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PAPER

Acylation stimulating protein (ASP) acute effects on
postprandial lipemia and food intake in rodents

J Saleh1, JE Blevins2, PJ Havel3, JA Barrett2, DW Gietzen2 and K Cian¯one1*

1Mike Rosenbloom Laboratory for Cardiovascular Research, McGill University Health Centre, McGill University, Montreal, Quebec,
Canada; 2School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology and the Food Intake Laboratory,
University of California, Davis, CA, USA; and 3Department of Nutrition, University of California, Davis, CA, USA

BACKGROUND: In vitro studies have shown that acylation stimulating protein (ASP) stimulates triglyceride (TG) synthesis and
storage in adipocytes. We have previously demonstrated that intraperitoneal (i.p.) injection of ASP in C57BL=6J mice accelerated
TG clearance following an orally-administered fat load as well as reducing postprandial glucose levels.
RESULTS: In the present study, we ®rst examined the effect of i.p. and intracerebroventricular (i.c.v.) injection of ASP on food
intake in Sprague ± Dawley rats. Intraperitoneal injection resulted in a short-term increase in food intake (maximum increase
29.3% within the ®rst hour, P<0.025) decreasing thereafter as compared to vehicle alone. i.c.v. Administration of a comparable
dose of ASP resulted in a similar but delayed increase in food intake with a maximum at 2 ± 4 h, suggesting that the actions of ASP
are peripherally mediated. However, there was no signi®cant difference in 24 h food intake with either i.p. or i.c.v. injection. We
also examined the effects of ASP on TG clearance in two obese mouse strains with different metabolic pro®les: ob=ob (C57BL=6J-
Lepob) and db=db (C57BLKS=J-Leprdb). In a crossover design, the response to an oral fat load was determined with and without
i.p. injection of exogenous ASP. In ob=ob mice, there was a 44% greater clearance of postprandial TG (area under the curve
(AUC)�245�49 control vs 138� 43 mg=dl h with ASP; P< 0.05 by RM ANOVA). The db=db mice showed a greater response,
with a 62% decrease in postprandial TG (AUC� 4080�1489 control vs 1540�719 mg=dl h with ASP; P�0.004 by RM ANOVA).
In addition there were decreases in postprandial glucose and non-esteri®ed fatty acid (NEFA) levels in response to ASP.
CONCLUSION: These results are the ®rst to report that ASP can increase food intake in rats and also enhance postprandial TG
clearance in obese animals. These data therefore support previous in vitro evidence pointing to ASP as a regulator of lipid
metabolism.
International Journal of Obesity (2001) 25, 705 ± 713
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Introduction
There are many factors which regulate food intake, including

glucocorticoids, growth hormone, catecholamines, numer-

ous gastrointestinal factors and others.1 ± 3 Relatively few of

these have been shown to have a direct effect on nutrient

partitioning of ingested food in tissues, in particular trigly-

ceride (TG) storage in adipose tissue.4 Insulin and leptin are

examples of two such metabolic hormones that have

received wide attention for their roles in these processes.

Insulin is a potent metabolic hormone, which increases

glucose transport, decreases hormone sensitive lipase activity

and increases fatty acid incorporation into adipose tissue.4

Insulin is transported into the central nervous system where

it acts as a long-term regulator of energy balance and adip-

osity via its central actions to inhibit food intake.5 ± 7 Animals

with genetically induced de®cits in insulin signalling in the

central nervous system exhibit increased food intake and

adiposity.8 Circulating insulin concentrations increase in

response to dietary in¯uxes of glucose and protein.3,9 Circu-

lating insulin concentrations are often increased in obesity

as a consequence of insulin resistance.

Leptin is an adipocyte-derived hormone whose circulating

levels closely relate to adipose tissue mass and recent energy
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intake.10 Leptin is most well known for its central actions in

the brain where, like insulin, it acts potently to inhibit food

intake and increase energy expenditure. However, leptin also

has direct peripheral actions on adipose tissue to increase

lipolysis,11,12 oxidation,13 and inhibit insulin mediated sti-

mulation of glucose transport, lipogenesis, fatty acid

synthase expression and insulin binding,13 ± 17 although not

all studies have reported such effects.18 ± 20

Acylation stimulating protein (ASP) is a recently described

metabolic factor, which like insulin and leptin has metabolic

effects on adipocytes. Like leptin, ASP is produced by adipo-

cytes and like insulin, ASP demonstrates anabolic effects on

glucose and fat storage.review21 ASP is produced through the

interaction of complement C3, factor B and adipsin, all three

of which are produced by adipocytes. C3, the precursor to

ASP, binds factor B, generating an active site for the enzy-

matic action of adipsin, which ultimately produces C3a.

