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Optimization algorithms and Monte Carlo sampling algorithms
have provided the computational foundations for the rapid
growth in applications of statistical machine learning in recent
years. There is, however, limited theoretical understanding of the
relationships between these 2 kinds of methodology, and limited
understanding of relative strengths and weaknesses. Moreover,
existing results have been obtained primarily in the setting of con-
vex functions (for optimization) and log-concave functions (for
sampling). In this setting, where local properties determine global
properties, optimization algorithms are unsurprisingly more effi-
cient computationally than sampling algorithms. We instead
examine a class of nonconvex objective functions that arise in
mixture modeling and multistable systems. In this nonconvex
setting, we find that the computational complexity of sampling
algorithms scales linearly with the model dimension while that of
optimization algorithms scales exponentially.

Langevin Monte Carlo | nonconvex optimization | computational
complexity

Machine learning and data science are fields that blend
computer science and statistics so as to solve inferential

problems whose scale and complexity require modern compu-
tational infrastructure. The algorithmic foundations on which
these blends have been based rest on 2 general computa-
tional strategies, both which have their roots in mathematics—
optimization and Markov chain Monte Carlo (MCMC) sam-
pling. Research on these strategies has mostly proceeded
separately, with research on optimization focused on estimation
and prediction problems and research on sampling focused on
tasks that require uncertainty estimates, such as forming credible
intervals and conducting hypothesis tests. There is a trend, how-
ever, toward the use of common methodological elements within
the 2 strands of research (1–12). In particular, both strands have
focused on the use of gradients and stochastic gradients—rather
than function values or higher-order derivatives—as providing
a useful compromise between the computational complexity of
individual algorithmic steps and the overall rate of convergence.
Empirically, the effectiveness of this compromise is striking.
However, the relative paucity of theoretical research linking opti-
mization and sampling has limited the flow of ideas; in particular,
the rapid recent advance of theory for optimization (see, e.g.,
ref. 13) has not yet translated into a similarly rapid advance
of the theory for sampling. Accordingly, machine learning has
remained limited in its inferential scope, with little concern for
estimates of uncertainty.

Theoretical linkages have begun to appear in recent work
(see, e.g., refs. 5–12), where tools from optimization theory have
been used to establish rates of convergence—notably including
nonasymptotic dimension dependence—for MCMC sampling.
The overall message from these results is that sampling is slower
than optimization—a message which accords with the folk wis-
dom that sampling approaches are warranted only if there is
need for the stronger inferential outputs that they provide. These
results are, however, obtained in the setting of convex func-
tions. For convex functions, global properties can be assessed via
local information. Not surprisingly, gradient-based optimization
is well suited to such a setting.

Our focus is the nonconvex setting. We consider a broad class
of problems that are strongly convex outside of a bounded region
but nonconvex inside of it. Such problems arise, for example,
in Bayesian mixture model problems (14, 15) and in the noisy
multistable models that are common in statistical physics (16,
17). We find that when the nonconvex region has a constant
and nonzero radius in Rd , the MCMC methods converge to ε

accuracy in Õ (d/ε) or Õ
(
d2 ln (1/ε)

)
steps, whereas any opti-

mization approach converges in Ω̃
(
(1/ε)d

)
steps. Note, critically,

the dimension dependence in these results. We see that, for this
class of problems, sampling is more effective than optimization.

We obtain these polynomial convergence results for the
MCMC algorithms in the nonconvex setting by working in con-
tinuous time and separating the problem into 2 subproblems:
Given the target distribution we first exploit the properties of
a weighted Sobolev space endowed with that target distribution
to obtain convergence rates for the continuous dynamics, and
we then discretize and find the appropriate step size to retain
those rates for the discretized algorithm. This general framework
allows us to strengthen recent results in the MCMC literature
(18–21) and examine a broader class of algorithms including the
celebrated Metropolis–Hastings method.

