
UC San Diego
Technical Reports

Title
Universal Honeyfarm Containment

Permalink
https://escholarship.org/uc/item/9dj789fj

Authors
Chen, Jay
McCullough, John
Snoeren, Alex C

Publication Date
2007-09-04

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9dj789fj
https://escholarship.org
http://www.cdlib.org/

Universal Honeyfarm Containment

Jay Chen†, John McCullough, and Alex C. Snoeren

†New York University and University of California, San Diego
jchen@cs.nyu.edu {jmccullo, snoeren}@cs.ucsd.edu

Abstract. The growing sophistication of self-propagating worms and
botnets presents a significant challenge for investigators to understand.
While honeyfarms have emerged as a powerful tool for capturing and an-
alyzing rapid malware, the size and complexity of large scale, high fidelity
honeyfarms make them problematic to operate in a simultaneously safe
and effective manner. This paper introduces a universe abstraction that
guarantees isolation between multiple malware infestations in a single
honeyfarm while maximizing the realism of the honeyfarm as observed
by a propagating worm. We demonstrate that each malware strain can
be completely isolated without distorting malware spreading behavior,
and that this can in fact increase the scalability of honeyfarms.

1 Introduction

The ever-increasing reliance of people and critical infrastructures on the conve-
nience and ubiquity of the Internet has caused an equally drastic rise in criminal
activity designed to profit from this dependence. To capitalize on software vulner-
abilities in the most effective manner, criminals use technology that gives them
the ability to quickly and automatically compromise large numbers of Internet
hosts. After the hosts have been compromised, they are used as a launching plat-
form or bot-net for various types of often interconnected profit driven-schemes
such as bulk-advertising email (SPAM), distributed denial-of-service (DDoS) ex-
tortion, identity theft (phishing), and software piracy [14]. This virtual ecology
has evolved over recent years into a profit-driven conglomerate of organized
crime.

A primary technology used to compromise hosts quickly and automatically
is the Internet worm. The basic Internet worm is a piece of code that propagates
itself through the Internet by infecting hosts and then using those compromised
hosts to infect more hosts. The literature has identified numerous types of worm
spreading behaviors based on simple random scanning, localized scanning, hit-
list worms, and permutation scanning; there are also worms that infect through
multiple vectors, slow-spreading worms, and flash worms [36]. One of the most
powerful tools used in the study of and defense against malware is the honey-
pot [37]. A honeypot is simply a live system connected to the network that is
carefully monitored to observe and study attacks [6]. An ideal honeypot ma-
chine behaves just as regular host does on the Internet, executing malicious code

without restraint once compromised allowing researchers to observe zero-day or
undiscovered exploits.

Researchers and commercial operators are collecting large numbers of hon-
eypots together into systems called honeyfarms, which represent significant por-
tions of the Internet address space. Various architectures have been designed
across a spectrum of low-interaction/high-scale [31, 44] and high-interaction/low-
scale honeyfarms [13, 38]. Along with our colleagues, we previously developed
Potemkin, a high-interaction honeyfarm that can scale to thousands of end-hosts
on a handful of physical machines without emulation to allow both fidelity and
scalability [40]. Worms infecting Potemkin appear to have access to a normal
Internet host running commodity operating system and application software.

The key concern with high-interaction honeyfarms like Potemkin is that the
malware will exhibit its full behavior—including attempting to infect additional
hosts. While observing this behavior is critical to epidemiological research and
malware defense, the honeyfarm operator is legally and ethically obliged to avoid
allowing the honeyfarm to infect hosts she does not own—the malware must be
contained within the honeyfarm. Blocking out-bound traffic provides simple con-
tainment but prevents non-trivial infections. More complex containment policies
are necessary to enable more sophisticated infection and control vectors. Current
best practices include initially blocking connections to new hosts and steadily
relaxing the policy as the behavior is better understood [7].

Unfortunately, the task of establishing an effective containment policy is con-
founded by the fact that a large honeyfarm is likely to contain many different
contagions simultaneously. Different malware requires different containment poli-
cies and if two distinct pieces of malware infect the same honeypot, the different
policies may not combine safely. Furthermore, the operator’s attempts to study
the malware in isolation will be frustrated. Current attempts to enforce the iso-
lation of malware variants typically limit scalability and the ability to study the
interaction of malware strains.

To address this issue, the Potemkin honeyfarm uses a new dynamic contain-
ment mechanism called a universe that can safely and automatically segregate
each contagion, and allow them to spread dynamically throughout the honey-
farm. While described briefly in previous work, Potemkin’s initial universe ab-
strction was quite simplistic and provided no ability for the honeyfarm operator
to dynamically monitor or control the growth, interaction, or containment poli-
cies of individual universes. The contribution of this paper is to present the design
and implementation of a full-fledged universe abstraction, as well as demonstrate
its efficacy in the context of well-known, Windows-based malware strains.

Automatically and flexibly segregating each malware instance into its own
universe benefits Internet epidemiology in at least two significant ways. First, we
can increase the sample size of automatic malware signature generators in a non-
trivial way. With existing technology, a fingerprint for a piece of malware can be
quickly and automatically extracted from packet payloads [18, 34] or via host-
level taint analysis [28] used by intrusion prevention systems [25, 41], but these
techniques are quite sensitive to training data: they need to be provided with

infected traffic that contains only one malware strain, and, in many cases, does
not contain any benign traffic. Our universe abstraction ensures that the traffic
contained in each universe is unpolluted by other malware strains. Second, by
allowing the malware to spread inside its own universe, we can provide complete
information about malware spreading behavior within a customizable population
of operating systems and services. The community currently performs manual
analysis on malware code to determine its intended behavior [22, 24, 33]; we
allow the honeyfarm operator to quickly and automatically understand a worm’s
spreading behavior without laborious analysis of its code.

Beyond the immediate benefits of isolation, we show that the universe ab-
straction provides several major advantages:

– Flexible containment policies. Each universe has its own containment
policy. Unlike previous honeyfarms that either opt for a strictly safe con-
tainment policy [13] or make potentially dangerous, general containment
relaxations in order to gleaning more information from a particular piece
of malware [7], we make it possible to enforce a relatively strong contain-
ment policy in general without giving up the ability to relax constraints on
a relatively well-understood malware strain.

