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Abstract—Experiments in particle physics produce enormous
quantities of data that must be analyzed and interpreted by teams
of physicists. This analysis is often exploratory, where scientists
are unable to enumerate the possible types of signal prior to per-
forming the experiment. Thus, tools for summarizing, clustering,
visualizing and classifying high-dimensional data are essential.
In this work, we show that meaningful physical content can be
revealed by transforming the raw data into a learned high-level
representation using deep neural networks, with measurements
taken at the Daya Bay Neutrino Experiment as a case study.
We further show how convolutional deep neural networks can
provide an effective classification filter with greater than 97%
accuracy across different classes of physics events, significantly
better than other machine learning approaches.

Index Terms—Deep Learning, Unsupervised Learning, High-
Energy Physics, Autoencoders

I. INTRODUCTION

The analysis of experimental data in science can be an
exploratory process, where researchers do not know before-
hand what they expect to observe. This is particularly true in
particle physics, where extraordinarily complex detectors are
used to probe the fundamental nature of the universe. These
detectors collect petabytes or even exabytes of data in order
to observe relatively rare events. Analyzing this data can be a
laborious process that requires researchers to carefully separate
and interpret different sources of signal and noise.

The Daya Bay Reactor Neutrino Experiment is designed
to study anti-neutrinos produced by the Daya Bay and Ling
Ao nuclear power plants. The experiment has successfully
produced many important physics results [1], [2], [3], [4], [S]
but these required significant effort to identify and explain the
multiple sources of noise, not all of which were expected.
For example, it was found after initial data collection that a
small number of the photomultiplier tubes used in the detectors
spontaneously emitted light due to discharge within their base,
causing so-called “flasher” events. Identifying and accounting
for these flashers and other unexpected factors was critical
for isolating the rare antineutrino decay events. To speed
up scientific research, physicists would greatly benefit from
automated analyses to summarize, cluster, and visualize their
data, in order to build an intuitive grasp of its structure and
quickly identify flasher-like problems.

Visualization and clustering are two of the primary ways
that researchers use to explore their data. This requires trans-
forming high-dimensional data (such as an image) into a
2-D or 3-D space. One common method for doing this is
principle component analysis (PCA), but PCA is linear and
unable to effectively compress data that lives on a complex
manifold, such as natural images. Neural networks, on the
other hand, have the capacity to represent very complex
transformations [[6]. Moreover, these transformations can be
learned given a sufficient amount of data. In particular, deep
learning with many-layered neural networks has proven to be
an effective approach to learning useful representations for a
variety of application domains, such as computer vision and
speech recognition [7]], [8]]. Thus, it may provide new ways for
physicists to explore their high-dimensional data. Each layer
of a deep feed-forward neural network computes a different
non-linear representation of the input; performing exploratory
data analysis on these high-level representations may be more
fruitful than performing the same analysis on the raw data.
Furthermore, learned representations can easily be combined
with existing tools for summarizing, clustering, visualizing and
classifying data.

In this work, we learn and visualize high-level represen-
tations of the particle-detector data acquired by the Daya
Bay Experiment. These representations are learned using both
unsupervised and supervised neural network architectures.

II. RELATED WORK

Finding high-level representations of raw data is a common
problem in many fields. For example, embeddings in natural
language processing attempt to find a compressed vector
representation for words, sentences, or paragraphs where each
dimension roughly corresponds to some latent feature and
distance in the embedding corresponds to semantic distance
(e.g. [91, [100).

In addition, for natural images, extracting features and
visualizing a low-dimensional manifold using autoencoders is
another common application [11]. These efforts usually are
applied to well-defined datasets, such as MNIST, face image
datasets and SVHN.



In the realm of scientific data, chemical fingerprinting is
a method for representing small-molecule structures as vec-
tors [12], [13]. These representations are usually engineered
to capture relevant features in the data, but an increasingly-
common approach is to learn new representations from the
data itself, in either a supervised or unsupervised manner. Deep
neural network architectures provide a flexible framework for
learning these representations.

Furthermore, deep learning has already been successfully
applied to problems in particle physics. For example, Baldi
et. al. showed that deep neural networks could improve exotic
particle searches and showed that learned high-level features
outperform those engineered by physicists [14]. Others have
applied deep neural networks to the problem of classifying
particle jets from low-level detector data, using convolutional
architectures and treating the detector data as images [15].

However, these efforts have focused on supervised learning
with simulated data; to the best of our knowledge, deep learn-
ing has not been used to perform unsupervised exploratory
data analysis, directly on the raw detector measurements,
with the goal of uncovering unexpected sources of signal and
background noise.

