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The Divergence of the Light Field in Optical Media+ 

by Rudolph W. Preisendorfer 

Scripps Institution of Oceanography, University of California, La Jolla, Calif. 

ABSTRACT 

The most general relation for the divergence of the light vector is 

derived from the equation of transfer for an arbitrary optical medium, and 

is shown to yield a direct means of determining the volume absorption function 

in natural aerosols and hydrosols. It is also shown that a correct special •. 

form cf the divergence relation (for the slab geometry) is derivable from 

the classical Schuster equations and their solutions. 

INTRODUCTION 

The object of this note is to exhibit two applications of the theory 

of the divergence V«JM of the light field vector H. (the vector irradiance). 

The results are completely general but will perhaps find greatest use in 

geophysical optics, in particular meteorological and hydrological optics. 

The first application yields a direct and simply realized experimental 

means of the determination of the volume absorption function <x in an 

arbitrary optical medium. The principal result is that there now exists 

independent means of determining the three basic attenuating functions 

of an optical medium: The volume absorption function a, the volume scatter-

ing function 0" , and the volume attenuation function o r , The second 

application yields a theoretical critique of the classical(two-flow) Schuster 

Analysis of a light field. The net conclusion is that the differential 

*Q5Srterlbut€£b"h (from t&te 'SoTipps TlnslJitittJion a& ^OceanDgraphy., TNew .'Series Ufa. 
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equations of the(two-flow) Schuster Analysis and their solutions are con­

sistent with respect to the divergence relation of the light field. In 

fact, it is shown that the equations and their solutions implicitly embody 

the divergence relation for the slab geometry. 

THE GENERAL DIVERGENCE RELATION 

In order to gain the proper perspective of the present results in 

the setting of general radiative transfer theory the discussion begins 

with the most general representation of a radiative transfer processlin an 

arbitrary optical medium, namely the equation of transfer for radiance2 N% 

where N* (x, ££ J = f^ ^ ^ j # j- ̂  ; ^ ( z f^Jc/j)^ ( 2) 

• "Ttudolph W. Preisendorfer, "A Mathematical Foundation for Radiative Transfer 

Theory," Doctoral Dissertation, U.C.L.A., May 1956. 

'The radiometric terminology used here follows where possible (and extends 

where necessary) the terminology recommended by the Committee on Colorimetry 

J. Opt. soc. Am. 34, 183-218 (1944), 34, 245-266 (1944). 



For the purposes of the present study, the manifold and complex 

mathematical features of the equation of transfer and its components 

are subordinate to their physical consequences. Hence in the interests 

of brevity it will be merely recalled that N is the radiance function 

associated with a fixed wavelength A . x = ( x%> JC2 t x3) is a three di­

mensional location vector and fx C £, %3 f ) is a three dimensional unit 

direction vector in euclidean three space, and "£ denotes time. ^= is the 

collection of all unit direction vectors and XI is the solid angle measure 

function on 3! e.g. dfl= s/»9dec/^when spherical coordinates are used for 

~ . O/Ot is the lagranflian derivative operator. <=< is the volume attenua­

tion function. <J~ is the volume scattering function, n is the index of 

refraction function and V is the velocity of light function (V- c/n) all 

these functions being associated with X . N^ is the path function, and Nrt 

is the emission function, the former representing radiant energy arising 

from scattering without change of wavelength X ,the latter representing 

radiant energy arising from scattering with change in wavelength to A , 

and all other sources of radiant flux (of wavelength X ) within the optical 

medium. The term (N^+ NL )/oC ±3 customarily called the source function 

of the medium. N* and A/*evidentally have the same dimensions as ©cA/ (radiance 

per unit length). It follows from general radiative transfer theory that the 

functions oi and <T are connected by the relation 

where 

(3) 

(4) 
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Of central interest in what follows are the notions of vector 

irradiance H and scalar irradiance /} , defined, respectively, as follows: 

H <*,*>= L I »<*.£.* )dSia), (5) 

h(zj) - L NCJS.lt)dfl(l). (6) 

fl i s related to the radiant energy density u by the formula: 

V(Zj) ZL(3£,t) = /ft£,*). 

