve, and biochemically via neurotransmitters, gut 
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hormones, microbial metabolites, and the immune system (Dinan and Cryan, 2012). 

Bidirectional communication between the central nervous system (brain) and enteric nervous 

system (gut) occurs through the gut-brain axis, which is maintained by the trillions of 

intestinal bacteria that collectively make up one’s gut microbiome.

An abundance of evidence in both humans and animals supports an essential role of gut 

microbiota in regulating brain function, mood, stress, and behavioral responses to rewards, 

including food and drugs of abuse (Collins and Bercik, 2009; Diaz Heijtz et al., 2011; Clarke 

et al., 2013; Selkrig et al., 2014; Cussotto et al., 2018). Gut bacteria are heavily impacted by 

‟diseased” states, as abnormalities in gut microbial communities, or dysbiosis, are observed 

in patients diagnosed with substance use disorder, depression, anxiety, Parkinson’s disease, 

autism, and/or schizophrenia (Schroeder and Bäckhed, 2016). Disruption to a hos’s normal 

microbiota can lead to exaggerated stress responses and depressive symptoms (Sudo et al., 

2004; Ait-Belgnaoui et al., 2014; Tarr et al., 2015; Kelly et al., 2016; Leclercq et al. 2016; 

Rea et al., 2016), further supporting the bidirectional relationship between the gut and brain. 

Given the significance of gut bacteria in obesity, stress, and motivated behaviors, as well as 

the extensive overlap in neuroadaptations between overeating and drug abuse (Volkow et al., 

2017) and the key roles of stress and reward processing in the development of addiction, we 

review available literature to support the hypothesis that gut-brain communication is 

necessary in the development and perpetuation of drug addiction.

Addiction is a chronic brain disorder that alters circuitry involved in reward, stress, learning, 

memory, and motivation. The development of drug addiction is driven by exaggerated 

incentive salience, reward deficits, stress surfeits, and compromised executive function in 

three distinct stages, namely binge/intoxication, withdrawal/negative affect, and 

preoccupation/anticipation (craving) (Koob and Volkow, 2016). Opioid addiction is the 

leading cause of drug overdose in the United States and is characterized by a compulsion to 

seek and voluntarily take opioids owing to their reinforcing effects and an impaired ability to 

control intake despite physical or psychological harm (Scholl et al., 2018). Due to the rapid 

increase in numbers of opioid-related disabilities and deaths throughout the world (Martins 

et al., 2015), this review is focused on gut-brain interactions specifically in opioid use.

The endogenous opioid system regulates pain relief, reward processing, emotion, stress, and 

autonomic control, and consists of mu, delta, and kappa receptors (Benarroch, 2012). Opioid 

receptors are distributed widely throughout the brain, periphery, and gut (De Schepper et al., 

2004), and are activated endogenously by enkephalins, dynorphins, endorphins, and 

endomorphins, as well as exogenously by opioids (e.g., heroin, morphine, oxycodone, 

fentanyl). Opioids exert their primary clinical effects on mu opioid receptors to reduce pain 

perception. A link between gut health and opioid intake is evident in the ability of opioids to 

significantly impact gastrointestinal function (i.e. opioid-induced constipation). Indeed, 

opioid use is associated with gut dysbiosis in both humans (Vincent et al., 2016; Wang and 

Roy, 2016; Zhernakova et al., 2016; Acharya et al., 2017; Xu et al., 2017; Barengolts et al., 

2018) and animals (Meng et al., 2013; Meng et al., 2015; Banerjee et al., 2016; Kang et al., 

2017; Lee et al., 2018; Wang et al., 2018). Preclinical studies have also shown an important 

role of the gut microbiome in drug reward (Kiraly et al., 2016; Lee et al., 2018) and the 

development of opioid tolerance (Kang et al., 2017). In this review, we present available 
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literature assessing the bidirectional role of the gut-brain axis in addiction- and opioid-

related behaviors, including stress, reward, incentive salience, mood disruption, tolerance, 

dependence, withdrawal, and antinociception, as well as propose possible mechanisms of 

gut-brain interactions in opioid use.