III. DATA

A Daya Bay Antineutrino Detector (AD) consists of 192
photomultiplier tubes (PMTs) arranged in a cylinder 8 PMTs
high and with a 24 PMT circumference [2]. The data we use
for our study is the the value of the charge deposit of each of
the PMTs in the cylinder unwrapped into a 2D (8 “ring” x 24
“column”) array of floats. Each example is the 8x24 array for
a particular event that set off a trigger to be captured.

For the supervised part of this analysis, and for visualizing
the unsupervised results, we employ labels determined by the
physicists from their features and threshold criteria. For full
details on these selections see [2]. They label five types of
events: “muon”, “flasher”, “IBD prompt”, “IBD delay” and
a default label of “other” is applied to all other events. For
“muon” and “flasher” events we apply the physics selection
on derived quantities held in the original data before producing
our reduced data samples. Inverse Beta Decay (“IBD”) labels
correspond to antineutrino events that are the desired physics
of interest and occur substantially less frequently than other
event types. Many stages of fairly complex analysis are used
by the physicists to select these [2]. Therefore, we do not
reapply that selection but instead use an index output from
their analyses to tag events.

Muon labelled events are relatively straightforward to clus-
ter or learn, while flasher and IBD events involve non-
linear functions and complex transformations. Furthermore,
the physicists’ selections for these events make use of some
information that is not available to our analysis, such as times
between events and with respect to external muon detectors.

IV. METHODS

Given a set of detector images, we aim to find a vector
representation, V' € R" of each image, where n corresponds

to the number of features to be learned. The features are task-
specific — they are optimized either for class-prediction or
reconstruction — but in both cases we expect the learned
representation to capture high-level information about the data.
By transforming the raw data into these high-level represen-
tations, we aim to provide physicists with more interpretable
clusterings and visualizations, so that they may uncover unex-
pected sources of signal and background.

To learn new representations, we use both supervised and
unsupervised convolutional neural networks. These methods
are described in more detail below. As a qualitative assessment
of the learned representations, we use t-Distributed Stochastic
Neighbor Embedding (t-SNE) [16], which maps n-dimensional
data to 2 or 3 dimensions and makes sure points close together
in the high n-dimensional space are also close together in the
lower dimensional embedding.

A. Supervised Learning with Convolutional Neural Networks

A convolutional neural network (CNN) is a particular neural
network architecture that captures our intuition about local
structure and translational invariance in images [7]. We em-
ploy CNNs in this work because the data captured by the
antineutrino detectors are essentially 2-D images. Most CNNs
have several convolutional and pooling layers followed by one
or more fully connected layers that use the features learned
from those layers to perform typical classification or regression
tasks.

B. Unsupervised Learning with Convolutional Autoencoders

An autoencoder [[17], [18] is a neural network where the
target output is exactly the input. It usually consists of an
encoder, which consists of one or more layers that transform
the input into a feature vector at the output of the middle
layer (often called bottleneck layer or hidden layer), and a
decoder, which usually contains several layers that attempt to
reconstruct the hidden layer output back to the input. When the
autoencoder architecture includes a hidden layer output with
dimensionality smaller than that of the input (undercomplete),
it must learn how to compress and reconstruct examples from
the training data. It has been shown that undercomplete autoen-
coders are equivalent to nonlinear PCA [19]. In addition, there
exist autoencoders that have hidden layer ouputs of higher
dimension than the those of the inputs (overcomplete) that
use other constraints to prevent the network from learning
an identity function [[11]], [20], [21]. We use undercomplete
autoencoders due to their simplicity and as an exploratory
first step to see if we can indeed extract low dimensional
features from this sensor data, while still taking nonlinearity
into account.

A convolutional autoencoder is an autoencoding architec-
ture that includes convolutional layers. The encoding portion
typically consists of convolutional and max-pooling layers
followed by fully-connected hidden layers (including a “bottle-
neck” layer) and then deconvolutional (and unpooling) layers,
usually one for each convolutional and pooling layer [22].



layer | type | filter size | filters | stride | activation
1 conv 3x3 71 1 tanh

2 pool 2x2 1 2 max

3 conv 2x2 88 1 tanh

4 pool 2x2 1 2 max

5 fc I1x5 26 1 tanh

6 fc Ix1 5 1 softmax

TABLE I: Architecture of the supervised CNN

layer type filter size | filters | stride | pad activation
1 conv 5%5 16 1 2x2 RELU [7]
2 pool 2x2 1 2 0 max

3 conv 3x3 16 1 1x0 RELU

4 pool 2x2 1 2 0 max

5 fc 2x5 10 1 0 RELU

6 deconv 2x4 16 2 0 None

7 deconv 2x5 16 2 0 None

8 deconv 2x4 1 2 0 None

TABLE II: Architecture of the convolutional autoencoder

While some authors [23]] have shown success with using
deconvolutional and unpooling layers in reconstruction, we
solely use transposed convolutional layers due to software
constraints. Moreover, there has been work with convolutional
generative models that shows success in using just fractionally
strided convolutional layers and no unpooling layers [24].