Polynomial Convergence of MCMC Algorithms
The Langevin algorithm is a family of gradient-based MCMC
sampling algorithms (22–24). We present pseudocode for 2 vari-
ants of the algorithm in Algorithm 1, and, by way of comparison,
we provide pseudocode for classical gradient descent (GD) in
Algorithm 2. The variant of the Langevin algorithm which does
not include the “if” statement is referred to as the ULA; as can
be seen, it is essentially the same as GD, differing only in its
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Algorithm 1: The (Metropolis-adjusted) Langevin algorithm is a
gradient-based MCMC algorithm. In each step, one simulates
ξ∼N (0, 2hk I) and u ∼U [0, 1], a uniform random variable
between 0 and 1. The conditional distribution p

(
xk |xk+1

)
is the

normal distribution centered at xk − hk∇U (xk ) and p* is the
target distribution. Without the Metropolis adjustment step, the
algorithm is called the unadjusted Langevin algorithm (ULA).
Otherwise, it is called the Metropolis-adjusted Langevin
algorithm (MALA).

MALA

Input: x0, stepsizes {hk}
for k = 0, 1, 2, . . . , K− 1 do

xk+1← xk −hk∇U(xk)+ ξ

if
p
(

xk|xk+1
)

p∗(xk)

p
(
xk+1|xk

)
p∗

(
xk+1

)<u then

xk+1← xk B Metropolis Adjustment
Return xK

incorporation of a random term ξ∼ N (0, 2hk I) in the update.
The variant that includes the “if” statement is referred to as the
MALA; it is the standard Metropolis–Hastings algorithm applied
to the Langevin setting. It is worth noting that ULA differs from
stochastic optimization algorithms in the scaling of the variance
of the random term ξ: In stochastic GD, the variance of ξ scales
as squared stepsize,

(
hk
)
2.

We consider sampling from a smooth target distribution p∗

that is strongly log-concave outside of a region. That is, for p∗∝
e−U , we assume that U is m-strongly convex outside of a region
of radius R and is L-Lipschitz smooth.* (See SI Appendix, sec-
tion A for a formal statement of the assumptions.) Let κ=L/m
denote the condition number of U ; this is a parameter which
measures how much U deviates from an isotropic quadratic func-
tion outside of the region of radius R. We prove convergence
of the Langevin sampling algorithms for this target, establishing
a convergence rate. Given an error tolerance ε∈ (0, 1) and an
initial distribution p0, define the ε-mixing time in total variation
distance as

τ(ε; p0) = min
{
k |
∥∥∥pk − p∗

∥∥∥
TV
≤ ε
}
.

Theorem 1. Consider Algorithm 1 with initialization p0 =
N
(
0, 1

L
Id
)

and error tolerance ε∈ (0, 1). Then ULA with step size

hk =O
(
e−16LR2

κ−1L−1ε2/d
)

satisfies

τULA(ε, p0)≤O
(
e32LR2

κ2 d

ε2
ln
(

d

ε2

))
. [1]

For MALA with step size hk =O
(
e−8LR2

κ−1/2L−1 (d ln κ +

ln 1/ε)−1/2d−1/2
)

,

τMALA(ε, p0)≤O

(
e40LR2

m
κ3/2d1/2

(
d ln κ+ ln

(
1

ε

))3/2)
.

[2]

Comparing Eq. 1 with Eq. 2, we see that the Metropolis adjust-
ment improves the mixing time of ULA to a logarithmic depen-
dence in ε, while sacrificing a factor of dimension d . (Note,
however, that these are upper bounds, and they depend on our

*U being L-Lipschitz smooth means that ∇U is L-Lipschitz continuous. Smoothness is
crucial for the convergence of gradient-based methods (25).

specific setting and our assumptions. It should not be inferred
from our results that ULA is generically faster than MALA in
terms of dimension dependence.) Comparing Eqs. 1 and 2 with
previous results in the literature that provide upper bounds on
the mixing time of ULA and MALA for strongly convex poten-
tials U (5–12), we find that the local nonconvexity results in an
extra factor of eO(LR2). Thus, when the Lipschitz smoothness L
and radius of the nonconvex region R satisfy LR2 is O(log d),
the computational complexity is polynomial in dimension d .

Our proof of Theorem 1 involves a 2-step framework that
applies more widely than our specific setting. We first use proper-
ties of p∗∝ e−U to establish linear convergence of a continuous
stochastic process that underlies Algorithm 1. We then discretize,
finding an appropriate step size for the algorithm to converge
to the desired accuracy. These 2 parts can be tackled indepen-
dently. In this section, we provide an overview of the first part of
the argument in the case of the MALA algorithm. The details,
as well as a presentation of the second part of the argument, are
provided in SI Appendix, section B.

