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Abstract
Evaluating long-term drivers of foraging ecology and population productivity is crucial for providing ecological baselines 
and forecasting species responses to future environmental conditions. Here, we examine the trophic ecology and habitat use 
of North Atlantic leatherback turtles (St. Croix nesting population) and investigate the effects of large-scale oceanographic 
conditions on leatherback foraging dynamics. We used bulk and compound-specific nitrogen isotope analysis of amino acids 
(CSIA-AA) to estimate leatherback trophic position (TP) over an 18-year period, compare these estimates with TP estimates 
from a Pacific leatherback population, and elucidate the pre-nesting habitat use patterns of leatherbacks. Our secondary 
objective was to use oceanographic indices and nesting information from St. Croix leatherbacks to evaluate relationships 
between trophic ecology, nesting parameters, and regional environmental conditions measured by the North Atlantic Oscil-
lation (NAO) and Atlantic Multidecadal Oscillation. We found no change in leatherback TP over time and no difference 
in TP between Atlantic and Pacific leatherbacks, indicating that differences in trophic ecology between populations are an 
unlikely driver of the population dichotomy between Pacific and Atlantic leatherbacks. Isotope data suggested that St. Croix 
leatherbacks inhabit multiple oceanic regions prior to nesting, although, like their conspecifics in the Pacific, individuals 
exhibit fidelity to specific foraging regions. Leatherback nesting parameters were weakly related to the NAO, which may 
suggest that positive NAO phases benefit St. Croix leatherbacks, potentially through increases in resource availability in their 
foraging areas. Our data contribute to the understanding of leatherback turtle ecology and potential mechanistic drivers of 
the dichotomy between populations of this protected species.
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Introduction

Physical and environmental impacts associated with climate 
change are altering biological processes and species interac-
tions within marine ecosystems. Additionally, populations 
of protected species like marine mammals and turtles have 
been severely impacted by an array of anthropogenic threats 
(Davidson et al. 2012) and predicting how these species will 
be further affected by intensifying global climate change 
requires an understanding of long-term environmental vari-
ability and its impact on ecological factors, such as foraging 
ecology and habitat use. Addressing these types of ques-
tions poses a great challenge, particularly in marine sys-
tems where species often migrate thousands of miles and use 
multiple oceanic habitats over the course of their lifetimes.

The leatherback turtle (Dermochelys coriacea) is a 
threatened, highly migratory species that inhabits neritic 

Communicated by Helene Marsh.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0044​2-018-4279-z) contains 
supplementary material, which is available to authorized users.

 *	 Elizabeth D. Hetherington 
	 ehetheri@ucsd.edu

1	 Division of Biological Sciences, University of California, 
San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

2	 Marine Mammal and Turtle Division, Southwest Fisheries 
Science Center, NOAA Fisheries, La Jolla, CA, USA

3	 Department of Earth Sciences, University of Hawaii, 
Honolulu, HI, USA

http://orcid.org/0000-0001-7114-398X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00442-018-4279-z&domain=pdf
https://doi.org/10.1007/s00442-018-4279-z


1274	 Oecologia (2018) 188:1273–1285

1 3

and pelagic habitats and is divided into several popula-
tions throughout the global ocean, some of which differ in 
life history traits and population trajectories. For example, 
North Atlantic leatherbacks are larger than their Pacific 
counterparts (Wallace et al. 2006), have shorter remigra-
tion intervals (number of years between nesting events), and 
an overall higher reproductive output (Wallace et al. 2006). 
Additionally, the North Atlantic leatherback population is 
steadily increasing and listed as vulnerable (http://www.
iucnr​edlis​t.org), whereas Pacific leatherbacks are precipi-
tously declining and listed as critically endangered (Wallace 
et al. 2013).

The population increase of North Atlantic leatherbacks 
in recent decades can be partially attributed to nesting beach 
protection and fisheries regulations (Dutton et al. 2005). 
However, environmental variability and differences in forag-
ing ecology, habitat use, and regional oceanographic condi-
tions may contribute to the dichotomy between Pacific and 
Atlantic leatherback population trajectories (Wallace et al. 
2006; Saba et al. 2008; Wallace and Saba 2009). Eastern 
Pacific leatherbacks generally forage in areas with lower 
primary production than their North Atlantic conspecifics, 
and periodic El Niño-Southern Oscillation events may fur-
ther limit leatherback foraging and their ability to reach the 
energy threshold required for reproduction in the eastern 
Pacific Ocean (Wallace et al. 2006; Saba et al. 2008; Wal-
lace and Saba 2009). Furthermore, Atlantic leatherbacks 
frequently encounter areas with dense aggregations of prey, 
which allows them to forage with little movement (Bailey 
et al. 2012). However, this is rarely observed for Pacific 
leatherbacks and, therefore, may indicate differences in for-
aging success between populations (Bailey et al. 2012).

Our study focuses on leatherbacks in the North Atlantic 
Ocean, where large-scale temporal variability in oceano-
graphic conditions is often explained by patterns associated 
with the North Atlantic Oscillation (NAO) and the Atlantic 
Multidecadal Oscillation (AMO), which are ocean–atmos-
phere phenomena driven by changes in sea level pressure 
and sea-surface temperature in the North Atlantic Ocean 
(Hurrell et al. 2001; Ottersen et al. 2001; Stenseth et al. 
2003). The NAO and AMO fluctuate on decadal or multidec-
adal time scales, which may provide more stable interannual 
foraging conditions for leatherbacks in the North Atlantic 
compared to Pacific-foraging areas. Thus, leatherbacks in 
the North Atlantic may have access to more stable nutri-
ent supplies compared with their conspecifics in the Pacific, 
thereby contributing to the greater resilience of their popula-
tion (Saba et al. 2008; Wallace and Saba 2009).

