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Coefficients for translational and rotational diffusion charac-
terize the Brownian motion of particles. Emerging X-ray pho-
ton correlation spectroscopy (XPCS) experiments probe a broad
range of length scales and time scales and are well-suited
for investigation of Brownian motion. While methods for esti-
mating the translational diffusion coefficients from XPCS are
well-developed, there are no algorithms for measuring the rota-
tional diffusion coefficients based on XPCS, even though the
required raw data are accessible from such experiments. In this
paper, we propose angular-temporal cross-correlation analysis
of XPCS data and show that this information can be used to
design a numerical algorithm (Multi-Tiered Estimation for Corre-
lation Spectroscopy [MTECS]) for predicting the rotational diffu-
sion coefficient utilizing the cross-correlation: This approach is
applicable to other wavelengths beyond this regime. We ver-
ify the accuracy of this algorithmic approach across a range of
simulated data.

X-ray photon correlation spectroscopy | correlation spectroscopy |
speckle pattern analysis | angular cross-correlation | rotational diffusion

The analysis of Brownian motion of different types of parti-
cles is a classic problem in research fields such as molecular

biology and materials science. For a dilute suspension, col-
lisions from the solvent particles lead to random reposition
and reorientation that can be decomposed into translational
and rotational diffusion. These two types of diffusion can be
characterized by coefficients, namely, the translational diffusion
coefficient Dt and rotational diffusion coefficient Dr in two
dimensions and the corresponding 3× 3 tensor in three dimen-
sions. Knowledge of these parameters provides insight into the
structure and dynamic properties of the particles, opening the
door for understanding functions and transport process of pro-
teins (1), synthesis and stability of materials (2), biomolecular
reactions (3), etc.

As an emerging X-ray scattering technique, X-ray photon cor-
relation spectroscopy (XPCS) is able to probe length scale down
to nanometers and time scale from below microseconds to hours
and is well-suited for studying dynamics of disordered systems,
of which analyzing diffusion is a critical informative character-
istic. In XPCS experiments, samples are illuminated by partially
coherent X-ray beams, and time series of scattering images are
collected by detectors. (See Fig. 1 for an illustration of the XPCS
experiments.) The inhomogeneity of the electron density leads to
spatial variation of the brightness of the images, which is called
a ”speckle pattern,” and the fluctuation of the electron den-
sity leads to the temporal variation of the speckle patterns that
contains valuable information of the sample dynamics, which
can be revealed by analyzing these collected, time-dependent
images.

One of the most well-known tools for analyzing the images is
the temporal autocorrelation function g2, which depends on the
second-order degree of coherence (4); see, for example, refs. 5–7.
While translational diffusion coefficients Dt can be determined

through g2, to the best of our knowledge, there is no current
algorithm to extract Dr from XPCS data.

The objective of this paper is to present a methodology for
calculating the rotational diffusion coefficient Dr in the two-
dimensional (2D) case using XPCS data. By exploiting the more
detailed angular-temporal cross-correlation function, we are able
to discover more information than the autocorrelation func-
tion g2. Information about this cross-correlation function can
be related to the static electron density of individual parti-
cles and the rotational diffusion coefficient Dr . To estimate
Dr from the proposed cross-correlation, we first introduce a
mathematical model and related set of equations, whose solu-
tion corresponds to the rotational diffusion. We then design
a numerical algorithm, “Multi-Tiered Estimation for Corre-
lation Spectroscopy (MTECS),” based on an approach intro-
duced here, which solves the relevant equations by following a
multitiered iterative projection (M-TIP) philosophy, first intro-
duced in ref. 8. In particular, we construct several operators
and apply them in an iteration to efficiently map the cross-
correlation data into a form that can then be processed by
the algorithm to converge to the solution of the underlying
equations.

While we mainly discuss XPCS in this paper, the devel-
oped methodology does not rely upon the specific range of
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Fig. 1. Schematic illustration of the XPCS experiments. The translation and rotation of the particles within the scattering volume leads to variation of the
speckle patterns shown on the right. (While the grainy, noise-like texture makes these images appear visually similar, the proposed algorithm is able to
detect and analyze the contained variations.)

the wavelength essentially, so that it can be generalized to
other experiment techniques, such as dynamic light scattering.
Though dynamic light scattering has been applied to measure
the rotational diffusion (9, 10), these methods are limited by
their requirements of the type and structure of the particles.
The MTECS algorithm requires almost no prior assumption
about particle structure, but can take advantage of such infor-
mation if a priori known. MTECS is robust against noisy data,
as it includes additional filtering methods applied to the input
cross-correlation data.

