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FINITE ELEMENT RESPONSE SENSITIVITY ANALYSIS USING 
THREE-FIELD MIXED FORMULATION: GENERAL THEORY AND 

APPLICATION TO FRAME STRUCTURES

M. Barbato1, A. Zona2, and J. P. Conte3. 

SUMMARY

This paper presents a method to compute response sensitivities of finite element models of structures based

on a three-field mixed formulation. The methodology is based on the Direct Differentiation Method

(DDM), and produces the response sensitivities consistent with the numerical finite element response. The

general formulation is specialized to frame finite elements and details related to a newly developed steel-

concrete composite frame element are provided. DDM sensitivity results are validated through the forward

Finite Difference Method (FDM) using a finite element model of a realistic steel-concrete composite frame

subjected to quasi-static and dynamic loading. The finite element model of the structure considered is con-

structed using both monolithic frame elements and composite frame elements with deformable shear con-

nection based on the three-field mixed formulation. The addition of the analytical sensitivity computation

algorithm presented in this paper extends the use of finite elements based on a three-field mixed formula-

tion to applications that require finite element response sensitivities. Such applications include structural

reliability analysis, structural optimization, structural identification, and finite element model updating. 

KEY WORDS: Hu-Washizu functional; three-field mixed finite element formulation; material constitu-

tive parameters; finite element response sensitivity; steel-concrete composite beam. 

1.  INTRODUCTION

Finite element response sensitivities represent an essential ingredient for gradient-based optimization

methods used to solve problems in structural optimization, structural reliability analysis, structural identifi-

cation and finite element model updating [1,2]. Finite element response sensitivities are also invaluable for

gaining deeper insight into the effects and relative importance of the various geometric, material, and load-

ing parameters defining the structure and its loading environment.
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Sensitivity analysis formulations have been developed for displacement-based finite element models [3-5]

and, recently, for force-based frame elements [6,7]. The advantages gained in response analysis by using

finite element formulations more advanced than the classical displacement-based formulation can be fur-

ther extended to the realm of response sensitivity analysis [8].

A large body of research has been devoted to mixed finite element formulations since they were first intro-

duced in the pioneering work of Pian [9]. Several finite elements based on different variational principles

have been developed [10-14] and relationships among them have been established [15,16]. Accuracy and

performance have been thoroughly analyzed and improved and important properties have been recognized

and explained, such as equivalence between various stress recovery techniques [17] and ability to elimi-

nate shear-locking effects for specific applications [14]. After more than three decades of research in the

field, mixed finite elements are well established and largely adopted tools in a wide range of structural

mechanics applications. However, to the authors knowledge, attempts of extending mixed finite element

formulations to response sensitivity analysis by using the Direct Differentiation Method (DDM) are lim-

ited to linear elastic and quasi-static analysis [18].

Multi-field mixed finite element formulations were proposed, among others, for finite elements widely

used in the structural engineering community such as frame elements. Mixed frame elements are more

accurate in nonlinear analysis than displacement-based elements and are a possible alternative to the

recently established force-based elements [19]. Examples are available in the recent literature for mono-

lithic beams [19-21] and for composite beams with deformable shear connection [22,23].

This paper focuses on the formulation of finite element response sensitivity analysis in the case of a nonlin-

ear three-field mixed approach derived from the Hu-Washizu variational principle, considering both quasi-

static and dynamic loadings. The formulation presented here is based on the general Direct Differentiation

Method (DDM), which consists of differentiating consistently the space (finite element) and time (finite

difference) discrete equations governing the structural response [4,5]. The general formulation for finite

element response sensitivity analysis using the three-field mixed formulation is then specialized and

applied to frame finite element models. The results of the DDM are validated through the forward Finite

Difference Method (FDM) using as application example a realistic steel-concrete composite frame struc-

ture subjected to quasi-static and dynamic loading, respectively. Both monolithic frame elements [21] and

composite frame elements with deformable shear connection [23] based on the three-field mixed formula-

tion are included in this application example.

2.  FINITE ELEMENT RESPONSE SENSITIVITY ANALYSIS

The computation of finite element response sensitivities to material and loading parameters requires exten-
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sion of the finite element algorithms for response computation only. If r denotes a generic scalar response

quantity, the sensitivity of r with respect to the material or loading parameter θ is expressed, by definition,

as the (absolute) partial derivative of r with respect to the variable θ evaluated at , i.e., 

where  denotes the nominal value taken by the sensitivity parameter θ for the finite element response

analysis. 

In the sequel, the notation proposed by Kleiber et al. [2] is adopted and the case of a single sensitivity

parameter is considered without loss of generality. Thus, the quantity , called “unconditional sensitiv-

ity” or “unconditional derivative” of  with respect to , denotes the absolute partial derivative of the

argument  with respect to the scalar variable  (i.e., the derivative of response variable  with respect to

the parameter  considering both explicit and implicit dependencies). On the other hand, , called

“conditional sensitivity” or “conditional derivative” of  with respect to  for  fixed, is defined as the

partial derivative of  with respect to parameter  when the vector of variables  is kept fixed. 

It is assumed herein that the structural response is computed using a general-purpose nonlinear finite ele-

ment analysis program based on the direct stiffness method, employing suitable numerical integration

schemes at both the structure and element level. At each time step, after convergence of the incremental-

iterative response computation, the consistent response sensitivities are calculated. According to the Direct

Differentiation Method (DDM) (see [3-8]), this requires the analytical differentiation of the finite element

numerical scheme for response computation with respect to the sensitivity parameter θ in order to obtain

the “exact” or “consistent” sensitivities of the computationally simulated system response. After spatial

discretization using the finite element method, the equations of motion of a structural system, accounting

for both material and geometric nonlinearities, take the form of the following nonlinear matrix differential

equation:

(1)

where t = time, θ = scalar sensitivity parameter (material or loading variable), u(t) = vector of nodal dis-

placements, M = mass matrix, C = damping matrix, R(u, t) = history dependent internal (inelastic) resist-

ing force vector, F(t) = applied dynamic load vector, and a superposed dot denotes one differentiation with

respect to time. 

We assume without loss of generality that the time continuous - spatially discrete equation of motion,

Equation (1), is integrated numerically in time using a single-step time stepping scheme expressing the

nodal acceleration vector  and nodal velocity vector  at time tn+1 in terms of the nodal displacement

vector  at time tn+1 and the nodal acceleration, velocity and displacement vectors at the previous time

step tn as

θ θ0= r∂ θ θ θ0=
∂⁄

θ0

dr
dθ
------

r θ

r θ r

θ r∂
θ∂

------
z

r θ z

r θ z

M θ( )u·· t θ,( ) C θ( )u· t θ,( ) R u t θ,( ) θ,( )+ + F t θ,( )=

u·· u·

u



4

(2)

(3)

Substituting Equations (2) and (3) in Equation (1) expressed at time tn+1 yields the following nonlinear

matrix algebraic equation in the unknown un+1 = u(tn+1):

(4)

where

(5)

and ai (i = 1,..., 8) denote the coefficients of the time stepping scheme. This formulation represents a gen-

eral class of one-step implicit integration algorithms, containing the well-known Newmark-β and Wilson

methods (see [3-8]). In the case of the Newmark-β method [24], the integration coefficients are given by:

, , , , , , ,

, where  and  are two parameters controlling the accuracy and stability of the

numerical scheme (e.g.,  and  for the unconditionally stable average acceleration method).

Equation (4) represents the set of nonlinear algebraic equations for the unknown response quantities 

that has to be solved at each time step . In general, the subscript  indicates that the quan-

tity to which it is attached is evaluated at discrete time tn+1. 

We assume that  is the converged solution (up to some iteration residuals satisfying a specified toler-

ance usually taken in the vicinity of the machine precision) for the current time step . Then, we

differentiate Equation (4) with respect to θ using the chain rule of differentiation and recognizing that

 (i.e., the structure inelastic resisting force vector depends on θ both implic-

itly, through , and explicitly), which yields the following response sensitivity equation at the structure

level (see [3-5]):

(6)

where

u··n 1+ a1un 1+ a2un a3u· n a4u··n+ + +=

u· n 1+ a5un 1+ a6un a7u· n a8u··n+ + +=

F̃n 1+ a1Mun 1+ a5Cun 1+ R un 1+( )+ +[ ]– 0=

F̃n 1+ Fn 1+   M– a2un a3u· n a4u··n+ +[ ]  C– a6un a7u· n a8u··n+ +[ ]=

a1
1

∆t( )2β2

-------------------= a2 a1–= a3  
1

∆t( )β2
----------------–= a4 1  

1
2β2
---------–= a5

β1

∆t( )β2
----------------= a6 a5–= a7 1  

β1

β2
-----–=

a8 1
β1

2β2
---------–⎝ ⎠

⎛ ⎞ ∆t( )= β1 β2

β1
1
2
---= β2

1
4
---=

un 1+

tn tn 1+,[ ] …( )n 1+

un 1+

tn tn 1+,[ ]

R un 1+( ) R un 1+ θ( ) θ,( )=

un 1+

a1M a5C KT
stat( )n 1++ +[ ] 

dun 1+

dθ
----------------

dF̃n 1+

dθ
----------------  a1

dM
dθ
--------- a5

dC
dθ
-------+⎝ ⎠

⎛ ⎞un 1+–
R un 1+ θ( ) θ,( )∂

θ∂
---------------------------------------

un 1+

–=
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(7)

The term  in Equation (6) denotes the static consistent (or algorithmic) tangent stiffness matrix

of the structure at time tn+1. The last term on the RHS of Equation (6) represents the partial derivative with

respect to θ of the internal resisting force vector, R(un+1), under the condition that the displacement vector

un+1 remains fixed, and is computed through direct stiffness assembly of the element resisting force deriv-

atives for fixed element nodal displacements. 