On the individual level, leatherbacks likely exhibit broad 
foraging area fidelity and consistently migrate to the same 
foraging areas between nesting seasons (James et al. 2005; 
Hays et al. 2006). However, data on habitat use patterns are 
sparse and largely dependent on a limited number of satellite 

tracks, incidental fisheries catch data, and direct observa-
tions of leatherbacks in their foraging grounds (James et al. 
2005; Hays et al. 2006; Fossette et al. 2010a). Satellite 
telemetry data only capture a portion of their time away 
from nesting beaches (typically between several months and 
1 year), as leatherback remigration intervals are typically 
2–3 years but can be longer (Dutton et al. 2005; Wallace 
et al. 2006). Thus, we have major gaps in our understanding 
of leatherback habitat use and foraging ecology, and how 
these factors are influenced by broad-scale oceanographic 
conditions.

Acquiring information about highly migratory species 
presents many challenges and the development of bio-
chemical tracer techniques has provided new approaches to 
answering essential ecological questions about these species. 
For example, the analysis of nitrogen stable isotope ratios 
(i.e., 15N/14N expressed as δ15N values) from animal tissues 
is frequently used to evaluate species’ trophic ecology and 
more recently has been used to determine important foraging 
areas of highly migratory species (Madigan et al. 2014; Van-
der Zanden et al. 2015; Turner Tomaszewicz et al. 2017). 
The δ15N values of whole tissues (i.e., bulk isotope analysis; 
δ15Nbulk) provide minimally invasive, time-integrated infor-
mation about a consumer’s diet and location. Thus, δ15N 
values from nesting leatherbacks can provide data on diet 
and habitat use for several months prior and up to sample 
collection, which may elucidate their pre-nesting habitat use 
and migration patterns (e.g., Seminoff et al. 2012).

Although δ15N values from bulk tissues are a useful tool 
for evaluating food web dynamics and interactions, there 
are several limitations to this analysis. Most notably, esti-
mating trophic positions (TPs) of consumers using δ15N 
values requires, in addition to the δ15N measurement of a 
consumer’s tissue, a δ15N measurement from the base of the 
food web (i.e., phytoplankton). This can be problematic, as 
δ15N values at the base of the food web vary spatially and 
temporally (Somes et al. 2010; McMahon et al. 2013).

A newer approach, compound-specific isotope analysis of 
amino acids (CSIA-AA) offers potential solutions to limi-
tations of bulk isotope analysis. The CSIA-AA technique 
relies on the determination of δ15N values of individual 
amino acids within a consumer’s tissue, as different amino 
acids can provide deeper insights than analyzing the isotope 
values from bulk tissue alone. Certain amino acids (e.g., glu-
tamic acid) exhibit isotopic fractionation during transamina-
tion and deamination, thereby causing a consumer’s tissue 
to become enriched in 15N relative to its prey (Popp et al. 
2007; Chikaraishi et al. 2009). These are called ‘trophic’ 
amino acids and they reflect the diet of the consumer (Mon-
toya et al. 2002; Popp et al. 2007; Chikaraishi et al. 2007). 
Conversely, ‘source’ amino acid (e.g., phenylalanine) show 
little isotopic fractionation as their primary metabolic path-
ways do not cleave or form nitrogen bonds (Montoya et al. 
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2002; Popp et al. 2007; Chikaraishi et al. 2007, 2009). Thus, 
source amino acids reflect δ15N values at the base of the 
food web (Chikaraishi et al. 2009), so we can account for 
baseline δ15N variability and estimate TPs in the tissues of 
consumer species without additional sampling of the base 
of the food web. CSIA-AA has become an increasingly used 
approach for quantifying isotope values at the base of the 
food web and estimating TPs of consumers, although recent 
studies highlight its limitations (e.g., Hetherington et al. 
2017; McMahon and McCarthy 2016).

The aim of our study was to evaluate potential changes in 
the trophic ecology and habitat use patterns of North Atlan-
tic leatherback turtles over an 18-year period and how these 
patterns relate to large-scale oceanographic oscillations. We 
analyzed the δ15Nbulk and individual amino acid δ15N values 
of archived blood samples from North Atlantic leatherbacks. 
Specifically, for this nesting population of leatherbacks, we 
evaluated (1) temporal variability in their foraging ecology, 
(2) potential differences in TP compared to Pacific popula-
tions, (3) the utility of isotope analyses to estimate their pre-
nesting foraging location and migration patterns, and (4) the 
relationship between coarse-scale oceanographic conditions 
and leatherback trophic ecology and nesting history. Our 
results, therefore, provide insights into differences between 
Pacific and Atlantic leatherback populations and potential 
environmental processes that may influence leatherback 
population trajectories.

Materials and methods

Sample collection

North Atlantic leatherbacks are considered one population 
with several subgroups that nest throughout the wider Car-
ibbean. We used whole blood samples that were collected 
between 1992 and 2010 from adult females nesting at Sandy 
Point National Wildlife Refuge, St. Croix, U.S.V.I (see Sup-
plementary Material). This nesting population has been 
closely monitored since 1981, represents one group within 
the North Atlantic and can be used as a proxy for the North-
ern Caribbean leatherback population (Dutton et al. 2013).

Due to the opportunistic nature of our sampling, the 
number of leatherback blood samples available for stable 
nitrogen isotope analysis varied per year (Supplementary 
Material Table 1). This resulted in an unbalanced design, 
where we analyzed 201 blood samples from 171 leather-
backs over 18 years, including a 2-year (1995–1996) gap 
where no samples were collected. We included blood from a 
subset of 21 turtles that were sampled during multiple nest-
ing seasons, as we were particularly interested in evaluating 
isotopic variability of individual leatherbacks over time. Of 
this subset of samples, 19 of 21 turtles were sampled during 

two nesting years and two turtles were sampled during three 
nesting years. The number of years between sampling inter-
vals varied.

Compared with bulk tissue analyses, CSIA-AA is a labor 
intensive and expensive technique, so we selected a subset of 
25 samples for this analysis based on variations we observed 
in δ15Nbulk values. We had two objectives, where first we 
aimed to examine mechanisms driving changes in δ15Nbulk 
across our sampling period. We, therefore, chose five sam-
pling years (1993, 1999, 2000, 2005, 2010) and analyzed 
multiple samples (n = 5) from those years that encompassed 
the range of δ15Nbulk values we observed. We were limited 
by sample sizes for certain years but aimed to evenly spread 
samples across our sampling period. Our second objective 
was to evaluate changes in the TP of single individuals over 
time. We were limited to turtles that had been sampled dur-
ing multiple nesting seasons within our sampling period. 
We, therefore, selected five individuals that were sampled 
during multiple years and some of these samples were from 
years outside of the aforementioned years we selected for 
our first objective.