With the prevailing opioid crisis and escalating numbers of opioid-related deaths worldwide 

driven by addiction, it is critical to evaluate mechanisms that mediate the abuse potential of 

opioids. By presenting a specific role of the gut-brain axis in opioid use and in factors that 

influence addiction, we provide a potential therapeutic target integrated with opioid 

regimens to mitigate abuse and addiction vulnerability. Novel interventions to limit the 

negative clinical outcomes of opioid use, such as tolerance, dependence, and withdrawal, 

may reduce the risk of addiction and opioid-related deaths. An improved understanding of 

how the gut is involved in addiction-related behaviors can also contribute to the development 

of effective treatment strategies in other disorders with shared characteristics, including 

depression, anxiety, and chronic pain.

Methods to study the gut microbiome

While human subjects provide valuable translational data, the majority of our understanding 

of gut-brain interactions in addiction-related behaviors comes from preclinical rodent 

studies. Animal models allow specific, targeted manipulation of gut microbiota while 

controlling for factors that are widely variable in humans, including disease comorbidities, 

opioid dose and duration of use, co-use of other opioid and/or non-opioid drugs, drug 

history, and genetics. Comparing human microbiomes of substance use disorder versus 

healthy controls may also reflect differences in lifestyles and diets and are therefore difficult 

to appoint solely to drug use.

The four primary ways that gut microbiota can be manipulated are with probiotics, 

prebiotics, antibiotics, and fecal microbiota transplantation (FMT). Probiotics are live, 

beneficial bacterial strains that do not repopulate on their own so need to be administered 

daily for benefits to the host. Prebiotics are dietary fibers that are indigestible by the host 

and undergo bacterial fermentation to stimulate the growth of certain types of bacteria. An 

alternative to prebiotics is administration of short-chain fatty acids (SCFAs), which are 

bacterial fermentation byproducts. Depletion of 70-90 percent of gut bacteria in rodents can 

be achieved with prolonged oral treatment of non-absorbable antibiotics that do not mirror 

clinical doses (Bercik et al., 2011; Reikvam et al., 2011). The goal of FMT, often known as 

stool transplantation, fecal transplantation, or fecal bacteriotherapy, is to restore eubiosis by 

transferring stool from a healthy donor into a recipient with an altered colonic microbiome 

(Vindigni and Surawicz, 2017). FMT is an effective treatment for recurrent Clostridium 
difficile infection that has not responded to standard therapy. Potential applications of FMT 

for intervention in non-gastrointestinal diseases, such as obesity, ischemic stroke, 

Parkinson’s disease, Alzheimer’s disease, and depression, are also being explored (Kelly et 

al., 2016; Sampson et al., 2016; Chen et al., 2019; Dutta et al., 2019; Muscogiuri et al., 

2019; Sun et al., 2019).
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A unique animal model used in microbiome research is the germ-free mouse, in which mice 

are raised in a sterile environment from birth and remain completely absent of internal or 

external microbes (Faith et al., 2010). Germ-free mice are usually compared with mice 

containing known pathogens (conventional or specific pathogen-free) and can be colonized 

with microbial communities from donor animals or human subjects. Although the germ-free 

animal model is not entirely clinically relevant, as humans have constant exposure to 

environmental microbes immediately after birth, its use provides insight into early host 

development and function. Gut microbial depletion via prolonged oral antibiotic 

administration bypasses the perinatal developmental period.

As the bulk of intestinal bacteria are excreted in fecal matter, microbial analysis is most 

commonly achieved from fecal samples. Gut bacterial profiles are analyzed by DNA 

sequencing of the 16S rRNA gene found in all bacteria. Specific primers can select for the 

variable regions of the 16S gene to provide a profile of the different bacterial species in a 

given sample. DNA sequencing of bacterial genes reveals a sample’s bacterial abundance, 

alpha diversity (i.e. how many different species exist in the sample), and beta diversity (i.e. 

different species in one sample compared to another sample).