Carboxypeptidase removes the carboxyl terminal arginine

of C3a to generate ASP (C3adesArg).

Evidence suggests that there is a speci®c saturable receptor

for ASP, which is highly expressed in adipocytes.22 Interac-

tion of ASP with adipocytes generates a metabolic cascade

similar to that of insulin: ASP increases glucose transport,

increases fatty acid incorporation into adipose tissue and

inhibits hormone sensitive lipase.21,23 However the signal

transduction pathway of ASP would appear to be different

from insulin, although the effects are additive to those of

insulin.21,23 ± 25 As with insulin and leptin, circulating ASP

increases in obesity.26 Within the adipose tissue bed (as

determined by arterial ± venous adipose tissue gradient stu-

dies) there is an increased production of ASP postprandially

with a maximum at 3 ± 5 h; however the levels in the general

circulation demonstrate little change.9,27 This is later than

the peak circulating insulin, but occurs at a time when LPL

mediated TG hydrolysis is maximal and is consistent with

the in vitro effect of chylomicrons on ASP production in

human adipocytes.28,29

Acute in vivo intraperitoneal (i.p.) ASP administration in

C57BL=6J mice demonstrated that ASP accelerated postpran-

dial TG and non-esteri®ed fatty acid (NEFA) clearance fol-

lowing a fat load.30 ASP also had an effect on plasma glucose,

enhancing the return to basal levels over the 6 h time course.

On the other hand, C3 knockout mice (which are ASP

de®cient) demonstrated delayed TG clearance following a

fat load,31,32 although this was not con®rmed elsewhere.33

The mice also have moderate reductions in adipose tissue

mass,32,34 but normal fat absorption,34 consistent with

the proposed role of ASP in enhancing dietary storage

mechanisms.32

The aim of the present study was to further examine the

acute effects of ASP. Since both leptin and insulin have

central effects on feeding behaviour, in addition to their

peripheral actions on adipocyte metabolism, we wondered

whether ASP might also exert an effect on food intake. It has

been demonstrated that adipsin, factor B and C3 are synthe-

sized in brain cells (astrocytes),35 C3adesArg (ASP) is present

in cerebrospinal ¯uid at concentrations approximately 15

times lower than plasma,36 and intra-cerebroventricular

(i.c.v.) injection of C3a increased the feeding response to

norepinephrine in rats.37 We ®rst examined the effects of i.p.

and i.c.v. injections of ASP on food intake in rats. Second, we

also examined the acute postprandial response to ASP in two

obese mice models, ob=ob (C57BL=6J-Lepob) and db=db

(C57BLKS=J-Leprob), which both present with insulin

abnormalities and non-functional leptin pathways. A fat

load was used, rather than a mixed meal, in order to mini-

mize insulin changes and examine only the effects of ASP.

Methods
Surgical implantation of i.c.v. cannulas in rats

Adult, male Sprague ± Dawley rats (220 ± 250 g) were obtained

from Simonsen Laboratories (Gilroy, CA). Animal care was

according to the National Institutes of Health guidelines and

the animal protocols were approved by the University of

California, Davis Animal Use and Care Committee. Rats were

surgically implanted with cannulas directed towards the

lateral ventricle as previously described.38 In brief, animals

were anaesthetized with a ketamine cocktail as described

previously39 and placed in a stereotoxic apparatus. Unilateral

stainless steel guide cannulas were inserted using the coor-

dinates of Paxinos and Watson40 and fastened to the skull

with dental acrylic. Penicillin (60 000 units i.m.) was admi-

nistered at the completion of surgery. Following implanta-

tion, rats were fed a moistened 20% casein protein diet for at

least 8 days prior to the i.c.v. injections. During this time,

they were adapted to handling and to a 1 h period of fasting

prior to the onset of the dark cycle. To verify cannula

placement, angiotensin II was administered 3 ± 4 days prior

to (100 ng=5 ml) and 3 ± 4 days following (100 ng=15 ml) the

test (control and ASP) injections.41 Results from animals not

drinking greater than 5 ml during the 30 min angiotensin II

test were excluded from further analysis. At the completion

of the experiments, the animals were sacri®ced, the brain

®xed and sectioned. Animals with injection sites outside the

lateral ventricle were excluded from the analysis.