The U.S. Fish and Wildlife Service provided nesting his-
tories for turtles, when data were available. Nesting informa-
tion was then used to calculate the number of clutches laid 
(clutch productivity, n = 114) and the remigration intervals 
(n = 48) for individuals from which we collected blood for 
isotope analyses (see Supplementary Material).

Isotopic analyses

We freeze dried, homogenized, and weighed whole blood 
into tin capsules for bulk isotope analysis. For quality con-
trol, we analyzed a set of reference materials with known 
δ15N values and all reference materials were within ± 0.1‰ 
of their calibrated values. We analyzed the subset of samples 
selected for CSIA-AA at the University of Hawaii’s Stable 
Isotope Biogeochemistry Laboratories. The CSIA-AA sam-
ples were analyzed in triplicate, corrected the δ15N values 
to internal reference compounds. The analytical errors for 
amino acid δ15N values were largely under 1.0‰, but ranged 
from 0.03 to 1.46‰, and averaged 0.38‰ (see Supplemen-
tary Material).

Trophic position estimates

We estimated TP using several approaches (see Supplemen-
tary Material), as recent studies highlight the uncertainties 
associated with TPs derived from amino acid δ15N values. 
We used three variations of the following equation:

(1)TPTrophic-Source =
(δ15NTrophic − δ15NSource) − �

TDF
+ 1,
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where TPTrophic-Source is the TP based on the difference in 
mean δ15N values from the trophic and source amino acids, 
TDF is the trophic discrimination factor (the 15N enrichment 
of trophic relative to source amino acids per trophic step), 
and β represents δ15NTrophic − δ15NSource in primary produc-
ers. Since there are no TDF estimates for leatherback tur-
tles, we used values vetted in the literature and derived from 
meta-analyses (see Supplementary Material).

Additionally, we applied a novel Bayesian approach to 
estimate TP, using the ‘tRophicposition’ package in the sta-
tistical software R (Quezada-Romegialli et al. 2018). This 
approach couples Markov Chain Monte Carlo Simulations 
with stable isotope data to estimate TP, and we adapted the 
model to estimate TPs using amino acid δ15N values (see 
Supplementary Material).

Ocean–atmosphere indices

In the North Atlantic Ocean, the NAO and AMO affect sea-
surface temperatures, the strength of trade winds, mixed-
layer depth, and nutrient supply to the euphotic zone (Hur-
rell et al. 2001; Stenseth et al. 2003). Therefore, indices of 
the NAO and AMO can be used as indicators of broad-scale 
oceanographic conditions, reflecting the supply and nitrogen 
isotopic composition of nutrients. We obtained standard-
ized and unsmoothed monthly AMO values from NOAA’s 
Earth Systems Research Laboratory (http://www.esrl.noaa.
gov). NAO values were from NOAA’s climate prediction 
Center (http://www.cpc.ncep.noaa.gov/), where values were 
unsmoothed, and standardized by the 1981–2010 climatol-
ogy. Monthly AMO and NAO values were averaged to obtain 
annual values for each year, since δ15N values represent data 
integrated over several months and we were interested in 
annual changes in trophic ecology, nesting parameters, and 
habitat use.

Data analyses

For all statistical analyses, we considered p values < 0.05 
statistically significant. We used univariate linear regression 
analyses to evaluate relationships between δ15Nbulk values 
and time, and the relationships between δ15Nbulk and source 
amino acid δ15N (phenylalanine and lysine) values. Linear 
mixed effects (LME) models were built using the R package 
‘nlme’ (Pinheiro et al. 2018) to detect potential changes in 
the δ15N values at the base of the food web (i.e., in source 
amino acid δ15N values) during our sampling period. LMEs 
are useful for analyzing CSIA-AA data, as samples are typi-
cally analyzed in triplicate and, thus, the analysis provides 
replicate δ15N measurements accounting for within-sample 
variability. We included year as a linear term (fixed effect) 
and sample number as a random effect.

We were also interested in the variation in δ15Nphe val-
ues from individual turtles over time, as the isotope values 
from source amino acids may provide geographic informa-
tion about foraging area fidelity and pre-nesting habitat use 
patterns of leatherbacks. We first tested for an interaction 
between the individual turtle and the sampling year using 
the following model: δ15Nphe ~ individual × year, as blood 
was collected during different years due to the opportunis-
tic nature of our study. Since there was no interaction, we 
removed year and used an ANOVA to test for differences in 
amino acid δ15N values among individuals.

To assess changes in North Atlantic leatherback TPs over 
time, we used univariate linear regression analysis. We also 
used an LME model to evaluate changes in a proxy for TP 
(δ15Nglu − δ15Nphe, e.g., see Décima et al. 2013) from 1992 to 
2010, where we included year as a linear term (fixed effect), 
and sample number as a random effect. Although using a 
proxy for TP does not provide a TP estimate, or account for 
variability in TDFs, it circumvents the issue of a dependence 
on β and TDF values and allowed us to evaluate relative 
changes in TP over time.

We then compared the TP estimates of St. Croix leath-
erbacks with those from two foraging groups of western 
Pacific leatherbacks from Seminoff et al. (2012) using Sup-
plementary Material Eq. 1, as Pacific leatherback TPs were 
also estimated using this approach. We then tested the dif-
ferences in TP between populations using an ANOVA. The 
δ15N values from certain amino acids (e.g., lysine) were not 
detected in the Pacific leatherback samples from Seminoff 
et al. (2012) and, therefore, we were unable to compare TP 
estimates using equations that rely on several trophic and 
source amino acid δ15N values (Supplementary Material 
Eqs. 2 and 3).

We evaluated relationships between δ15Nbulk values, the 
annual NAO Index and AMO Index, and two leatherback 
nesting parameters using linear regression analyses. We also 
used LMEs to evaluate the relationships between source 
amino acid δ15N values (a proxy for the base of the food 
web) and environmental conditions, where the NAO and 
AMO indices were included as linear terms (fixed effects) 
and the sample number was included as a random effect.