In the photometric context the counterpart to H(£,i)i.3 El (%. 4) , the 

vector illuminanceP and to n(£,t) there corresponds e(j£,iOthe scalar 

illuminance. ̂  and e being defined in terms of the luminance function 

8 . i= has been studied extensively for example-by XJershunJ and MotAi and 

Spencer* under" the. name of the light vector, and essentially for the case 

of non-attenuating ( erf.s b ) media in the steady state ( &&OS, 1,4)/96 so), 

3 -
- > A. Gershun, "The Light Field," J. Math.Phys. ̂ 8, 51-151 (1939), translated 

by P. Moon and G. Timoshenko. " / 

T. Moon and D. E. Spencer, "The Theory of the Photic Field," J. Franklin 

Inst. 255, 33-50 (1953) 
vvw' 
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The case of oc*^ O has been studied by Boldyrev-J illustrating the fact 

that the notion of H can be extended to turbid media. Even though the 

present discussion is for the radiometric case, it is convenient to retain 

the descriptive term, light field for the vector-valued function H • H 

has been found of use in astrophysical optics" and has a natural counterpart 

in neutron diffusion theory.' 

Let £ be an arbitrary unit vector. Define !=L +. = •[ % ; f • % == &1 

Further, define 

(7) 

so that in particular 

(8) 

I t follows tliat 

(9) 

5 

,.. "'N. G. Boldyrev, "The light Field in Diffusing Media," Trans. Opt. Inst., 

. Leningrad, &1-8 (1931). 

S, Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950). 
7 
B. Oavison, Neutron Transport Theory (Clarendon Press, Oxford, 1957). 



Thus i'or an arbitrary unit vector f) . n*H(* £) is the net radiant 

flu:: HtZ.'Z.t), in the direction jr> , across a unit area normal to Q , 

the flu:: taking place at oc t at time i . 

With at and if fixed, an integration of the equation of transfer 

(1) over -=- yields, after some obvious reductions, the most general expression 

.involving the divergence *&'jfc of H . 

n'ca.t) Vx* [H(&.t)/n*(&.,*i'] + /, £" 'i/p<£,Ltn <Z '££*) • (10) 

Here V £ ~ ^- = ( „,- ̂ /P^- , ̂  s ^ . ^ £ y ^ J ^ . a r e mutually 

orthogonal unit direction vectors (the basis vectors) for an arbitrary but 

fixed coordinate system of euclidean three-space. A>(£, £,£)±s the radius 

of curvature of the natural path of photons at {£,?') at time 6 , and 

may be represented in terras of F , and the index of refraction at .JC and 

Z by the relation:' 

7 (li) 
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U(&,££) is the principal unit normal vector to the natural path of v 

photons at (£,/) at time £ , and is defined by 

(12) 

which is simply one of Frenet's three vector-equation representations of 

space curves; in the present context, the curves are natural space trajec­

tories of photons. The function h* is defined analogously to f? : 

h^m = L tyujj) dum. (13) 

The principal special forms of (10) are obtained by the following cumula­

tive sequence of assumptions: 

' (i) The optical medium has an index of refraction function constant with 

respect to x <^4.t , Hence Vn(£,t)=o at all times "£ , and 

l/pfZ.£,£ ) s O , so that (10) becomes: 

Here Y x = V , and V is a constant. ' ' 

(ii) The optical medium is d£ the steady state. Hence all of the present 

functions are independent of if , and (14) becomes: 

m 

V-H (z) ~ -«rz)Af£) + 49<zy9 (15) 
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(iii) The optical medium is emission-free, i.e., A/̂  ^,,£) = O 

so that OS) becomes j 

(iv) The optical medium is non-absorbing, i.e., CM-XI^O, so that (16) 

becomes: 

(16) 

(17) 

and the light field is solenoidal. 

(15) and (16) are representative, vdthout exception, of all practical 

' geophysical settings. Of the two, (16) is by far the most common, and 

attention will therefore be restricted to this relation. However, results 

obtained from (15) can be extended with only trivial formal modifications 

. j.. to the cases in which hij ̂  O . . 