i.c.v. and i.p. injections and food intake in rats

To determine baseline food intake, food bowls were weighed

(�0.1 g) during two consecutive days prior to the i.c.v.

injections. For the i.c.v. injection experiments, each animal

received injections of 15 ml of aCSF (arti®cial cerebrospinal

¯uid) or ASP (5 or 25 mg in 15 ml of aCSF) in random order.

Injections were made by lowering the 33 gauge injector,

connected to a microinjection pump (CMA=100, Bioanaly-

tical Systems, West LaFayette, IN) into the lateral ventricle.

The infusion rate was 3.75 ml=min over 4 min administered

90 min prior to the start of the dark cycle. The injection

needle was left in place for 60 s before being removed. There

was a 2 ± 3 day washout period between each injection of

ASP. For i.p. administration, animals were given an injection
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of 48 mg ASP=kg body weight or saline (1 ml=g body weight,

average body weight 313 g). Using a crossover design, rats

were injected i.p. with ASP or vehicle 30 ± 90 min prior to the

initiation of the dark cycle, food intake was measured over

speci®c time intervals and the cumulative food intake calcu-

lated. Differences (with vs without ASP) were calculated for

each animal for each time interval. The same group of

animals was used for i.c.v. and i.p. injections.

Baseline characterization of mice

ob=ob (C57BL=6J-Lepob) and db=db (C57BLKS=J-Leprdb) male

and female mice were obtained from Jackson Laboratories,

Bar Harbour, Maine. In the studies performed, no difference

was seen in male vs female mice, and the data are presented

as pooled data. The mice were weighed and a fasting blood

sample (150 ml) was obtained by tail bleeding. Plasma NEFA

and TG were measured using colorimetric enzymatic kits

(Boehringer Mannheim, Laval, Quebec, Canada). Fasting

insulin was measured using a rat insulin RIA kit with rat

insulin standards which crossreact with mouse insulin as

indicated by the supplier (Linco Research Inc., St Charles,

MO). Fasting plasma glucose was measured using a Trinder

glucose kit (Sigma, St Louis, MO). All animal studies were

approved by the Animal Care Committee at the Royal

Victoria Hospital=McGill University and were in accordance

with standard procedures.

Postprandial fat load on mice

An oral fat load was administered by intragastric feeding to

ob=ob and db=db mice (male and female), 11 ± 14 weeks old,

as described previously30 ± 32 according to published meth-

ods.42 ± 44 Following an overnight fast, 400 ml of olive oil

(followed by 100 ml air) were given based on 10 ml=g mouse

weight.42 ± 44 Half the mice received an i.p. injection of

human ASP (500 mg) in phosphate buffered saline (PBS, pH

7.4) containing 1 mg=ml bovine serum albumin (BSA) in a

maximum volume of 300 ml (the other half were sham

injected with placebo Ð buffer solution containing BSA but

no ASP). Two weeks later the procedure was repeated with

the other half of the mice receiving human ASP. Human ASP

is very similar to mouse ASP45 and has been shown to have

equal bioactivity on human and mouse cells in vitro.46 Blood

samples (40 ml) were collected by tail bleeding at 0, 1, 2, 3, 4

and 6 h into EDTA-containing tubes and centrifuged. Plasma

isolated was used to measure TG, NEFA, glucose (as above)

and plasma human ASP.

ASP puri®cation and quantitation

Human plasma ASP was prepared as previously described in

detail.47 Following the last step of puri®cation on an HPLC

Vydac C4 column (1.0�25 cm, Separation Group, Hesperia,

CA), the fractions containing ASP were pooled and aliquoted

in siliconized microtubes (Diamed, Mississauga, Ontario,

Canada) and the solvent was evaporated in a vacuum cen-

trifuge. Stock solutions of fatty acid free BSA (10 mg=ml) and

10� stock of PBS were added to the vials prior to evaporation

of the solvent and the ASP=BSA=PBS was reconstituted in

sterile water to yield a ®nal concentration of ASP from 0.5 ±

1.0 mg=ml in 1 mg=ml BSA in PBS and stored at 780�C. For

i.c.v. injections, ASP was reconstituted in aCSF solution.