Results

Trends in δ15N values

The δ15Nbulk values from leatherback blood collected from 
1992 to 2010 on St. Croix ranged from 4.2 to 12.6‰, with a 
mean ± SD of 8.9 ± 1.6‰ (Supplementary Material Table 1). 
There was high intra-annual variability in δ15Nbulk values, 
but a statistically significant decrease in leatherback δ15Nbulk 

http://www.esrl.noaa.gov
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values over time [adj. R2 = 0.14, F(1,197) = 32.7, p < 0.0001; 
Fig. 1].

We determined the δ15N values of 18 amino acids from 
25 leatherback blood samples, but 12 amino acids were con-
sistently detected on chromatograms and δ15N values from 
six amino acids were used to estimate TP (Table 1). The 
δ15N values from the source amino acids lysine (δ15Nlys) 
and phenylalanine (δ15Nphe) were used to evaluate fluc-
tuations in the nitrogen isotope composition at the base 
of the food web, which influence bulk isotope values of 
consumers. The δ15Nphe values were variable and ranged 
from 2.0 to 7.0‰. We found positive relationships between 
the δ15Nbulk and source amino acid δ15N values: δ15Nphe 
[adj. R2 = 0.43, F(1,23) = 18.1, p < 0.001] and δ15Nlys [adj. 
R2 = 0.59, F(1,23) = 35.7, p < 0.00001; Fig. 2a]. We found a 
weak, although statistically significant, relationship between 
δ15Nphe values and year using both linear regression analyses 

Fig. 1   Linear relationship between the δ15Nbulk values from leather-
back turtle blood (n = 201) collected and year (1992–2010) of sample 
collection. Filled circles indicate the mean δ15Nbulk values for each 
year and open circles are the δ15Nbulk values from each sample

Table 1   Stable isotope data from the subset of blood samples from 
leatherback turtles we analyzed for compound-specific isotope analy-
sis of amino acids (CSIA-AA) including the sample identification 
number, year sampled, the δ15Nbulk values, the trophic position (TP) 
estimate for each turtle, and the δ15N values of the selected trophic 

and source amino acids used to estimate TP: alanine (Ala), leucine 
(Leu), glutamic acid (Glu), phenylalanine (Phe), lysine (Lys), and 
glycine (Gly). ND indicates values that were not detected on chroma-
tograms

Superscripts in the sample ID column indicate individual turtles that were sampled over multiple nesting seasons, and the superscript number 
corresponds to the Sample ID column in Supplementary Material Table 2

Sample ID Year δ15Nbulk TP Glu-Phe Thr Source amino acids Trophic amino acids

Gly* Lys* Phe* Ser Tyr Ala* Asp Glu* Leu* Iso Pro Val

8 1993 9.3 2.5 15.0 − 23.6 10.7 4.0 2.8 6.3 2.2 21.5 13.3 17.9 18.5 19.6 17.6 20.1
16 1993 10.2 2.0 10.7 − 19.2 11.8 5.9 6.9 10.6 3.8 20.4 13.4 17.6 18.1 18.9 19.1 17.6
13 1993 10.6 2.7 16.7 − 26.1 12.8 4.1 4.5 8.7 4.7 24.5 15.3 21.2 22.1 23.0 22.1 24.9
17 1993 10.7 2.5 14.5 − 19.3 9.5 3.4 3.7 8.1 3.8 19.3 14.3 18.2 19.0 19.1 18.6 22.4
1922 1993 12.3 2.7 16.0 − 22.8 13.3 6.4 6.2 7.8 5.4 23.4 17.4 22.2 22.7 23.9 22.8 22.2
533 1999 6.4 1.9 10.5 − 19.2 8.6 0.1 2.0 7.9 0.2 17.6 9.4 12.5 14.4 11.2 14.2 15.6
1982 1999 6.8 2.5 14.9 − 23.2 8.4 4.4 5.1 9.2 ND 21.8 14.9 20.1 16.0 20.6 21.9 20.0
1944 1999 11.4 2.4 14.1 − 19.9 10.7 5.4 5.3 11.9 ND 22.8 15.0 19.4 21.4 21.7 20.3 20.9
61 2000 7.1 2.0 10.6 − 17.5 9.9 4.1 4.8 6.6 ND 19.0 11.5 15.4 14.3 14.5 16.4 15.2
66 2000 9.1 2.3 13.2 − 16.7 12.2 4.4 3.7 8.2 4.2 18.6 12.8 17.0 18.1 14.4 16.4 16.2
63 2000 9.2 2.5 14.5 − 18.2 9.8 5.4 4.1 7.4 2.7 18.8 13.4 18.7 18.0 19.0 17.9 16.6
64 2000 9.4 2.5 15.1 − 26.1 10.8 4.7 6.7 12.7 5.6 24.7 16.1 21.7 22.1 23.7 23.6 19.9
62 2000 12.0 2.3 13.6 − 16.3 14.9 7.5 7.0 10.2 6.2 24.3 15.5 20.6 21.1 21.1 20.3 20.7
2011 2000 12.1 2.5 15.0 − 22.1 10.2 6.5 6.0 10.0 7.7 24.4 15.1 21.0 22.5 23.3 23.1 20.5
895 2002 5.7 1.9 10.1 − 21.3 8.2 0.2 3.3 ND ND ND 9.3 13.4 14.8 11.2 14.6 16.0
2024 2002 9.8 2.5 14.7 − 19.8 8.7 3.2 3.2 9.0 3.0 20.2 13.2 17.9 18.7 19.8 17.1 18.5
1053 2003 7.9 2.3 13.5 − 24.4 8.4 1.8 2.4 8.0 0.5 19.6 11.9 15.9 17.4 18.9 16.2 17.1
2072 2005 9.9 2.6 15.3 − 17.5 10.6 4.8 4.6 10.1 5.7 21.9 14.4 19.9 20.8 21.7 20.9 19.7
2041 2005 10.3 2.6 15.3 − 23.3 8.8 4.7 5.3 8.9 5.2 23.4 14.5 20.6 21.1 22.0 21.2 19.9
1495 2007 6.4 2.2 12.7 − 21.0 9.0 3.2 3.0 6.5 − 1.1 16.7 11.1 15.6 13.9 16.9 16.1 16.0
182 2010 5.9 2.5 14.6 − 23.7 8.0 1.6 2.1 7.0 ND 19.4 12.5 16.6 16.0 17.3 16.0 16.7
183 2010 7.2 2.2 12.4 − 21.2 11.3 4.5 3.7 8.8 2.4 20.6 12.2 16.1 16.5 17.3 17.7 16.5
187 2010 7.2 2.3 13.6 − 22.2 9.9 2.8 2.9 7.5 − 0.3 19.6 12.6 16.5 16.9 18.2 18.9 17.4
184 2010 7.6 2.3 13.6 − 20.6 10.6 3.4 3.9 9.2 ND 21.6 13.4 17.4 17.1 18.2 17.8 16.9
186 2010 8.9 2.7 16.0 − 22.4 9.8 3.5 3.4 10.7 5.0 23.2 15.4 19.4 18.9 22.3 20.8 20.4
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(Fig. 2b) and an LME model (Table 2), where δ15Nphe values 
decreased from 1992 to 2010.