THE ABSORPTION FUNCTION AND THE DIVERGENCE RELATION 

The prototypes of the two optical media of central interest in 

. geophysical optics are the atmosphere and the hydrosphere. The geometrical 

settings of these media are for all practical purposes adequately represented 

(locally) by the slab (plane-parallel) geometry using a terrestrially based 

coordinate system (See Fig, 1). 

Fig. 1 

Observe that the 2L-coordinate is measured positive as one progresses 

into each medium from the principal boundary ( the ^Vplane), x , w , and 
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angles d , <f are measured in the same way in each medium, as shown. 

For illustrative purposes, attention will be restricted to the 

hydrosphere, results obtained in this context, however, are immediately 

extendable, mutatis mutandis.to the meteorological context. 

With respect to the given coordinate system for the hydrosphere, 

the divergence relation (16) may now be written, 

(18) 

iiaking the following assumption about the pc and -y components of // («*):<. 

which follows from the empirical observation that the radiance function 

N is the independent of * and *f over appreciable distances in 

hydrosols (and aerosols),i (18) reduces to 

dH(i,+)/dz.= CLrtjhf?), 
(19) 

where, in view of the above assumption, H (*> 1,1, A. ) now has been ab­

breviated to //(£,+•) >=// {^,+)"H{M,-)i and O, and //now have the functional 

dependence shown. The three quantities //(-?, •*•), H{Z, - ) , and /?(?) are 

experimentally measurable quantities over an interval of depths Z , so that 

drl (?t + )/d2 is readily determinable. Hence the formula, 

O(2) *. Ut//>(2) 1 dH(2* •*-)'/cfZ (20) 



10 

under the above assumption, yields a rigorous method of calculation of the 

volume absorption function a. at each depth of the interval. If for 

example, the hydrosol is stratified (with respect to j? ) in any way, this 

fact is immediately uncovered by use of (20). Experimental determinations of 

(X , based on (20), have recently been made for the case of a natural hydro-

sol using data from the Lake Pend Oreille experiments by J. E. Tyler. It 

was found that ( 20 ) yields a direct and simply used method for the 

determination of the absorption function;which is independent of methods 
&xpenmen TCLL 

customarily used in the determinations of oc and <7" • TheseAresults 

will be illustrated in detail in a paper by J. E. Tyler. 

The integrated form of (16) presents a formula which may yield a . 

laboratory method for the determination of a j in any event, it is 

instructive ,to note that, by means of the divergence theorem of vector 

analysis, 

-PCS,-) *fs ne&y.H(£) etA -fM V*Mf£) dtV-rfjjxgtftxicNi. (21) 

i.e., P(S-) = f^aczl/uz) dt/} (22) 

where P ( S , ~ ) i s the net inward radiant flux over a surface S which 

bounds a subset M of the optical medium, /? i s the area measure function 

of S f J7 (£.) i s the unit outward normal to S at 5£ , and V/ i s the volume 

measure function of the optical medium. If Q- i s constant over M , then (22) 

may be written: 

P(Sj-) •= CL2ril(M)1 * (23) 
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where (J( M ) is the radiant energy content of M > and V is the speed 

of light in M . 

SCHUSTER ANALYSIS OF A LIGHT FIELD AND THE DIVERGENCE RELATION 

A (two-flow) Schuster Analysis of a light field (in the slab geometry 

context) is defined as the pair (li( -t y-) f tfY'j-)) of irradiance functions. 

While more must be said to make the notion mathematically acceptable, this 

definition is adequate for the present purposes. 

The practical applications of the Schustor Analysis of a light 

field have been studied extensively, and the major features of its 

history may be traced back to Schuster's orginal". work by consulting a 

few key papers in the literature?'^ 

A systematic investigation of the generalized Schuster Analysis of 

a light field has been made and will be given at a later time. The dif­

ferential equations for the Schuster Analysis given below are sufficiently 

close to the classical forms to render them plausible for the present. 