Background
Assume a monodisperse dilute sample of particles undergoing
free translational and rotational diffusion. Here, we focus on
the 2D case, where the rotational diffusion is around a single
axis parallel to the incident beam. The angular perturbation of
particles can be modeled by Gaussian variables (11),

θ(t)− θ(r)∼N (0, 2(t − r)Dr ) for t > r ≥ 0, [1]

where θ(t) is the angle indicating the orientation at time t , and
Dr is the desired rotational diffusion coefficient.

Let r and q be the Cartesian coordinates in real and Fourier
space, respectively, and in polar coordinates, they can be
expressed as (r , γ) and (q ,φ), where r , q are the radial coor-
dinates, and γ,φ are the angular coordinates. Let ρ(r) be the
electron density of an individual particle whose center of mass
is at origin and orientation is associated with angle zero. ρ can be
expressed in circular harmonic expansion as

ρ(r , γ) =

∞∑
m=−∞

ρm(r)e imγ , [2]

and the circular harmonic coefficients ρm(r) can be calculated
by the circular harmonic transform

ρm(r) =
1

2π

∫ 2π

0

ρ(r , γ)e−imγdγ. [3]

The form factor is the Fourier transform of ρ:

ρ̂(q) =

∫
ρ(r)e−2πiq·rdr, [4]

and the intensity I is the squared modulus of the form factor ρ̂:

I (q) = |ρ̂(q)|2. [5]

Similarly to Eq. 2, ρ̂ and I can both be represented in
circular harmonic expansion with coefficients {ρ̂m(q)}∞m=−∞,
{Im(q)}∞m=−∞, respectively. Since the electron density ρ is real,
application of Friedel’s law means that Im = 0 for odd m.

Let J (q, t) denote the scattering data, which is the squared
modulus of the Fourier transform of the electron density within
the scattering volume, recorded by the detectors at scattering
vector q and time t . Throughout this paper, we consider only
nonzero scattering vectors. Assuming a flat Ewald sphere (12),
the scattering vector q can be reduced to its component orthogo-
nal to the incident beam. Then, we represent the images in polar
coordinate system as J (q ,φ, t). The temporal autocorrelation
function g2 is defined as follows:

g2(q ,φ, t) =
〈J (q ,φ, τ)J (q ,φ, τ + t)〉

〈J (q ,φ, τ)〉2
, [6]

where the angle bracket 〈·〉 indicates the ensemble average that
is equivalent to the time average taken over τ for systems under
thermal equilibrium. For isotropic systems, g2 does not depend
on φ in the limit of infinite number of images (11). In this case,
the averages are also taken over φ, and the dependency of g2 on
φ can be dropped, thus becoming g2(q , t).

For spherical particles undergoing free diffusion (13),∗

g2(q , t) = 1 + e−8π2q2tDt , [7]

and, hence, estimation of Dt can be obtained according to this
equation. For nonspherical particles, the particle structure plays
an important role. Assuming anistropic structure of particles and
decoupling of translation diffusion and rotational diffusion, we
are able to show (SI Appendix) that

g2(q , t) = 1 + e−8π2q2tDt

(∑∞
m=−∞ |ρ̂m(q)|2e−m2tDr

)
2(∑∞

m=−∞ |ρ̂m(q)|2
)

2
, [8]

*Due to the factor 2π in the formulation of Fourier transform Eq. 4, there is a difference

of factor 4π2 between Eq. 7 and the conclusion g2(q, t) = 1 + e−2q2tDt .
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in the limit of infinite number of images. Other than Dt and Dr ,
the above equation involves also the unknowns, |ρ̂m(q)|2. How-
ever, there may be insufficient information in Eq. 8 to extract all
of these quantities, which leads us to the analysis introduced in
the next section.

Angular-Temporal Cross-Correlation
In the cases that the X-ray exposure time is below the rota-
tional diffusion relaxation time, which can be achieved by slowing
down the motion or with ultrafast X-ray light sources, the angu-
lar fluctuation on images can be recorded (14, 15), providing key
information that can be used to estimate the rotational diffu-
sion coefficient Dr . However, this information is missing from
the autocorrelation function g2 due to the fact that it is an aver-
age over the system orientations for an isotropic system. More
specifically, since g2 correlates points in the same spatial posi-
tion from different images, it is not able to capture information
from photons that are scattered along different scattering vectors
and correlated by rotational dynamics or symmetric structures of
particles.