The above formulation, expressed for the case of dynamic loading, contains the quasi-static load case as a

particular case, obtained by simply equating to zero in Equations (4) through (7) all terms containing the

mass and damping matrices as well as their derivatives with respect to .

3.  RESPONSE SENSITIVITY ANALYSIS AT THE ELEMENT LEVEL

3.1 General geometric and material nonlinear theory including shape sensitivity

The general formulation is presented for a structural model including geometric and material nonlinearities

and considering material, shape, and loading sensitivities. An isoparametric finite element in Total

Lagrangian formulation is considered.

Following [14], three different domains need to be introduced:

(a) the parent domain, denoted by the symbol , with element coordinates ;

(b) the reference (or initial configuration) domain, , with coordinates ;

(c) the current configuration domain, , with coordinates , where t

denotes time (or pseudo-time in quasi-static analysis).

Correspondingly, the following one-to-one mappings are defined:

(a) from parent domain to current configuration: ;

(b) from parent domain to reference configuration: ;

(c) from reference configuration to current configuration: .

It is supposed that the above mappings satisfy certain conditions of regularity such that the inverse map-

pings exist and the motion is well defined and sufficiently smooth. 

As measure of strain, the Green-Lagrange strain is adopted, defined in tensorial form using the index nota-

tion as

, i, j = 1, 2, 3 (8)

dF̃n 1+

dθ
----------------

dFn 1+

dθ
----------------  

dM
dθ
---------– a2un a3u· n a4u··n+ +( ) M a2

dun

dθ
--------- a3

du· n

dθ
--------- a4

du··n

dθ
---------–+– –=

dC
dθ
------- a6un a7u· n a8u··n+ +[ ]  C– a6

dun

dθ
--------- a7

du· n

dθ
--------- a8

du··n

dθ
---------+ +

KT
stat( )n 1+

θ

� ξ1 ξ2 ξ3, ,[ ]T
=

Ω0 X X1 X2 X3, ,[ ]T=

Ω t( ) x t( ) x1 t( ) x2 t( ) x3 t( ), ,[ ]T
=

x x � t,( )=

X X �( )=

x x X t,( )=

Eij
G 1

2
---

ui∂
Xj∂

--------
uj∂
Xi∂

--------
uk∂
Xi∂

--------
uk∂
Xj∂

--------+ +⎝ ⎠
⎛ ⎞=
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Using Voigt notation, the vector form of the Green-Lagrange strain tensor is defined as

(9)

The work conjugate stress measure of the Green-Lagrange strain tensor is the second Piola-Kirchhoff

stress tensor, , that can be expressed in vector form using Voigt notation as

, (10)

The Hu-Washizu functional in Total Lagrangian formulation is [14]

(11)

in which ,  and  are the assumed displacement, stress and strain fields, respectively,  is

the strain energy density and  is a differential matrix operator defined as

(12)

(13)

(14)

where  and  denote the linear and nonlinear parts, respectively, and the superposed T indicates the

transpose operator. The term  denotes the potential energy of the external forces and is defined as

(15)

where  denotes the mass density per unit volume, b are the body forces per unit mass, t are the surface

tractions,  denotes the part of the boundary  of Ω where the surface tractions are prescribed, 

and  denote an infinitesimal volume and surface element, respectively, and the subscript “0” indicates

that the quantities to which it is attached are computed in the reference configuration. For the sake of brev-

ity, the term representing the kinetic energy is not included in the Hu-Washizu functional (Equation (11)).

Notice that the kinetic energy term depends only on the displacement field and thus has the same form as in

EG E11
G

E22
G

E33
G

2E23
G

2E13
G

2E12
G, ,, , ,[ ]

T
=

Sij
PK2

SPK2 S11
PK2 S22

PK2 S33
PK2 S23

PK2 S13
PK2 S12

PK2, ,, , ,[ ]
T

=

ΠHW u SPK2 EG, ,( ) ϕ EG( ) Ω0 SPK2
T H u EG–( ) Ω0 Πext u( )–d

Ω0

∫+d

Ω0

∫=

u SPK2 EG ϕ EG( )

H

H Hl
1
2
---H

nl
+=

Hl

∂
X1∂

--------- 0 0 0
∂
X3∂

---------
∂
X2∂

---------

0
∂
X2∂

--------- 0
∂
X3∂

--------- 0
∂
X1∂

---------

0 0
∂
X3∂

---------
∂
X2∂

---------
∂
X1∂

--------- 0

T

=

Hnl

u1∂
X1∂

---------
∂
X1∂

---------
u1∂
X2∂

---------
∂
X2∂

---------
u1∂
X3∂

---------
∂
X3∂

---------
u1∂
X2∂

---------
∂
X3∂

---------
u1∂
X3∂

---------
∂
X2∂

---------+⎝ ⎠
⎛ ⎞ u1∂

X1∂
---------

∂
X3∂

---------
u1∂
X3∂

---------
∂
X1∂

---------+⎝ ⎠
⎛ ⎞ u1∂

X1∂
---------

∂
X2∂

---------
u1∂
X2∂

---------
∂
X1∂

---------+⎝ ⎠
⎛ ⎞

u2∂
X1∂

---------
∂
X1∂

---------
u2∂
X2∂

---------
∂
X2∂

---------
u2∂
X3∂

---------
∂
X3∂

---------
u2∂
X2∂

---------
∂
X3∂

---------
u2∂
X3∂

---------
∂
X2∂

---------+⎝ ⎠
⎛ ⎞ u2∂

X1∂
---------

∂
X3∂

---------
u2∂
X3∂

---------
∂
X1∂

---------+⎝ ⎠
⎛ ⎞ u2∂

X1∂
---------

∂
X2∂

---------
u2∂
X2∂

---------
∂
X1∂

---------+⎝ ⎠
⎛ ⎞

u3∂
X1∂

---------
∂
X1∂

---------
u3∂
X2∂

---------
∂
X2∂

---------
u3∂
X3∂

---------
∂
X3∂

---------
u3∂
X2∂

---------
∂
X3∂

---------
u3∂
X3∂

---------
∂
X2∂

---------+⎝ ⎠
⎛ ⎞ u3∂

X1∂
---------

∂
X3∂

---------
u3∂
X3∂

---------
∂
X1∂

---------+⎝ ⎠
⎛ ⎞ u3∂

X1∂
---------

∂
X2∂

---------
u3∂
X2∂

---------
∂
X1∂

---------+⎝ ⎠
⎛ ⎞

T

=

Hl Hnl

Πext u( )

Πext u( ) ρ0bTu Ω0 t0
Tu Γ0d

∂Ω0t

∫+d

Ω0

∫=

ρ

∂Ωt Ω∂ dΩ

Γd
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the case of the single-field (displacement-based) principle of virtual work [14]. 

Imposing the stationarity of the functional  with respect to the three fields ,  and

, we obtain

(16)

(17)

(18)

The classical Hu-Washizu formulation is limited to the case in which the internal energy  is a poten-

tial, as for elastic materials. Equations (16) through (18) assume the meaning of weak forms of equilib-

rium, compatibility and constitutive law, respectively. In order to generalize the Hu-Washizu functional to

the case of nonlinear inelastic materials, it is necessary to substitute the term  of the variation

 in Equation (18) with an expression for the second Piola-Kirchhoff stresses as a function of the

Green-Lagrange strain history, i.e.,  obtained through any material

constitutive law. In the sequel, superposed hats, i.e. , are placed on stress and stress-derived fields

evaluated in terms of other independently interpolated variables (i.e., in terms of strains obtained from the

assumed strain field) through the constitutive relations, while symbols without a superposed hat denote the

assumed displacement, stress and strain fields. Thus, Equation (18) becomes

(19)

Introducing the finite element discretization and considering explicitly the dependencies on the sensitivity

parameter , the mapping from the parent domain to the current configuration is given by 

(20)

and the mapping from the parent domain to the reference configuration is given by

(21)

where  and  denote the coordinates of node I of element “e” in the current configuration and

reference configuration, respectively. In Equations (20) and (21), the parameter  could represent a nodal

coordinate in the reference configuration (shape parameter), for example. In the sequel, the dependency on

ΠHW u SPK2 EG, ,( ) u SPK2

EG

δuΠHW 0    H TSPK2 ρ0b–( )
T

δu Ω0 t0
Tδu Γ0d

∂Ω0t

∫–d

Ω0

∫⇒ 0= =

δSPK2
ΠHW 0    H u EG–( )TδSPK2 Ω0d

Ω0

∫⇒ 0= =

δEG
ΠHW 0    

ϕ∂ EG( )
EG∂

------------------- SPK2–⎝ ⎠
⎛ ⎞

T
δEG Ω0d

Ω0

∫⇒ 0= =

ϕ EG( )

ϕ∂ EG( )
EG∂

-------------------

δEG
ΠHW

ŜPK2 EG( ) ŜPK2 EG τ( ) τ 0 t,[ ]∈,( )=

•̂

δEG
ΠHW 0    ŜPK2 EG( ) SPK2–( )

T
δEG Ω0d

Ω0

∫⇒ 0= =

θ

x � θ t, ,( ) Ne
�( )xI

e θ t,( )=

X � θ,( ) Ne
�( )XI

e θ( )=

xI
e θ t,( ) XI

e θ( )

θ



8

time is not expressed explicitly in order to avoid a heavy notation and because it can be easily understood

from the context. From the finite element discretization, the displacement, stress and strain fields are

expressed as

 e = 1, ..., Nel (22)

where , , and  denote the nodal displacement, stress and strain parameters, respectively;

, , and  are the shape (interpolation) functions for the displacement, stress and strain

fields, respectively, all quantities being referred to element “e”; and Nel denotes the number of finite ele-

ments used discretizing the structure. 