– Controlled cross-contamination. Existing honeyfarms rely on link-layer
techniques (i.e., vLANs) to enforce strong, static separation between honey
pots. By using a network-layer isolation technique, our approach allows for
the dynamic provisioning of insulated regions of virtual honeyfarms. Fur-
thermore, our network universe translation (NUT) mechanism allows for the
controlled mingling of malware strains to support the study of symbiotic and
parasitic contagions.

– Safe service deployment. By leveraging our flexible universe containment
policies, we are able to deploy services or forwarding proxies within the
honeyfarm without weakening containment policies. In particular, multiple
universes can access the same, shared service without the ability to contact
each other.

Universes introduce a great deal of flexibility to honeyfarm management,
and determining the appropriate containment polices for any particular mal-
ware strain is beyond the scope of this paper. However, we show that even with
simple policies the mechanisms we provide allow honeyfarms to obtain a higher
degree of safety, realism, and scalability, and that these benefits can be easily
leveraged for the purposes of Internet epidemiology. We begin in Section 2 with
an overview of related work. In Section 3, we describe the basic architecture of
Potemkin, our deployment framework. Section 4 describes the universe abstrac-
tion in detail, including network universe translation and service deployment.
We briefly overview our Potemkin-based implementation in Section 5 before
demonstrating the functionality of the deployed system in Section 6. Finally we
conclude by discussing areas for future work in Section 7.

2 Related work

Researchers have developed a number of mechanisms to monitor Internet worms.
One of the most significant early developments was the network telescope, which
silently monitors large portions of un-allocated IP address space for scanning
activity [26]. Telescopes proved especially effective for studying the prevalence of
distributed denial-of-service attacks [23] and the spreading patterns of random-
scanning worms such as Slammer [22] and CodeRed [24]. Over the years, several
large-scale projects have emerged to collect and catalog attack data, including
the SANS Internet Storm Center and Symantec’s DeepSight system.

While useful, network telescopes are fundamentally limited by their inability
to respond to in-bound traffic; telescopes can detect worm probing, but are un-
able to determine what further behavior a worm would exhibit. To address this
limitation, lightweight active responders were developed that return responses
to incoming probes. The simplest of these simply respond to TCP SYNs with
SYN/ACKs in order to elicit the first part of the worm’s payload [3]. Later work
added protocol-specific responders to engage worms that required multiple pro-
tocol rounds [30, 44]. The attractiveness of these approaches is that they can be
implemented in a stateless fashion, preserving the scalability of the telescope.
The inability to keep state limits the complexity of the interactions that can be
emulated, but by maintaining modest amounts of per-flow state, Provos signif-
icantly extended the emulation capabilities of active responders in his honeyd
system [31]. Unfortunately, it too suffers from the inability to fully emulate the
behavior of real operating systems and software. While more elaborate respon-
ders are being developed [2, 8], researchers interested in the behavior of worms in
actual systems have no alternative other than to deploy live, infectable machines
running real operating systems and applications. Such machines are known as
honeypots [35]. Of course, attaching a real, physical machine to each IP address
within a telescope is prohibitively expensive, so researchers have turned to vir-
tual machine monitors (VMMs) such as VMWare, Xen, and user-mode Linux
(UML) to support multiple honeypots on a single physical machine. These col-
lections of honeypots have come to be known as honeynets [13] or honeyfarms,
depending on their physical proximity.

A number of large-scale honeyfarms have been presented in the literature [7,
9, 16, 20, 40]. While each honeyfarm uses different techniques, they all must ad-
dress the confinement problem: namely, ensure that worms cannot use honeypot
machines to infect other machines on the Internet. Many of the existing sys-
tems such as Honeynet and Collapsar use intrusion detection systems (IDSs)
like Snort-Inline [21] to block known attacks. Unfortunately, IDS-based methods
do little to limit the spread of previously unknown worms. Hence, honeyfarms
must implement additional containment mechanisms to prevent the spread of
new malware variants. For example, GQ allows a limited number of out-bound
connections per honeypot on well-known ports, HoneyStat uses a sophisticated
causality tracking mechanism to determine when in-bound network events (i.e.,
worms) cause subsequent events, etc. To the best of our knowledge, however, no
other honeyfarm supports multiple, simultaneous containment policies.

Similarly, honeyfarms control cross-infections by preventing worms in one
honeypot from infecting a honeypot already infected by another variant. Rajab
et al. addressed this problem in their VMWare-based honeynet [32] by statically
allocating 128 distinct IP address to each honeypot and keeping each honey-
pot on a separate vLAN. They attempt to prevent a single VMM from hosting
multiple simultaneous infections through a set of ad hoc heuristics, but there
are no guarantees. In no instance can honeypots contact other, already-infected
honeypots. In Virtual Playgrounds, Jiang et al. provide a disconnected emula-
tion testbed for running worm propagation experiments for analysis [17]. While
ensuring safety, disconnection from the Internet renders the system ineffective
for studying real-time analysis. Also, given the complex nature of the experi-
mental testbed being required for a particular experiment, it seems challenging
to rapidly deploy a Virtual Playground to analyze 0-day worms with previously
unknown signatures or infection vectors.

Perhaps the most similar honeyfarm system to Potemkin is the contempo-
raneously designed GQ system [7]. (Indeed, these similarities are not accidental
as both are part of the same NSF-sponsored Collaborative Center for Internet
Epidemiology and Defenses and are motivated by the same goals.) Their dif-
ferent design criteria informed very different approaches to isolation, however.
GQ was designed around a commodity VMM-based honeyfarm and thus man-
dated the use of transparent network filtering and translation mechanisms that
were backwards compatible with this existing infrastructure. Hence, GQ maps
isolation groups onto vLAN tags exported to individual VMs. By contrast, the
Potemkin system was designed around a custom low-cost VMM that targeted
an environment with many thousands of simultaneously active honeypots. This
environment allowed and encouraged us to create a ”pure” isolation abstraction;
one that at once is extremely efficient, completely transparent to the network,
and allows arbitrarily fine-grained control over the mixing of different infections
in a honeyfarm.