To address this limitation, we propose exploiting the angular-
temporal cross-correlation function, defined as

C (q , q ′, ∆φ, t) = 〈J (q ,φ, τ)J (q ′,φ+ ∆φ, τ + t)〉, [9]

where the average is performed over φ and τ . This function can
be viewed as a natural generalization of the autocorrelation g2.
Taking q = q ′ and ∆φ= 0, the cross-correlation C becomes the
autocorrelation g2 without the normalization, which implies that
data given by g2 are a subset of data given by C . Moreover, by
exploiting correlation between points at different spatial posi-
tions, C is able to uncover information contained in the angular
fluctuation of images to produce orders of magnitude more infor-
mation than g2. As the arguments vary, g2 generates only a data
matrix, while the more involved C generates a four-way data
tensor. We note that in a non-XPCS context, reduced forms
of Eq. 9 with consideration of only angular effect have been
applied to discovery of local symmetries (16, 17), ab initio struc-
ture determination (18, 19), and investigation of orientational
distribution (20–22).

In practice, the cross-correlation C is evaluated as

C (q , q ′, ∆φ, k∆t) =
1

2π(Nsp − k)

Nsp−1−k∑
k′=0∫ 2π

0

J (q ,φ, k ′∆t)J (q ′,φ+ ∆φ, (k + k ′)∆t)dφ, [10]

where ∆t is the time difference between consecutive images, and
Nsp is the number of images collected. Assuming ∆φ 6= 0 or π,
in the limit of infinite number of images, i.e., Nsp→∞, while
keeping ∆t constant, we can derive the following limit:

C (q , q ′, ∆φ, k∆t)−〈J (q ,φ, τ)〉 · 〈J (q ′,φ, τ)〉

=

∞∑
m=−∞
m 6=0

e−i2m∆φI2m(q)I2m(q ′)e−4m2k∆tDr , [11]

up to a constant. When ∆φ= 0 or π and q = q ′, the cross-
correlation manifests as sharp peaks (see Fig. 5). The above limit
and the peaks are derived in SI Appendix. The second term on
the left-hand side of Eq. 11 is the angular average of the cross-
correlation. The subtraction of this term can be replaced by the
techniques outlined in ref. 23 to reduce the effect of background
noise and detector malfunction.

Intuitively, on the assumption that the motions of different
particles are uncorrelated, the interparticle effects vanish in the

ensemble averages. The main contribution arises from the effect
of each individual particles. The rotational diffusion results in
the decaying terms e−4m2k∆tDr , which eventually lead to the
decorrelation of the angular fluctuation.

In comparison to Eq. 8, the rates of the multicomponent expo-
nential decay in Eq. 11 depend solely on Dr . Moreover, Eq. 11
provides considerably more data to help handle the unknowns
related to the structure of the particle.

MTECS Algorithm
Our focus is on anisotropic particles (otherwise, the right-hand
side of Eq. 11 is always zero). The rotational diffusion coefficient
Dr can be estimated by solving Eq. 11, which we do by build-
ing an algorithm, called MTECS, following the M-TIP approach
of decomposing complex optimization into subparts that can be
efficiently inverted/pseudoinverted or solved exactly and combin-
ing the solutions from the different subparts in an iteration (8,
24). This approach allows us to avoid solving a high-dimensional
nonconvex problem directly and, instead, decompose the origi-
nal problem into a few efficiently solvable subparts, narrowing
the nonconvex part to a much lower-dimensional space.

Let L be an upper bound of the diameter of the minimal
circle enclosing the particle. This is the only prior knowledge
required by MTECS. We will discuss this parameter in later sub-
sections. Define C̃ as the right-hand side of Eq. 11 truncated to a
finite sum,

C̃ (q , q ′, ∆φ, k∆t)

=

M∑
m=−M
m 6=0

e−i2m∆φI2m(q)I2m(q ′)e−4m2k∆tDr . [12]

Assume that the above function is measured at q , q ′ ∈{ql}Nq

l=1,
∆φ∈{∆φj}

Nφ

j=1, and k = 0, 1, . . . ,K − 1, where Nq is the num-
ber of radial coordinates, Nφ is the number of the angular
coordinates, and K is the number of lag time. Denote the max-
imum of {ql}Nq

l=1 as qmax. These values give rise to a four-way

Fig. 2. High-level flowchart of the MTECS algorithm. See the subsec-
tions Correlation Noise Projector, Band-Limiting Projector, Rank-One Ten-
sor Decomposition, Exponential Fitting, and MTECS for more detailed
description.