Gut microbiome role in incentive salience

Addiction is a chronic brain disease that is associated with dysregulation of reward and 

motivation. Incentive salience is a motivational property that when attributed to reward-

predicting stimuli, or cues, triggers the approach toward and consumption of a reward 

(Tindell et al., 2009; Zhang et al., 2009). The development of incentive salience is mediated 

by the mesolimbic dopamine system and promotes habits that encourage excessive cue-

induced drug seeking and self-administration behaviors (Berridge 2012).

A vagal gut-to-brain circuit has been established to play a critical role in reward and 

motivation (Han et al., 2018), and gut bacteria influence how animals respond to various 

rewards, such as food and drugs (Korner and Leibel, 2003; Duca et al., 2012; Alcock et al., 

2014; Kiraly et al., 2016; de Wouw et al., 2018; Lee et al., 2018; Al-Ghezi et al., 2019). 

Natural rewards, such as food, sex, and nurturing, are processed by key mesocorticolimbic 

structures and neurotransmitters, including the ventral tegmental area (VTA), nucleus 

accumbens, prefrontal cortex, dopamine, serotonin, GABA, glutamate, and endogenous 

opioids (Russo and Nestler, 2013). Drugs of abuse, including opioids, alcohol, stimulants, 

and cannabis, are artificial rewards that hijack this same brain system, and repeated drug use 

induces neurophysiological changes that contribute to addiction (Volkow and Morales, 

2015).

Passive exposure to or voluntary consumption of drugs of abuse can induce imbalances in 

gut microbiota in humans and rodents (Volpe et al., 2014; Wang and Roy, 2016; Ning et al., 

2017; Temko et al., 2017; Hillemacher et al., 2018; Hofford et al., 2018). In line with 

bidirectional gut-brain communication, these microbial imbalances influence brain function 

and behavior. Gut dysbiosis is associated with decreased levels of serotonin and dopamine, 

both important reward-related neurotransmitters (Yano et al., 2015), and changes in the gut 

microbiome are correlated with altered striatal dopamine receptor expression in a model of 
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compulsive alcohol seeking (Jadhav et al., 2018). Additionally, mice with depleted gut 

microbiota have abnormal behavioral responses to cocaine reward compared to controls 

(Kiraly et al., 2016; Lee et al., 2018), further highlighting a feedback loop between impaired 

reward processing and gut dysbiosis.

A growing amount of work has investigated the role of gut bacteria in obesity and 

overeating, which is relatable to drug addiction, as clinical and preclinical evidence uncover 

a significant overlap of neuroadaptations in overeating (food addiction) and drug addiction 

(Volkow et al., 2017). The rewarding properties of food and drugs are necessary for 

addictive potential, as foods that are highly palatable or drugs that produce significant 

euphoria promote repeated consumption or intake. Further, the rewarding properties of food 

or drugs are necessary for attributing positive motivational value to stimuli associated with 

reward availability and act as powerful incentives of rewardseeking behavior (Di Chiara, 

1999). Consistent with food and drug reward sharing similar neural mechanisms, current 

pharmacological and non-pharmacological (i.e. vagal nerve stimulation) treatments for 

obesity have also shown efficacy in reducing self-administration and/or rewarding effects of 

alcohol, cocaine, opiates, and nicotine in rodents (Egecioglu et al., 2013; Graham et al., 

2013; Skibicka, 2013; Engel and Jerlhag, 2014; Schmidt et al., 2016; Sirohi et al., 2016; 

Vallof et al., 2016; Childs et al., 2017; Fortin and Roitman, 2017; Tuesta et al., 2017).

As expected, the reward system is more stimulated by high energy-dense food than low-

calorie food (van der Laan et al., 2014). High-fat or high-sucrose diets are associated with 

altered microbial diversity in mice (Daniel et al., 2014; B. Liu et al., 2018; Magnusson et al., 

2015), and these diet-induced microbial changes substantially influence brain function, 

resulting in reduced synaptic plasticity, increased vulnerability to anxiety-like behavior, 

impairment in long-term and short-term memory, and disruptions in exploratory behavior 

(Sharma et al., 2012; Bruce-Keller et al., 2015). Bacterial byproducts that come into contact 

with gut epithelium stimulate production of gut hormones and neuropeptides, including 

peptide YY, cholecystokinin, glucagon-like peptide-1, and substance P, which mediate 

hunger and satiety signaling (Cani et al., 2013; Cani and Knauf, 2016). These findings 

highlight a critical function of gut bacteria in regulating appetite and feeding behaviors.