V. IMPLEMENTATION

We performed our analysis on Edison and Cori, two Cray
XC computing systems at the National Energy Research
Scientific Computing Center (NERSC).

A. Preprocessing

For training and testing data, we used an equal number of
examples from each of the five physics classes. Because the
muon charge deposit values are much higher than some of the
other events’ charge deposits, we apply a natural log transform
to each value in the 8x24 image. For the supervised CNN, we
also cyclically permute the columns, so the column containing
the largest valued element in the entire array is in the center
(12th column). This is done to prevent areas of interest from
being located on the edges of the array (given the data is an
array from an unwrapped cylinder).

B. Supervised Learning with CNN

To help examine if there were learnable patterns in the data,
we implemented a supervised convolutional neural net. The
architecture of the CNN is specified in Table[l, We trained the
network on 45,000 examples using stochastic gradient descent.
We then classified 15,000 test examples using the trained
model. The classification performance was compared with k-
nearest neighbor classifiers and support vector machines.

C. Unsupervised Learning with Convolutional Autoencoders

For the convolutional autoencoder, we use the architecture
specified in Table [l using sum of squared error as the loss
function. The convolutional autoencoder was trained using gra-
dient descent with a learning rate of 0.0005 and a momentum

Measure IBD IBD
and Method | prompt delay Muon Flasher  Other
F-score
k-NN 0.775 0.954  0.996 0.784 0.806
SVM 0.846 0.962  0.996 0.895 0.885
CNN 0.891 0.974  0.997 0.951 0.928
Accuracy
k-NN 0950 0990 0.998 0.891 0.896
SVM 0.966 0.992  0.998 0.947 0.938
CNN 0.977 0.995  0.999 0.974 0.962

TABLE III: Classifier performance for different events
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Fig. 2: t-SNE reduction of representation learned on the last
fully connected layer of CNN. Representative examples from
the clusters immediately below the labels A and B and to the
left of C are shown in figure [TaHTd]

coefficient of 0.9. We trained the network on 31,700 training
examples and tested it on 7900 test examples.

VI. RESULTS
A. Supervised Learning with CNN

1) Results: The classification classwise F-scores and clas-
sification accuracies of k-nearest neighbor, support vector ma-
chine, and the CNN architecture on the test set are summarized
in Table We also used t-SNE [16] to visualize the features
learned for the supervised convolutional neural network. Fig-
ure [2] shows the t-SNE visualization of the outputs from the
last fully connected layer of the CNN. This visualization shows
in two dimensions how the each example is clustered in the
26-dimensional feature space learned by the network.

We also show, in Figures [Ia] and [Tb] example PMT charges
of different types of events that are in clusters in the t-SNE
clustering (Figure [2) that contain a mix of labels near each
other, as well as examples contained in well separated clusters
in Figures and These examples are visualizations
of the 8x24 arrays after preprocessing. As described in the
preprocessing section, the value of each element in the array
is the raw charge deposit as measured by the PMT at the time
of the trigger transformed by a natural log and then divided
by a scale factor of 10 to ensure values between O and 1.
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(d) An IBD prompt event in the blue cluster below the letter B

Fig. 1: Representative examples of various IBD events in the clusters labeled in Figure

2) Interpretation: Our results suggest that there are patterns
in the Daya Bay data that can be uncovered by machine
learning techniques without knowledge of the underlying
physics. Specifically, we were able to achieve high accuracy
on classification of the Daya Bay events using only the spatial
pattern of the charge deposits. In contrast, the physicists used
the time of the events and prior physics knowledge to perform
classification. In addition, our results suggest that deep neural
networks were better than other techniques at classifying the
images and thus finding patterns in the data. as shown in
Table Our CNN architecture had the highest F}-score
and accuracy for all event types. In particular, it showed
significantly higher performance on classes “IBD prompt” and
“flasher”. Not only did the supervised CNN perform better in
classifying the data then other shallower ML techniques, but it
also discovered features in the data that helped cluster it into
fairly distinct groups as shown in Figure

We can further investigate the raw images within the clusters
formed by t-SNE. For example, in Figures [Ta| and [Tb] the
CNN has identified a particularly distinctive charge pattern
common to both images. Specifically, both images have the
same range of values and have a very similar shape. Though
the patterns happen at different parts of the image, they are
roughly the same and it is not surprising that the CNN picked
up on this translation invariant pattern. These are labeled as
different types because prompt events have a large range of
charge patterns, some of which very closely resemble delay
events. The standard physics analysis is able to resolve these
only by using the time coincidence of delay events happening