3 Potemkin

While our universe concept is quite general, we provide a brief overview of our
current honeyfarm platform, Potemkin [40], to facilitate a concrete discussion of
our design. Potemkin aggressively multiplexes physical resources through exten-
sive use of delta virtualization and flash cloning, achieving a two-to-three orders
of magnitude improvement in scale when compared to bare-iron honeyfarms. One
consequence of Potemkin’s support for flash cloning is the ability to dynamically
instantiate new honeypots, enabling the rapid and (relatively) unconstrained
spread of malware within the honeyfarm. We begin by describing the purpose
and functionality of the main components of Potemkin’s architecture shown in
Figure 1.

Potemkin gathers in-bound traffic through two mechanisms: routing and tun-
neling. Potemkin attracts traffic by configuring external Internet routers to tun-
nel packets destined for a particular address range back to the gateway. While

Fig. 1. The architecture of Potemkin [40, Fig. 1].

adding latency, tunneling is invisible to traceroute and can often be operationally
and politically simpler for many organizations. These techniques are also used
by several other honeyfarm designs such as Collapsar [16].

Potemkin does not maintain a physical machine for each IP address in the
honeyfarm. Instead, it instantiates honeypot machines using a modified version
of the Xen virtual machine monitor [4]. Modern Xen allows Potemkin to (in
theory, at least) run any operating system, although our current deployment
uses only Windows XP and Linux. To provide isolation, Potemkin creates a new
virtual machine for each distinct honeypot machine. When a packet arrives for
a new honeypot, the VMM (called a honeyfarm server) creates a new VM which
is an identical copy of the reference image through a process called flash cloning.
Once this new VM (hereafter referred to as a pot machine) boots, it adopts
the packet’s destination address and handles the request as though it were the
intended recipient. Subsequent packets in the session are delivered directly to
that pot machine. Since each honeypot is implemented by a distinct VM, any
side effects from an attack will be isolated from other VMs. Finally, the VMM
reclaims the resources of pot machines that are no longer active (or interesting
to the honeyfarm operator) by destroying the cloned VM.

All traffic into and out of the honeyfarm is passed through a physical hon-
eyfarm gateway. The principal role of the gateway is to provide containment
and remove idleness in the IP address space utilization—in other words, to map
the entire monitored address space down to the set of active flows communicat-
ing with currently instantiated honeypot machines. Packets that arrive at the
gateway from the Internet are dynamically assigned to an appropriate back-end
honeyfarm server. Packets destined for inactive IP addresses—those for which
there is no current active pot machine—are sent to a honeyfarm server with suffi-
cient resources to flash clone a new VM. The gateway also intelligently manages

assignments of pot machines to in-bound traffic by offloading or discarding un-
interesting behavior. In the case of network port scanning, instantiating a pot
machine for each scan packet can inflate the demands on the honeyfarm unnec-
essarily. Instead, the gateway can decide to filter packets from the same source
to multiple destinations (horizontal scans) or arrange for scans to be proxied
(either by the gateway itself or a lightweight responder) and then migrate to
a dedicated pot machine if a more substantive transaction occurs (in a fashion
similar to RolePlayer [8]). Similarly, during a worm outbreak a large number of
effectively identical infections will cross the gateway. Since a new identical infec-
tion is unlikely to impart additional knowledge, the gateway may use existing
pattern-matching algorithms to quickly detect known attacks [18, 20, 34], and kill
the universe rather than allowing it to grow. Finally, a universe will see any and
all traffic a member pot machine generates, including service discovery traffic if
that is turned on. In practice, this traffic is dropped, but adding filter rules at
the gateway could allow it if desired. While crucial for effective honeyfarm oper-
ation, in-bound packet filtering rules are outside the scope of this paper; further
details about the gateway’s filtering mechanisms are available elsewhere [5, 39].

4 Universes

In Potemkin, as with most honeyfarms, pot machines are always allowed to
communicate with machines that contact it (this is necessary, for example, to
set up a TCP connection). This base-case rule, however, does not allow malware
to spread, or, in the case of so-called phone-home or multi-stage worms that
contain only an initial infection vector and need to download the rest of the
malware from a central server. A common approach to enable worm infection
is to allow compromised machines to communicate with the first Internet host
they attempt to contact, under the assumption that this host is a central server
or bot-master. Though this heuristic allows phone-home behavior, it could also
allow the pot machine to infect an innocent host. Also, this policy would not
permit propagation after the first host contacted. Hence, in Potemkin (and GQ),
pot machines are allowed to attempt to contact any IP address they wish, but,
unless the traffic is explicitly allowed out into the Internet (as in the case above of
responding to an incoming connection), the connection is redirected back into the
honeyfarm where a new VM assumes the IP address of the intended destination
and masquerades as the Internet host. We call this process reflection.

Tracking these reflected communication patterns allow various behavioral
detection mechanisms [7, 12, 43] to be leveraged to quickly gain insight into the
spreading dynamics of new worms. Though, reflection appears to be a simple and
viable solution, it introduces complications that cannot be solved in an elegant
manner with existing mechanisms.

4.1 Preventing cross-contamination

With the infrastructure described so far, all traffic directed at a single IP address
would be funneled to the pot machine that had assumed the identity of that IP

Fig. 2. Universal containment.

address inside the honeyfarm. Using the simplistic phone-home policy described
above that allows pot machines to communicate with any Internet hosts that
contact them, such a pot machine would be allowed to communicate with both
Internet hosts, possibly leading to cross-contamination not only of the pot ma-
chine, but of the original Internet hosts as well. Incoming flows from different
sources are directed to distinct pot machines, even if they are destined to the
same IP address. The gateway creates flow mapping records to keep track of the
unique source/destination destination pairs and facilitate packet forwarding.