Although similar neural pathways influence food and drug reward, bariatric surgery (e.g. 

gastric bypass) to effectively reduce food intake, increases vulnerability and sensitivity to the 

reinforcing effects of opioid analgesics (Raebel et al., 2013; Biegler et al., 2016). This may 

be explained by the transference of one addiction (food) to another, as surgery eliminates 

excessive eating but does not alter individual predispositions to addictive behaviors (Niego 

et al., 2007; Pepino et al., 2014). In addition, altered gastrointestinal anatomy may cause 

changes in pharmacokinetics, as opioids are absorbed in the gastrointestinal tract (Tan et al., 

1989; Lotsch et al., 1999).

Gut microbiome role in drug withdrawal/negative affect

Various biological factors likely contribute to increasing chronic opioid use, including higher 

pain sensitivity and lower pain detection thresholds (Dodet et al., 2013). The shift from acute 

drug use to addiction may be due to opposing brain circuits that mediate stress and reward, 
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as addiction progresses from initial drug use for reward (i.e. positive reinforcement) to 

repeated use for distress avoidance (i.e. negative reinforcement). Once an individual adapts 

to regular use of opioids, a sudden decrease in intake leads to withdrawal, which 

interestingly yields symptoms opposite of opioid effects, as the brain tries to compensate 

against homeostatic disruption. The withdrawal/negative affect stage of the addiction cycle is 

represented by dampened reward via dopamine deficits and increased stress via activation of 

corticotropin-releasing factor and dynorphin (Koob et al., 2014). This recruitment of the 

stress system results in an emergence of negative emotional states, including dysphoria, 

anxiety, irritability, and depression. Baseline stress levels are heightened and exacerbated 

during withdrawal or extended abstinence, which encourages a cycle of continual drug 

intake to avoid the dysphoric feelings associated with the negative affect.

Stress, both acute and chronic, plays a key role in mediating an animal’s sensitivity to food 

and drug reinforcers (Sinha and Jastreboff, 2013; Yau and Potenza, 2013; Koob et al., 2014) 

and is a primary risk factor in the development of drug abuse and addiction. A substantial 

amount of evidence supports a bidirectional and causal relationship between gut dysbiosis 

and stress. Gut microbiota directly modulate general stress responses as well as drug 

withdrawal-induced anxiety (Xiao et al., 2018). Imbalances in gut microbial communities 

lead to a heightened activation of the hypothalamic-pituitary-adrenal (HPA) axis stress 

response (Sudo Nobuyuki et al., 2004; Ait-Belgnaoui et al., 2014; Tarr et al., 2015; Gacias et 

al., 2016; Leclercq et al., 2016; Rea et al., 2016), and restoring eubiosis via probiotics, 

SCFAs, and FMT ameliorates stress-related biomarkers and behaviors (Desbonnet et al., 

2010; Ait-Belgnaoui et al., 2012; Liang et al., 2013; Pusceddu et al., 2015; Schmidt et al., 

2015; Tarr et al., 2015). In addition, stress induces changes in microbiota composition and 

intestinal barrier function (Söderholm et al., 2002; Gareau et al., 2008). This is perhaps 

unsurprising given the considerable impact that stress has in aggravating gastrointestinal 

disorders and symptoms, such as inflammatory bowel disease, irritable bowel syndrome, 

gastric ulcers, and diarrhea (Klooker et al., 2009; Mayer, 2011; Moloney et al., 2016).