Repeated freezing and thawing was avoided since this inac-

tivates ASP. As well, it is essential to store ASP in siliconized

tubes since it sticks easily to glass and plastic, a common

feature of small basic proteins. The concentration of human

ASP in mouse plasma was determined by a polyclonal-mono-

clonal sandwich enzyme linked immunosorbent assay

(ELISA) speci®c for human ASP.9

Statistics

Results are expressed as average� standard error of the mean

(s.e.m.). Results of the curves are compared by two-way

repeated measures ANOVA (RM ANOVA) with Bonferroni

post-test to examine the differences at each time point. As

well, the area under the postprandial curve (AUC) was

determined using a linear trapezoidal equation (Sigma Stat,

Jandel Scienti®c, San Rafael, CA) and results with vs without

ASP administration were compared by paired t-test, where

NS�not signi®cant.

Results
Effect of acute ASP on food intake in rodents

The results for i.p. injection of ASP are shown in Figure 1.

Following ASP injection, there was an acute increase (average

peak increase�29.3%, P<0.025) in cumulative food intake

after 1 h of feeding which decreased gradually thereafter (no

Figure 1 Effect of i.p. administration of ASP on cumulative food intake
in rats. ASP (15 mg) or vehicle was injected i.p. prior to initiation of the
dark cycle (time 0). Cumulative food intake was then measured at the
indicated times. Results are presented as the difference in food intake for
ASP vs vehicle alone as average� s.e.m. for n�15 rats, where *P<0.05
and **P<0.025.
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overall difference by 4 h). To determine if this was due

primarily to a peripheral vs central effect, ASP was also

administered i.c.v. Food intake in rats was measured follow-

ing i.c.v. injection of vehicle and 5mg ASP given in random

order. The results are shown in Figure 2. Although the

magnitude of the effect obtained by i.c.v. administration

was comparable to the i.p. ASP effect (maximum 36.7%, P

NS vs i.p.), the time that it took to increase food intake and

i.c.v., administration was considerably longer (2 ± 4 h post

dark cycle initiation for i.c.v. injection vs 0.5 ± 1 h i.p. for

maximal effect), suggesting that the effect of ASP to increase

food intake is mediated primarily through a peripheral

mechanism. Increased i.c.v. dose (25 mg) tested on a subset

(n�9) of rats (given in random order) did not produce any

additional effect (maximum 22.4% P NS for i.c.v. 25 vs i.c.v. 5

by two-way RM ANOVA).

Effect of acute i.p. ASP on postprandial lipemia in obese

ob=ob (C57BL=6J-Lepob) and db=db (C57BLKS=J-Leprdb)

Basal plasma lipids (TG, cholesterol and NEFA), glucose and

insulin concentrations of both ob=ob and db=db mice are

shown in Table 1. Compared to C57BL=6J (B6 control) mice,

the db=db mice were hypertriglyceridaemic and hyperglycae-

mic while plasma total cholesterol and insulin levels were

similar to B6 controls. Ob=ob mice on the other hand had

higher glucose, total cholesterol, HDL-cholesterol and insu-

lin compared to B6 controls.30,48,49 Figure 3, left panel, shows

the plasma postprandial increase in TG from 0 to 6 h follow-

ing the fat load in the ob=ob mice. Postprandial TG levels

increased signi®cantly above basal by 1 h postprandially

(P<0.001 vs fasting TG) reaching two-fold over baseline at

2 h (106�17 mg=dl, P<0.01 vs fasting TG). Plasma TG gra-

dually returned towards fasting levels, although they were

still above baseline at the end of the 6 h postprandial period.

Figure 2 Effect of i.c.v. administration of ASP on cumulative food intake
in rats. ASP (5 or 25 mg) or vehicle was injected i.c.v. prior to initiation of
the dark cycle (time 0). Cumulative food intake was then measured at the
indicated times. Results are presented as the difference in food intake for
ASP vs vehicle alone as average� s.e.m. for n�13 (5 mg dose) and n�9
(25 mg dose) rats, where *P<0.025.