We analyzed a subset of samples from five individual 
leatherbacks during multiple nesting years (Supplementary 
Material Table 2) and the δ15Nphe values ranged from 2.0 to 
6.2‰. We found weak, detectable differences in the source 
amino acid δ15N values among individuals, for δ15Nphe 
[adj. R2 = 0.32, F(1,9) = 5.77, p = 0.04] and δ15Nlys [adj. 
R2 = 0.27, F(1,9) = 4.64, p = 0.06]. However, the variability 
in the δ15Nphe values within individuals sampled across time 
periods was low, generally within 1–2‰ between sampling 
events (Supplementary Material Fig. 1).

Trophic position estimates

TP estimates from three variations of Eq. 1 yielded similar 
results with mean ± SD of 2.4 ± 0.2 (Supplementary Mate-
rial Eq. 1), 2.6 ± 0.3 (Supplementary Material Eq. 2), and 
2.6 ± 0.3 (Supplementary Material Eq. 3). Using a Bayes-
ian approach, we found the TP ranged from 2.4 to 3.2 
with a mean and median of 2.8. There was no significant 
change in North Atlantic leatherback TP over time [adj. 

R2 = − 0.04, F(1,23) = 0.08, p > 0.5], and similarly no change 
in the proxy for North Atlantic leatherback TP over time 
(δ15Nglu − δ15Nphe; Table 2), using an LME model. Addition-
ally, there was no differences in the mean ± SD TP estimates 
between the North Atlantic leatherbacks (2.4 ± 0.2) and the 
eastern Pacific-foraging (2.4 ± 0.01) or western Pacific-for-
aging group [2.4 ± 0.01; one-way ANOVA, 95% confidence, 
F(1,29) = 0.08, p > 0.5; Fig. 3].

Links between δ15N values, oceanography, 
and nesting parameters

Both oceanographic indices were in positive phases through-
out our sampling period; however, the AMO Index increased 
from 1992 to 2010, whereas the NAO Index decreased, and 
our sampling period ended with a large negative NAO event 
in 2010 (http://www.cpc.ncep.noaa.gov/). We found a weak, 
although detectable positive relationship between δ15Nbulk 
values and the NAO Index [adj. R2 = 0.06, F(1,197) = 17.1, 
p < 0.00001; Fig. 4 and Supplementary Material Fig. 2], 
and a weak negative relationships with the AMO Index 
[adj. R2 = 0.08, F(1,197) = 18.7, p < 0.00001; Supplementary 

Fig. 2   Linear relationships between a the δ15Nbulk values and the δ15N values of the source amino acids phenylalanine (δ15Nphe) and lysine 
(δ15Nlys) from leatherback blood, and b the δ15Nphe and δ15Nlys values and year of sample collection (n = 25)

Table 2   Estimated parameters from the LME models for the δ15N values of phenylalanine (δ15Nphe) from leatherback blood samples versus year, 
δ15Nphe vs. the North Atlantic Oscillation Index, and a proxy for trophic position (δ15Nglu − δ15Nphe) versus year

Shown for the fixed effect component of each LME are the estimated coefficients, with the standard errors and p values in parentheses. Shown 
for the random effect component of each LME are the estimated standard deviations of the random effect distributions and the approximate 95% 
confidence intervals in parentheses

Parameter δ15Nphe ~ year δ15Nphe ~ NAO δ15Nglu − δ15Nphe ~ year

Fixed effects
 Intercept 210.2 (97.46; p < 0.05) 4.06 (0.29, p < 0.001) 59.01 (167.70, p > 0.1)
 Year − 0.10 (0.05; p < 0.05) 0.71 (0.31, p < 0.05) − 0.02 (0.08, p > 0.1)

Random effects
 SDsample 1.36 (1.0, 1.83) 1.34 (0.99, 1.82) 1.63 (1.34, 1.99)

http://www.cpc.ncep.noaa.gov/
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Material Fig. 3]. Using an LME model, we found a weak 
relationship between the δ15Nphe values from 1992 to 2010 
and the winter NAO Index (Table 2), but no relationship 
with the AMO Index.

Overall, we found weak relationships between δ15N val-
ues, oceanographic indices, and nesting parameters. There 
was a detectable, negative relationship between the δ15Nbulk 
values and the length of leatherback remigration intervals 
prior to our sample collection [adj. R2 = 0.08, F(1,50) = 4.8, 
p < 0.05; Supplementary Material Fig. 4B], and a weak posi-
tive linear relationship between δ15Nbulk values and the num-
ber of clutches laid by individuals during the corresponding 
sampling year [adj. R2 = 0.03, F(1,114) = 4.4, p < 0.05; Sup-
plementary Material Fig. 4A].