Substituting Equations (22) in Equations (16), (17) and (19), and recognizing that

(23)

where  denotes the union operator and  is the volume of the element “e” in the reference configura-

tion, we obtain the following weak forms of equilibrium, compatibility and constitutive law, respectively:

(24)

(25)

(26)

Let us refer to a single element and drop the suffix “e” in the sequel. Considering the arbitrary (virtual)

nature of , , and  in the above three equations, we obtain the following governing equations for

each of the finite elements used in the discretization of the structural system:

(27)

(28)

(29)

in which

     ue
� θ,( ) Ne

�( )qe θ( )=

SPK2
e

� θ,( ) Se
�( )se θ( )=

    EG
e

� θ,( ) Ee
�( )ee θ( )=

qe θ( ) se θ( ) ee θ( )

Ne
�( ) Se

�( ) Ee
�( )

Ω0
Ω0

e

e 1=

Nel

∪=

∪ Ω0
e

H  TSe X( )se θ( ) ρ0 X θ,( )b X θ,( )–( )
T

N⋅
e

X( ) Ω0d

Ω0
e

∫  t0
T X θ,( )Ne X( ) Γ0d

∂Ω0t
e

∫–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

e 1=

Nel

∑ δqe 0=

Ee X( )ee θ( ) H  Ne X( )qe θ( )–( )
T

Se⋅ X( ) Ω0d

Ω0
e

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

e 1=

Nel

∑ δse 0=

Se X( )se θ( ) ŜPK2

e
Ee X( )ee θ( ) θ,( )–( )

T
Ee X( )⋅ Ω0d

Ω0
e

∫
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

e 1=

Nel

∑ δee 0=

δqe δse δee

B
T θ( )s θ( ) Q θ( )– 0=

E θ( )e θ( ) B θ( )q θ( )– 0=

a e θ( ) θ,( )  E
T θ( )s θ( )– 0=
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(30)

(31)

(32)

(33)

(34)

where the symbol  is used to highlight the dependency of the operator  on  and  and

 denotes the Jacobian of the transformation between the parent domain  and the reference domain

 such that , . Equations (27) through (29) constitute a system of nq+ns+ne

coupled equations in nq+ns+ne unknowns, where nq, ns and ne denotes the number of displacement, stress

and strain parameters, respectively. Equation (29) is nonlinear if any of the used material models is nonlin-

ear, Equations (27) and (28) are nonlinear since  depends on  through the nonlinear part of the

operator  and  depends implicitly on  when  is displacement-dependent. Notice that

the surface tractions  at the element boundaries also contain the reactions of adjacent elements and thus

are generally functions of the nodal displacements, i.e., . The nonlinear problem is solved

using an incremental-iterative procedure, such as the Newton-Raphson method. 

Differentiating Equation (28) exactly with respect to  and performing some algebraic manipulations (see

Appendix A), we obtain

 (35)

in which the following matrices are introduced:

 (36)

(37)

where  denotes the material consistent (or algorithmic) tangent moduli at the integration point.

Matrices  and  are required in the element state determination for the response and in the

response sensitivity computation. The reader is referred to [16] for the conditions under which these two

matrices are invertible assuming that  is not singular.

Q θ( ) ρ0 X θ,( )bT X θ,( )N X( ) Ω0 t0
T X θ,( )N X( ) Γ0d

∂Ω0t θ( )
∫+d

Ω0 θ( )
∫=

           ρ0 � θ,( )bT
� θ,( )N �( )J � θ,( ) t0

T
� θ,( )N �( )J � θ,( ) ∂( )d

∂
∫+d∫=

B θ( ) ST X( )B X θ,( ) Ω0d

Ω0 θ( )
∫ ST

�( )B � θ,( )J � θ,( )d∫= =

B � θ,( ) H � θ,( ) N �( )=

E θ( ) ST X( )E X( ) Ω0d

Ω0 θ( )
∫ ST

�( )E �( )J � θ,( )d∫= =

a e θ( ) θ,( ) ET X( )ŜPK2 E X( )e θ( ) θ,( ) Ω0d

Ω0 θ( )
∫ ET

�( )ŜPK2 E �( )e θ( ) θ,( )J � θ,( )d∫= =

H � θ,( ) H � θ

J � θ,( )

Ω0 dΩ0 J � θ,( ) d⋅= � ∈

B θ( ) q θ( )

H � θ,( ) Q θ( ) q θ( ) t0

t0

t0 t0 q θ( ) θ,( )=

θ

de θ( )
dθ

-------------- Dt
1– θ( )E

T θ( )Dt
1–

θ( ) B θ( )dq θ( )
dθ

---------------
dB θ( )

dθ
---------------q θ( ) dE θ( )

dθ
---------------e θ( )–+⎝ ⎠

⎛ ⎞=

Dt θ( ) ET X( )kIP X( )E X( ) Ω0d

Ω0 θ( )
∫=

Dt θ( ) E θ( ) Dt
1– θ( ) E

T θ( )⋅ ⋅=

kIP X( )

Dt θ( ) Dt θ( )

kIP X( )
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Differentiating Equation (22)3 and the material constitutive relation with respect to  yields, respectively

(38)

(39)

Differentiating Equation (34) with respect to  gives

(40)

Equation (40) is obtained noting that, if  is a function defined in  and  denotes the inte-

gral of this function over the reference domain, then

(41)

from which 

(42)

Finally, by differentiating Equations (29) and (27) with respect to  and performing some algebraic manip-

ulations (see Appendix A), we obtain, respectively,

(43)

(44)

In order to compute the conditional response sensitivities (for q fixed, thus with ), Equations

(35), (38) through (40), (43) and (44) are modified as

 (45)

(46)

(47)

(48)

θ

dEG � θ,( )
dθ

------------------------- E �( )de θ( )
dθ

--------------=

dŜPK2 � θ,( )
dθ

-----------------------------
ŜPK2 � θ,( )∂

EG∂
-----------------------------

θ

dEG � θ,( )
dθ

-------------------------
ŜPK2 � θ,( )∂

θ∂
-----------------------------

EG

+ kIP �( )E �( )de θ( )
dθ

--------------
ŜPK2 � θ,( )∂

θ∂
-----------------------------

e

+= =

θ

da e θ( ) θ,( )
dθ

---------------------------- ET
�( )dŜPK2 � θ,( )

dθ
-----------------------------J � θ,( ) ET

�( )ŜPK2 � θ,( ) J � θ,( )d
θd

-------------------d∫+d∫=

f X θ,( ) Ω0 θ( ) I θ( )

I θ( ) f X θ,( ) Ω0d

Ω0 θ( )
∫ f � θ,( )J � θ,( )d∫= =

dI θ( )
dθ

-------------
d

dθ
------ f � θ,( )J � θ,( )d∫⎝ ⎠

⎜ ⎟
⎛ ⎞ d

dθ
------ f � θ,( )J � θ,( )[ ]d∫= =

df � θ,( )
dθ

-------------------J � θ,( ) f � θ,( )dJ � θ,( )
dθ

--------------------d∫+d∫=

θ

ds e θ( ) θ,( )
dθ

---------------------------- Dt
1–

θ( )E θ( )Dt
1– θ( ) da e θ( ) θ,( )

dθ
----------------------------

d E
T θ( )( )

dθ
-----------------------s e θ( ) θ,( )–⎝ ⎠

⎛ ⎞=

dQ e θ( ) θ,( )
dθ

------------------------------ B
T θ( )ds e θ( ) θ,( )

dθ
----------------------------

d B
T θ( )( )
dθ

-----------------------s e θ( ) θ,( )+=

q θ( )∂
θ∂

--------------
q

0=

e θ( )∂
θ∂

-------------
q

Dt
1– θ( )E

T θ( )Dt
1–

θ( ) B θ( )∂
θ∂

---------------
q

q θ( ) dE θ( )
dθ

---------------e θ( )–⎝ ⎠
⎛ ⎞=

EG � θ,( )∂
θ∂

------------------------
q

E �( ) e θ( )∂
θ∂

-------------
q

=

ŜPK2 � θ,( )∂
θ∂

-----------------------------
q

kIP �( )E �( ) e θ( )∂
θ∂

-------------
q

ŜPK2 � θ,( )∂
θ∂

-----------------------------
e q,

+=

a e θ( ) θ,( )∂
θ∂

----------------------------
q

ET
�( ) ŜPK2 � θ,( )∂

θ∂
-----------------------------

q

J � θ,( ) ET
�( )ŜPK2 � θ,( ) J � θ,( )d

θd
-------------------d∫+d∫=
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(49)

(50)

where the quantity  in Equation (47) is computed through conditional differentiation (at the

material level) of the material constitutive law. Note that  depends on  only through , and

thus . Furthermore,  depends on  both explicitly and implicitly through ,

i.e., , as shown in Equation (35). The quantities  and  also depend on  both

explicitly and implicitly through , since they are functions of  as shown in Equations (43)

and (44).