To implement this functionality, we introduce the concept of a universe, an
abstraction that provides the honeyfarm operator with a potentially infinite
number of independent honeyfarm with which to analyze worm behavior. A
universe represents a set of causally related pot machines that were created
due to communication with each other. Upon creation, each pot machine in the
honeyfarm is assigned a Universe Identifier (UID) depending on the flow that
spawned the VM. If the flow originated from another pot machine, the new pot
machine is assigned the same UID as the contacting pot. If, however, the flow
originates outside the honeyfarm, a new universe is created with a unique UID.

All sources on the Internet are considered to have the reserved UID 0, and new
universes are assigned monotonically increasing ID numbers. A packet destined
for some address X not yet assigned in the honeyfarm creates a new universe U .
Each subsequent pot machine created by communication rooted at X (i.e., either
directly from X or any other pot machine in universe U) is also said to exist in
universe U . The containment policy for a honeypot machine is dictated by its
universe. In other words, if any machine in universe U is allowed to communicate
with a given host, then all machines inside the universe are. The end result is
that every causal chain of hosts initiated from a host on the Internet creates
a new universe whose communication, both inside (to other pot machines with
the same UID) and outside (Internet hosts or pot machines with other UIDs) of
the universe is governed by a configurable, per-universe containment policy. In
this way, we can allow infections to spread in the honeyfarm while being isolated
from the Internet and each other.

Beyond elegantly solving our aliasing confusion, UIDs allow independent ex-
perimental test beds with which to analyze worm behavior, and also give us
another metric by which we can measure and control the growth of each new
universe spawned by an individual infection. In Figure 2, host A on the Internet
(universe 0) infects host B in the honeyfarm, which is assigned to universe 1.
Subsequently, B goes on to infect hosts C and D, which are all contained in
universe 1. Concurrently, host C on the Internet is able to infect B, D, and E

in universe 2.

4.2 Network universe translation (NUT)

While complete isolation is usually desirable, there are occasions when it is con-
venient for pot machines from different universes to communicate, either with
other universes inside the honeyfarm or with the external Internet. For exam-
ple, several groups of symbiotic (e.g., Nimbda and Code-Red II) and parasitic
(e.g., Bagel, Netsky, and MyDoom) worms have been discovered, where their
complete spreading behavior is not exhibited unless they come into contact with
hosts previously infected by another, specific piece of malware. Hence, a uni-
verse containment policy may specify that pot machines within the universe are
allowed to communicate with specific other universes. While these universes are
specified by UID, we expect such policy rules to be inserted dynamically by pro-
tocol analyzers that determine what malware strains exist inside each universe.
We have not yet implemented such automation in Potemkin, however.

The challenge with allowing inter-universe communication is that an IP ad-
dress may exist in both universes, either because the respective pot machines
were created before the containment policy was relaxed, or because the contain-
ment policy discriminates between packets destined to the same IP address (e.g.,
allows TCP response packets out but reflects SYNs). We resolve this potential
ambiguity through network universe translation (NUT). If a packet is destined
for the IP address of a pot machine in another universe—and the source universe
containment policy allows—the gateway creates a NUT mapping by generating a
unique, random ephemeral IP address in the destination universe and rewriting
the source address of the packet to appear to come from this random address
within the destination universe. From the point of view of the destination pot
machine, it receives a packet from a random source inside its own universe. If
and when it responds, the packet is de-NUT’ed by the gateway to the proper
universe and IP address by consulting the NUT mapping table.

4.3 Multiverses

In addition to allowing malware strains to mingle, NUT also conveniently ad-
dresses another operational hurdle to practical honeyfarm deployment. Worms
frequently make use of standard Internet services such as DNS, and modern
worms increasingly access well-known Internet sites. For example, Santy is a
hit-list worm that identifies potential victims by querying Google [15]. While it
is straightforward to adjust a universe’s containment policy to allow outgoing

(a) DNS proxy ambiguity (packet path
view)

Gateway

A

C

Universe 0

CB

D

Universe 1

Universe 2

D

E
F

G

Universe 0

Ping Responder

HoneyfarmInternet

(b) ICMP Ping Responder (logical view)

Fig. 3. Network Universe Translation

connections to these services, such a policy admits the possibility that the worm
might try to attack or infect the service itself. It is generally preferable, then, to
implement a service replica (or a transparent protocol-scrubbing proxy) within
the honeyfarm. Rather than deploy multiple instances of the service—one in each
universe—the single service instance can be made available in multiple universes
simultaneously through NUT.

In our architecture, each service exists in its own universe with an appropriate
containment policy. In general, service universes (also known as multiverses) will
likely be allowed to contact any Internet host. So far we have implemented two
services that are accessible from multiple universes: a DNS proxy and an ICMP
Echo responder. Through NUT we are able to create the illusion of a service in
each universe while using only a single physical (or virtual) resource instance.
Thus, NUT allows the honeyfarm to multiplex resources and lower configuration
and management overhead without modifying the server itself. Each universe can
specify what types of packets are allowed to enter service universes. Currently,
in the case of DNS, we configure all of the pot machines to use a well-known
IP address for the local DNS resolver. In the case of ICMP echo requests we
simply filter on the protocol fields and route all ICMP echo packets not destined
to addresses already existing within a universe to the responder multiverse.

DNS proxy. The simplest approach to enabling DNS with a honeyfarm is to
adjust the containment policy to allow pot machines to send out DNS requests
directly to name servers on the Internet. Given the potential for malware to
attack DNS servers, however, we chose to setup a local DNS caching proxy to
forward the (scrubbed) requests. Conveniently, having a central caching server
also allows us to reduce the DNS load of a spreading malware instance. Without
NUT, such a configuration would lead to undefined behavior. For example, in
Figure 3(a) (ignoring X and Y for now) there are two non-service universes

created by hosts A and C that both contain a pot machine with IP address
B, B1 and B2 respectively. DNS queries sent from B1 in universe 1 and B2
in universe 2 would be routed to the DNS proxy. However, when the responses
return the DNS proxy would send them on to B, and the gateway would not
know which universe’s B they should be directed to. (The pot machines—and,
thus, the applications therein—have no notion of universes; that state is kept
entirely at the gateway.)