Hu et al.
Cross-correlation analysis of X-ray photon correlation spectroscopy to extract rotational diffusion
coefficients

PNAS | 3 of 8
https://doi.org/10.1073/pnas.2105826118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105826118/-/DCSupplemental
https://doi.org/10.1073/pnas.2105826118


data tensor C ∈RNq×Nq×Nφ×K , i.e., Cll′jk = C̃ (ql , ql′ , ∆φj , k∆t),
whose values form the input to the algorithm. Here, we use the
similar notations of tensors as ref. 25. The element (l , l ′, j , k) of
the four-way tensor C is denoted by Cll′jk . The subarrays of C are
specified by using colons in subscripts; e.g., Cll′:k indicates a vec-
tor obtained by varying the third subscript, and C::jk represents
a matrix obtained by varying the first two subscripts. Notice that
the parameter M should be chosen so that 2M �Nφ. A good
heuristic for M is approximately πLqmax, which is computed by
determining the number of Shannon elements that lie within the
domain of the polar grid (26).

The flowchart in Fig. 2 outlines the procedure of the MTECS
algorithm. Now, we turn to showing how to construct the
subparts, each of which enforces a constraint induced by the
mathematical description of the cross-correlation C.

Correlation Noise Projector. Let B∈CNq×Nq×2M×K be a four-way
tensor, whose entries are

Bll′mk = I2m(ql)I2m(ql′)e
−4m2k∆tDr . [13]

We first design a correlation noise projector PC to seek the mini-
mum perturbation of the current guess of B to make the updated
cross-correlation within a range from the input data.

One may notice that Eq. 12 is a circular harmonic expansion.
However, the coefficients cannot be attained by the circular har-
monic transform Eq. 3 due to the fact that we usually don’t have
access to the full angular range in practice. This is caused by
either detector artifacts or the peaks of the cross-correlation at
∆φ= 0 or π, q = q ′.

Instead, for each ql , ql′ , k , Eq. 12 can be rewritten as a matrix-
vector multiplication:

Cll′:k =EBll′:k , [14]

where

Ejm = e−i2m∆φj , (Bll′:k )m = I2m(ql)I2m(ql′)e
−4m2k∆tDr .

[15]
Since C and E are known and 2M <Nφ, the above problem is an
overdetermined linear system.

To solve Eq. 14, we formulate PC as a Tikhonov regulariza-
tion, i.e., an L2-norm constrained linear regression:

PCB=B+ ∆B, [16]

where for each k , ∆B:::k solves

min
∆B:::k∈CNq×Nq×2M

Nq∑
l,l′=1

‖∆Bll′:k‖2qlql′ ,

s.t.
1

NφN 2
q

Nq∑
l,l′=1

1

σ2
ll′k

‖Cll′:k −E · (Bll′:k + ∆Bll′:k )‖2≤ τk ,

[17]
where σll′k are scaling parameters, and τk is a fitting parame-
ter of the constraint. These parameters can be chosen based on
how well the cross-correlation data C fit the model Eq. 12 (see SI
Appendix for more details).

Band-Limiting Projector. Starting with the Fourier–Bessel expan-
sion of the density–density autocorrelation function (SI
Appendix), we derive an basis expansion of the circular harmonic
coefficients of the intensity I ,

Im(q) =

∞∑
n=1

amnvmn(q), [18]

where amn are Fourier–Bessel series coefficients of ρm , and

vmn(q) =
2
√

2π(−i)mLumnJm(2πqL)

u2
mn − (2πqL)2

, [19]

where Jm(·) are Bessel functions of the first kind, and umn are
the n-th zeros of Jm . We don’t need L to be precisely deter-
mined: It is only required to be larger than the true value of the
diameter to ensure the convergence of Eq. 18. A special prop-
erty of the set of basis functions vmn is that its mass concentrates
around q = umn

2πL
, which implies that it is practicable to take trun-

cation of Eq. 18 based on the number of terms whose majority of
mass is within the measured q range. Here, we assume that the
series can be accurately truncated to the first Nm terms.

Combining Eqs. 13 and 18, we have

B::mk =Vm(Gm)::kV
∗
m , [20]

where

(Vm)ln = v(2m)n(ql), (Gm)nn′k = a(2m)na(2m)n′e
−4m2k∆tDr .