3.2 Specialization to geometric linear formulation

If linear geometry (i.e., small displacements and small strains) is assumed, the three-field mixed finite ele-

ment formulation can be obtained from the stationarity conditions of the Hu-Washizu functional, that can

be written as [11]

(51)

where u, � and � are the assumed displacement, stress and (small) strain fields, respectively,  is the

strain energy density,  is a linear differential operator matrix defined as

(52)

As in the previous section, matrix notation and Voigt notation are used [14] here. The term 

denotes the potential energy of the external forces and is defined as

(53)

As in the general formulation presented in previous section, the term representing the kinetic energy is not

included in the Hu-Washizu functional in Equation (51). 

s e θ( ) θ,( )∂
θ∂

---------------------------
q

Dt
1–

θ( )E θ( )Dt
1– θ( ) a e θ( ) θ,( )∂

θ∂
----------------------------

q

d E
T θ( )( )
dθ

-----------------------s e θ( ) θ,( )–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Q e θ( ) θ,( )∂
θ∂

-----------------------------
q

B
T θ( ) s e θ( ) θ,( )∂

θ∂
---------------------------

q

B
T θ( )( )∂
θ∂

-----------------------
q

s e θ( ) θ,( )+=

ŜPK2 � θ,( )∂
θ∂

-----------------------------
e q,

E θ( ) θ Ω0 θ( )

dE θ( )
dθ

---------------
E θ( )∂

θ∂
---------------

q

= e θ( ) θ q θ( )

e θ( ) e q θ( ) θ,( )= s θ( ) Q θ( ) θ

e θ( ) a e θ( ) θ,( )

ΠHW u � �, ,( ) ϕ �( ) Ω �
T D u �–( ) Ω Πext u( )–d

Ω
∫+d

Ω
∫=

ϕ �( )

D

D

∂
X1∂

--------- 0 0 0
∂
X3∂

---------
∂
X2∂

---------

0
∂
X2∂

--------- 0
∂
X3∂

--------- 0
∂
X1∂

---------

0 0
∂
X3∂

---------
∂
X2∂

---------
∂
X1∂

--------- 0

T

=

Πext u( )

Πext u( ) bTu Ω tTu Γd

∂Ωt

∫+d

Ω
∫=
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Imposing stationarity of the Hu-Washizu functional in Equation (51) with respect to the three fields u, �

and �, yields

(54)

(55)

(56)

The classical Hu-Washizu formulation is limited to the case in which the internal energy  is a poten-

tial, as for elastic materials. Equations (54) through (56) assume the meaning of weak forms of equilib-

rium, compatibility and constitutive law, respectively. In order to generalize the Hu-Washizu functional to

the case of nonlinear inelastic materials, it is necessary to substitute the term  of the variation

 in Equation (56) with an expression for the stresses as a function of the strain history, i.e.,

, obtained through any material constitutive law (see Section 3.1). 

The finite element approximations of the three independently interpolated fields u, � and � take the form,

respectively,

 e = 1, ..., Nel (57)

Henceforth, the dependencies of the different quantities on the sensitivity parameter  and on the position

vector  are shown explicitly because of their important role in the derivation of the

response sensitivity equations. Unlike in Section 3.1, relations for shape sensitivity computations are not

derived; they would require considering the dependencies of shape functions and integration domains on

the sensitivity parameter . 

Substituting Equations (57) in Equations (54) through (56), we obtain the following weak forms of equilib-

rium, compatibility and constitutive law, respectively,

(58)

(59)

δuΠHW 0    DT
� b–( )

T
δu Ω tTδu Γd

∂Ωt

∫–d

Ω
∫⇒ 0= =

δ�ΠHW 0    D u �–( )Tδ� Ωd

Ω
∫⇒ 0= =

δ�ΠHW 0    
ϕ �( )∂

�∂
-------------- �–⎝ ⎠
⎛ ⎞ T

δ� Ωd

Ω
∫⇒ 0= =

ϕ �( )

ϕ �( )∂
�∂

--------------

δ�ΠHW

�̂ �( ) �̂ � τ( ) τ 0 t,[ ]∈,( )=

 
 ue X θ,( ) Ne X( )qe θ( )=

�
e X θ,( ) Se X( )se θ( )=

 �
e X θ,( ) Ee X( )ee θ( )=

θ

X X1 X2 X3, ,[ ]T
=

θ

DTSe X( )se θ( ) be X( )–( )
T

N⋅
e

X( ) Ωd

Ωe

∫  tT X( )Ne X( ) Γd

∂Ωt
e

∫–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

e 1=

Nel

∑ δqe 0=

Ee X( )ee θ( ) DNe X( )qe θ( )–( )
T

Se⋅ X( ) Ωd

Ωe

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

e 1=

Nel

∑ δse
0=
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(60)

Let us define  and drop the suffix “e” in the sequel. Considering the arbitrary (virtual)

nature of , , and  in Equations (58) through (60), we obtain the following governing equations

for each of the finite elements used in the discretization of the structural system:

(61)

(62)

(63)

where

(64)

(65)

(66)

(67)

Equations (61) through (63) represent a system of nq+ns+ne (generally) coupled equations in nq+ns+ne

unknowns, where nq, ns and ne denote the number of displacement, stress and strain parameters, respec-

tively. Equations (61) and (62) are linear, while Equation (63) is nonlinear if any of the used material mod-

els is nonlinear. The nonlinear problem is solved using an incremental-iterative scheme, such as the

Newton-Raphson method. In some special cases the matrix  is invertible (e.g., when the stress shape

functions  and strain shape functions  are identical) [16] and Equations (61) through (63) can

be uncoupled and solved sequentially. However, the general case is considered hereunder, while a special

case for which the matrix  is invertible will be presented later for a specific finite element implementa-

tion (Section 4.1).

Differentiating Equation (62) with respect to  and premultiplying by  yields the following

relation, after some algebraic manipulations (see Appendix A):

 (68)

where, similarly as in the previous section, matrices  and  are defined as

 (69)

Se X( )se θ( ) �̂
e

Ee X( )ee θ( ) θ,( )–( )
T

Ee X( )⋅ Ωd

Ωe

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

e 1=

Nel

∑ δee
0=

Be X( ) D Ne X( )=

δqe δse δee

B
T

s θ( ) Q θ( )– 0=

Ee θ( ) Bq θ( )– 0=

a e θ( ) θ,( )  E
T

s θ( )– 0=

Q θ( ) bT X θ,( )N X( ) Ω tT X θ,( )N X( ) Γd

∂Ωt

∫+d

Ω
∫=

B ST X( )B X( ) Ωd

Ω
∫=

E ST X( )E X( ) Ωd

Ω
∫=

a e θ( ) θ,( ) ET X( )�̂ E X( )e θ( ) θ,( ) Ωd

Ω
∫=

E

S X( ) E X( )

E

θ Dt
1–
E

T
Dt

1–

de θ( )
dθ

-------------- Dt
1–
E

T
Dt

1–
Bdq θ( )

dθ
---------------=

Dt Dt

Dt ET X( )kIP X( )E X( ) Ωd

Ω
∫=
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(70)

These matrices are required in the element state determination for the response and in the response sensi-

tivity computation. The reader is referred to [16] for the conditions under which these two matrices are

invertible assuming that  is not singular.

Differentiating Equation (57)3 and the material constitutive relation with respect to  yields, respectively,

(71)

(72)

Differentiating Equation (67) with respect to  and substituting Equations (72) and (69) in the resulting

equation gives

(73)

Finally, by differentiating Equations (63) and (61) with respect to  and performing some algebraic manip-

ulations (see Appendix A), we obtain, respectively,

(74)

(75)

In order to compute the conditional response sensitivities (for q fixed, thus with ), Equations

(68) and (71) through (75) are modified as

 (76)

(77)

(78)

(79)

(80)

(81)

where the quantity  in Equation (78) is computed by conditional differentiation (at the material

Dt EDt
1–
E

T
=

kIP X( )

θ

d� X θ,( )
dθ

---------------------- E X( )de θ( )
dθ

--------------=

d�̂ X θ,( )
dθ

-----------------------
�̂ X θ,( )∂

�∂
----------------------

θ

d� X θ,( )
dθ

----------------------
�̂ X θ,( )∂

θ∂
----------------------

�

+ kIP X( )E X( )de θ( )
dθ

--------------
�̂ X θ,( )∂

θ∂
----------------------

e

+= =

θ

da e θ( ) θ,( )
dθ

---------------------------- ET X( )d�̂ X θ,( )
dθ

----------------------- Ωd

Ω
∫ Dt

de θ( )
dθ

-------------- ET X( ) �̂ X θ,( )∂
θ∂

----------------------
e

Ωd

Ω
∫+= =

θ

ds e θ( ) θ,( )
dθ

---------------------------- Dt
1–
EDt

1–
 
da e θ( ) θ,( )

dθ
----------------------------=

dQ e θ( ) θ,( )
dθ

------------------------------ B
T

 
ds e θ( ) θ,( )

dθ
----------------------------=

q θ( )∂
θ∂

--------------
q

0=

e θ( )∂
θ∂

-------------
q

0=

� X θ,( )∂
θ∂

---------------------
q

0=

�̂ X θ,( )∂
θ∂

----------------------
q

�̂ X θ,( )∂
θ∂

----------------------
e

=

a e θ( ) θ,( )∂
θ∂

----------------------------
q

ET X( ) �̂ X θ,( )∂
θ∂

----------------------
q

Ωd

Ω
∫=

s e θ( ) θ,( )∂
θ∂

---------------------------
q

Dt
1–
EDt

1–
 

a e θ( ) θ,( )∂
θ∂

----------------------------
q

=

Q e θ( ) θ,( )∂
θ∂

-----------------------------
q

B
T

 
s e θ( ) θ,( )∂

θ∂
---------------------------

q

=

�̂ X θ,( )∂
θ∂

----------------------
e
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level) of the material constitutive law. It is noteworthy that, in the case of linear geometry, assuming q

fixed is equivalent to assuming e fixed (e and q are linearly related as shown by Equations (62) and (68)),

while this equivalence does not apply in the case of nonlinear geometry (see Equations (28) and (35)).