The NAO Index was related to demographic parameters, 
where clutch frequency increased with increasing NAO 
[R2 = 0.042, F(1,114) = 6.0, p = 0.01] and the remigration inter-
vals were negatively related to NAO [R2 = 0.15, F(1,48) = 9.8, 
p < 0.01]. We found a negative relationship between the remi-
gration interval and the AMO Index [R2 = 0.05, F(1,114) = 5.7, 
p = 0.02], but no relationship between clutch frequency and the 
AMO Index [R2 = 0.02, F(1,48) = 2.1, p > 0.1].

Fig. 3   A comparison of the 
δ15N values between leather-
backs nesting on St. Croix in 
the North Atlantic (N. Atlantic; 
n = 25), and two groups of west-
ern Pacific leatherbacks: eastern 
(E. Pacific; n = 3) and western 
Pacific foragers (n = 3) from 
Seminoff et al. (2012), where a 
are the δ15Nbulk values, b are the 
trophic position estimates which 
were calculated using Eq. 1, c 
are the δ15N values of glutamic 
acid (δ15Nglu), a trophic amino 
acid, and d are the δ15N values 
of phenylalanine acid (δ15Nphe), 
a source amino acid

Fig. 4   a The mean annual North Atlantic Oscillation Index (NAOI) 
and mean δ15Nbulk values of blood collected from leatherback turtles 
between 1992 and 2010 (n = 201), and b a historical context of mean 
annual NAOI values from NOAA’s Climate Prediction Center (http://
www.cpc.ncep.noaa.gov/), where the dotted black line represents 

a 5-year running average, and the solid line represents unsmoothed, 
annual winter average NAOI values, where both lines were standard-
ized using the 1980–2010 base period. The gray box indicates our 
sampling period

http://www.cpc.ncep.noaa.gov/
http://www.cpc.ncep.noaa.gov/
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Discussion

Our study underscores the utility of nitrogen isotope data 
to evaluate long-term trends in the foraging ecology and 
habitat use of migratory marine species. Using the infor-
mation provided by CSIA-AA, we found no changes in 
leatherback TP over 18 years, despite detectable decreases 
in the δ15Nbulk and δ15Nphe values from 1992 to 2010. 
Our results indicate that Pacific and Atlantic leatherback 
populations occupy nearly identical TPs, so differences 
in their population trajectories cannot be explained by a 
major trophic dichotomy. Source amino acid δ15N values 
decreased over time, suggesting that trends in δ15Nbulk 
values can be somewhat attributed to changes in the δ15N 
values at the base of the food web, which are likely driven 
by regional oceanography and nitrogen biogeochemistry, 
not differences in TP. Our results also provide insight into 
leatherback habitat use during the cryptic, pre-nesting por-
tion of their breeding migrations, which supports previous 
hypotheses that the North Atlantic leatherback population 
uses multiple oceanic areas prior to nesting. However, at 
the individual level, turtles seem to exhibit fidelity to spe-
cific foraging areas, as evidenced by the similarity in the 
source amino acid δ15N values from individuals over mul-
tiple nesting seasons.

We found weak relationships between leatherback nest-
ing parameters, North Atlantic oceanography, and nitrogen 
isotope values, where higher δ15N values corresponded a 
positive NAO index, shorter remigration intervals, and a 
higher clutch frequency. This may suggest that the posi-
tive modes of the NAO, which occurred during our sam-
pling period and coincided with an increase in the North 
Atlantic leatherback population, affect sea-surface tem-
perature and nutrient dynamics in a way that is benefi-
cial to leatherbacks foraging in the North Atlantic Ocean, 
thereby facilitating their population increase. Future stud-
ies focused on fluctuations in the abundances of leather-
back prey in relation to oceanographic conditions would 
be useful to evaluate this hypothesis and the mechanistic 
links between large-scale oceanography and leatherback 
population productivity.

Estimating trophic position with CSIA‑AA

Although CSIA-AA is an increasingly used tool to esti-
mate TPs of consumers, recent studies highlight its limi-
tations, particularly regarding variability in the TDF of 
consumers (McMahon and McCarthy 2016). There is 
increasing evidence that TDFs can vary widely across taxa 
and the often-used TDF of 7.6‰ from a seminal study 
(Chikaraishi et al. 2009) is not appropriate for certain taxa 

(Hetherington et al. 2017; McMahon and McCarthy 2016). 
It is somewhat unclear why TDFs vary, although they may 
be affected by the diet quality of the consumer, whereby 
if the consumer’s amino acid composition is similar to 
that of its prey, the TDF is lower than consumers whose 
amino acid composition is quite different from their prey 
(McMahon and McCarthy 2016; Fuller and Petzke 2017; 
O’Connell 2017). Additionally, the consumer’s method of 
nitrogen excretion may also affect its TDF value, wherein 
organisms that produce urea or uric acid, like turtles, have 
lower TDFs than ammonia-excreting organisms (Germain 
et al. 2013; McMahon and McCarthy 2016).

Ideally, we would estimate TP using a species-specific 
TDF derived from a leatherback feeding experiment; how-
ever, no published TDF estimates are available for marine 
turtles. Therefore, we used TDFs from previous studies 
(Chikaraishi et al. 2009; Bradley et al. 2015; Nielsen et al. 
2015) to estimate TP. Alternative methods for estimating 
TDFs are needed, as highly migratory species are difficult or 
impossible to maintain in laboratory settings for controlled 
feeding experiments. One novel, promising technique, Stable 
Isotope Discrimination Estimation in R (SIDER) relies on 
using phylogenetic relatedness approaches to estimate TDFs 
(Healy et al. 2017). In this study, however, we were unable 
to use SIDER, as it can only be applied to bird and mammal 
data, but its continued development may provide a useful 
approach for estimating TDFs in future studies.

Due to the aforementioned uncertainties, we used multi-
ple approaches to estimating leatherback TPs. Chikaraishi 
et al.’s (2009) approach, which relies on the difference in 
δ15N values of one trophic and one source amino acid, pro-
duced the lowest TP estimates (mean = 2.4; Supplementary 
Material Eq. 1). More recent meta-analyses (Bradley et al. 
2015; Nielsen et al. 2015) suggest that using multiple trophic 
and source amino acids, in addition to a lower TDF, pro-
duces more biologically realistic TPs for certain taxa. These 
approaches yielded identical TP estimates, which were mar-
ginally higher (mean 2.6) than estimates using the Chikarai-
shi et al. (2009) approach. Trophic position estimates from 
the Bayesian approach were more variable and the mean 
(2.8) was slightly higher. The larger range of TP estimates 
from this approach can likely be attributed to incorporating 
variability in TDF values.