Substance use disorders are also highly comorbid with depression and anxiety, which are 

both characterized as stress-related mood disorders, in which stress is a major risk factor in 

its onset, and affected individuals have increased stress sensitivity (Holsboer, 2000; Kendler 

et al., 2006; Scott et al., 2013; Yang et al., 2015; Ramirez et al., 2016). Impaired gut 

microbiota is reported in depression (Desbonnet et al., 2010; Jiang et al., 2015; Kelly et al., 

2016; Luna and Foster, 2015; Macedo et al., 2017) and anxiety (Neufeld et al., 2011; Luna 

and Foster, 2015; Tarr et al., 2015), as well as other central nervous system abnormalities 

and diseases, such as hyperactivity, cognitive deficits, Parkinson’s disease, and 

schizophrenia (Diaz Heijtz et al., 2011; Schepeijans et al., 2015; Frohlich et al., 2016; 

Severance and Yolken, 2018). This link between central nervous system disorders and 

dysbiosis is not simply an association, as transplantation of gut bacteria from humans or 

animal models with obesity, chronic pain, anxiety, depression, Parkinson’s disease, or 

schizophrenia produces matching abnormal behaviors in animals (Bravo et al., 2011; Bruce-

Keller et al., 2015; Kelly et al., 2016; C. Yang et al., 2019; Zhu et al., 2019). Further, gut 

bacterial depletion in mice increases depressive-like behavior, alters visceral pain responses, 

and impairs cognition (O’Mahony et al., 2015; Fröhlich et al., 2016). Similarly in humans, a 

single treatment course of antibiotics is associated with an increased risk of depression and 
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anxiety that rises with recurrent antibiotic exposure (Lurie et al., 2015). These findings 

collectively suggest a feedback loop exists between stress, depressive states, and gut 

dysbiosis, which could underlie the gut microbiome’s role in drug withdrawal/negative 

affect.

Gut microbiome role in drug anticipation/craving

The preoccupation/anticipation stage is often linked with drug craving and hypothesized to 

be a key element in relapse. During this stage, the combination of excessive drug cue-

induced incentive salience, diminished reward system function, and heightened stress levels 

promotes pathological drug seeking. Motivational withdrawal syndrome develops when 

access to a drug is prevented, where the primary focus is to alleviate withdrawal symptoms. 

According to Pavlovian conditioning analysis, drug tolerance and withdrawal symptoms are 

both manifestations of conditioned compensatory responses (Siegel and Ramos, 2002). 

These drug-compensatory responses are proposed to mediate the development of tolerance 

by counteracting the drug effect when administered in the context of usual drug-

administration cues (which may also be interpreted as ‟drug preparation” symptoms). In 

contrast, if the drug is not administered in the presence of usual cues, the conditioned 

compensatory responses are not attenuated by drug effect and thus achieve full expression, 

increasing the risk of drug overdose. The essential role of gut microbiota in learning, 

memory, and stress highlights the striking impact of the gut in drug anticipation and craving 

(Sudo et al., 2004; Bravo et al., 2011; Diaz Heijtz et al., 2011; Desbonnet et al., 2015).

The finding that opioid tolerance to analgesia can be transferred via fecal transfer from an 

opioid-dependent mouse model into opioid-naive mice reveals that opioid exposure produces 

changes in gut bacteria that contribute to the development of tolerance to the pain-relieving 

effects of opioids (Kang et al., 2017; Lee et al., 2018; Yang et al., 2019). Gut microbiota 

diversity is in fact altered with chronic opioid use in humans and mice, and these changes 

alter neuronal tolerance in extrinsic sensory afferents (Akbarali and Dewey, 2017). In 

addition, the rate of tolerance to the analgesic effects of morphine is exaggerated in the 

presence of colonic inflammation (Komla et al., 2019).