Using network universe translation, however, requests from hosts B1 and
B2 go through the gateway and are NUT’ed to have source IP addresses X

and Y , respectively. When responses return, the DNS proxy sends them to X

and Y accordingly, and they are translated by the gateway back to B1 and
B2 and sent to the appropriate hosts in the proper universe. In effect, NUT is
similar to Network Address Translation (NAT), except nonce IP addresses are
used to multiplex requests from multiple universes as opposed to nonce ports to
multiplex requests from multiple IP addresses.

ICMP ping responder. ICMP ping packets are often used in reconnaissance to
scan for the presence or absence of hosts in an IP address range. Pings are
relatively innocuous in that they provide little information1, but it would help
preserve the illusion that the honeyfarm’s monitored IP address space is in fact
filled with active hosts if the ping packets are responded to. Hence, all ICMP
requests should be met with an ICMP reply, but allowing ping packets to create
potentially thousands of VMs a second would be a waste. Instead, by default
ping packets are not allowed to create new identities; each universe sends all ping
packets to a single ping responder multiverse unless the destination in question
already exists. The gateway considers the ping responder as a “service” similar to
DNS. A single pot machine handle all ICMP ping packets using NUT by making
the single ping responder resource appear in all universes where it is required,
as shown in Figure 3(b). Hosts C, D, E, F , and G are all represented by the
single virtual machine “PingResponder.” Pings directed to these identities are
forwarded via NUT to the ping responder.

5 Implementation

While there are potentially many realizations of the universe abstraction, ours
follows from the network architecture of Potemkin. In particular, the Potemkin
gateway is equipped with two physical Ethernet interfaces that allow it to strad-
dle two separate virtual LANs (vLANs). The external vLAN faces the Internet,
and traffic passes through a next-hop router that lies between the gateway and
the Internet. The physical honeypot machines are all connected to a single in-
ternal vLAN (although, if desired, each machine could be placed on its own
vLAN [32]). ARP is not run on the honeyfarm vLAN. Instead, the MAC ad-
dress of each honeyfarm server (VMM) is registered with the gateway on startup.

1 It is possible to fingerprint a machine’s operating system through ICMP [1]; hence,
operators may wish to configure multiple responder multiverses, one per OS type.

When the gateway wants to forward a packet to a pot machine it uses the MAC
address of the hosting honeyfarm server. In the reverse direction the gateway
serves as the next-hop router for all pot VMs. This approach avoids the need for
IP routing or packet rewriting inside the honeypot.

In order to avoid modifying the software of any honeypot VMs (we want to
be able to run exact replicas of real systems, after all), the universe abstraction
is implemented entirely within the gateway. There is no need for any affinity
between universes and VMMs: a physical honeyfarm machine can host pot ma-
chines (VMs) from any universe. The key is to ensure that no VMM hosts two
pot VMs with the same IP address (which must be in different universes). As
long as IP addresses uniquely identify a particular pot machine on each physical
honeyfarm machine, the gateway can simply forward packets to the appropriate
VMM, who can demultiplex the packet based upon destination IP address, and
neither the VMM or pot VMs need to know which universe is involved.

5.1 Gateway architecture

The Potemkin gateway is built on top of the Click modular software router
framework [19], as shown in Figure 4. A router implemented in Click consists of
a set of packet-processing modules called elements, implemented as C++ classes.
Using a special description language (a Click “configuration”), elements can be
connected together to form a directed graph that represents how packets flow
through the processing modules. Our implementation adds roughly 7,800 lines
of custom element code to the base Click 1.4.3 installation, in addition to 450
lines of configuration and 1,000 lines for an administrative interface. The Click
elements are grouped generally into five separate stages: packet validation, packet
filtering, packet rewriting, packet encapsulation, and logging. The in-bound and
out-bound packet paths are similar in that they both go through the same stages,
but the actual elements and logic are sometimes quite different.

1. Packet validation. The packet validation stage in-bound from the Internet
consists of a series of simple Click elements to ensure that only packets from
the Internet destined to the honeyfarm’s monitored IP address space are
allowed into the honeyfarm. The out-bound validation stage ensures that
packets are properly formed and do not exceed the MTU of the data-link
layer of the next hop when exiting the honeyfarm.

2. Packet filtering. The primary purpose of the packet filtering stage is to
limit the resources required to support the honeyfarm. Currently, filters in
our running configuration include a simple blacklist, scan filter, and a uni-
verse freeze filter. The scan filter is designed to rate limit horizontal scans
that target the same port on several hosts, a common behavior of scanning
worms [42].

3. Packet redirection & rewriting. This is where the gateway makes for-
warding and redirection decisions according to each universe’s containment
policy. Rewriting is only necessary in NUT and a few other rare cases de-
scribed in the following section.

Fig. 4. The Potemkin network gateway architecture

4. Packet encapsulation. In this stage, the IP packets go through a final san-
ity check and are prepared to be delivered to their final destination. Packets
destined into the honeyfarm are encapsulated with an Ethernet header con-
taining the destination MAC address of the physical machine that will be
responsible for instantiating a VM to represent the destination IP address
of the packet. The packet is then transmitted onto the honeyfarm’s internal
VLAN and picked up by the VMM of the machine it is destined to. The
IP packets that are intended for the Internet are checksummed one final
time, and GRE encapsulated with the destination IP address of the tunnel
endpoint.

5. Logging. All packets received and delivered by the gateway on either inter-
face are logged to a file in a tcpdump-like format.

The gateway maintains five distinct classes of global state: types, identities,
machines, flows, and histories. Type entries store the configuration details of
potential pot machines. Identities track the state of instantiated pot machines.
Machine entries track the physical honeyfarm server resources available to the
gateway for allocation. Finally, flow and history entries store information about
communication between pot machines in the honeyfarm and hosts on the Internet
or other pot machines.

As mentioned previously, the assignment of IP addresses to pot machine
images (i.e., OS version) in the honeyfarm can be made randomly or can be
biased to present the illusion that a given IP address range hosts a particular
distribution of software configurations. For example the operator could specify
that some /16 address range contains 75% Windows machines and 25% Linux
machines with different disk images.