Leatherback TPs from CSIA-AA may be slight under-
estimates, particularly regarding estimates from the Chi-
karaishi et al. (2009) approach, which uses a higher TDF 
than the other equations. Our results bolster a growing body 
of the literature (Germain et al. 2013; Bradley et al. 2015; 
McMahon et al. 2015; Hetherington et al. 2017) demon-
strating consistent underestimation of TP for higher trophic 
level marine species using this approach. Leatherbacks are 
specialist consumers that prey on gelatinous zooplankton 
(Bjorndal 1997; Dodge et al. 2011; Heaslip et al. 2012), 
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including carnivorous scyphozoans and filter-feeding organ-
isms like salps and pyrosomes. Thus, TPs of ~ 3 are reason-
able if leatherbacks are feeding on a mixture of carnivorous 
jellyfish and filter-feeding tunicates. Based on our under-
standing of leatherback feeding ecology from previous stud-
ies (e.g., Bjorndal 1997; Dodge et al. 2011; Heaslip et al. 
2012), the Bayesian approach provided the most realistic TP 
estimates. However, it is possible that leatherbacks consume 
a higher proportion of filter-feeding organisms (e.g., salps 
and pyrosomes) than is currently recognized, which would 
result in lower δ15N values and TPs than expected if they 
were primarily consuming carnivorous scyphozoans.

Our work and other recent studies highlight the criti-
cal need for more experimental studies on TDF variability, 
turnover rates for amino acids, and the metabolic mecha-
nisms driving variability. Recently, studies have focused on 
understanding the biochemical underpinnings that influence 
patterns in source and trophic amino acid δ15N values and 
suggest that the source and trophic groupings have metabolic 
origins, specifically the cycling of amino-nitrogen between 
amino acids (O’Connell 2017). Ultimately, understanding 
the mechanisms driving variability in TDFs and amino acid 
δ15N values will be critical for the continued development 
and application of CSIA-AA in ecological studies. Regard-
less of the method used to calculate leatherback TP from 
amino acid δ15N values, none changed as a function of time.

Trends in trophic position

CSIA-AA was useful for evaluating relative changes in TP 
from 1992 to 2010 and comparing North Atlantic leather-
back TP estimates with those from western Pacific popula-
tions, which was our primary objective. Although we found 
a detectable long-term decline in the δ15Nbulk values from 
1992 to 2010, results from CSIA-AA indicated that there 
were no changes in St. Croix leatherback TP over time. In 
addition, we found no differences in TP between St. Croix 
leatherbacks and those from two Pacific-foraging groups 
(Seminoff et al. 2012), using the same CSIA-AA approach, 
indicating that western Pacific and North Atlantic leath-
erbacks occupy the same TP. Our sample size was larger, 
which may explain the larger range in TP values from North 
Atlantic leatherbacks compared with those from Pacific 
leatherbacks in Seminoff et al. (2012). Additionally, Pacific 
leatherback δ15N values were coupled with satellite telem-
etry data where the individuals selected for stable isotope 
analysis migrated from distinct foraging areas (either the 
western or eastern Pacific Ocean) prior to nesting in the 
western Pacific, which contrasts with our study where satel-
lite telemetry data were not available, and leatherbacks likely 
migrated from several or more foraging areas.

Our results support the hypothesis that, globally, leather-
backs occupy the same trophic level, and population-level 

differences in feeding ecology cannot explain the diverse 
population trends between Pacific and Atlantic leatherback 
populations. However, the δ15N values do not provide infor-
mation about food quality or prey abundance. Thus, it is pos-
sible that leatherbacks have access to greater quantities of 
gelatinous prey in the North Atlantic, which could contribute 
to their population growth potential, length of remigration 
intervals, and overall population productivity, but not change 
their TP.

Linking oceanography and climate to nesting 
parameters

We paired demographic information for individual leather-
backs with their δ15N values and ocean indices. Overall, we 
found weak relationships, where lower δ15Nbulk values were 
associated with higher remigration intervals, lower clutch 
productivity, and lower NAO values. These results may 
indicate that broad-scale oceanographic conditions influ-
enced leatherback trophic ecology and nesting parameters, 
whereby positive NAO phases create oceanographic condi-
tions that are beneficial for leatherbacks. Other studies have 
similarly found that environmental parameters, particularly 
SST, can explain variation in remigration intervals and nest-
ing trends (e.g., Solow et al. 2002). Although the underly-
ing mechanisms by which the NAO influences leatherback 
demography is somewhat unclear, changes in the NAO and 
AMO can influence the abundance and distribution of phy-
toplankton, zooplankton, and higher trophic level species 
(Beaugrand et al. 2009; Nye et al. 2014).

During positive NAO phases, certain regions of the north-
western Atlantic where leatherbacks forage are associated 
with higher SSTs (Marshall et al. 2001), and there may be an 
increased abundance of gelatinous zooplankton associated 
with higher SSTs (e.g., Lucas et al. 2014). Positive NAO 
indices have also been linked to increases in gelatinous zoo-
plankton abundance (Attrill et al. 2007), so leatherbacks may 
have a more abundant food supply leading to potentially 
shorter reproductive intervals during positive NAO periods. 
Therefore, the oceanographic conditions in the 1990s and 
early 2000s may have contributed to North Atlantic leather-
back population increases and positive phases of the NAO 
and AMO may benefit leatherback foraging in the North 
Atlantic. However, our low R2 values indicate that, although 
these relationships were statistically significant, they do not 
explain much of the variability in our data.