[21]
Since the matrices Vm as well as their pseudoinverses V †m can
be computed explicitly, we define the band-limiting projector to
solve Eq. 20 for Gm as

(Gm)::k =V †mB::mkV
†∗
m . [22]

Rank-One Tensor Decomposition. Next, we obtain the coefficients
a(2m)n and the term e−4m2k∆tDr . According to Eq. 21, for
each m, the tensor Gm ∈CNm×Nm×K can be viewed as an outer
product:

Gm =Am ⊗Am ⊗R:m , [23]

where

(Am)n = a(2m)n , Rkm = e−4m2k∆tDr . [24]

Fig. 3. Low-level flowchart of the MTECS algorithm. The blue arrows rep-
resent the subparts that can be computed exactly, and the red arrows stand
for the subparts whose solutions can only be approximated iteratively.
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Fig. 4. (A) The electron density of an individual particle, ρ. (B) An example of generated XPCS images. The colors are mapped according to the logarithm of
the collected intensity data. The shaded area enclosed by the two circles describes the domain of the polar grid on which the intensity is used. (C) Logarithm
of angular average of the image shown in B versus the radial coordinate q.

The above equation implies that Gm is at most rank one. Rely-
ing on this, Am and R:m can be retrieved by using a partially
Hermitian bound-constrained rank-one tensor decomposition:

min
Am∈CNm ,R:m∈RK

K−1∑
k=0

(ωtd)k‖(Gm)::k −RkmAmA∗m‖2F ,

s.t. R0m = 1, 0≤Rkm ≤ 1 for each k ,

[25]

where ωtd are weights, and ‖ · ‖F is the Frobenius norm. The
purpose of the weights ωtd is to balance the exponentially decay-
ing signal and the noise, whose magnitude remains the same
with respect to different k . If K or Dr is quite large, the
unweighted Eq. 25 tends to pick up the noise instead of true sig-
nal. A reasonable choice of ωtd is based on the decaying terms
e−4m2k∆tDr , where Dr is the current estimation. This subpart
can be expressed briefly as

[[Am ;R:m ]] =POGm , for each m. [26]

Exponential Fitting. Once the matrix R of decaying terms
e−4m2k∆tDr is computed, we are able to estimate the rotational
diffusion coefficient Dr by solving the following minization:

xmin = arg min
0<x<1

K−1∑
k=1

M∑
m=−M
m 6==0

ωm(Rkm − x4m2k )2, [27]

and then letting

Dr =− log xmin

∆t
. [28]

If the magnitudes of Im are too close to zero for some m , which
happens when the particles possess unknown radial symmetry,
then R:m could be too noisy for these m . To deal with this situ-
ation, the algorithm allows assigning the weights ωm according
to the estimated magnitude of Im , e.g., ωm = ‖VmAm‖2. This
subpart is denoted by

PER =Dr . [29]

MTECS. We now assemble the subparts described in the previous
subsections to give an iterative algorithm, MTECS (see Fig. 3 for
the flowchart).

With initialization B̃(0) = 0 and p = 0, the algorithm consists
of the following steps:

1. Given the cross-correlation C, apply the correlation noise
projector to compute B(p) =PC B̃(p);

2. For m =−M , . . . , 1, 1, . . . ,M , compute (G(p)
m )::k =

V †mB(p)V †∗m by performing the band-limiting projector for
k = 0, . . . ,K − 1;

3. Compute [[A
(p)
m ;R

(p)
:m ]] =POG(p)

m by the rank-one tensor
decomposition for m =−M , . . . , 1, 1, . . . ,M ;

4. Make a current estimation of the rotational diffusion coeffi-
cient as D(p)

r =PER
(p);

5. Form an updated matrix of the decay terms whose entries

are R̃
(p)
km = e−4m2k∆tD

(p)
r for m =−M , . . . , 1, 1, . . . ,M and

k = 0, . . . ,K − 1;
6. For m =−M , . . . , 1, 1, . . . ,M , obtain the tensors G̃(p)

m =

A
(p)
m ⊗A

(p)
m ⊗ R̃

(p)
:m ;

7. Update the tensor B̃(p+1) by calculating
B̃(p+1)

::mk =Vm(G̃(p)
m )::kV

∗
m for m =−M , . . . , 1, 1, . . . ,M

and k = 0, . . . ,K − 1;
8. Terminate if the difference between B̃(p+1) and B̃(p) is smaller

than a preset tolerance; otherwise, set p := p + 1 and go to 1.

The stopping criterion is that the relative change between B̃(n)

and B̃(n+1) is smaller than a tolerance rather than hinged on the

Fig. 5. An example of the cross-correlation data at q = q′ = 150, k∆t = 0.0
with Dr = 0.01 against angular coordinates ranging from [0,π). The data on
∆φ∈ [0,π) and the data on ∆φ∈ [π, 2π) are identical. The vertical black
bars indicate the boundaries of the masking that masks out the peaks at
∆φ= 0 and π.
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Table 1. Ground truth of Dr , estimation of Dr , and the relative errors

True Dr 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Estimated Dr 0.010062 0.020086 0.030490 0.040521 0.050919 0.061311 0.071812 0.080488 0.092633 0.100093
Relative error, % 0.62 0.43 1.63 1.30 1.84 2.19 2.59 0.61 2.93 0.09

desired coefficient D
(n)
r , as the former choice is more robust.