150 . T T T
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flasher
other
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Fig. 3: t-SNE representation of features learned by the convo-
lutional autoencoder

within 200 microseconds after prompt events, while the neural
network solely has charge pattern information. Future work
involving these features may help solve this, but it is never-
theless encouraging that the network was able to hone in on
the geometric pattern. Figures [Ic] and [Id} on the other hand,
show images from more distinct prompt and delay clusters,
respectively, illustrating that prompt events deposit less energy
in the detector on average as shown by the different range of
values in the two images. Such clustering suggests that, with
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Fig. 4: Raw event image (top row) and convolutional autoencoder reconstructed event image (bottom row).

help from ground truth labeling, deep learning techniques can
discover informative features and thus find structure in raw
physics inputs. Because such patterns in the data exist and
can be learned, this suggests that unsupervised learning also
has the potential to discover these patterns without needing
ground truth labeling.

B. Unsupervised learning with Convolutional Autoencoder

1) Results: For the convolutional autoencoder, we present
the t-SNE visualization of the 10 features learned by the
network in figure [3] To show how informative the feature
vector that the network learned is, we also show several
event images and their reconstruction by the autoencoder in
Figures [#a and #b] More informative features that are learned
correspond to more accurate reconstructions because the 10
features effectively give the network the “ingredients” it needs
to the reconstruct the input 8x24 structure.

2) Interpretation: The convolutional autoencoder is de-
signed to reconstruct PMT images and so it learns different
features than the supervised CNN which is attempting to
classify based on the training labels. Therefore, the t-SNE
clustering for this part of the study (in Figure [3) is quite
different from that in the supervised section. Nevertheless,
we were able to obtain well defined clusters without using
any physics knowledge. Specifically, there is a very clearly
separated cluster that can be identified with the labelled
muons, and also a fairly clear separation between “IBD delay”
and other events. We even achieve some separation between
“IBD prompt” and “other” backgrounds which, as mentioned
above, is mainly achieved in the default physics analysis only
by incorporating additional information of the time between
prompt and delayed events.

By looking at the reconstructed images, we can see the au-
toencoder was able to filter out the input noise and reconstruct
the important shape of different event types. For example, in

Figure [4a] the shape of the charge pattern is reconstructed
extremely accurately, which shows that the 10 learned features
from the autoencoder are very informative for “IBD delay”
events. In Figure b} salient and distinct aspects, like the high
charge regions on the right side and the low regions on the
left, of the more challenging “IBD prompt” events are also
reconstructed well. As further work, it would be desirable to
obtain better separation between “flasher” and “other” events.
Therefore we intend to continue to tailor the convolutional
autoencoder approach to this application by considering input
transformations that take into account the experiment geome-
try, variable resolution images, and alternative construction of
convolutional filters, as well as more data and full parameter
optimization of the number of filters and the size of the feature
vector.

VII. CONCLUSIONS

In this work we have applied for the first time unsupervised
deep neural nets within particle physics and have shown
that the network can successfully identify patterns of physics
interest. As future work we are collaborating with physicists
on the experiment to investigate in detail the various clusters
formed by the representation to determine what interesting
physics is captured in them beyond the initial labelling. We
also plan to incorporate such visualizations into the monitoring
pipeline of the experiment.

Such unsupervised techniques could be utilized in a generic
manner for a wide variety of particle physics experiments
and run directly on the raw data pipeline to aid in trigger
(filter) decisions or in evaluating data quality, or to dis-
cover new instrument anomalies (such as flasher events). The
use of unsupervised learning to identify such features is of
considerable interest within the field as it can potentially
save considerable time required to hand-engineer features to
identify such anomalies.



We have also demonstrated the superiority of convolutional
neural networks compared to other supervised machine learn-
ing approaches for running directly on raw particle physics
instrument data. This offers the potential for use as fast selec-
tion filters, particularly for other particle physics experiments
that have many more channels and approach exabytes of
raw data such as those at the current Large Hadron Collider
(LHC) and planned HL-LHC at CERN [25]. Our analysis
in this paper used the labels determined from an existing
physics analysis and therefore the selection accuracy is upper
bounded by that of the physics analysis. Many other particle
physics experiments, however, have reliable simulated data
which could be used with the approaches in this paper to
better the selection accuracy achieved with those experiments’
current analyses.

In conclusion, we have demonstrated how deep learning can
be applied to reveal physics directly from raw instrument data
even with unsupervised approaches, and therefore that these
techniques offer considerable potential to aid the fundamental
discoveries of future particle physics experiments.
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