While tolerance to the analgesic and rewarding properties of opioids develops rapidly, the 

gastrointestinal-related side effects, including pain, nausea, and constipation, remain 

consistent and often worsen with chronic opioid exposure (Akbarali and Dewey, 2017). One 

consideration is that gastrointestinal distress is one presentation of a conditioned 

compensatory response to opioid intake. As an example, diarrhea and/or vomiting are 

commonly observed signs of withdrawal, and administration of opioids alleviates these 

symptoms by inducing constipation and reduced gut motility. Gut dysbiosis may act as an 

interoceptive cue to opioid administration, similar to external cues, and elicit conditioned 

responses that mediate drug tolerance (Razran, 1961). Consistent with this hypothesis, 

tolerance can be prevented with a peripheral mu-opioid receptor antagonist, which supports 

a peripheral or gut mechanism mediating opioid tolerance (Komla et al., 2019). Furthermore, 

the insula integrates interoceptive states into emotions and conscious feelings, and its 

reactivity has been suggested to serve as a biomarker to predict relapse in humans (Naqvi 

and Bechara, 2009; Janes et al., 2010).
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Possible mechanisms of the gut microbiome affecting opioid use behavior

Neuroinflammation

Gut-brain communication occurs vastly through immune pathways. Gut bacteria control the 

differentiation and function of immune cells in the brain, periphery, and intestines (Erny et 

al., 2015; Matcovitch-Natan et al., 2016; Rooks and Garrett, 2016), and a healthy intestinal 

lining forms a tight barrier to control what gets absorbed into the bloodstream. It is therefore 

feasible to expect that perturbed gut bacteria and/or structure prompt immune dysfunction 

by triggering inflammation throughout the brain and body.

Intestinal barrier integrity can be threatened by a Western-style diet, certain medications, 

stress, and autoimmune conditions (Gareau et al., 2007; Stewart et al., 2017), which cause 

the tight junctions in the large intestine to open up (i.e. leaky gut) and allow bacteria and 

their toxins to get through, eliciting a systemic inflammatory response. Neuroinflammation 

is characterized by increased microglial activation and/or malformed microglial morphology. 

Gut, brain, and systemic inflammation are seen in acute and chronic stress and mood 

disorders (Maes et al., 2012; Wohleb and Delpech, 2017), as well as in opioid-dependent 

states and particularly in states of withdrawal (Taylor et al., 2015; Lee et al., 2018). 

Neuroinflammation disrupts the function and projections of dopaminergic neurons within 

VTA, leading to decreased mesolimbic dopaminergic activity and dysregulated reward, 

which is a shared characteristic of chronic pain, depression, and opioid addiction (Taylor et 

al., 2015; Cahill and Taylor, 2017). Vulnerability to the negative effects of opioids may be 

heightened by inflammation, which can develop from chronic opioid use, creating a vicious 

cycle.

Microbial metabolites

Gut bacteria help break down certain nutrients, which can be further metabolized by host 

cells. Several of these products, short-chain fatty acids (SCFAs, e.g. butyric acid, propionic 

acid, and acetic acid), are associated with neural function. Gut bacteria also produce 

tryptophan, serotonin, dopamine, and GABA, which play important roles in the brain as 

neurotransmitters or their precursors (Lyte, 2011; Thomas et al., 2012; Wall et al., 2014; 

Sudo, 2019).

SCFAs are considered to be beneficial to the host due to their anti-inflammatory effects and 

epigenetics regulation (Tsankova et al., 2007; Kim et al., 2014; Emy et al., 2015; Stilling et 

al., 2016). SCFAs are able to influence memory and learning processes in the brain and 

alleviate stress (Chambers et al., 2015; J. Liu et al., 2015; Byrne et al., 2016; Amoldussen et 

al., 2017; Burokas et al., 2017; de Wouw et al., 2018; Garcez et al., 2018). Additionally, 

administration of SCFAs normalizes microglial abnormalities in germ-free mice (Erny et al., 

2015) and reverses the enhanced reward sensitivity to cocaine seen in gut bacteria-depleted 

mice (Kiraly et al., 2016). Opioid-related behaviors may be due in part to reduced bacterial 

metabolism, which can be repleted with SCFA supplementation.
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Serotonin (5-HT)

Microbiota can regulate 5-hydroxytryptamine (5-HT) synthesis in the gut, which is 

important given that dysfunctional 5-HT signaling may underlie symptoms of 

gastrointestinal and mood disorders (Yano et al., 2015). Peripherally, 5-HT is involved in 

pain perception and regulation of gut secretion and motility, and centrally, 5-HT signaling 

pathways are implicated in regulating mood and cognition (Gershon and Tack, 2007; 

O’Mahony et al., 2015). Gut bacteria may play a crucial role in tryptophan availability and 

metabolism to consequently impact central 5-HT concentrations (de Wouw et al., 2019). The 

relationship between gut bacteria, serotonin synthesis and signaling, and mood is imperative 

to note as a consideration in addiction and motivated behaviors.