Similar to a network address translator, the gateway maintains a flow-mapping
data structure for each flow in the honeyfarm that maps the flow from an incom-

ing hardware interface and MAC address (i.e., honeyfarm machine or external
router) to outgoing address and interface. When a packet for a new flow ar-
rives at the gateway, it consults the appropriate universe’s containment policy
to decide how to forward it. Assuming the packet is not dropped, a new flow
map is created and the gateway records a history entry with the time the flow
was created, and by whom. An identity entry is instantiated for the destination
IP address and its type and honeyfarm server machine are determined by the
universe policy settings. To keep the amount of active state manageable, flow
maps are cached for quick access and removed when the TCP session ends or
after a default 5-minute timeout leaving only the corresponding history state.

If a packet arrives at the gateway belonging to a garbage-collected flow (i.e.,
the flow-map entry was purged from the cache) then the proper mapping can
be reconstructed from the history state and the flow mapping entry re-inserted
into the flow-map cache. This is useful since flow mappings are more than twice
as large as history entries since long-term state can be maintained in a more
compact but less efficient to access form. If history were not maintained, after the
garbage-collection threshold the containment policy may disallow (or redirect)
a flow that was previously established.

5.2 Network address translation (NAT)

Despite the flat Ethernet structure of the honeyfarm itself, it is occasionally nec-
essary for the gateway to rewrite IP packets. When combining reflection with
the universe abstraction, it is possible that a pot machine is allowed to send
packets onto the Internet, but is using an IP address that does not physically
belong to the honeyfarm address space. In particular, a pot machine created due
to a reflected connection can have any IP address—most likely one outside the
honeyfarm’s address space. If that pot machine attempts to contact an Inter-
net address allowed by the universe containment policy (such as the host that
initially created the universe), response packets should be routed to the real
Internet host, not the a masquerading pot machine. We address this issue by
implementing network address translation (NAT) [11] at the gateway. Should a
pot machine created by a reflected connection need to communicate with Inter-
net hosts, we rewrite the source address to be inside the honeyfarm’s address
space so response packets will reach the gateway. We extend the identity entries,
which keep track of the IP addresses being represented in the honeyfarm, with
an alias field to keep track of the IP address a host is NAT’ed to.

5.3 Spoofing and backscatter

An often-used attack vector for malware is source IP-spoofing, where the source
IP address of packets is forged. Given the infrastructure that we have described
so far, it is interesting to examine what occurs when a host decides to send
spoofed packets. If spoofed packets enter the honeyfarm from the Internet, the
pot machine may generate response packets that create additional pot machines
for the forged IP address—a phenomenon known as backscatter [27].

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140

P
o

t
M

a
c
h

in
e

s

time(s)

Unconstrained
Constrained

Fig. 5. Rate limiting and universe expansion caps.

Machines instantiated from in-bound backscatter packets are unlikely to re-
spond in any useful way, therefore universe containment policies by default sim-
ply prevent instantiating pot machines for response packets (e.g., non-SYN TCP
segments).

Unfortunately, if spoofed packets are sent from inside the honeyfarm, the
default behavior is not as realistic. In general, the gateway will be unable to
resolve the source IP/Ethernet address combination to a valid source universe.
The only safe response in such a situation is to log the event and drop the
packet. However, if, by chance, the source IP/Ethernet pair does exist, it would
be possible for a host on the honeyfarm to send spoofed packets across universes.
Hence, spoofing causes two problems: dropping spoofed packets is unrealistic
because packet spoofing is common bot-net behavior, but potentially allowing
cross universe packets is clearly a violation of the containment requirement.

To avoid this situation the VMMs on each honeyfarm server ensure that
packets sent from hosted pot machines do indeed have the proper source IP
address of the VM that they are being sent from. If the VMMs discover that the
source IP address is being spoofed, they simply add a shim header between the
Ethernet and IP headers to notify the gateway of the actual IP address of the
sender. Upon receipt, the gateway looks up the source universe according to the
actual IP address of the sender, and ensures that the packet is delivered to a pot
machine within the same universe (or dropped, depending on the containment
policy) so isolation not violated by spoofing.

6 Evaluation

Our universe abstraction is currently deployed within Potemkin on the UC San
Diego campus. We have designed and implemented an extensive test suite to
ensure the proper operation of the honeyfarm gateway and its containment poli-
cies; space constraints prevent us from including them here, but full details are

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450

P
o

t
M

a
c
h

in
e

s

time(s)

Unconstrained 1
Unconstrained 2

Constrained 1
Constrained 2

Fig. 6. Two distinct containment policies.

available elsewhere [5]. Similarly, extensive benchmarking of the gateway includ-
ing forwarding speed and memory usage are discussed in another document [39].
Here, we provide a brief demonstration of the universe functionality by present-
ing the isolation and control capabilities of the gateway.

To simplify the discussion, we show the Potemkin honeyfarm being infected
by Blaster, an older scanning worm. Blaster uses a buffer overflow in the Win-
dows RPC service (on TCP port 135) to open a remote shell on TCP port 4444.
The attacker then contacts the victim on port 4444 and instructs it to down-
loads and executes the binary from the infecting host via TFTP. New hosts are
infected by sequentially scanning randomly selected subnets. In order to spread
within the honeyfarm, the containment policy must allow multiple connections
from the attacker to the victim (to allow the issuance of the TFTP command),
and out-bound UDP connections from the victim back to the attacker (to allow
the TFTP download itself). Blaster also has the ability to launch a DDoS at-
tack against a Microsoft Web site, but that behavior is time-sensitive and not
activated. We use Blaster’s predictable scanning behavior to demonstrate the
containment properties of the gateway.

In the scenario depicted in Figure 5, we demonstrate our ability to constrain
the growth of the worm within the honeyfarm by applying various constraints on
the infected universe. Both lines in the graph represent the total number of pot
machines created by the Blaster infection. The number of pot machines created
is not directly related to the number of hosts infected by Blaster, however, as
the worm’s implementation is fragile: an attempted infection attempt can be
interrupted by a subsequent probe response, the TFTP service is not always
left open, and the worm has a high probability of crashing individual hosts. For
our current purposes, we plot only the number of pot machines scanned, not
necessarily infected or scanning themselves.