The principal object of the present section is to ehow that the differential 

equations of the classical Schuster Analysis implicitly contain the correct 

S.Q.Duntley, "The Optical Properties of Oiffusing.Materials," J. Opt. 

Soc. Am..32, 61-70 (1942). 

9 
P. Kubelka, "Net/ Contributions to the Optics of Intensely Light-Scattering 

Materials, "J. Opt. Soc. Am. 38, 448-457 (1948). 
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form of the divergence relation (19) in the slab geometry context, and 

furthermore that the solutions of the differential equations are con­

sistent with general radiative transfer theory in so far as they are 

consistent with the divergence relation (19).. 

Associated with the pair (H(-,+), H(*t 'I) is the pair ( h(•,-*-). h(;-)) 

defined by 

h(i.+) °* f& A/(2, 'jt)dA , 

h(z) ^ /?(j>,+) + /?f2,~) . 

(24) 

and p <£/ - r/(*,T, T „(^, - , , . ( 2 5 ^ 

Further, we define -. , 

Q(2,+) = h(2,+)/ H<Z>+) 1 (26) 

D(z>-) = h(?,-)/tfrz,-), 
(27), 

as the distribution functions of the Schuster Analysis. The name arises 

from the fact that Di'j*) and O (•.,-) give, among other things, 

quantitative measures of the shape of the radiance distribution /\/( ?, •_,•) 

at depth ? » If, for example, the radiance distribution at some depth 

*? were collimated, and inclined at an angle & >• 7T/<5 then O (2,—) « 

I 5<2C0J 0 if9 on the other hand, at some depth Z , A/ ( H, S>, d> ). 

constant, for all 6 5 V * ,0* </> <£7T then £> (*,-)«» 2 . Now, 

the classical Schuster Analysis essentially contains the assumption 

D (2, •+ ) = 0 ( Z y - ) - 2 8 This and the assumption that ©< and Q - are 

independent- 6*' J? jritaitfe iih <* differential!- equation for" tin* AnftOy'sid1 .;. 
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- dH(M,+)/d£ = -(Dc-+b)H(z,+) + LH(z,-)t 

dUd,-)/dl = -(0*+b)H(Z,-) .+. & #<**+?t. 
(28) 

where b is the so-called back scattering coefficient. 

The solution of the pair (28) may be written 

where J** I* (0*/*), £- = l-(D&/£ ) " ^ = /*0a f^« + e&)l'A, 

and c+ and C _ are arbitrary constants of integration, fixed by 

specifying boundary conditions on the Analysis (WCB,*), tfCZ,-) ). 

Adding the equations of (28) and recalling that O H ( *,+•) -/)(£, + ) , 

OM (2,-)»/>(£,-), and h (2)«/>(Z,*-) +h{£,-)$ the correct form of the 

divergence relation is obtained: ' . ' ' ' • 
! 

i 
f . 

\ ' , > 

d/F(Zi + )/d2 = a (?(B*. 

Furthermore, by adding and subtracting the members of (29)% 
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Since ha i « . O CHf2,-+l - Hcz,-)~l} 

and H(z,+I = H(z, + ) - H(?,~? 

i t follows from these relations and (30) that 

dH(2, + )/dl - s Da c f e ^ * - a Oq. c. e~*i& - a. />{*)9 

the divergence relation once again. 

In closing it should be observed that the preceding discussion 

demonstrates the .consistency of the classical Schuster Analysis of a light 

field with respect to the general divergence relation. This by no means 
9 

is the crucial test of consistency with respect to the general laws of 

radiative transfer theory. The crucial test is associated with the assumptions 

D (2,•) •= constant and Q (2,-) « constant, Z 2r O f and these assumptions 

are already known, from experiments and numerical calculations, to be generally 

falseo A general mathematical demonstratibn of this' test (or 3ome equivalent) 

and the question of possible limiting forms of D (• j + ) and Q ( • ; -) have 

yet to be resolved. 
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v CAPTIONS 

Figure 1 

Illustrating the slab geometries for the atmosphere and the hydrosphere. 
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• i 
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Figure 1* Rudolph W. Preisendorfer 