(See SI Appendix for more details of selection of parameters.)
The upper bound L of the diameter of the minimal bounding

circle of the particle required by step 2 is the only necessary prior
knowledge. When available, MTECS can be modified to capi-
talize on additional prior information of particle structure. Some
additional constraints on the intensity I and its circular harmonic
coefficients Im can be derived accordingly. For example, if the
particles have s-fold symmetry, then Im = 0 for m that is not a
multiple of s . Then, Eqs. 12 and 15 can be adapted accordingly.

Analogous to the methods introduced in ref. 24, a filtered
cross-correlation tensor, Cfiltered, is acquired through Eq. 12 using
the last B̃(p). Against the input C, the signal-to-noise ratio of
Cfiltered is significantly enhanced to benefit the aforementioned
angular cross-correlation analysis for other X-ray diffraction
techniques, e.g., structure reconstruction (8, 27).

Results
To illustrate the capabilities of this approach, we applied
MTECS to synthesized images collected from simulated systems.
All the particles of interest in the systems are assumed to be
identical. Fig. 4A shows the electron density ρ. Each particle
is constructed by attaching two spheres to ends of a cylinder
in three-dimensional (3D) spaces, then projected to 2D space
by integrating along the z axis. (We are currently exploring
extending these techniques to systems with polydispersity.) The
analytical expressions of ρ and I are provided in SI Appendix.
We calculate the circular harmonic coefficients Im by numerical
integration.

The systems are simulated on a 2,047 × 2,047 Cartesian grid
equally spaced in domain [0, 1]× [0, 1], with 500 particles in each
system with uniform distribution in initial position and orienta-
tion. The position replacements and orientation perturbations
are treated as Gaussian random variables. The translation diffu-
sion coefficient is set to be Dt = 1/2,0472, while the rotational
diffusion coefficients Dr are selected differently for different
systems. Overlapping and collisions are ignored. The scatter-
ing fields are calculated via the 2D fast Fourier transform.
Instead of the whole images on a Cartesian grid, we inter-
polate them to a polar grid with Nq = 350 radial coordinates
spaced equally on [51, 400] and 3,210 angular coordinates spaced
equally on [0, 2π). (See Fig. 4B for an example of the images
whose angular average against the radial coordinate q is plot-
ted in Fig. 4C.) The time difference ∆t between consecutive
images is 1.0.

Fig. 6. Filtered cross-correlation data at q = q′ = 150 against angular coor-
dinates. The cyan dots are the cross-correlation data computed from images,
which are the input to MTECS. The black solid lines are the cross-correlation
filtered by the algorithm. Ground truth calculated from ρ is indicated by the
red dashed lines.

For each system, we let K = 16, and calculated a cross-
correlation data tensor C ∈R350×350×3210×16. (See SI Appendix
for more details.) The calculation of a such tensor from 40, 000
images took 4 h using 32 single-socket Intel Xeon Phi 7250 pro-
cessors with 68 cores at 1.4 GHz. A curve of cross-correlation
data against ∆φ is shown in Fig. 5.

There are two sharp peaks at ∆φ= 0 and π. Additionally, the
data on ∆φ∈ [0,π) are identical to the data on ∆φ∈ [π, 2π) due
to symmetry of the intensity I . Thus, we kept the data on ∆φ∈
[ π
32

, 31π
32

], ending up with a data tensor C ∈R350×350×1503×16.
We used M = 9 in the truncation of the cross-correlation

Eq. 12 and the upper bound of the diameter of the minimal
circle enclosing the particle L= 0.0128969 that is 10% larger
than the actual diameter. Such precision can be easily achieved
in practice. The first subpart, Tikhonov regularization PC , was
solved by finding the Tikhonov parameter (28). We solved the
tensor decomposition PO through a modified alternating least-
square algorithm (29). The exponential fitting PE was handled by
limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm
(30). Please refer to SI Appendix for more details about solving
the subparts. The MTECS algorithm terminates if the conver-
gence is reached or after 200 iterations. It took at most 20 min
to complete the algorithms on a single core of a 2.3-GHz 16-core
Intel Xeon Processor E5-2698 v3.