The “unconstrained” line shows the rate of expansion of a universe initiated
by an infection from an outside source. In order to prevent a rapid, exponen-
tial growth in the number of pot machines, the universe containment policy

throttles scanning to a constant rate. Note the rate is applied to all the pot ma-
chines within the universe in aggregate, not individually (otherwise the aggregate
growth would be exponential). In the second, constrained case, we demonstrate
our ability to cap universe growth while allowing the existing machines to persist.
We initiate the infection identically, with a similar initial containment policy, but
at 70 seconds we constrict growth by preventing further universe expansion. Note
that we are not preventing infected hosts from scanning, or existing hosts from
becoming infected; we are only preventing the creation of further pot machines
for this universe. This capability is critical to control the resource utilization of
a new malware variant until its scanning behavior is understood—otherwise the
entire honeyfarm could be swamped in a matter of minutes.

In our second scenario (Figure 6), we illustrate two simultaneous infections
in the honeyfarm. Two separate outside sources initiate Blaster infections to the
same IP address. Through our isolation mechanism, the outside sources infect a
distinct pot machines in separate universes. In the unconstrained case, the two
infections are allowed to grow at linear rates as in Figure 5. While the subtle de-
tails of worm timing and resource constraints prevent identical growth, both “Un-
constrained 1” and “Unconstrained 2” ultimately achieve approximately similar
growth rates. In the constrained case, we seek to show how the honeyfarm op-
erator might vary their focus and resource allocations over time. Two infections
are created identically to the unconstrained case; at 60 seconds we constrict the
growth of “Constrained 2”, choosing to allow “Constrained 1” to continue to
grow. At 170 seconds, we also constrict the growth of “Constrained 1” and, at
220 seconds we permit further spreading of “Constrained 2.” Each stage was im-
plemented by dynamically adjusting the respective universe containment policy.
Note that the machines within the universes may have identical IP addresses, so
simple packet-based containment policies would be unable to produce this be-
havior. Only through our universe mechanism are we able to selectively control
the growth distinct infections that remain isolated from one another.

7 Conclusion

We have presented the design and implementation of a universe abstraction
that enables dynamic containment of malware inside a honeyfarm. Critically,
universes allow controlled interaction of distinct malware strains, as well as the
safe sharing of Internet services across honeypots. By implementing universes in
the Potemkin gateway, we have demonstrated that universes are not only a useful
mechanism, but a powerful abstraction for Internet epidemiology in general. By
providing robust containment without the need for per-VM vLANs, our universe
mechanism enables the deployment of highly dynamic, large-scale honeyfarms.
Furthermore, no changes need to be made to the OS or application software on
the honeypot machines themselves, providing complete realism.

With the universe mechanism in place, we are now considering a variety of
plug-in technologies automatically adjust containment policies and detect mal-
ware strains, both at the network level [18, 34] and at the VM level [10, 29]. Worm

detectors and taint checkers both suffer from false-positives and false-negatives,
and the use of multiple universes provides an opportunity to generate additional
samples with which to generate signatures. In particular, the universe abstrac-
tion allows us to provide clean training data where we can be assured all traffic
in a universe is from a particular malware variant.

Finally, while still the preeminent method of detecting and collecting In-
ternet worms, telescope-based honeyfarms are becoming increasingly less useful
as malware begins to spread through other, non-scanning means such as email
and messenger clients. Fortunately, our containment mechanisms allow us to use
Potemkin not only as a honeyfarm, but as a closed environment in which to
study malware obtained from a variety of channels, most notably SPAM. By
using NUT to deploy needed services and application gateways inside of a mul-
tiverse, we are able to safely and effectively execute known bot-net and spyware
code without the possibility of it leaking out onto the Internet.

Acknowledgments

The authors wish to thank Erik VandeKieft, who implemented the original
Potemkin gateway, and Michael Vrable who developed the original Potemkin
VMM and provided a great deal of on-going assistance. We are indebted to Ste-
fan Savage, Geoff Voelker, and all the members of the Collaborative Center for
Internet Epidemiology and Defenses (CCIED) for their thoughtful discussions
and comments on earlier drafts of this paper. This work was supported by the
National Science Foundation through a Cybertrust grant (CNS-0433668).

References

1. Remote OS detection via TCP/IP fingerprinting (2nd generation). http://

insecure.org/nmap/osdetect/.
2. P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling. The Nepenthes

platform: An efficient approach to collect malware. In Proceedings of the 9th
International Symposium on Recent Advances in Intrusion Detection (RAID),
Sept. 2006.

3. M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson. The Internet Motion
Sensor: A Distributed Blackhole Monitoring System. In Proceedings of the 12th
Annual Network and Distributed System Security Symposium (NDSS ’05), San
Diego, CA, Feb. 2005.

4. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In Proceedings of the
19th ACM Symposium on Operating System Principles (SOSP), Bolton Landing,
NY, Oct. 2003.

5. J. Chen. Safe and realistic containment mechanisms for large-scale virtual honey-
farms. Master’s thesis, UC San Diego, Sept. 2006.

6. B. Cheswick. An Evening with Berferd In Which a Cracker is Lured, Endured,
and Studied. In Proceedings of the Winter Usenix Conference, San Francisco, CA,
1992.

7. W. Cui, V. Paxson, and N. Weaver. GQ: Realizing a System to Catch Worms in
a Quarter Million Places. Technical Report TR-06-004, ICSI, Sept. 2006.

8. W. Cui, V. Paxson, N. Weaver, and R. H. Katz. Protocol-independent adaptive
replay of application dialog. In Proceedings of the 13th Annual Network and
Distributed System Security Symposium (NDSS ’06), San Diego, CA, Feb. 2006.

9. D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen. HoneyStat:
Local Worm Detection Using Honeypots. In In Recent Advances In Intrusion
Detection (RAID) 2004, Sept. 2004.