Certain climate models forecast an increase in posi-
tive phases of the AMO and the NAO, which may lead to 
warmer SSTs in regions of the North Atlantic Ocean. In 
certain regions, gelatinous zooplankton abundances are 
higher during positive NAO phases (e.g., Attrill et al. 2007), 
so leatherbacks foraging in these areas may have higher 
prey availability, which would benefit their population 
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productivity. In contrast, if ENSO events increase in fre-
quency or intensity with climate change, these events may 
continue to negatively affect Pacific leatherback popula-
tions (Saba et al. 2007, 2008), which could further drive 
population dichotomies between Atlantic and Pacific leath-
erbacks. Alternatively, previous studies on other species of 
sea turtles have suggested that sea-surface temperature is 
inversely related with nesting abundance (Chaloupka et al. 
2008), indicating that higher SSTs would negatively impact 
leatherbacks. Ultimately, predicting patterns in leatherback 
foraging ecology under different climate scenarios requires a 
better understanding of fluctuations in gelatinous zooplank-
ton abundances in specific leatherback foraging regions and 
an evaluation of the linkages between large-scale environ-
mental conditions and leatherback prey.

Biogeochemistry and N cycling

Since TP did not change from 1992 to 2010, we evaluated 
potential mechanisms driving the decrease we observed in 
the δ15Nbulk values from leatherback blood. The concurrent 
decrease in δ15Nphe values over time indicates that patterns 
in δ15Nbulk values could be attributed to changes in nitrogen 
cycling and its effect on the nitrogen isotopic composition 
at the base of the food web. Nitrogen is supplied to the food 
chain via transport from subsurface waters with high nutrient 
concentrations, N2 fixation by diazaotrophs, and atmospheric 
N deposition, and nitrogen is removed from the system via 
denitrification (Gruber and Sarmiento 1997; Montoya et al. 
2002). The relative influences of these processes drive spa-
tial and temporal patterns in the δ15N values at the base of 
the food web, which then propagate up to consumers (Somes 
et al. 2010).

In addition to natural variability in N cycling, anthro-
pogenic influences can alter the N cycle in marine systems 
(e.g., Duce et al. 2008). For example, Ren et al. (2017) found 
long-term decreases in δ15N values of corals, which they 
attributed to an increase in anthropogenic nitrogen depo-
sition in the western Pacific. Alternatively, Polovina et al. 
(2008) suggested that the subtropical gyres are expanding 
with ongoing climate change and, consequently, N2 fixa-
tion is becoming more widespread, which would lead to a 
temporal decrease in δ15N values. Our long-term decrease in 
δ15N values could also reflect an expansion of the subtropi-
cal gyres or increased anthropogenic nitrogen deposition, 
although future studies are needed to test these hypotheses.

Leatherback habitat use

There are spatial gradients in δ15N values in marine environ-
ments (Montoya et al. 2002; Somes et al. 2010), which we 
can use to interpret leatherback δ15N values and gain insight 
into their pre-nesting foraging locations. For the subset of 

samples that we analyzed for CSIA-AA, we found a gradi-
ent of amino acid isotope values (δ15Nphe range 2.0–7.0‰), 
suggesting that the St. Croix leatherbacks used multiple oce-
anic areas, perhaps with differing biogeochemical cycling 
regimes, prior to nesting on St. Croix. The δ15Nphe values for 
more than half of our samples were very low (< 4‰), sug-
gesting that this portion of NA leatherbacks was in tropical 
or subtropical areas of the northwestern Atlantic with docu-
mented low δ15N values (Supplementary Material Fig. 5; 
Somes et al. 2010; McMahon et al. 2013; Mompean et al. 
2016).

It is possible that low δ15Nphe values indicate that leath-
erbacks were in the greater Caribbean for several months 
before nesting on St. Croix. However, we specifically tar-
geted samples from early in the nesting season, as previ-
ous studies indicate that leatherbacks typically arrive at 
their breeding grounds and begin nesting within a few 
weeks (Plotkin 2003), which reduces the plausibility of this 
scenario. Leatherbacks travel during interesting periods 
(Georges et al. 2007), but it is unclear how much they for-
age during this time, as certain studies have speculated that 
they opportunistically feed between nesting events (Georges 
et al. 2007; Fossette et al. 2008; Casey et al. 2010), while 
others found no evidence of foraging (Plot et al. 2013; Okuy-
ama et al. 2016). We, therefore, hypothesize that the source 
amino acid δ15N values largely reflect the foraging area that 
leatherbacks occupied prior to nesting.

Although we attributed the decrease in δ15Nbulk and 
δ15Nphe values over time to changes in N biogeochemistry, 
this trend could also suggest a shift in North Atlantic leather-
back foraging areas over our study period. It is possible that 
leatherbacks shifted their pre-nesting foraging region to an 
area with higher rates of N2 fixation and subsequently lower 
δ15N values. However, we found high inter- and intra-annual 
variability through the 18-year range of our samples, which 
suggests that leatherbacks were consistently migrating to 
St. Croix from multiple foraging locations, rather than con-
verging on one foraging region over time. Additionally, we 
sampled a subset of individual turtles over multiple nesting 
years and found that variability in δ15Nphe values of indi-
vidual turtles was low between years, but the δ15Nphe varia-
tion among individuals was higher. If leatherbacks exhibited 
a major shift in foraging area during our sampling period, 
we would expect changes in the δ15Nphe values of individual 
turtles between nesting years.

Although our sample size was limited, our results sup-
port previous hypotheses that North Atlantic leatherbacks 
have flexible foraging tactics and inhabit multiple regions of 
the North Atlantic Ocean (Hays et al. 2006; Fossette et al. 
2010a, b), but individuals appear to have regional forag-
ing area fidelity. Our isotope data provide inferences about 
recently occupied leatherback foraging areas prior to nesting 
on St. Croix. However, leatherback remigration intervals last 
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for several years and during that time. It is likely that indi-
viduals transition between multiple foraging areas and our 
data are reflective of the final foraging area used by leather-
backs prior to nesting.

Future studies evaluating spatial isotopic differences 
between specific leatherback foraging areas and pairing tur-
tle telemetry data with δ15N values would further enhance 
our understanding of habitat use and residency duration dif-
ferent leatherback foraging areas. Our results have implica-
tions for leatherback management and conservation. Since 
leatherbacks are using several oceanic areas, our results urge 
for holistic management practices that account for multiple 
jurisdictions and future studies that investigate habitat dura-
tion in each foraging area to best protect leatherbacks during 
different stages of their remigration intervals.
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