For each of the rotational diffusion coefficient values Dr rang-
ing from 0.01 to 0.1, we collected 40, 000 images. Table 1 gives
the ground truth, the estimated Dr given by the algorithm and
the relative error between them. In Fig. 6, we present two curves
of the filtered cross-correlation data Cfiltered against the angular
coordinate ∆φ. The input data C and ground truth calculated
from the circular harmonic coefficients Im via Eq. 12 are also
shown for comparison.

As shown in Table 1, all the rotational diffusion coefficients
Dr are estimated with relative errors smaller than 3%. Fig. 6
shows that the curves of filtered cross-correlation data almost
completely overlap with the ground truth, indicating the ability
of the MTECS algorithm to filter the cross-correlation data and,
hence, boost the signal-to-noise ratio.

To understand how the computed accuracy depends on the
number of images, for Dr = 0.01, 0.02, 0.04, 0.08, we gradually
reduced the number of images from 40, 000 to 4, 000. As less
numbers of the images are used, there will be more noise caused
by the random motion of the particles. Due to the stochastic
nature of the experiments, which is also true in practice, the
outputs exhibit some randomness.

To characterize the results better, for each value of Dr

and each number of images, we repeated the experiments 10
times and, hence, generated 10 different estimations, whose
statistics are shown in Fig. 7. We note that the MTECS algo-
rithm is still able to give reasonable estimation while using

Table 2. Estimation of Dr and the relative errors against the
factor controlling the level of Poisson noises

Factor 0.25 0.5 1.0 2.0 4.0

Estimated Dr 0.010088 0.010081 0.010093 0.010093 0.010091
Relative error, % 0.88 0.81 0.93 0.93 0.91

The smaller the factor, the more severe the noise. Ground truth is
Dr = 0.01.
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Fig. 7. Quantiles of 10 different estimated values against number of images. Horizontal bars from top to bottom are maxima, third quartiles, medians, first
quartiles, and minima. White boxes are averages. Horizontal lines behind boxes are ground truth.

less images. Despite the fluctuation, the trend shows that as
the number of images increases, the quality of the estimations
improves.

We also conducted experiments in which we added Poisson
noise to the images. Rather than the polar grid introduced
before, we used a coarsened polar grid with only half amount
of the radial coordinates and half amount of the angular coor-
dinates. The domain of this grid is the same as before. Dr is
selected as 0.01, and the other parameters remain unchanged. A
total of 40, 000 images were collected. We multiplied the inten-
sity by a scaling factor before added Poisson noise. The level of
Poisson noise can be controlled by tuning this factor, and, thus,
the Poisson noise has a more severe effect when the magnitude
of data are small. Results are shown in Table 2: The relative
errors are all smaller than 1%. Such results are quite close to
the estimation in Table 1.

Conclusions and Discussion
We have shown how to estimate rotational diffusion coef-
ficients Dr from XPCS. The cross-correlation provides sig-
nificant information, which cannot be acquired through the
autocorrelation function g2. In fact, viewed as a natural gen-
eralization of g2, the cross-correlation function has the poten-
tial of being applied to various other problems, despite the
fact that it takes substantially more effort and resources to
process and interpret the cross-correlation data, owing to the
size of data.

The derivation of Eq. 11 is the basis of application of the algo-
rithm. Consequently, the outlined approach of the combination
of cross-correlation functions and MTECS applies to other wave-
lengths and, hence, can be carried directly to other experimental
regimes.

Moreover, the approach developed here provides a reliable
methodology to measure the rotational dynamics beyond rota-
tional diffusion. For noninteracting particles, one can derive a
limit similar to Eq. 11 for other dynamics. The variations of
the circular harmonic coefficients of cross-correlation curves can
be computed through the first three subparts of the MTECS
algorithm and be studied by other operators that replace the
last subpart, the exponential fitting PE . For interacting parti-
cles, e.g., in concentrated systems, the ensemble average of the
cross-correlation contains terms that are related to the pair dis-
tribution of the particles. These terms can still be expressed in
terms of product of the circular harmonic coefficients of ρ or I .
Additional constraints should be explored to design operators
handling these extra terms.

The current MTECS algorithm is designed for estimating the
rotational diffusion coefficient in 2D rotational diffusion. A nat-
ural next step is to estimate the 3× 3 rotational diffusion tensor
in 3D rotational diffusion. We are currently working on this
extension: A limit similar to Eq. 11 can be derived, and then
the subparts can be modified accordingly. The overall procedure
remains basically the same.

Data Availability. All study data are included in the article and/or
supporting information.
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6. T. Seydel, A. Madsen, M. Tolan, G. Grübel, W. Press, Capillary waves in slow motion.
Phys. Rev. B63, 073409(2001).