Letting t =
∑k

i=1 h
i , assumed finite, a standard limiting pro-

cess yields the following stochastic differential equation (SDE)
as a continuous-time limit of Algorithm 1: dXt =−∇U (Xt)dt +√

2dBt , where Bt is a Brownian motion. To assess the rate of
convergence of this SDE, we make use of the Kullback–Leibler
(KL) divergence, which upper bounds the total variation dis-
tance and allows us to obtain strong convergence guarantees that
include dimension dependence. Denoting the probability distri-
bution of Xt as p̃t , we obtain (see the derivation in SI Appendix,
section B.2) the following time derivative of the divergence of p̃t
to the target distribution p∗:

d

dt
KL(p̃t ‖ p∗) =−Ep̃t

[∥∥∥∥∇ ln

(
p̃t(x)

p∗(x)

)∥∥∥∥2
]
. [3]

The property of p∗∝ e−U that we require to turn this time
derivative into a convergence rate is that it satisfies a log-
Sobolev inequality. Considering the Sobolev space defined by
the weighted L2 norm,

∫
g(x)2p∗(x)dx, we say that p∗ satisfies

a log-Sobolev inequality if there exists a constant ρ> 0 such that
for any smooth function g on Rd , satisfying

∫
Rd g(x)p∗(x)dx = 1,

we have∫
g(x) ln g(x) · p∗(x)dx ≤ 1

2ρ

∫
‖∇g(x)‖2

g(x)
p∗(x)dx.

The largest ρ for which this inequality holds is said to be the log-
Sobolev constant for the objective U . We denote it as ρU . Taking
g = p̃t/p

∗, we obtain

KL(p̃t ‖ p∗) =Ep̃t

[
ln

(
p̃t(x)

p∗(x)

)]
≤ 1

2ρU
Ep̃t

[∥∥∥∥∇ ln

(
p̃t(x)

p∗(x)

)∥∥∥∥2
]
. [4]

Note the resemblance of this bound to the Polyak–Łojasiewicz
condition (26) used in optimization theory for studying the

Algorithm 2: GD is a classical gradient-based optimization
algorithm which updates x along the negative gradient direction.

GD

Input: x0, stepsizes {hk}
for k = 0, 1, 2, . . . , K− 1 do

xk+1← xk −hk∇U(xk)
Return xK
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convergence of smooth and strongly convex objective func-
tions—in both cases the difference from the current iterate to
the optimum is upper-bounded by the norm of the gradient
squared. Combining Eq. 3 with Eq. 4, we derive the promised
linear convergence rate for the continuous process:

d

dt
KL(p̃t ‖ p∗)≤−2ρU KL(p̃t ‖ p∗).

In SI Appendix, section B.2 we present similar results for the
ULA algorithm, again using the KL divergence.

The next step is to bound ρU in terms of the basic smooth-
ness and local nonconvexity assumptions in our problem. We first
require an approximation result:

Lemma 1. For U m-strongly convex outside of a region of
radius R and L-Lipschitz smooth, there exists Û ∈C 1(Rd) such
that Û is m/2 strongly convex on Rd , and has a Hessian that

exists everywhere on Rd . Moreover, we have sup
(
Û (x)−U (x)

)
−

inf
(
Û (x)−U (x)

)
≤ 16LR2.

The proof of this lemma is presented in SI Appendix, section
B.1. The existence of the smooth approximation established in
this lemma can now be used to bound the log-Sobolev constant
using standard results.

Proposition 1. For p∗∝ e−U , where U is m-strongly convex
outside of a region of radius R and L-Lipschitz smooth,

ρU ≥
m

2
e−16LR2

. [5]

Proof: For m/2-strongly convex Û ∈C 1(Rd) whose Hessian
∇2Û (x) exists everywhere on Rd , the distribution e−Û (x) satis-
fies the Bakry–Emery criterion (27) for a strongly log-concave
density, which yields

ρÛ ≥
m

2
. [6]

We use the Holley–Stroock theorem (28) to obtain

ρU ≥
m

2
e−|sup(Û (x)−U (x))−inf(Û (x)−U (x))| ≥ m

2
e−16LR2

. [7]