Table 1 Plasma parameters in ob=ob (C57BL=6J-Lepob) and db=db
(C57BLKS=J-Leprdb) obese mice

ob=ob db=db B6 controla

Plasma parameters (n�8) (n� 9) (n� 12)

Weight (g) 51.5�1.0 41.2� 1.5 23 ± 25

Triglycerides (mg=dl) 44.4�1.7 93� 5.9a 34.8� 2.1

Glucose (mg=dl) 190�27.7a 471� 34.6a 111� 4

Total cholesterol (mg=dl) 203.3�6.9 128� 5.3 ND

HDL cholesterol (mg=dl) 165.3�5.3 104.3� 6.3 ND

LDL cholesterol (mg=dl) 37.97�2.6 23.7� 4.2 ND

NEFA (mM) 0.47�0.05 0.66� 0.07 0.41� 0.04

Insulin (ng=ml) 1.49�0.19 0.46� 0.05 ND

Fasting plasma parameters as well as body weight are given for B6 control,

ob=ob and db=db as average� s.e.m. where ND�not determined. Groups

are compared by ANOVA where *P< 0.05 vs B6 control mice.
aAs published previously.30

Figure 3 Postprandial TG and NEFA in ob=ob (C57BL=6J-Lepob) mice. A fat load was administered at time zero with or without i.p. injection of ASP (as
indicated). Plasma triglycerides (TG) (left panel) and non-esteri®ed fatty acids (NEFA) (right panel) were measured serially. Results are presented as
average� s.e.m. for eight mice. Results were analyzed by RM ANOVA with Bonferroni post-hoc test for differences at speci®c time points with vs without
ASP where: TG, P<0.0001 time, P<0.05 group; NEFA, P NS time, P<0.02 group and *P<0.05 for individual time points with vs without ASP.
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With ASP injection (given at time 0), a decrease in circulating

TG levels was seen, especially at the ®rst hour postprandially

(P<0.05 vs non-ASP control by RM ANOVA). Overall there

was a 44% decrease in AUC in the presence of ASP, a decrease

which is comparable to the B6 control mice.30 Figure 3, right

panel, shows the changes in NEFA levels in ob=ob over the

same postprandial period in mice. A signi®cant increase in

NEFA was seen 2 h postprandially and the overall pro®le was

similar to that seen in B6 control mice.30 Generally, there

was a trend towards lower plasma NEFA following ASP

injection compared to ob=ob control (P<0.02 by RM

ANOVA).

Following the fat load, TG levels increased signi®cantly in

db=db mice (Figure 4, left panel) with a 10-fold increase over

basal by 3 h (P<0.02 vs fasting TG). Very high TG levels

persisted over the whole postprandial period and at 6 h were

still 10-fold above basal (P<0.001 vs fasting TG). i.p. injec-

tion of ASP produced a much more profound effect in the

db=db mice compared to the ob=ob mice. There was a sub-

stantial decrease in plasma TG levels over the time course of

the postprandial period (P�0.004 by RM ANOVA, P<0.05 at

2, 3, 4 and 6 h vs non-ASP control). Moreover, the AUC was

reduced by 62% with ASP. In the mice injected with exogen-

ous ASP, the TG levels were close to baseline levels by 6 h

postprandially. Figure 4, right panel, shows the postprandial

changes in NEFA in the db=db mice. There was a signi®cant

increase in NEFA by 2 h after the fat load in the control mice

(P<0.01 vs fasting NEFA). This increase was sustained over

the course of the postprandial period (as with TG). Injection

of ASP resulted in small but not signi®cant change in NEFA.

Plasma levels of exogenous ASP

Following i.p. administration of ASP, a marked surge of

exogenous human ASP was seen in the plasma of both

ob=ob and db=db mice during the ®rst hour (Figure 5). The

levels remained elevated and then gradually decreased over

the time course of the fat load and were cleared from the

plasma by 6 h postprandially. Thus bioactive ASP was present

at comparable levels in both ob=ob and db=db mice, although

the effects on TG clearance appeared to be more pronounced

in the db=db (Figures 3 and 4).