Microbial diversity and presence of specific species

Dysbiosis is characterized by imbalances in bacterial species, which can be measured by 

total abundance, species ratios, alpha diversity, and/or the presence or absence of a specific 

species. An imbalance in the body’s normal gut microbiota disrupts immunity and nutrition 

and leads to relative overgrowth of bacteria, which can progress into a secondary infection, 

such as the pathogenic Clostridium difficile. Gut microbiomes with high diversity are 

posited to be more beneficial to host health than low diversity microbiomes, as many 

different species exist in low numbers in a high diversity environment and expend more 

resources competing with other bacteria rather than manipulating the host (Alcock et al., 

2014).

Specific bacterial species may exert immunomodulatory effects on the central nervous 

system. Lactobacillus reuteri (L. reuteri) decreases anxiety-like behavior and stress-induced 

increase of corticosterone in mice, and alters mRNA expression of both GABA-A and 

GABA-B receptors in the central nervous system (Bravo et al., 2011). Vagotomy in these 

animals prevents the anxiolytic and antidepressant effects of L. reuteri, which indicates that 

parasympathetic innervation is necessary for L. reuteri to participate in the microbiota-brain 

interaction. Further, many species of Lactobacillus and Bifidobacterium produce GABA; 

Candida, Escherichia, and Enterococcus produce serotonin; and some Bacillus species 

produce dopamine (Lyte, 2011; Barrett et al., 2012). Additional research on bacterial species 

differences in substance use disorder is necessary to understand the functions of specific 

species and for a precise therapeutic intervention in opioid use.

Conclusion

Few preclinical studies have directly examined the role of gut afferents and bacteria on 

addiction-like behavior (Kiraly et al., 2016; Han et al., 2018; Lee et al., 2018). Current 

perspectives focus on dysfunctional reward processing, stress, and mood disorders as risk 

factors, characteristics, and/or co-morbidities in addiction and their implications with gut 

dysbiosis. Different pathways mediate the pain-relieving and rewarding effects of opioids, so 

although an apparent relationship exists between gut bacteria and analgesic tolerance to 

opioids, further research is needed to evaluate how the gut microbiome modulates opioid 

reward and reinforcement.
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We highlight here the role of gut bacteria in the affected neurocircuitry and behaviors of 

opioid abuse and addiction, including the stress HPA axis, mesolimbic dopamine system, 

tolerance, withdrawal, and craving. We also provide support that the gut-brain axis and 

opioid use share bidirectional communication, as opioid exposure changes the gut 

microbiome, and manipulation of gut bacteria influences opioid-related behaviors, such as 

pain tolerance, withdrawal, anhedonia, and drug reward. The impact of gut dysbiosis on 

impaired reward, enhanced stress, and neuroinflammation, as well as the glaring feedback of 

these factors on gut health, strongly implicates an important role of the gut-brain axis in 

opioid use.

Individual differences in gut microbiomes contribute to variations in drug metabolism, 

which account for the disparities in therapeutic efficacy and side effects between individuals 

(Zimmermann et al., 2019). An interesting, targeted approach to personalized medicine 

would be to modulate or supplement the gut microbiota to increase the efficacy of a drug or 

reduce its adverse effects. Our knowledge of the gut microbiome on obesity has led to 

clinical trials to evaluate benefits of FMT in non-gastrointestinal disorders, including obesity 

(Carlucci et al., 2016; Jayasinghe et al., 2016), autism (Kang et al., 2017), multiple sclerosis 

(Makkawi et al., 2018), and depression (Wortelboer et al., 2019). A further understanding of 

the role of the gut microbiome in drug addiction and opioid use may offer a novel targeted 

approach in the treatment of substance use disorders and/or a combined therapy with opioid 

regimens.
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