3.3 Specialization to 2-D frame structures

As already discussed in the introduction, the frame element is an important class of finite elements for

which the beneficial effects of a multi-field mixed formulation have been studied, proved and employed.

The specialization of the above three-field mixed formulation to 2-D frame elements requires the definition

of the section deformation vector, d, and section stress resultant vector, D. The explicit definition of the

above vectors depends on the specific frame element considered. In general, a matrix  can be

defined such that

(82)

(83)

where x denotes the abscissa along the frame axis ( , L = length of the frame element) and A(x)

denotes the cross-section at abscissa x. Explicit expressions for d, D, and  corresponding to com-

mon frame models presented in the literature are given in Appendix B. In this section and in Appendix B,

the notation  is employed for consistency with the majority of the litera-

ture on frame elements.

For frame finite elements, it is common to use shape functions directly for the previously defined quanti-

ties d and D and to obtain the complete displacement fields from the displacements  of the refer-

ence axis of the frame. Thus, Equation (57) can be rewritten as

(84)

Accounting for Equations (82) through (84), all the theoretical developments presented in the previous sec-

tions for both response and response sensitivity analysis can be directly applied to any frame element

treated in the context of a three-field mixed formulation. In particular, the governing equations for a frame

element are formally identical to Equations (61)-(63), when the following specialized definitions are used

(85)

As X( )

� X θ,( ) As X( )d x θ,( )=

D x θ,( ) As X( )T
� X θ,( ) Ad

A x( )
∫=

x 0 L,[ ]∈

As X( )

X X1 X2 X3, ,[ ]T
x y z, ,[ ]T

= =

u x θ,( )

u x θ,( ) N x( )q θ( )=

D x θ,( ) S x( )s θ( )=

d x θ,( ) E x( )e θ( )=

Q θ( ) bT
x( )N x( ) x tT

x( )N x( )[ ]
x 0=

x L=
+d

0

L

∫=
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(86)

(87)

(88)

 (89)

where  denotes the consistent tangent stiffness matrix of the section at the abscissa x.

The sensitivity Equations (68) and (71) through (75) specialize to

 (90)

(91)

(92)

(93)

(94)

(95)

The equations for conditional response sensitivity computation are readily obtained from Equations (90)

through (95) imposing  and computing all the derivatives for q fixed, as seen in Section 3.2

(Equations (76) through (81)).

4.  VALIDATION EXAMPLES

4.1 Finite element modeling of steel-concrete composite frame structures

Composite frames made of steel-concrete beams and steel columns are nowadays common solutions in the

design of seismic resistant frames. As a consequence, in the last ten years, a growing attention has been

given to finite element modeling and analysis of steel-concrete composite structures [25]. The behavior of

B ST
x( )B x( ) xd

0

L

∫=

E ST
x( )E x( ) xd

0

L

∫=

a e θ( ) θ,( ) ET
x( )D̂ E x( )e θ( ) θ,( ) xd

0

L

∫=

Dt ET x( )ks x( )E x( ) xd

0

L

∫=

ks x( )

de θ( )
dθ

-------------- Dt
1–
E

T
Dt

1–
B 

dq θ( )
dθ

---------------=

dd x θ,( )
dθ

--------------------- E x( )de θ( )
dθ

--------------=

dD̂ x θ,( )
dθ

---------------------- ks x( )E x( )de θ( )
dθ

--------------
D̂ x θ,( )∂

θ∂
---------------------

e

+=

da e θ( ) θ,( )
dθ
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de θ( )

dθ
-------------- ET x( ) D̂ x θ,( )∂

θ∂
---------------------

e

xd

0

L

∫+=

ds e θ( ) θ,( )
dθ

---------------------------- Dt
1–
EDt

1– da e θ( ) θ,( )
dθ

----------------------------=

dQ e θ( ) θ,( )
dθ

------------------------------ B
T

 
ds e θ( ) θ,( )

dθ
----------------------------=

q θ( )∂
θ∂

--------------
q

0=
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composite beams, consisting of two components connected through shear connectors to form an interact-

ing unit, is significantly influenced by the type of connection between the steel beam and the concrete slab.

Partial composite action develops when using flexible shear connectors [26]. Thus, for accurate analytical

predictions, structural models of composite structures must account for the interlayer slip between the steel

and concrete components. For this reason, a composite beam finite element able to model the effects of the

interface slip is required. The three-dimensional model for composite beams with deformable shear con-

nection under general state of stress [27] simplifies to the model introduced by Newmark et al. [28] if only

the in-plane bending behavior is considered. In the Newmark’s model, the geometrically linear Euler-Ber-

noulli beam theory (i.e., small displacements, rotations and strains) is used to model each of the two parts

of the composite beam; the effects of the deformable shear connection are accounted for by using an inter-

face model with distributed bond, and the contact between the steel and concrete components is enforced

(Fig. 1). The interface slip is small, since it corresponds to the difference in longitudinal displacements of

the steel and composite fibers at the steel-concrete interface.

Compared to common monolithic beams, composite beams with deformable shear connection raise more

challenging modeling and numerical difficulties, e.g., complex distributions of the interface slip and force

can develop [29] and special measures are necessary to avoid shear-locking phenomena [30]. Despite some

difficulties, three-field mixed elements [23] can be successfully adopted for numerical simulation of the

behavior of steel-concrete composite beams, producing accurate global and local results when a proper dis-

cretization of the structure is used [31].

In the present study, a 2-D steel-concrete composite frame element with deformable shear connection, pre-

viously developed by the second author [23], is used for response simulation and is augmented with the

response sensitivity computation procedure presented above. The finite element used is based on the three-

field mixed formulation and assumes Newmark’s kinematics (Fig. 1). It has 10 nodal degrees-of-freedom

(DOFs) in total: 8 DOFs are external, while 2 DOFs are internal and are condensed out before assembly at

the structure level (Fig. 2). The procedure for response sensitivity calculation in presence of static conden-

sation has been previously derived by the authors and can be found elsewhere [32]. This finite element was

proven to provide accurate response simulations and to be superior in the evaluation of local quantities

(e.g., section deformations, section stress resultants, shear force distribution at the steel-concrete interface,

etc.) to equivalent displacement-based finite elements when meshes requiring similar computational effort

are used. Furthermore, this element presents a useful feature: it is able to model a standard monolithic

steel-only or reinforced concrete-only frame element without any modification in the code. This is

achieved simply by considering at the section level a concrete slab or a steel beam of null cross-section

area, obtaining a monolithic steel frame or a reinforced concrete frame, respectively. The only precaution

is to apply constraints to the eliminated DOFs. The obtained three-field mixed monolithic frame element is
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characterized by exact distributions of section stress resultants (as for force-based frame elements [19]),

while the assumed displacement fields have the same form as for standard displacement-based frame ele-

ments. The above useful feature allows to assemble easily monolithic and composite frame elements in

frame models, representing correctly the connections between steel columns and steel beams or reinforced

concrete columns and concrete slabs [32].

Regarding the development of the sensitivity analysis, this element presents also a favorable feature: the

response sensitivity computation procedure, developed for a general three-field mixed finite element and

particularized to a frame element, can be further simplified significantly by taking advantage of the proper-

ties of the employed shape functions for the section deformation and section stress resultant fields. This

condition derives from the fact that the shape functions used for approximating the section deformations

and the section stress resultants are the same (i.e., ). This choice for the shape functions pro-

duces a matrix  that is positive definite and, therefore, invertible [16]. Using this property, Equations

(90) and (94) simplify to

(96)

(97)

In this way, inversion of the two matrices  and  (required in Equations (90) and (94)) is avoided and

only matrix  has to be inverted. It is noteworthy that, in this special case for which ns = ne, the three

matrices , , and  have the same dimension  = .

4.2 Implementation of composite frame element and response sensitivity computation scheme in a gen-

eral-purpose nonlinear finite element structural analysis program

For validation purposes, the steel-concrete composite frame element and the response sensitivity computa-

tion scheme for three-field mixed formulation were implemented in a general-purpose nonlinear finite ele-

ment structural analysis program, FEDEASLab [33]. FEDEASLab is a Matlab toolbox [34] for linear and

nonlinear, static and dynamic structural analysis, which also provides a general framework for parameter-

ization of finite element models and response sensitivity computation [35]. 

Taking advantage of the modularity of FEDEASLab, a variety of suitable cross-sections (e.g., composite

cross-section with symmetric and unsymmetric steel I-beams) and material constitutive models (e.g., Kent-

Scott-Park concrete model, Popowics-Saenz concrete model with nonlinear tension stiffening) were also

implemented for response and response sensitivity computation. Thus, a library of material and element

models was implemented in FEDEASLab, which allows accurate response and response sensitivity analy-

E x( ) S x( )=

E

de θ( )
dθ
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1–
B 

dq θ( )
dθ

---------------=

ds e θ( ) θ,( )
dθ

---------------------------- E
T–

 
da e θ( ) θ,( )

dθ
----------------------------=

Dt Dt

E

Dt Dt E ns ns× ne ne×
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ses of steel-concrete composite frame structures. This library can be easily updated and/or extended to fol-

low the state-of-the-art in modeling such structures. 