We see from this proof outline that our approach enables one
to adapt existing literature on the convergence of diffusion pro-
cesses (29–31) to work out suitable log-Sobolev bounds and
thereby obtain sharp convergence rates in terms of distance
measures such as the KL divergence and total variation. This
contributes to the existing literature on convergence of MCMC
(32–36) by providing nonasymptotic guarantees on computa-
tional complexity. The detailed proof also reveals that the log-
Sobolev constant ρU is largely determined by the global qualities
of U where most of the probability mass is concentrated; local
properties of U have limited influence on ρU . Since this is a prop-
erty of the Sobolev space defined by the p∗-weighted L2 norm,
the favorable convergence rates of the Langevin algorithms
can be expected to generalize to other sampling algorithms
(see, e.g., ref. 37).

Exponential Dependence on Dimension for Optimization
It is well known that finding global minima of a general non-
convex optimization problem is NP-hard (38). Here we demon-
strate that it is also hard to find an approximation to the
optimum of a Lipschitz-smooth, locally nonconvex objective
function U , for any algorithm in a general class of optimization
algorithms.

Specifically, we consider a general iterative algorithm family
A which, at every step k , is allowed to query not only the func-
tion value of U but also its derivatives up to any fixed order at

a chosen point xk . Thus, the algorithm has access to the vector
({U (xk ),∇U (xk ), · · · ,∇nU (xk )}), for any fixed n ∈N . More-
over, the algorithm can use the entire query history to determine
the next point xk+1, and it can do so randomly or determinis-
tically. In the following theorem, we prove that the number of
iterations for any algorithm in A to approximate the minimum
of U is necessarily exponential in the dimension d .

Theorem 2 (Lower Bound for Optimization). For any R> 0,
L≥ 2m > 0, and ε≤O(LR2), there exists an objective function,
U :Rd→R, which is m-strongly convex outside of a region of
radius R and L-Lipschitz smooth, such that any algorithm in A
requires at least K = Ω((LR2/ε)d/2) iterations to guarantee that
mink≤K |U (xK )−U (x∗)|<ε with constant probability.

We remark that Theorem 2 is an information-theoretic result
based on the class of iterative algorithms A and the forms
of the queries to this class. It is thus an unconditional state-
ment that does not depend on conjectures such as P 6=NP
in complexity theory. We also note that if the goal is only to
find stationary points instead of the optimum, then the prob-
lem becomes easier, requiring only Ω(1/ε)2 gradient queries to
converge (39).

A depiction of an example that achieves this computational
lower bound is provided in Fig. 1. The idea is that we can pack
exponentially many balls of radius less than R/3 inside a region
of radius R. We can arbitrarily assign the minimum x∗ to 1 of
the balls, assigning a larger constant value to the other balls.
We show that the number of queries needed to find the specific
ball containing the minimum is exponential in d . Moreover, the
difference from U (x∗) to any other point outside of the ball is
O(LR2), which can be significant.

This example suggests that the lower-bound scenario will
be realized in cases in which regions of attraction are small
around a global minimum and behavior within each region of
attraction is relatively autonomous. This phenomenon is not
uncommon in multistable physical systems. Indeed, in nonequi-
librium statistical physics, there are examples where the global
behavior of a system can be treated approximately as a set of
local behaviors within stable regimes plus Markov transitions
among stable regimes (40). In such cases, when the regions of

2
3

1

Fig. 1. Depiction of an instance of U(x), inside the region of radius R, that
attains the lower bound.
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attraction are small, the computational complexity to find the
global minimum can be combinatorial. In section 3, we explic-
itly demonstrate that this combinatorial complexity holds for a
Gaussian mixture model.

Why Can’t One Optimize in Polynomial Time Using the Langevin
Algorithm? Consider the rescaled density function q∗β ∝ e−βU . A
line of research beginning with simulated annealing (41) uses
a sampling algorithm to sample from q∗β , doing so for increas-
ing values of β, and uses the resulting samples to approximate
x∗= arg minx∈Rd U (x). In particular, simply returning 1 of the
samples obtained for sufficiently large β yields an output that is
close to the optimum with high probability. This suggests the fol-
lowing question: Can we use the Langevin algorithm to generate
samples from q∗β , and thereby obtain an approximation to x∗ in a
number of steps polynomial in d?