7. A. Robert, Measurement of self-diffusion constant with two-dimensional X-ray
photon correlation spectroscopy. J. Appl. Crystallogr. 40 (s1), s34–s37 (2007).

8. J. J. Donatelli, P. H. Zwart, J. A. Sethian, Iterative phasing for fluctu-
ation X-ray scattering. Proc. Natl. Acad. Sci. U.S.A. 112, 10286–10291
(2015).

9. B. S. Dubin, N. A. Clark, G. B. Benedek, Measurement of the rotational diffusion coef-
ficient of lysozyme by depolarized light scattering: Configuration of lysozyme in
solution. J. Chem. Phys. 54, 5158–5164 (1971).

10. D. Lehner, H. Lindner, O. Glatter, Determination of the translational and rotational
diffusion coefficients of rodlike particles using depolarized dynamic light scattering.
Langmuir 16, 1689–1695 (2000).

11. J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam,
Netherlands, 1996).

12. P. P. Ewald, Introduction to the dynamical theory of X-ray diffraction. Acta Crystallogr.
A 25, 103–108 (1969).

13. B. J. Berne, R. Pecora, Dynamic Light Scattering: With Applications to Chem-
istry, Biology, and Physics (Courier Corporation, North Chelmsford, MA,
2000).

Hu et al.
Cross-correlation analysis of X-ray photon correlation spectroscopy to extract rotational diffusion
coefficients

PNAS | 7 of 8
https://doi.org/10.1073/pnas.2105826118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105826118/-/DCSupplemental
https://doi.org/10.1073/pnas.2105826118


14. H. Liu, B. K. Poon, D. K. Saldin, J. C. Spence, P. H. Zwart, Three-dimensional single-
particle imaging using angular correlations from X-ray laser data. Acta Crystallogr. A
69, 365–373 (2013).

15. D. Starodub et al., Single-particle structure determination by correlations of snapshot
X-ray diffraction patterns. Nat. Commun. 3, 1276 (2012).

16. P. Wochner et al., X-ray cross correlation analysis uncovers hidden local sym-
metries in disordered matter. Proc. Natl. Acad. Sci. U.S.A. 106, 11511–11514
(2009).

17. M. Altarelli, R. P. Kurta, I. A. Vartanyants, X-ray cross-correlation analysis and
local symmetries of disordered systems: General theory. Phys. Rev. B 82, 104207
(2010).

18. B. Pedrini et al., Two-dimensional structure from random multiparticle X-ray
scattering images using cross-correlations. Nat. Commun. 4, 1–9 (2013).

19. R. P. Kurta et al., Correlations in scattered X-ray laser pulses reveal nanoscale
structural features of viruses. Phys. Rev. Lett. 119, 158102 (2017).

20. R. P. Kurta, L. Wiegart, A. Fluerasu, A. Madsen, Fluctuation X-ray scattering from
nanorods in solution reveals weak temperature-dependent orientational ordering.
IUCrJ 6, 635–648 (2019).

21. A. V. Martin, Orientational order of liquids and glasses via fluctuation diffraction.
IUCrJ 4, 24–36 (2017).

22. A. V. Martin et al., Fluctuation X-ray diffraction reveals three-dimensional nanos-
tructure and disorder in self-assembled lipid phases. Commun. Mater. 1, 40
(2020).

23. G. Chen et al., Structure determination of Pt-coated Au dumbbells via fluctuation
X-ray scattering. J. Synchrotron Radiat. 19, 695–700 (2012).

24. K. Pande et al., Ab initio structure determination from experimental fluctuation X-ray
scattering data. Proc. Natl. Acad. Sci. U.S.A. 115, 11772–11777 (2018).

25. H. A. L. Kiers, Towards a standardized notation and terminology in multiway analysis.
J. Chemometrics 14, 105–122 (2000).

26. C.E. Shannon, Communication in the presence of noise. Proc. IRE 37, 10–21
(1949).

27. D. K. Saldin et al., Beyond small-angle X-ray scattering: Exploiting angular correla-
tions. Phys. Rev. B 81, 174105 (2010).

28. J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems (Applied
Mathematical Sciences, Springer Science & Business Media, New York, 2006), vol. 160.

29. J. D. Carroll, J.-J. Chang, Analysis of individual differences in multidimensional scal-
ing via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35,
283–319 (1970).

30. H. R. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995).

8 of 8 | PNAS
https://doi.org/10.1073/pnas.2105826118

Hu et al.
Cross-correlation analysis of X-ray photon correlation spectroscopy to extract rotational diffusion

coefficients

https://doi.org/10.1073/pnas.2105826118