4.3 Benchmark example: one-story one-bay steel-concrete composite frame

The benchmark problem considered is a one-story one-bay frame, made of two steel columns and a steel-

concrete composite beam (Fig. 3). The column steel section is a European HE360A; the composite beam

consists of a European IPE300 steel section coupled to a reinforced concrete slab 1000 mm wide and 120

mm thick through two rows of Nelson stud connectors (Fig. 4). Two identical layers of steel reinforcement

with a total area As = 1000 mm2 are present in the slab. Two loading conditions are considered: (1) push-

over analysis (after static application of a uniform distributed vertical load of 46 kN/m on the beam, repre-

senting self-weight, permanent loads and live loads, a horizontal load of increasing magnitude is applied

quasi-statically at the beam-column nodes at the roof level, see Fig. 3), and (2) earthquake base excitation

(after static application of a uniform distributed vertical load of 46 kN/m on the beam, the frame is sub-

jected to a horizontal ground motion corresponding to the N90W (W-E) component of the Loma Prieta

earthquake of October 17, 1989, recorded at the Capitola site [36], scaled by a factor 4).

The structure is discretized into 6 finite elements, i.e., 4 elements for the steel-concrete composite beam

and 1 element for each steel column. The constitutive law used for the steel material of the beam and of the

two columns as well as for the reinforcement steel is a uniaxial cyclic J2 plasticity model with the von

Mises yield criterion in conjunction with linear kinematic and isotropic hardening laws [5]. The selected

constitutive law for the concrete material is a uniaxial cyclic law with monotonic envelope given by the

Popovics-Saenz law [37,38]. The constitutive law used for the shear connectors is a slip-force cyclic law

with monotonic envelope given by the Ollgaard et al. law [39] and a cyclic response following a modified

version of the model proposed by Eligenhausen et al. [40]. Detailed formulation and differentiation of the

concrete and connection constitutive laws can be found in [41]. The values of the material constitutive

parameters are given in Table 1. Reference [41] as well as Reference [32] also provide comparisons

between analytical predictions and experimental results for the response of steel-concrete composite beams

and frame structures modeled using a displacement-based frame element with deformable shear connec-

tion. 

In the following, numerical simulations of important global and local response quantities as well as of their

consistent sensitivities to various material parameters are presented for each of the two loading conditions

defined above. In this paper, the response sensitivity results are presented in normalized form, i.e., they are

multiplied by the nominal value of the sensitivity parameter and divided by a factor 100. In this way, the

normalized response sensitivities represent the variation of the response quantity considered due to 1 per-
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cent change in the sensitivity parameter. These normalized sensitivities can thus be used to compare (in the

deterministic sense, or considering that 1 percent change in the various sensitivity parameters are equally

likely) the relative effects/importance of the sensitivity parameters on the response quantities considered.

4.3.1 Response and response sensitivity analysis for quasi-static load case

The quasi-static pushover analysis of the testbed structure defined above is performed using the force con-

trol method. First, a vertical distributed load q = 46 kN/m along the beam is applied statically to the struc-

tural model. Subsequently, a horizontal load P (Fig. 3) of increasing magnitude is applied quasi-statically

to the two horizontal degrees of freedom (DOFs) of the left-end node of the composite beam, until the ulti-

mate horizontal resisting force of the structure is reached (collapse state). The load P is equally distributed

between the two DOFs (i.e., P/2 to each DOF), in order to simulate an equivalent earthquake loading for

assumed equal tributary masses of the concrete slab and steel beam.

In Fig. 5, the applied horizontal load P (representing also the total shear force at the base of the columns) is

plotted versus the horizontal displacement u1 (concrete slab DOF) of the left-end of the composite beam.

Fig. 6 shows the relation between the load P and the vertical displacement v at midspan of the composite

beam. Figs. 7 and 8 plot the bending moment - curvature and shear force - slip response curves, respec-

tively, at the left-end section of the composite beam. Fig. 5 clearly shows the ductile behavior of the con-

sidered structure that reaches a horizontal displacement u1 of about 30 mm ( ) without a

sensible stiffness degradation (almost linear behavior at the global level, even though the local behavior is

strongly nonlinear from the beginning of the analysis, see Fig. 8), while the horizontal displacement at col-

lapse is slightly below 150 mm ( ). The change of stiffness around u1 = 45 mm is mostly due to

stiffness degradation of the composite beam, while the change of stiffness around u1 = 100 mm

( ) is caused primarily by yielding of the columns. This is consistent with the fact that this

frame structure has been designed for a “strong column - weak beam” behavior. In Fig. 6, the changes in

stiffness mentioned above can be observed even more clearly: the vertical displacement v is almost

unchanged from the one produced by the vertical loads for an applied horizontal load , then the

same stiffness changes as in Fig. 5 are visible. It is noteworthy that the concrete never reaches its peak

compressive strength and the shear connectors do not fail before the entire structure reaches the collapse

state (structure tangent stiffness matrix nearly singular). The moment and shear force at the left-end section

of the composite beam change sign (compared with their values after application of the gravity loads) dur-

ing the pushover, as shown in Figs. 7 and 8, respectively. In Fig. 8, a phase of reduced stiffness (pinching)

is observed in the shear force - slip behavior. This stiffness reduction in the shear connection behavior

models the closing of voids/gaps and cracks due to inversion of the shear force. 

P 300 kN=

P 575 kN=

P 545 kN=

P 95 kN=
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Figs. 9-28 present sensitivity results for the pushover analysis of the frame structure regarding the global

(u1 and v) and local (M and fs) response quantities defined previously. Figs. 9-12 plot the response sensi-

tivities of the horizontal displacement u1 to material parameters of the steel material of the beam and col-

umns, the reinforcement steel, the concrete and the shear connection, respectively. Fig. 13 shows a direct

comparison of the sensitivities of the horizontal displacement u1 to the strength parameters of the steel of

the beam and columns (fys), the concrete (fc) and the shear connection (fsmax). From these figures, it is

observed that the response quantity u1 is more sensitive to material stiffness parameters (Es, Er, Ec) in the

first phase of the analysis (in which the global behavior of the structure is almost linear), but becomes

dominantly sensitive to strength parameters (fys, fyr, fc, fsmax) when the structure approaches its collapse

state. It can be seen that fys is the material parameter affecting the most the response quantity u1, especially

near the collapse load. Similarly, the response sensitivities to material parameters of the beam-and-column

steel material, the reinforcement steel, the concrete and the shear connection are displayed in Figs. 14-17

for the vertical displacement v, in Figs. 19-22 for the bending moment M acting at the left-end composite

beam section and in Figs. 24-27 for the shear force fs acting at the left-end composite beam section, respec-

tively. Figs. 18, 23 and 28 compare the sensitivities to material strength parameters fys, fc and fsmax of the

vertical displacement v, the bending moment M and the shear force fs, respectively. Among the material

parameters considered, the parameter that affects the most the vertical displacement v and the bending

moment M is the yield strength fys of the beam-and-column steel material, while the shear force fs is most

affected by the shear strength fsmax of the shear connection. 

In addition, the above stand-alone sensitivity results allow the following considerations, useful for gaining

insight into the nonlinear response behavior of the considered structure to quasi-static pushover: 

(a) Parameters εf and ff, describing the degrading branch of the concrete constitutive law, do not affect the

response behavior of the considered frame. In fact, the concrete never reaches its peak strength and

therefore the response sensitivities with respect to εf and ff are equal to zero for the entire pushover

analysis. For this reason, these sensitivities are not plotted in Figs. 11, 16, 21 and 26.

(b) Parameter τfr (residual frictional stress per unit length of the shear connection [32]) does not affect

appreciably the response quantities considered (see Figs. 12, 17, 22 and 27), consistently with the fact

that the shear connection does not reach failure (residual frictional state).

(c) Stiffness related material parameters significantly affect the response at low loading levels, while

strength related material parameters become predominant at high loading levels, particularly near fail-

ure (see in particular Figs. 14-16). Sensitivity analysis not only confirms this intuitive result, but also

allows to precisely quantify the effects and relative importance of the different material parameters at
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different loading stages.

Figs. 29-31 present the results of a convergence study of the sensitivities of the horizontal displacement u1

computed through the forward FDM (using increasingly small  ratio) to the sensitivity results

obtained using the DDM, for material parameters fys, fc and fsmax, respectively. Results of the same con-

vergence study are shown in Figs. 32-34 for sensitivities of the connection shear force fs acting at the left-

end composite beam section to the same material parameters fys, fc and fsmax. The insets in Figs. 29-34

show zoom views that allow to better appreciate the convergence trends. In these figures, the results corre-

sponding to three different values of parameter perturbation (i.e., 10-1, 10-2 and 10-5 of the nominal value

of the considered parameter) are plotted together with the exact DDM sensitivities. These values of the

 ratio have been carefully selected in order to obtain a clear visual display of the convergence trends,

and particular attention has been given in choosing the lower value of parameter perturbation so as to avoid

numerical problems related to round-off errors (“step-size dilemma”, see [5,6,8,32,42]). Convergence stud-

ies for other response quantities and other material parameters have also been performed, giving similar

results in terms of convergence of forward FDM computations to DDM sensitivities for decreasing param-

eter perturbation values [41]. These convergence results validate the DDM-based algorithms for response

sensitivity computation presented in this paper and their computer implementation for finite elements

based on the three-field mixed formulation in the case of quasi-static structural analysis.

4.3.2 Response and response sensitivity analysis for dynamic load case

In dynamic analysis, the inertia and damping properties of the structure must also be included in the model.