Effect of ASP on postprandial glucose levels in both ob=ob

and db=db mouse models

By one hour postprandially, glucose levels increased maxi-

mally in both ob=ob and db=db mouse models (329�32 and

1108�69 mg=dl, respectively, Figure 6). Ob=ob mice had a

65% increase in glucose by 1 h and the levels returned to

baseline by 3 h (Figure 6, top panel). ASP consistently

reduced the glucose level (741% AUC, P�0.009 by RM

ANOVA with vs without ASP). Fasting glucose levels were

substantially higher in db=db mice (Table 1). The increase at

1 h was much greater (P<0.0001 vs fasting glucose) and had

not returned to baseline levels by the end of the postprandial

period (Figure 6). Exogenous ASP induced a decrease com-

pared to control levels only at 4 h (P<0.05 vs non-ASP

control) and 6 h (P<0.01 vs non-ASP control) in the db=db

mice (Figure 6, bottom panel). Thus the return to fasting

glucose levels was delayed in the db=db mice as compared to

ob=ob mice and B6 control mice,30 where the drop occurred

earlier (by 1 h) and was sustained over the whole postprandial

period.

Discussion
In the present study, we have demonstrated that i.p. admin-

istration of ASP has effects on energy intake by increasing

short-term acute feeding in rats and enhancing dietary TG

Figure 4 Postprandial TG and NEFA in db=db (C57BLKS=J-Leprdb) mice. A fat load was administered at time zero with or without i.p. injection of ASP (as
indicated). Plasma triglycerides (TG) (left panel) and non-esteri®ed fatty acids (NEFA) (right panel) were measured serially. Results are presented as
average� s.e.m. for nine mice. Results were analysed by RM ANOVA with Bonferroni post-hoc test for differences at speci®c time points with vs without
ASP where: TG, P<0.005 time, P�0.004 group; NEFA, P<0.05 time, P NS group and *P<0.05, **P<0.025 for individual time points with vs without
ASP.
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and glucose disappearance after an oral fat load in two obese

mouse models: ob=ob which are obese but normotriglyceri-

demic and db=db which are both obese and diabetic. This

study both extends and complements our previous studies

which demonstrated an effect of ASP on postprandial TG

lowering in both C57BL=6J mice and ASP de®cient mice and

delayed TG clearance in ASP de®cient (C3 knockout).30 ± 32

There is already a long list of factors which have been

demonstrated to modulate food intake when administered

peripherally. They include members of the gastrointestinal

hormone family (CCK, bombesin, gastrin releasing peptide,

glucagon-like peptide-1 as well as others), pancreatic poly-

peptides (insulin, glucagon, peptide YY) as well as other

circulating factors (leptin, opioids).3 Despite evidence that

administration of these peptides in¯uences feeding beha-

viour, it is still unclear whether many of these peptides act

via a central or peripheral mechanism. The data presented

here suggest that ASP increases food intake acutely, but that

food intake equilibrates overall within a 24 h period. This is a

similar pattern to CCK where acute administration inhibits

food intake in the short-term, however repeated injections

result in smaller but more frequent meals without a change

in total daily caloric input and body weight.1,2 The time

course of the effect also suggests that ASP is acting periph-

erally but not centrally, since a more rapid response is

observed when ASP is administered i.p. By contrast, leptin

action is much more potent when administered centrally

than peripherally.10

ASP appears to attenuate the increase in glucose seen after

a meal in db=db and ob=ob mice (as presented here) and also

in B6 control mice.30 Camp®eld et al have demonstrated that

small transient decreases in glucose precede spontaneous

meal intake and blocking these decreases can prevent meal

initiation.1,2 Thus the effect of ASP administration is consis-

tent with a short-term increase in food intake induced by

small (10%) decreases in plasma glucose levels and follows a

similar temporal pro®le to the changes in plasma glucose (B6

control mice30 and ob=ob mice). In the db=db mice, glucose

levels are markedly increased due to increased hepatic glu-

coneogenesis which is further stimulated by the fatty acid

intake50 ± 52 and ASP has less of an effect.

This acute effect of ASP (on food intake) would appear to

contrast with ASP de®cient (C3 knockout) mice which have

slightly increased food intake.32 They also manifest reduced

adipose tissue mass but normal fat absorption.34 On the

surface, these two effects might appear to be contradictory.