10. G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. Re-
virt: Enabling intrusion analysis through virtual-machine logging and replay. In
Proceedings of the 5th ACM/USENIX Symposium on Operating System Design
and Implementation (OSDI), Boston, MA, Dec. 2002.

11. K. Egevang and P. Francis. RFC 1631 - The IP Network Address Translator
(NAT). RFC 1631, May 1994.

12. D. Ellis, J. Aiken, K. Attwood, and S. Tenaglia. A Behavioral Approach to Worm
Detection. In Proceedings of the ACM Workshop on Rapid Malcode (WORM),
Fairfax, VA, Oct. 2004.

13. Honeynet Project. Know Your Enemy: Learning about Security Threats. Pearson
Education, Inc., Boston, MA, second edition, 2004.

14. Honeynet Project. Know Your Enemy: Tracking Botnets.
http://www.honeynet.org/papers/bots/, Mar. 2005.

15. Internet Storm Center. Santy worm.
16. X. Jiang and D. Xu. Collapsar: A VM-Based Architecture for Network Attack

Detention Center. In Proceedings of the USENIX Security Symposium, San Diego,
CA, Aug. 2004.

17. X. Jiang, D. Xu, H. J. Wang, and E. H. Spafford. Virtual playgrounds for worm
behavior investigation. In Proceedings of Symposium on Recent Advances in
Intrusion Detection (RAID), Sept. 2005.

18. H.-A. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Sig-
nature Detection. In Proceedings of the USENIX Security Symposium, San Diego,
CA, Aug. 2004.

19. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
Modular Router. ACM Transactions on Computer Systems, 18(3):263–297, Aug.
2000.

20. C. Kreibich and J. Crowcroft. Honeycomb — Creating Intrusion Detection Signa-
tures Using Honeypots. In Proceedings of the 2nd ACM Workshop on Hot Topics
in Networks (HotNets-II), Cambridge, MA, Nov. 2003.

21. W. Metcalf. Snort inline. http://snort-inline.sourceforge.net.
22. D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver. Inside

the Slammer Worm. IEEE Security and Privacy, 1(4):33–39, July 2003.
23. D. Moore, C. Shannon, D. Brown, G. M. Voelker, and S. Savage. Inferring internet

denial-of-service activity. ACM Transactions on Computer Systems, 24(2):115–139,
May 2006.

24. D. Moore, C. Shannon, and J. Brown. Code-Red: a case study on the spread
and victims of an Internet worm. In Proceedings of the ACM/USENIX Internet
Measurement Workshop (IMW), Marseille, France, Nov. 2002.

25. D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet quarantine: Require-
ments for containing self-propagating code. In Proceedings of the IEEE Infocom
Conference, San Francisco, California, Apr. 2003.

26. D. Moore, C. Shannon, G. Voelker, and S. Savage. Network telescopes: Technical
report. Technical Report CS2004-0795, UCSD, July 2004.

27. D. Moore, G. M. Voelker, and S. Savage. Inferring Internet Denial of Service
Activity. In Proceedings of the USENIX Security Symposium, Washington, D.C.,
Aug. 2001.

28. J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In Proceedings of the
12th Annual Network and Distributed System Security Symposium (NDSS ’05),
San Diego, CA, Feb. 2005.

29. J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection, Anal-
ysis, and Signature Generation of Exploits on Commodity Software. In Proceedings
of the 12th Annual Network and Distributed System Security Symposium (NDSS
’05), San Diego, CA, Feb. 2005.

30. R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson. Characteristics
of Internet Background Radiation. In Proceedings of the USENIX/ACM Internet
Measurement Conference, Taormina, Sicily, Italy, Oct. 2004.

31. N. Provos. A Virtual Honeypot Framework. In Proceedings of the USENIX
Security Symposium, San Diego, CA, Aug. 2004.

32. M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted approach
to understanding the botnet phenomenon. In Proceedings of the USENIX/ACM
Internet Measurement Conference, pages 41–52, Rio de Janeiro, Brazil, Oct. 2006.

33. C. Shannon and D. Moore. The spread of the witty worm. IEEE Security and
Privacy, 2(4), July 2004.

34. S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprinting.
In Proceedings of the 6th ACM/USENIX Symposium on Operating System Design
and Implementation (OSDI), San Francisco, CA, Dec. 2004.

35. L. Spitzner. Honeypots: Tracking Hackers. Addison Wesley, 2003.
36. S. Staniford, V. Paxson, and N. Weaver. How to 0wn the internet in your spare

time. In Proceedings of the USENIX Security Symposium, San Francisco, CA,
Aug. 2002.

37. C. Stoll. The Cuckoo’s Egg. Pocket Books, New York, NY, 1990.
38. Symantec. Decoy Server Product Sheet. http://www.symantec.com/.
39. E. Vandekieft. Network Address Translation for Honeypot Farms. Master’s thesis,

UC San Diego, Dec. 2004.
40. M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M. Voelker,

and S. Savage. Scalability, fidelity and containment in the potemkin virtual honey-
farm. In Proceedings of the 20th ACM Symposium on Operating System Principles
(SOSP), Brighton, UK, Oct. 2005.

41. H. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield: Vulnerability-driven
network filters for preventing known vulnerability exploits. In Proceedings of the
ACM SIGCOMM Conference, Portland, Oregon, Sept. 2004.

42. N. Weaver, S. Staniford, and V. Paxson. Very Fast Containment of Scanning
Worms. In Proceedings of the USENIX Security Symposium, San Diego, CA,
Aug. 2004.

43. J. Xiong. ACT: Attachment Chain Tracing Scheme for Email Virus Detection
and Control. In Proceedings of the ACM Workshop on Rapid Malcode (WORM),
Fairfax, VA, Oct. 2004.

44. V. Yegneswaran, P. Barford, and D. Plonka. On the Design and Use of Internet
Sinks for Network Abuse Monitoring. In Proceedings of Symposium on Recent
Advances in Intrusion Detection (RAID), Sept. 2004.