The total mass of the frame has been discretized into translational (horizontal and vertical) masses lumped

at the two external nodes of each composite beam element. The mass corresponding to the permanent and

live loads (i.e., total vertical distributed load of 40 kN/m) was distributed evenly between the slab and steel

beam and added to the self-weight (5 kN/m for the slab and 1 kN/m for the beam). Half of the mass corre-

sponding to the self-weight of the columns was added to the DOFs at the nodes where steel beam and col-

umn are connected. With this assumed distribution of masses, an eigenanalysis was performed using the

initial stiffness properties of the structure. The first vibration mode of period T1 = 0.30s corresponds to a

horizontal translation of the entire composite beam, while the second and third modes of vibration of

period T2 = 0.18s and T3 = 0.13s, respectively, correspond to vertical motions. The other modes of vibra-

tion correspond to axial compression-tension modes in the composite beams and vertical modes of the

frame; they are all characterized by short periods and small modal participating masses. From the modal

analysis results, a Rayleigh-type damping matrix [43], proportional to the time-invariant mass and initial

stiffness matrices, was computed based on an assumed damping ratio  for the first and third

∆θ θ⁄

∆θ θ⁄

ξ 0.05=



23

modes. 

After static application of a vertical distributed load of 46 kN/m along the beam, the frame is subjected to a

horizontal seismic motion corresponding to the first 30s of the N90W (W-E) component of the Loma Prieta

earthquake of October 17, 1989, recorded at the Capitola site [36], scaled by a factor of four to yield a peak

ground acceleration of 6160 mm/s2 or 0.62g (see Fig. 35), and with two seconds of zero ground motion

acceleration added at the end of the record in order to capture the free-vibration properties of the structure

with yielded/degraded material properties at the end of the earthquake. The equation of motion and

response sensitivity equation are integrated using the constant-average-acceleration method [43] with a

constant time step of . The following figures present results of the response history analysis

performed.

Figs. 36 and 37 show the time histories of the horizontal displacement u1 and vertical displacement v,

respectively. The moment - curvature response at the left-end composite beam section is plotted in Fig. 38,

while the shear force - slip response at the same section is given in Fig. 39. During the earthquake ground

motion, extensive plastic behavior is developed by the structure. In particular, the vertical displacement v

exhibits a large increase due to inelastic deformation at around t = 7s (Fig. 37) and the hysteretic behavior

of the shear force - slip response is pronounced (Fig. 39). From Fig. 36, it can be seen that the maximum

horizontal displacement (47mm) is moderately large (corresponding to an interstory drift ratio of 1.2%)

and the frame exhibits a small permanent horizontal deformation at the end of the earthquake. While the

moment - curvature response at the section level (Fig. 38) remains quasi-linear during application of the

gravity loads, the hysteretic behavior is significant during the earthquake response including some degra-

dation of the flexural capacity. The curvature ductility (defined as ratio between the maximum curvature

and the curvature at yielding) is about five (see Fig. 38). It is noteworthy that the structural performance of

the present benchmark steel-concrete composite frame, when subjected to the earthquake excitation con-

sidered, is satisfactory since the plastic behavior is limited to the beam, the permanent deformations are

small and brittle failure mechanisms (such as concrete crushing and rupture the shear connection) are

avoided.

Figs. 40-43 show the normalized sensitivities of the horizontal displacement u1 to Young’s modulus Es of

the beam-and-column steel, Young’s modulus Er of the reinforcement steel, the initial tangent stiffness Ec

of concrete, and the strength fsmax of the shear connection, respectively. The choice of plotting these sensi-

tivities is driven by the fact that, for the dynamic case, material stiffness related parameters affect the hori-

zontal displacement u1 more than strength related parameters. This is shown in Fig. 44, which compares

the sensitivities of the horizontal displacement u1 to the material parameters affecting the most this

∆t 0.005s=
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response quantity. The response sensitivity histories are observed to have similar waveforms (frequency

content) to that of the time history of u1 and exhibit a small shift in their mean value. This feature is linked

to the material constitutive laws employed: all these constitutive laws (except for the concrete constitutive

model beyond the peak strength, which was not reached in the dynamic load case presented here) use the

initial tangent stiffness for unloading from plastic branches, and thus the effective first period of vibration

of the structure remains close to the initial fundamental period even after large plastic deformations are

experienced by the structure (waveform similarity). The small shift in mean value of the response sensitiv-

ities is due to the hysteretic nature of the material constitutive laws. 

Fig. 45 shows the sensitivity of the vertical displacement v at midspan of the composite beam to Young’s

modulus Es of the beam-and-column steel material, while Fig. 46 compares the sensitivities of v to the

material parameters to which this response quantity is most sensitive. Similarly, Fig. 47 shows the sensitiv-

ity of the bending moment M acting at the left-end composite beam section to Young’s modulus Es of the

beam-and-column steel material and Fig. 48 compares the sensitivities of M to material parameters to

which M is most sensitive. Fig. 49 shows the sensitivity of the shear force fs acting at the left-end compos-

ite beam section to Young’s modulus Es of the beam-and-column steel material, while Fig. 50 compares the

sensitivities of fs to material parameters to which fs is most sensitive. The material parameter affecting the

most the bending moment M and the shear force fs is Young’s modulus Es of the beam-and-column steel

material, while the material parameter to which the vertical displacement v is most sensitive is the yield

strength fys of the beam-and-column steel material. The dynamic response sensitivity analysis shows that

the global and local responses of the considered structure are most sensitive to the material parameters

describing the constitutive law of the beam-and-column steel material, as was already the case for the

pushover loading and as expected from design considerations.

Fig. 51 shows the sensitivities of the vertical displacement v to the yield strength fys of the beam-and-col-

umn steel material computed using both the DDM and forward FDM for decreasing values of the parame-

ter perturbation. Fig. 52 shows a closer view of the convergence of the forward FDM results to the DDM

results. Similarly, the sensitivities of the bending moment M to the yield strength fys, computed via the for-

ward FDM for decreasing values of the parameter perturbation are plotted in Fig. 53 together with the cor-

responding response sensitivity computed using the DDM. Fig. 54 offers a zoom view of the previous

figure, showing again convergence of the forward FDM results to the DDM results. These results, together

with the results of other convergence studies (not shown here) performed by the authors for the sensitivi-

ties of other response quantities to all the material parameters considered in this paper, validate the DDM-

based algorithms for response sensitivity computation presented in this paper and their computer imple-

mentation for finite elements based on the three-field mixed formulation in the cases of quasi-static and
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dynamic structural analysis.

5.  CONCLUSIONS

This paper presents a newly developed response sensitivity computation methodology for nonlinear finite

element based on a three-field mixed formulation derived from the Hu-Washizu functional. The formula-

tion developed is based on the general Direct Differentiation Method (DDM), which consists of differenti-

ating consistently the space (finite element) and time (finite difference) discrete equations of the structural

response. The response sensitivity computation algorithm for three-field mixed finite element formulation

is presented for the general case of geometric and material nonlinearities considering response sensitivity

to geometric, material and loading parameters. This general algorithm is then specialized for materially-

only nonlinear finite element models (i.e., linear geometry) and is presented in detail for 2-D frame finite

elements. Particular attention is given to steel-concrete composite frame finite elements, for which the

three-field mixed formulation has been found beneficial in terms of accuracy in the numerical results. The

DDM sensitivity computations are validated by comparisons with the forward Finite Difference Method

(FDM) using as application example a realistic steel-concrete composite frame under quasi-static and

dynamic loading. The finite element model of the proposed benchmark structure includes both monolithic

beam elements and composite beam elements with deformable shear connection based on the three-field

mixed formulation. Insight is gained into the effects and relative importance of the various material param-

eters upon the response behavior of the benchmark structure.

The addition of the method presented here for analytical sensitivity computation to finite elements based

on a three-field mixed formulation offers a powerful tool for any kind of applications in which finite ele-

ment response sensitivity analysis results are needed. These applications include structural reliability,

structural optimization, structural identification, and finite element model updating. Furthermore, finite

element response sensitivity analysis offers insight into structural response behavior and its sensitivity to

modeling parameters.
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APPENDIX A

Equation (68) is obtained by differentiating Equation (62) with respect to  as

(98)

Pre-multiplying both sides of the second of Equations (98) by , we obtain

(99)

Using the definition of  in Equation (70), we have

(100)

where  denotes the unit matrix of dimension ns x ns.

Post-multiplying the first and last terms of Equation (100) by , we have

(101)

from which it can be deduced that

(102)

where  denotes the unit matrix of dimension ne x ne. Thus, Equation (99) reduces to Equation (68).

Equation (74) can be derived following a reasoning similar to the one above. Differentiating Equation (63)

with respect to  yields 

(103)

Pre-multiplying both sides of Equation (103) by , we obtain

(104)

Using again Equation (70), we can write

(105)

from which Equation (104) reduces to Equation (74).

Equations (35) and (43) in Section 3.1 can be derived following the same reasoning used above for Equa-

tions (68) and (74), respectively.
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APPENDIX B

In this appendix, explicit expressions for the quantities d, D, and  introduced in Section 3.3 are

given for three important 2-D frame models: (a) Euler-Bernoulli monolithic beam; (b) Timoshenko mono-

lithic beam; and (c) composite beam with distributed shear connection and Newmark’s kinematic assump-

tions. The extension to 3-D frames is straightforward for the monolithic beams but more complicated for

the composite beam with deformable shear connection [27].