However, both effects on food intake are probably indirect,

and can be explained more clearly by examining the direct

ASP target: dietary substrate utilization. Thus in the ®rst

instance, with increased ASP, an ASP effect on tissue fatty

acid and glucose uptake reduces circulating glucose and

increases food intake. In the ASP de®cient mice, a lack of

ASP reduces dietary fat storage, adipose tissue mass decreases,

plasma leptin decreases, plasma insulin is lower and the mice

consequently eat more to re-establish metabolic balance and

adipose tissue mass. Thus the different effects on food intake

Figure 5 Postprandial human ASP in ob=ob and db=db mice. ob=ob
and db=db mice (as described in Figures 1 and 2) were injected i.p. with
ASP at time 0 in eight ob=ob (C57BL=6J-Lepob) and nine db=db
(C57BLKS=J-Leprdb) mice. Human ASP levels in the mouse plasma were
then measured serially postprandially as shown (average� s.e.m.).

Figure 6 Postprandial glucose in ob=ob and db=db mice. A fat load was
administered at time zero with or without i.p. injection of ASP (as
indicated). Plasma glucose was then measured serially. Results are pre-
sented as average� s.e.m. for eight ob=ob and nine db=db mice. Results
were analyzed by RM ANOVA with Bonferroni post-hoc test for differ-
ences at speci®c time points with vs without ASP where: ob=ob, P<0.05
time, P�0.009 group; db=db P<0.0001 time, P NS group and
*P<0.05 for individual time points with vs without ASP.
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are indirect and mediated through different metabolic

effects.

In db=db mice, plasma TG and cholesterol increase early in

development and are not simply secondary to the obesity

which develops.53 Studies by Li et al have demonstrated that

the increase in plasma TG is not due to increased hepatic

lipogenesis or apolipoprotein B secretion, but decreased

plasma TG clearance.54 This might be explained by a

decrease in LPL activity, but there is no published data on

adipose tissue or muscle LPL or postprandial TG lipemia in

db=db mice. Nonetheless, as there are many published

reports of disordered glucose metabolism and insulin resis-

tance in db=db mice, presumably this would apply to the

insulin-mediated stimulation of LPL mass and activity

as well.

One of the features of the ASP induced drop in postpran-

dial lipemia in this study is that the magnitude of the ASP

effect is proportional to the postprandial lipemia. Thus,

those animals which demonstrate the greatest postprandial

lipemia; db=db mice and ASP-de®cient (C3 knockout)

mice31,32 also demonstrated the greatest response to i.p.

ASP. On the other hand, in those mice with moderate

postprandial lipemia such as ob=ob and B6 control mice,30

the overall effect of ASP was moderate. Although we have

not measured murine ASP directly in these mice, there is

evidence that adipsin, an adipocyte speci®c enzyme, is

markedly reduced in db=db mice.55 As adipsin is obligatory

to generating ASP via the alternate complement pathway

interaction of C3, factor B and adipsin, ASP levels might be

expected to be low as well. Thus, in the db=db mice, and ASP-

de®cient (C3 knockout) mice the potent effect of adminis-

tered ASP may be a result of low or no endogenous murine

ASP.

What is the potential mechanism of action of ASP, espe-

cially in the db=db mice which have such a proportionally

greater response to ASP? First, ASP increases intracellular

esteri®cation (and thus uptake) of NEFA, as shown in cul-

tured adipocytes.4,21 Secondly, ASP may enhance TG clear-

ance by preventing NEFA inhibition of LPL through its tissue

NEFA sequestration action. Both in vitro and in vivo studies

have demonstrated an inhibitory and destabilizing effect of

NEFA on LPL.56 ± 60 Finally, ASP also reduces plasma NEFA

through inhibition of adipocyte hormone sensitive lipase.23

All of these mechanisms may contribute to the ASP post-

prandial effect. In this study we chose to use a fat load rather

than a mixed meal in order to avoid insulin changes post-

prandially so that the changes would re¯ect primarily an ASP

effect. As ASP and insulin effects are additive in vitro21,23,24,28

the interplay between the two will need to be examined in

vivo in the future.

Endogenously leptin, insulin, glucocorticoids and ASP

appear to provide a coordinated balance=counterbalance on

energy intake centrally and energy storage peripherally. Thus

insulin reduces energy intake, but increases energy storage,

while glucocorticoids have opposite effects to those of

insulin. On the other hand, leptin inhibits both food

intake and the storage of lipid in adipose tissue, whereas

ASP stimulates both processes. Thus the ASP system may

provide a pharmacologic target to alter adipocyte and lipid

metabolism.
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