In the following Corollary 1, we demonstrate that this is not
possible: We need β= Ω̃ (d/ε) so that a sample x from q∗β will
satisfy ‖x− x∗‖≤ ε with constant probability. (Here Ω̃ means we
have omitted logarithmic factors.) This requires the Lipschitz
smoothness of U to scale with d , which in turn causes the sam-
pling complexity to scale exponentially with d , as established in
Eqs. 1 and 2.

Corollary 1. There exists an objective function U that is m-
strongly convex outside of a region of radius 2R and L-Lipschitz
smooth, such that, for x̂∼ q∗β , it is necessary that β= Ω̃ (d/ε) in
order to have U (x̂)−U (x∗)<ε with constant probability. More-
over, the number of iterations required for the Langevin algorithms
to achieve U (xK )−U (x∗)<ε with constant probability is K =

eÕ(d·LR2/ε).
It should be noted that this upper bound for the Langevin

algorithms agrees with the lower bound for optimization algo-
rithms in Theorem 2 up to a factor of LR2/ε in the exponent.
Intuitively this is because in the lower bound for optimization
complexity we are considering the most optimistic scenario for
optimization algorithms, where a hypothetical algorithm can
determine whether one region of radius

√
ε/L (as depicted in

Fig. 1) contains the global minimum or not with only 1 query (of
the function value and n-th order derivatives). When using the
Langevin algorithms, more steps are required to explore each
local region to a constant level of confidence.

Parameter Estimation from Gaussian Mixture Model:
Sampling versus Optimization
We have seen that for problems with local nonconvexity the com-
putational complexity for the Langevin algorithm is polynomial
in dimension, whereas it is exponential in dimension for opti-
mization algorithms. These are, however, worst-case guarantees.
It is important to consider whether they also hold for natural sta-
tistical problem classes and for specific optimization algorithms.
In this section, we study the Gaussian mixture model, comparing
Langevin sampling and the popular expectation-maximization
(EM) optimization algorithm.

Consider the problem of inferring the mean parameters of
a Gaussian mixture model, µ= {µ1, · · · ,µM }∈Rd×M , when
N data points are sampled from that model. Letting y =
{y1, · · · , yN } denote the data, we have

p(yn |µ) =

M∑
i=1

λi

Zi
exp

(
−1

2
(yn −µi)

TΣ−1
i (yn −µi)

)

+

(
1−

M∑
i=1

λi

)
p0(yn), [8]

where Zi are normalization constants and
∑M

i=1 λi ≤ 1. p0(yn)
represents general constraints on the data (e.g., data may be dis-

tributed inside a region or may have sub-Gaussian tail behavior).
The objective function is given by the log posterior distribu-
tion: U (µ) =− log p(µ)−

∑N
n=1 log p (yn |µ). Assume data are

distributed in a bounded region (‖yn‖≤R) and take p0(yn) =
1 {‖yn‖≤R}/Z0.

We prove in SI Appendix, section D that for a suitable
choice of the prior p(µ) and weights {λi}, the objective func-
tion is Lipschitz-smooth and strongly convex for ‖µ‖≥ 2R

√
M .

Therefore, taking MR2 =O(log d), the ULA and MALA algo-
rithms converge to ε accuracy within K ≤Õ

(
d3/ε

)
and K ≤

Õ
(
d3 ln2 (1/ε)

)
steps, respectively.

The EM algorithm updates the value of µ in 2 steps. In
the expectation (E) step a weight is computed for each data
point and each mixture component, using the current parame-
ter value µk . In the maximization (M) step the value of µk+1 is
updated as a weighted sample mean (see SI Appendix, section
D.2 for a more detailed description). It is standard to initial-
ize the EM algorithm by randomly selecting M data points
(sometimes with small perturbations) to form µ0. We demon-
strate in SI Appendix, section D.2 that under the condition that
MR2 =O(log d) there exists a dataset {y1, . . . , yN } and covari-
ances {Σ1, · · · , ΣM }, such that the EM algorithm requires more
than K ≥min{O(d1/ε),O(dd)} queries to converge if one ini-
tializes the algorithm close to the given data points. That is,
for large ε, the computational complexity of the EM algorithm
depends on d with arbitrarily high order (depending on ε);
for small ε, the computational complexity of the EM algorithm
scales exponentially with d . The latter case corresponds to our
lower bound in Theorem 2 when taking the radius of the con-
vex region of µ to scale with

√
log d . Therefore, it is significantly

harder for the EM algorithm to converge if we initialize the
algorithm close to the given data points. This accords with
practical implementations of EM algorithms, where heuristic,
problem-dependent methods are often employed during ini-
tialization with the aim of decreasing the overall computation
burden (42).