(a) Euler-Bernoulli monolithic beam (Fig. 55):

(106)

(107)

(108)

(109)

(b) Timoshenko monolithic beam (Fig. 56):

(110)

(111)

(112)

(113)

(c) Newmark composite beam (Fig. 1):

(114)

(115)
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(116)

(117)

d x θ,( )

εx1 x θ,( )
εx2 x θ,( )

χ x θ,( )
δs x θ,( )

=

D x θ,( )

N1 x θ,( )

N2 x θ,( )
M12 x θ,( )

fs x θ,( )

=
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Table 1: Material Constitutive Parameters

Material Parameter Value SI unit Description

Concrete

fc 33.0 MPa Peak compressive strength

Ec 32000 MPa Initial tangent stiffness

εc 0.0022 - Strain at peak strength

ff 15 MPa Strength at inflection point

εf 0.039 - Strain at inflection point

Beam-and-column 
steel

fys 275 MPa Yield strength

Es 210000 MPa Young’s modulus

Hkin,s 2100 MPa Kinematic hardening modulus

Hiso,s 0 MPa Isotropic hardening modulus

α0s 0 MPa Initial back-stress

bs 0.01 - Strain hardening ratio [5]

Reinforcement 
steel

fyr 430 MPa Yield strength

Er 210000 MPa Young’s modulus

Hkin,r 2100 MPa Kinematic hardening modulus

Hiso,r 0 MPa Isotropic hardening modulus

α0r 0 MPa Initial back-stress

br 0.01 - Strain hardening ratio [5]

Shear 
connectors

fsmax 423 kN/m Shear strength

τfr 42.3 kN/m Residual frictional stress

δult 6.0 mm Slip at rupture
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Figure 1.  Kinematics of 2D composite beam model (Newmark’s model).

Figure 2.  Degrees of freedom of the 2D composite beam finite element.
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Figure 3.  Steel-concrete composite frame structure.

Figure 4.  Cross-section properties of the steel-concrete frame structure: (a) composite beam cross-section, 
and (b) steel column cross-section.
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Figure 5.  Pushover analysis: applied horizontal load P (total base shear) versus horizontal displacement u1 
at the left-end of the concrete slab.

Figure 6.  Pushover analysis: applied horizontal load P (total base shear) versus vertical displacement v at 
midspan of the composite beam.
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Figure 7.  Pushover analysis: moment - curvature response at the left-end section of the composite beam.

Figure 8.  Pushover analysis: shear force - slip response at the left-end section of the composite beam.
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Figure 9.  Pushover analysis: sensitivities of horizontal displacement u1 to beam-and-column steel material 
parameters.

Figure 10.  Pushover analysis: sensitivities of horizontal displacement u1 to reinforcement steel material 
parameters.
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Figure 11.  Pushover analysis: sensitivities of horizontal displacement u1 to concrete material parameters.

Figure 12.  Pushover analysis: sensitivities of horizontal displacement u1 to shear connection material 
parameters.
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Figure 13.  Pushover analysis: sensitivities of horizontal displacement u1 to strength parameters of beam-
and-column steel, concrete and shear connection.

Figure 14.  Pushover analysis: sensitivities of vertical displacement v at midspan of the composite beam to 
beam-and-column steel material parameters.
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Figure 15.  Pushover analysis: sensitivities of vertical displacement v at midspan of the composite beam to 
reinforcement steel material parameters.

Figure 16.  Pushover analysis: sensitivities of vertical displacement v at midspan of the composite beam to 
concrete material parameters.
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Figure 17.  Pushover analysis: sensitivities of vertical displacement v at midspan of the composite beam to 
shear connection material parameters.

Figure 18.  Pushover analysis: sensitivities of vertical displacement v at midspan of the composite beam to 
strength parameters of beam-and-column steel, concrete and shear connection materials.
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Figure 19.  Pushover analysis: sensitivities of bending moment M acting at the left-end composite beam 
section to beam-and-column steel material parameters.

Figure 20.  Pushover analysis: sensitivities of bending moment M acting at the left-end composite beam 
section to reinforcement steel material parameters.
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Figure 21.  Pushover analysis: sensitivities of bending moment M acting at the left-end composite beam 
section to concrete material parameters.

Figure 22.  Pushover analysis: sensitivities of bending moment M acting at the left-end composite beam 
section to shear connection material parameters.
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Figure 23.  Pushover analysis: sensitivities of bending moment M acting at the left-end composite beam 
section to strength parameters of beam-and-column steel, concrete and shear connection materials.

Figure 24.  Pushover analysis: sensitivities of connection shear force fs acting at the left-end composite 
beam section to beam-and-column steel material parameters.

0 100 200 300 400 500 600

−2000

−1000

0

1000

2000

P [kN]

θ = fys
θ = fsmax
θ = fcd

M
dθ⁄

(
)

θ
10

0
⁄

(
)  

 [
kN

-m
]

0 100 200 300 400 500 600
−1.5

−1

−0.5

0

0.5

1

P [kN]

d
f s

d
θ

⁄
(

)
θ

10
0

⁄
(

)  
 [

kN
/m

] θ = fys
θ = Es
θ = Hkin,s



44

Figure 25.  Pushover analysis: sensitivities of connection shear force fs acting at the left-end composite 
beam section to reinforcement steel material parameters.

Figure 26.  Pushover analysis: sensitivities of connection shear force fs acting at the left-end composite 
beam section to concrete material parameters.
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Figure 27.  Pushover analysis: sensitivities of connection shear force fs acting at the left-end composite 
beam section to shear connection material parameters.

Figure 28.  Pushover analysis: sensitivities of connection shear force fs acting at the left-end composite 
beam section to strength parameters of beam-and column steel, concrete and shear connection materials.
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Figure 29.  Convergence study of forward FDM to DDM sensitivity results for pushover analysis: 
sensitivities of horizontal displacement u1 to yielding strength fys of beam-and-column steel material.

Figure 30.  Convergence study of forward FDM to DDM sensitivity results for pushover analysis: 
sensitivities of horizontal displacement u1 to peak strength fc of concrete material.
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Figure 31.  Convergence study of forward FDM to DDM sensitivity results for pushover analysis: 
sensitivities of horizontal displacement u1 to shear strength fsmax of shear connection material.

Figure 32.  Convergence study of forward FDM to DDM sensitivity results for pushover analysis: 
sensitivities of connection shear force fs acting at the left-end composite beam section to yield strength fys 
of beam-and-column steel material.
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Figure 33.  Convergence study of forward FDM to DDM sensitivity results for pushover analysis: 
sensitivities of connection shear force fs acting at the left-end composite beam section to peak strength fc of 
concrete material.

Figure 34.  Convergence study of forward FDM to DDM sensitivity results for pushover analysis: 
sensitivities of connection shear force fs acting at the left-end composite beam section to shear strength 
fsmax of shear connection material.
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Figure 35.  N90W (W-E) component of the Loma Prieta earthquake of October 17, 1989, recorded at the 
Capitola site, scaled by a factor of four.
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Figure 36.  Dynamic analysis: horizontal displacement u1 response history.

Figure 37.  Dynamic analysis: vertical displacement v response history.
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Figure 38.  Dynamic analysis: moment - curvature response at the left-end section of the composite beam.

Figure 39.  Dynamic analysis: shear force - slip response at the left-end section of the composite beam.
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Figure 40.  Dynamic analysis: sensitivity of horizontal displacement u1 to Young’s modulus Es of the 
beam-and-column steel material.

Figure 41.  Dynamic analysis: sensitivity of horizontal displacement u1 to Young’s modulus Er of 
reinforcement steel material.
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Figure 42.  Dynamic analysis: sensitivity of horizontal displacement u1 to initial tangent stiffness Ec of 
concrete material.

Figure 43.  Dynamic analysis: sensitivity of horizontal displacement u1 to shear strength fsmax of shear 
connection material.
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Figure 44.  Dynamic analysis: comparison of sensitivities of horizontal displacement u1 to material 
parameters to which u1 is most sensitive.
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Figure 45.  Dynamic analysis: sensitivity of vertical displacement v at midspan of composite beam to 
Young’s modulus Es of the beam-and-column steel material.

Figure 46.  Dynamic analysis: comparison of sensitivities of vertical displacement v to material parameters 
to which v is most sensitive.
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Figure 47.  Dynamic analysis: sensitivity of bending moment M acting at the left-end section of the 
composite beam to Young’s modulus Es of the beam-and-column steel material.

Figure 48.  Dynamic analysis: comparison of sensitivities of bending moment M acting at the left-end 
composite beam section to material parameters to which M is most sensitive.

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

d
M

dE
s

⁄
(

)
E

s
10

0
⁄

(
)  

 [
kN

-m
]

t [s]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

s
dM
dθ
--------

θ
100
---------=

max s

mean s( )

[kN-m]

θ = fys Es Er Ec fsmax

max s

mean s( )



57

Figure 49.  Dynamic analysis: sensitivity of connection shear force fs acting at the left-end section of the 
composite beam to Young’s modulus Es of the beam-and-column steel material.

Figure 50.  Dynamic analysis: comparison of response sensitivities of connection shear force fs acting at 
the left-end composite beam section to material parameters to which fs is most sensitive.
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Figure 51.  Convergence study of forward FDM to DDM sensitivity results for dynamic analysis: 
sensitivity of vertical displacement v at midspan of composite beam to yield strength fys of the beam-and-
column steel material.

Figure 52.  Convergence study of forward FDM to DDM sensitivity results for dynamic analysis: zoom 
view of sensitivity of vertical displacement v at midspan of composite beam to yield strength fys of the 
beam-and-column steel material (see Fig. 51).
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Figure 53.  Convergence study of forward FDM to DDM sensitivity results for dynamic analysis: 
sensitivity of bending moment M acting at the left-end composite beam section to yield strength fys of 
beam-and-column steel material.

Figure 54.  Convergence study of forward FDM to DDM sensitivity computations for dynamic analysis: 
zoom view sensitivity of bending moment M acting at the left-end composite beam section to yield 
strength fys of beam-and-column steel material (see Fig. 53).
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Figure 55.  Kinematics of 2D monolithic Euler-Bernoulli beam model.

Figure 56.  Kinematics of 2D monolithic Timoshenko beam model.
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