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Abstract 
Notions of entropy and uncertainty are fundamental to 

many domains, ranging from the philosophy of science to 
physics. One important application is to quantify the 
expected usefulness of possible experiments (or questions or 
tests). Many different entropy models could be used; 
different models do not in general lead to the same 
conclusions about which tests (or experiments) are most 
valuable. It is often unclear whether this is due to different 
theoretical and practical goals or are merely due to historical 
accident. We introduce a unified two-parameter family of 
entropy models that incorporates a great deal of entropies as 
special cases. This family of models offers insight into 
heretofore perplexing psychological results, and generates 
predictions for future research. 

Uncertainty and Information 
Notions of entropy and uncertainty are fundamental to 

many domains, ranging from the philosophy of science to 
physics. One important application of uncertainty is to 
quantify the expected usefulness of possible experiments (or 
questions or tests). Lindley (1956) suggested that an 
experiment’s usefulness could be quantified in terms of how 
much it reduces expected Shannon (1948) uncertainty about 
the possible states of the world. This idea has proven useful 
in psychological models (Oaksford & Chater, 1994) as well. 
In a psychological context, the possible states could be the 
different categories that an object might belong to, and 
“experiments” could be a child’s queries to learn more about 
the category. Other entropy models, such as Quadratic 
entropy (Crupi & Tentori, 2014) or Bayes’s error (Baron, 
Beattie & Hershey, 1998; Crupi, Tentori & Lombardi, 2009) 
could also be used. Different models do not in general lead 
to the same conclusions about which tests (or experiments) 
are most valuable (Nelson, 2005, 2008, 2009).  

What kind of entropy model best characterizes people’s 
goals in searching for information? Some data suggest that 
reduction in Bayes’s error (probability gain) is a more 
plausible intuitive model than reduction in Shannon entropy 

(Nelson, McKenzie, Cottrell & Sejnowski, 2010; Meder & 
Nelson, 2012). Probability gain appears to have its own 
limitations, however, as it does not show a preference for 
questions with close to a 50:50 split in 20-questions games 
(Nelson, Divjak, Gudmundsdottir, Martignon & Meder, 
2014).  

Many different ideas of important axioms for entropy 
measures have been proposed (Csiszár, 2008). Interestingly, 
particular entropy measures have been predominant in 
particular research areas, and it is often unclear whether this 
is due to different theoretical and practical goals or are 
merely due to historical accident.  

Is there any possibility for a formal model of uncertainty 
that would be able to describe people’s behavior across a 
wide variety of tasks? Could such a model also have 
theoretically desirable properties?  

Entropy is often thought of as expected surprise. But (1) 
what constitutes surprise, and (2) what constitutes an 
expectation? Depending on how surprise and expectation 
are defined, different entropy measures result. Combining 
these two ideas, we show that many entropy measures, 
including Hartley (1928), Shannon (1948) and Quadratic 
entropy, and the families of Tsallis (1988), Rényi (1961), 
and Arimoto (1971) entropies, can all be derived as special 
cases in the Sharma-Mittal (1975) framework for entropy 
measures.  

Figure 1 depicts the Sharma-Mittal space of entropy 
measures graphically, where the horizontal axis (the order r) 
specifies the type of averaging function, and the vertical 
axis (the degree t) specifies the surprise function. A number 
of heuristic ideas of uncertainty, for instance the number of 
possibilities, and whether or not you know for sure 
(analogous to a Popperian formulation, Popper, 1959), also 
arise as special cases in this framework. 

Can psychological insight be derived from this 
formalism? We show that many heretofore disparate-
seeming empirical results and normative desiderata can be 
accommodated by specific entropy measures within this 
formalism. Importantly, this framework affords more than a 
post hoc story; novel predictions can be derived for future 
experiments, to better characterize the psychological bases 
of uncertainty and information. 
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Figure 1: The Sharma-Mittal framework 
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