We also investigated this dichotomy experimentally. We gen-
erated data {y1, · · · , yN } with sparse entries, letting the nonzero
entries be distributed uniformly on [−1, 1]. We inferred the
mean parameters µ= {µ1, · · · ,µM } with the EM algorithm and
ULA algorithm to obtain maximum a posteriori (MAP) and
mean estimates, respectively. Accuracy of the MAP estimate was
measured in terms of the objective U , while that of the mean esti-
mates was measured in terms of both the function value E [U (µ)]
and the expected mean parameters E [µ]. See SI Appendix, sec-
tion E for detailed experimental settings. In Fig. 2, we show the
scaling of the number of gradient queries required to converge as

2 4 6 8 10 12 14 16
Dimensions

0

1000

2000

3000

G
ra

di
en

t Q
ue

rie
s

EM
ULA

Fig. 2. Experimental results: scaling of number of gradient queries required
for EM and ULA algorithms to converge with respect to the dimension d.
When d≥ 10, too many gradient queries are required for EM to converge,
so that an estimate of convergence time is not feasible. When d = 32, ULA
converges within 1,500 gradient queries (not shown in the figure).
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a function of the dimension d . We observe that EM with random
initialization from the data requires exponentially many gradient
queries to converge, while ULA converges in an approximately
linear number of gradient queries, corroborating our theoretical
analysis.

Many mixture models with strongly log-concave priors fall
into the assumed class of distributions with local nonconvexity.
If data are distributed relatively close to each other, sampling
these distributions can often be easier than searching for their
global minima. This scenario is also common in the setting of the
noisy multistable models arising in statistical physics [e.g., where
the negative log likelihood is the potential energy of a classical
particle system in an external field (17)] and related fields.

Discussion
We have shown that there is a natural family of nonconvex
functions for which sampling algorithms have polynomial com-
plexity in dimension whereas optimization algorithms display
exponential complexity. The intuition behind these results is that
computational complexity for optimization algorithms depends
heavily on the local properties of the objective function U . This
is consistent with a related phenomenon that has been studied
in optimization—local strong convexity near the global optimum
can improve the convergence rate of convex optimization (43).
On the other hand, sampling complexity depends more heavily
on the global properties of U . This is also consistent with existing
literature; for example, it is known that the dimension depen-
dence of the ULA upper bounds deteriorates when U changes

from strongly convex to weakly convex. This corresponds to the
fact that the sub-Gaussian tails for strongly log-concave distri-
butions are easier to explore than the subexponential tails for
log-concave distributions.

A scrutiny of the relative scale between radius of the non-
convex region R and the dimension d is interesting (for con-
stant Lipschitz smoothness L): When R = 0, the problem is
reduced to the Lipschitz-smooth and strongly convex case, where
GD converges in κ log(1/ε) steps (44) and ULA converges in
κ2d/ε2 steps; when R =O(log d), sampling is generally easier
than optimization; when 0<R≤

√
d , the convergence upper

bound for sampling is still slightly smaller than the optimization
complexity lower bound; when

√
d <R< d , the comparison is

indeterminate; and the converse is true if R≥ d .
The relatively rapid advance of the theory of gradient-based

optimization has been due in part to the development of lower
bounds, of the kind exhibited in our Theorem 2, for broad classes
of algorithms. It is of interest to develop such lower bounds for
MCMC algorithms, particularly bounds that capture dimension
dependence. It is also of interest to develop both lower bounds
and upper bounds for other forms of nonconvexity. For exam-
ple, there has been recent work studying strongly dissipative
functions (45). Here the worst-case convergence bounds have
exponential dependence on the dimension, but p∗∝ e−U has a
sub-Gaussian tail; further exploration of this setting may yield
milder conditions on U that allow MCMC algorithms to have
polynomial convergence rates.
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